1
|
Borland JM. A review of the effects of different types of social behaviors on the recruitment of neuropeptides and neurotransmitters in the nucleus accumbens. Front Neuroendocrinol 2025; 77:101175. [PMID: 39892577 DOI: 10.1016/j.yfrne.2025.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
There is a lack of understanding of the neural mechanisms regulating the rewarding effects of social interactions. A significant contributor to this lack of clarity is the diversity of social behaviors and animal models utilized to investigate mechanisms. Other sources of the lack of clarity are the diversity of brain regions that can regulate social reward and the diversity of signaling pathways that regulate reward. To provide some clarity into the mechanisms of social reward, this review focused on the brain region most implicated in reward for multiple stimuli, the nucleus accumbens, and surveyed (systematically reviewed) studies that investigated the relationship between social interaction and five signaling systems implicated in the regulation of reward and social behavior: oxytocin, vasopressin, serotonin, opioids and endocannabinoids. Moreover, all of these studies were organized by the type of social behavior studied: affiliative interactions, play behavior, aggression, social defeat, sex behavior, pair-bonding, parental behavior and social isolation. From this survey and organization, this review concludes that oxytocin, endocannabinoids and mu-opioid receptors in the nucleus accumbens positively regulate the rewarding social behaviors, and kappa-opioid receptors negatively regulate the rewarding social behaviors. The opposite profile is observed for these signaling systems for the aversive social behaviors. More studies are needed to investigate the directional role of the serotonin system in the nucleus accumbens in the regulation of many types of social behaviors, and vasopressin likely does not act in the nucleus accumbens in the regulation of the valence of social behaviors. Many of these different signaling systems are also interdependent of one another in the regulation of different types of social behaviors. Finally, the interaction of these signaling systems with dopamine in the nucleus accumbens is briefly discussed.
Collapse
|
2
|
Zhong T, Lin Y, Zhuge R, Lin Y, Huang B, Zeng R. Reviewing the mechanism of propofol addiction. ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2174708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Tianhao Zhong
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Yuyan Lin
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Ruohuai Zhuge
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Yujie Lin
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Bingwu Huang
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Ruifeng Zeng
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
3
|
Kondev V, Najeed M, Loomba N, Brown J, Winder DG, Grueter BA, Patel S. Synaptic and cellular endocannabinoid signaling mechanisms regulate stress-induced plasticity of nucleus accumbens somatostatin neurons. Proc Natl Acad Sci U S A 2023; 120:e2300585120. [PMID: 37590414 PMCID: PMC10450650 DOI: 10.1073/pnas.2300585120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/28/2023] [Indexed: 08/19/2023] Open
Abstract
Interneuron populations within the nucleus accumbens (NAc) orchestrate excitatory-inhibitory balance, undergo experience-dependent plasticity, and gate-motivated behavior, all biobehavioral processes heavily modulated by endogenous cannabinoid (eCB) signaling. While eCBs are well known to regulate synaptic plasticity onto NAc medium spiny neurons and modulate NAc function at the behavioral level, how eCBs regulate NAc interneuron function is less well understood. Here, we show that eCB signaling differentially regulates glutamatergic and feedforward GABAergic transmission onto NAc somatostatin-expressing interneurons (NAcSOM+) in an input-specific manner, while simultaneously increasing postsynaptic excitability of NAcSOM+ neurons, ultimately biasing toward vHPC (ventral hippocampal), and away from BLA (basolateral amygdalalar), activation of NAcSOM+ neurons. We further demonstrate that NAcSOM+ are activated by stress in vivo and undergo stress-dependent plasticity, evident as a global increase in intrinsic excitability and an increase in excitation-inhibition balance specifically at vHPC, but not BLA, inputs onto NAcSOM+ neurons. Importantly, both forms of stress-induced plasticity are dependent on eCB signaling at cannabinoid type 1 receptors. These findings reveal eCB-dependent mechanisms that sculpt afferent input and excitability of NAcSOM+ neurons and demonstrate a key role for eCB signaling in stress-induced plasticity of NAcSOM+-associated circuits.
Collapse
Affiliation(s)
- Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37232
| | | | - Niharika Loomba
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37232
| | - Jordan Brown
- Department of Pharmacology, Vanderbilt University, Nashville, TN37232
| | - Danny G. Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN37232
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN27323
| | - Brad A. Grueter
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN27323
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN37232
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
4
|
Kesner AJ, Lovinger DM. Cannabis use, abuse, and withdrawal: Cannabinergic mechanisms, clinical, and preclinical findings. J Neurochem 2021; 157:1674-1696. [PMID: 33891706 PMCID: PMC9291571 DOI: 10.1111/jnc.15369] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
Cannabis sativa is the most widely used illicit drug in the world. Its main psychoactive component is delta-9-tetrahydrocannabinol (THC), one of over 100 phytocannabinoid compounds produced by the cannabis plant. THC is the primary compound that drives cannabis abuse potential and is also used and prescribed medically for therapeutic qualities. Despite its therapeutic potential, a significant subpopulation of frequent cannabis or THC users will develop a drug use syndrome termed cannabis use disorder. Individuals suffering from cannabis use disorder exhibit many of the hallmarks of classical addictions including cravings, tolerance, and withdrawal symptoms. Currently, there are no efficacious treatments for cannabis use disorder or withdrawal symptoms. This makes both clinical and preclinical research on the neurobiological mechanisms of these syndromes ever more pertinent. Indeed, basic research using animal models has provided valuable evidence of the neural molecular and cellular actions of cannabis that mediate its behavioral effects. One of the main components being central action on the cannabinoid type-one receptor and downstream intracellular signaling related to the endogenous cannabinoid system. Back-translational studies have provided insight linking preclinical basic and behavioral biology research to better understand symptoms observed at the clinical level. This narrative review aims to summarize major research elucidating the molecular, cellular, and behavioral manifestations of cannabis/THC use that play a role in cannabis use disorder and withdrawal.
Collapse
Affiliation(s)
- Andrew J. Kesner
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismCenter on Compulsive BehaviorsNational Institutes of HealthBethesdaMDUSA
| | - David M. Lovinger
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismCenter on Compulsive BehaviorsNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
5
|
Bielawski T, Albrechet-Souza L, Frydecka D. Endocannabinoid system in trauma and psychosis: distant guardian of mental stability. Rev Neurosci 2021; 32:707-722. [PMID: 33656307 DOI: 10.1515/revneuro-2020-0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022]
Abstract
Central endocannabinoid system (eCBS) is a neuromodulatory system that inhibits potentially harmful, excessive synaptic activation. Endocannabinoid receptors are abundant among brain structures pivotal in different mental disorders development (for example, hippocampus, amygdala, medial-prefrontal cortex, hypothalamus). Here, we review eCBS function in etiology of psychosis, emphasizing its role in dealing with environmental pressures such as traumatic life events. Moreover, we explore eCBS as a guard against hypothalamic-pituitary-adrenal axis over-activation, and discuss its possible role in etiology of different psychopathologies. Additionally, we review eCBS function in creating adaptive behavioral patterns, as we explore its involvement in the memory formation process, extinction learning and emotional response. We discuss eCBS in the context of possible biomarkers of trauma, and in preclinical psychiatric conditions, such as at-risk mental states and clinical high risk states for psychosis. Finally, we describe the role of eCBS in the cannabinoid self-medication-theory and extinction learning.
Collapse
Affiliation(s)
- Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland.,Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Lucas Albrechet-Souza
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA.,Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland
| |
Collapse
|
6
|
Mediatory role of the dopaminergic system through D1 receptor on glycine-induced hypophagia in neonatal broiler-type chickens. Amino Acids 2021; 53:461-470. [PMID: 33649971 DOI: 10.1007/s00726-021-02963-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
The present study aimed to examine the mediatory role of the dopaminergic system in the food intake induced by intracerebroventricular (ICV) injection of glycine in neonatal 3-h feed-deprived (FD3) meat-type chickens. In the first and second experiments, birds were ICV injected using low and high doses of glycine (50, 100 and 200 nmol) and strychnine (50, 100 and 200 nmol), respectively. In experiments 3-9, the behaviorally subeffective doses of dopamine (10 nmol), 6-OHDA (2.5 nmol), SCH 23,390 (D1 antagonist; 5 nmol), AMI-193 (D2 antagonist; 5 nmol), NGB2904 (D3 antagonist; 6.4 nmol) and L-741,742 (D4 antagonist; 6 nmol) were, respectively, co-administrated with glycine (200 nmol) in FD3 5-day-old chicks to investigate possible interplay of dopamine receptors in glycine-induced feeding behavior. Then, cumulative food intake based on body weight percentage (%BW) was determined at 30, 60 and 120 min after the injection. According to the results, dopamine significantly boosted the hypophagia induced by glycine at all-time intervals (p ≤ 0.001). These results combined with the previous findings suggest an interplay between dopamine and glycine in chicken's brain in which D1 receptor-mediated food intake induced by glycine.
Collapse
|
7
|
Canseco-Alba A, Rodríguez-Manzo G. Endocannabinoids Interact With the Dopaminergic System to Increase Sexual Motivation: Lessons From the Sexual Satiety Phenomenon. Front Behav Neurosci 2019; 13:184. [PMID: 31474840 PMCID: PMC6702338 DOI: 10.3389/fnbeh.2019.00184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
In male rats, copulation to satiety induces a long-lasting sexual inhibitory state, considered to rely on a decreased sexual motivation. Dopaminergic transmission at the mesolimbic system plays a central role in the regulation of male sexual motivation. Endocannabinoids (eCBs) modulate the activity of the mesolimbic system and both dopamine (DA) and cannabinoid receptor activation reverses the sexual inhibition that characterizes sexually satiated rats. The eCB anandamide reverses sexual satiety when systemically administered or infused into the ventral tegmental area (VTA), the region where the activity of mesolimbic dopaminergic neurons is regulated. Thus, it could be thought that sexual motivation is diminished during the long-lasting sexual inhibition of sexually satiated rats and that eCBs reverse that inhibition through the modulation of the dopaminergic system. To test this hypothesis, we assessed the motivational state of sexually satiated male rats and determined if 2-arachidonoylglycerol (2-AG), the most abundant eCB and a full cannabinoid receptor agonist, also reversed the sexual inhibitory state. To establish the possible interaction between 2-AG and anandamide with the dopaminergic system for the reversal of sexual satiety, we analyzed the effects of the co-administration of each eCB and DA receptor agonists or antagonists. Results showed that 24-h after copulation to satiety, when the sexual inhibition is well established, the males’ sexual motivation is diminished as measured in the sexual incentive motivation test. 2-AG, similarly to anandamide, reverses sexual satiety through the activation of CB1 receptors and both eCBs interact with the dopaminergic system to reverse the sexual inhibitory state. 2-AG effects are mediated by the modulation of the D2-like DA receptor family, whereas anandamide’s effects are clearly mediated by the modulation of the D1-like DA receptor family and the activation of D2-like DA receptors. Present results evidence that a reduced sexual motivation underlies the sexual inhibitory state of sexually satiated rats and support the notion that eCBs reverse sexual satiety by modulating dopaminergic transmission, presumably at the mesolimbic system. Anandamide and 2-AG have a different interaction with D1-like and D2-like DA receptor families. Altogether present data endorse the association of the eCB system with the regulation of the motivational tone at the mesolimbic system.
Collapse
Affiliation(s)
- Ana Canseco-Alba
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav-Sede Sur), Ciudad de México, México
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav-Sede Sur), Ciudad de México, México
| |
Collapse
|
8
|
Ishiguro H, Higuchi S, Arinami T, Onaivi ES. Association between alcoholism and the gene encoding the endocannabinoid synthesizing enzyme diacylglycerol lipase alpha in the Japanese population. Alcohol 2018; 68:59-62. [PMID: 29477030 DOI: 10.1016/j.alcohol.2017.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022]
Abstract
The endocannabinoid system has been recognized to be involved in neuropsychiatric diseases. 2-arachidonoyl glycerol (2-AG) is one of the two main endocannabinoids, and their regulation could play roles in disorders under environmental influence. This study investigated the involvement of the 2-AG biosynthesizing enzyme diacylglycerol lipase alpha (DAGLA) in the pathogenesis of alcoholism. We investigated a possible association between alcoholism and single nucleotide polymorphisms (SNPs) of the human DAGLA gene in the Japanese population. To discern any environmental influences on Dagla function in an animal study, the Dagla gene expression in the brain from stressed model mice was analyzed. The SNPs, including missense polymorphism Pro899Leu in the DAGLA gene, showed associations with alcoholism in the Japanese population. Dagla expression in mice was found to be influenced by chronic mild stress and by the acquisition of alcohol preference. Our findings indicated the involvement of DAGLA in alcoholism, possibly by its genetic dysfunction and also by the influence of stress.
Collapse
|
9
|
Khodadadi M, Zendehdel M, Baghbanzadeh A, Babapour V. Consequence of dopamine D2 receptor blockade on the hyperphagic effect induced by cannabinoid CB1 and CB2 receptors in layers. Br Poult Sci 2017; 58:585-593. [PMID: 28728428 DOI: 10.1080/00071668.2017.1357799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
1. Endocannabinoids (ECBs) and their receptors play a regulatory function on several physiological processes such as feed-intake behaviour, mainly in the brain. This study was carried out in order to investigate the effects of the dopaminergic D1 and D2 receptors on CB1/CB2 ECB receptor-induced hyperphagia in 3-h feed-deprived neonatal layer chickens. 2. A total of 8 experiments were designed to explore the interplay of these two modulatory systems on feed intake in neonatal chickens. In Experiment 1, chickens were intracerebroventricular (ICV) injected with control solution, l-DOPA (levo-dihydroxyphenylalanine as precursor of dopamine; 125 nmol), 2-AG (2-arachidonoylglycerol as CB1 receptor agonist; 2 µg) and co-administration of l-DOPA (125 nmol) plus 2-AG (2 µg). Experiments 2-4 were similar to Experiment 1 except birds were injected with either 6-OHDA (6-hydroxydopamine as dopamine synthesis inhibitor; 150 nmol), SCH23390 (D1 receptor antagonist; 5 nmol) and AMI-193 (D2 receptor antagonist; 5 nmol) instead of l-DOPA, respectively. Additionally, Experiments 5-8 followed the previous ones using the same dose of l-DOPA, 6-OHDA and dopamine antagonists except that birds were injected with CB65 (CB2 receptor agonist; 5 µg) instead of 2-AG. Coadministrations were at the same dose for each experiment. Cumulative feed intakes were measured until 120 min after each injection. 3. ICV administration of 6-OHDA and AMI-193 significantly attenuated 2-AG-induced hyperphagia. Interestingly, the hyperphagic effect of CB65 was significantly attenuated by administration of l-DOPA, whereas the administration of 6-OHDA and AMI-193 together amplified the hyperphagic effect of CB65. 4. It was concluded that cannabinoid-induced feeding behaviour is probably modulated by dopamine receptors in neonatal layer-type chickens. It seems that their interaction may be mediated by the D2-dopamine receptor.
Collapse
Affiliation(s)
- M Khodadadi
- a Department of Basic Sciences, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - M Zendehdel
- a Department of Basic Sciences, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - A Baghbanzadeh
- a Department of Basic Sciences, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - V Babapour
- a Department of Basic Sciences, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| |
Collapse
|
10
|
Activation of Endocannabinoid Receptor 2 as a Mechanism of Propofol Pretreatment-Induced Cardioprotection against Ischemia-Reperfusion Injury in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2186383. [PMID: 28814985 PMCID: PMC5549482 DOI: 10.1155/2017/2186383] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/20/2017] [Accepted: 04/30/2017] [Indexed: 01/16/2023]
Abstract
Propofol pretreatment before reperfusion, or propofol conditioning, has been shown to be cardioprotective, while its mechanism is unclear. The current study investigated the roles of endocannabinoid signaling in propofol cardioprotection in an in vivo model of myocardial ischemia/reperfusion (I/R) injury and in in vitro primary cardiomyocyte hypoxia/reoxygenation (H/R) injury. The results showed that propofol conditioning increased both serum and cell culture media concentrations of endocannabinoids including anandamide (AEA) and 2-arachidonoylglycerol (2-AG) detected by LC-MS/MS. The reductions of myocardial infarct size in vivo and cardiomyocyte apoptosis and death in vitro were accompanied with attenuations of oxidative injuries manifested as decreased reactive oxygen species (ROS), malonaldehyde (MDA), and MPO (myeloperoxidase) and increased superoxide dismutase (SOD) production. These effects were mimicked by either URB597, a selective endocannabinoids degradation inhibitor, or VDM11, a selective endocannabinoids reuptake inhibitor. In vivo study further validated that the cardioprotective and antioxidative effects of propofol were reversed by selective CB2 receptor antagonist AM630 but not CB1 receptor antagonist AM251. We concluded that enhancing endogenous endocannabinoid release and subsequent activation of CB2 receptor signaling represent a major mechanism whereby propofol conditioning confers antioxidative and cardioprotective effects against myocardial I/R injury.
Collapse
|
11
|
Peterson BM, Martinez LA, Meisel RL, Mermelstein PG. Estradiol impacts the endocannabinoid system in female rats to influence behavioral and structural responses to cocaine. Neuropharmacology 2016; 110:118-124. [PMID: 27266915 PMCID: PMC5028287 DOI: 10.1016/j.neuropharm.2016.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 12/31/2022]
Abstract
Compared with men, women show enhanced responses to drugs of abuse, and consequently are thought to be more vulnerable to addiction. The ovarian hormone estradiol has emerged as a key facilitator in the heightened development of addiction in females. These actions of estradiol appear mediated by estrogen receptor (ER) activation of metabotropic glutamate receptor type 5 (mGluR5). However, the downstream effectors of this ER/mGluR5 signaling pathway are unknown. Here we investigate whether cannabinoid 1 receptor (CB1R) activation is a part of the mechanism whereby estradiol influences behavioral and synaptic correlates of addiction. Following repeated cocaine administration, estradiol-treated ovariectomized rats exhibited both sensitized locomotor responses and decreases in the dendritic spine density of nucleus accumbens core medium-spiny neurons in comparison to oil-treated controls. Both effects of estradiol were blocked by AM251, a CB1R inverse agonist. These results indicate that part of the signaling mechanism through which estradiol impacts behavioral and synaptic correlates of addiction in female rats requires activation of CB1Rs.
Collapse
Affiliation(s)
- Brittni M Peterson
- Graduate Program in Neuroscience, 6-145 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, MN, 55455, USA; Department of Neuroscience, 6-145 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Luis A Martinez
- Department of Neuroscience, 6-145 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Robert L Meisel
- Graduate Program in Neuroscience, 6-145 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, MN, 55455, USA; Department of Neuroscience, 6-145 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Paul G Mermelstein
- Graduate Program in Neuroscience, 6-145 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, MN, 55455, USA; Department of Neuroscience, 6-145 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
Lei K, Wegner SA, Yu JH, Mototake A, Hu B, Hopf FW. Nucleus Accumbens Shell and mPFC but Not Insula Orexin-1 Receptors Promote Excessive Alcohol Drinking. Front Neurosci 2016; 10:400. [PMID: 27625592 PMCID: PMC5004043 DOI: 10.3389/fnins.2016.00400] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/15/2016] [Indexed: 12/22/2022] Open
Abstract
Addiction to alcohol remains a major social and economic problem, in part because of the high motivation for alcohol that humans exhibit and the hazardous binge intake this promotes. Orexin-1-type receptors (OX1Rs) promote reward intake under conditions of strong drives for reward, including excessive alcohol intake. While systemic modulation of OX1Rs can alter alcohol drinking, the brain regions that mediate this OX1R enhancement of excessive drinking remain unknown. Given the importance of the nucleus accumbens (NAc) and anterior insular cortex (aINS) in driving many addictive behaviors, including OX1Rs within these regions, we examined the importance of OX1Rs in these regions on excessive alcohol drinking in C57BL/6 mice during limited-access alcohol drinking in the dark cycle. Inhibition of OX1Rs with the widely used SB-334867 within the medial NAc Shell (mNAsh) significantly reduced drinking of alcohol, with no effect on saccharin intake, and no effect on alcohol consumption when infused above the mNAsh. In contrast, intra-mNAsh infusion of the orexin-2 receptor TCS-OX2-29 had no impact on alcohol drinking. In addition, OX1R inhibition within the aINS had no effect on excessive drinking, which was surprising given the importance of aINS-NAc circuits in promoting alcohol consumption and the role for aINS OX1Rs in driving nicotine intake. However, OX1R inhibition within the mPFC did reduce alcohol drinking, indicating cortical OXR involvement in promoting intake. Also, in support of the critical role for mNAsh OX1Rs, SB within the mNAsh also significantly reduced operant alcohol self-administration in rats. Finally, orexin ex vivo enhanced firing in mNAsh neurons from alcohol-drinking mice, with no effect on evoked EPSCs or input resistance; a similar orexin increase in firing without a change in input resistance was observed in alcohol-naïve mice. Taken together, our results suggest that OX1Rs within the mNAsh and mPFC, but not the aINS, play a central role in driving excessive alcohol drinking.
Collapse
Affiliation(s)
- Kelly Lei
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Scott A Wegner
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Ji Hwan Yu
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Arisa Mototake
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Bing Hu
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Frederic W Hopf
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| |
Collapse
|
13
|
Knowles MD, de la Tremblaye PB, Azogu I, Plamondon H. Endocannabinoid CB1 receptor activation upon global ischemia adversely impact recovery of reward and stress signaling molecules, neuronal survival and behavioral impulsivity. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:8-21. [PMID: 26529486 DOI: 10.1016/j.pnpbp.2015.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/15/2015] [Accepted: 10/31/2015] [Indexed: 12/28/2022]
Abstract
Global cerebral ischemia in rodents, which mimics cardiac arrest in humans, is associated with a surge in endocannabinoids and increased transmission of dopamine and glutamate leading to excitotoxic cell death. The current study assessed the role of CB1 receptor activation at the moment of an ischemic insult on ensuing regulation of stress and reward signaling molecules, neuronal injury and anxiety-like behavior. Male Wistar rats were separated into 4 groups (n=10/group); sham and ischemic rats administered the CB1 endocannabinoid receptor antagonist AM251 (2mg/kg, i.p.) 30min prior to global cerebral ischemia, and vehicle-treated counterparts. The effects of CB1 receptor blockade on corticotropin-releasing hormone (CRH), vesicular glutamate transporter 2 (vGluT2), tyrosine hydroxylase (TH) and dopamine receptor 1 (DRD1) signaling expression, together with CA1 neuronal damage and anxiety-like behaviors were assessed. Our findings show attenuated CA1 injury and behavioral deficits in AM251-treated ischemic rats. AM251-pretreatment also partially or completely reversed ischemia-induced alterations in TH-ir expression at the hippocampus, ventral tegmental area (VTA), nucleus accumbens (NAc) and basolateral amygdala (BLA), normalized DRD1-ir at the medial forebrain bundle, and diminished BLA and PVN-CRH expression. All groups showed comparable vGluT2 expression at the BLA and PVN-parvocellular subdivision. These findings support a determinant role of CB1 receptor activation at time of ischemia on functional recovery. They also support "state-dependent" effects of endocannabinoids, raising considerations in the development of effective molecules to regulate HPA axis function and mood disorders following cardiac arrest and stroke.
Collapse
Affiliation(s)
- Megan Dunbar Knowles
- Department of Psychology, University of Ottawa, Behavioural Neuroscience Group, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Patricia Barra de la Tremblaye
- Department of Psychology, University of Ottawa, Behavioural Neuroscience Group, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Idu Azogu
- Department of Psychology, University of Ottawa, Behavioural Neuroscience Group, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Hélène Plamondon
- Department of Psychology, University of Ottawa, Behavioural Neuroscience Group, 136 Jean-Jacques Lussier, Ottawa, ON, Canada.
| |
Collapse
|
14
|
Thompson JL, Yang J, Lau B, Liu S, Baimel C, Kerr LE, Liu F, Borgland SL. Age-Dependent D1-D2 Receptor Coactivation in the Lateral Orbitofrontal Cortex Potentiates NMDA Receptors and Facilitates Cognitive Flexibility. Cereb Cortex 2015; 26:4524-4539. [PMID: 26405054 DOI: 10.1093/cercor/bhv222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The orbitofrontal cortex (OFC) integrates information about the environment to guide decision-making. Glutamatergic synaptic transmission mediated through N-methyl-d-aspartate receptors is required for optimal functioning of the OFC. Additionally, abnormal dopamine signaling in this region has been implicated in impulsive behavior and poor cognitive flexibility. Yet, despite the high prevalence of psychostimulants prescribed for attention deficit/hyperactivity disorder, there is little information on how dopamine modulates synaptic transmission in the juvenile or the adult OFC. Using whole-cell patch-clamp recordings in OFC pyramidal neurons, we demonstrated that while dopamine or selective D2-like receptor (D2R) agonists suppress excitatory synaptic transmission of juvenile or adult lateral OFC neurons; in juvenile lateral OFC neurons, higher concentrations of dopamine can target dopamine receptors that couple to a phospholipase C (PLC) signaling pathway to enhance excitatory synaptic transmission. Interfering with the formation of a putative D1R-D2R interaction blocked the potentiation of excitatory synaptic transmission. Furthermore, targeting the putative D1R-D2R complex with a biased agonist, SKF83959, not only enhanced excitatory synaptic transmission in a PLC-dependent manner, but also improved the performance of juvenile rats on a reversal-learning task. Our results demonstrate that dopamine signaling in the lateral OFC differs between juveniles and adults, through potential crosstalk between dopamine receptor subtypes.
Collapse
Affiliation(s)
- Jennifer L Thompson
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Jinhui Yang
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Benjamin Lau
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Shuai Liu
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Corey Baimel
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Lauren E Kerr
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Fang Liu
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | |
Collapse
|
15
|
Fitzgibbon M, Finn DP, Roche M. High Times for Painful Blues: The Endocannabinoid System in Pain-Depression Comorbidity. Int J Neuropsychopharmacol 2015; 19:pyv095. [PMID: 26342110 PMCID: PMC4815466 DOI: 10.1093/ijnp/pyv095] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023] Open
Abstract
Depression and pain are two of the most debilitating disorders worldwide and have an estimated cooccurrence of up to 80%. Comorbidity of these disorders is more difficult to treat, associated with significant disability and impaired health-related quality of life than either condition alone, resulting in enormous social and economic cost. Several neural substrates have been identified as potential mediators in the association between depression and pain, including neuroanatomical reorganization, monoamine and neurotrophin depletion, dysregulation of the hypothalamo-pituitary-adrenal axis, and neuroinflammation. However, the past decade has seen mounting evidence supporting a role for the endogenous cannabinoid (endocannabinoid) system in affective and nociceptive processing, and thus, alterations in this system may play a key role in reciprocal interactions between depression and pain. This review will provide an overview of the preclinical evidence supporting an interaction between depression and pain and the evidence supporting a role for the endocannabinoid system in this interaction.
Collapse
Affiliation(s)
| | | | - Michelle Roche
- Physiology (Ms Fitzgibbon and Dr Roche), and Pharmacology and Therapeutics (Dr Finn), School of Medicine, Galway Neuroscience Centre and Centre for Pain Research (Ms Fitzgibbon, Dr Finn, and Dr Roche), National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland.
| |
Collapse
|
16
|
Ortega-Álvaro A, Ternianov A, Aracil-Fernández A, Navarrete F, García-Gutiérrez MS, Manzanares J. Role of cannabinoid CB2 receptor in the reinforcing actions of ethanol. Addict Biol 2015; 20:43-55. [PMID: 23855434 DOI: 10.1111/adb.12076] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study examines the role of the cannabinoid CB2 receptor (CB2 r) on the vulnerability to ethanol consumption. The time-related and dose-response effects of ethanol on rectal temperature, handling-induced convulsions (HIC) and blood ethanol concentrations were evaluated in CB2 KO and wild-type (WT) mice. The reinforcing properties of ethanol were evaluated in conditioned place preference (CPP), preference and voluntary ethanol consumption and oral ethanol self-administration. Water-maintained behavior schedule was performed to evaluate the degree of motivation induced by a natural stimulus. Preference for non-alcohol tastants assay was performed to evaluate the differences in taste sensitivity. Tyrosine hydroxylase (TH) and μ-opioid receptor gene expressions were also measured in the ventral tegmental area and nucleus accumbens (NAcc), respectively. CB2 KO mice presented increased HIC score, ethanol-CPP, voluntary ethanol consumption and preference, acquisition of ethanol self-administration, and increased motivation to drink ethanol compared with WT mice. No differences were found between genotypes in the water-maintained behavior schedule or preference for non-alcohol tastants. Naïve CB2 KO mice presented increased μ-opioid receptor gene expression in NAcc. Acute ethanol administration (1-2 g/kg) increased TH and μ-opioid receptor gene expressions in CB2 KO mice, whereas the lower dose of ethanol decreased TH gene expression in WT mice. These results suggest that deletion of the CB2 r gene increased preference for and vulnerability to ethanol consumption, at least in part, by increased ethanol-induced sensitivity of the TH and μ-opioid receptor gene expressions in mesolimbic neurons. Future studies will determine the role of CB2 r as a target for the treatment of problems related with alcohol consumption.
Collapse
Affiliation(s)
- Antonio Ortega-Álvaro
- Unidad de Neuropsicofarmacología Traslacional; Complejo Hospitalario Universitario de Albacete; Albacete Spain
| | - Alexander Ternianov
- Unidad de Neuropsicofarmacología Traslacional; Complejo Hospitalario Universitario de Albacete; Albacete Spain
| | - Auxiliadora Aracil-Fernández
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; San Juan de Alicante Alicante Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III, MICINN and FEDER; Madrid Spain
| | - Francisco Navarrete
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; San Juan de Alicante Alicante Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III, MICINN and FEDER; Madrid Spain
| | - Maria Salud García-Gutiérrez
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; San Juan de Alicante Alicante Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III, MICINN and FEDER; Madrid Spain
| | - Jorge Manzanares
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; San Juan de Alicante Alicante Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III, MICINN and FEDER; Madrid Spain
| |
Collapse
|
17
|
Mereu M, Tronci V, Chun LE, Thomas AM, Green JL, Katz JL, Tanda G. Cocaine-induced endocannabinoid release modulates behavioral and neurochemical sensitization in mice. Addict Biol 2015; 20:91-103. [PMID: 23910902 DOI: 10.1111/adb.12080] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The endocannabinoid system has been implicated in the development of synaptic plasticity induced by several drugs abused by humans, including cocaine. However, there remains some debate about the involvement of cannabinoid receptors/ligands in cocaine-induced plasticity and corresponding behavioral actions. Here, we show that a single cocaine injection in Swiss-Webster mice produces behavioral and neurochemical alterations that are under the control of the endocannabinoid system. This plasticity may be the initial basis for changes in brain processes leading from recreational use of cocaine to its abuse and ultimately to dependence. Locomotor activity was monitored with photobeam cell detectors, and accumbens shell/core microdialysate dopamine levels were monitored by high-performance liquid chromatography with electrochemical detection. Development of single-trial cocaine-induced behavioral sensitization, measured as increased distance traveled in sensitized mice compared to control mice, was paralleled by a larger stimulation of extracellular dopamine levels in the core but not the shell of the nucleus accumbens. Both the behavioral and neurochemical effects were reversed by CB1 receptor blockade produced by rimonabant pre-treatments. Further, both behavioral and neurochemical cocaine sensitization were facilitated by pharmacological blockade of endocannabinoid metabolism, achieved by inhibiting the fatty acid amide hydrolase enzyme. In conclusion, our results suggest that a single unconditioned exposure to cocaine produces sensitization through neuronal alterations that require regionally specific release of endocannabinoids. Further, the present results suggest that endocannabinoids play a primary role from the earliest stage of cocaine use, mediating the inception of long-term brain-adaptive responses, shaping central pathways and likely increasing vulnerability to stimulant abuse disorders.
Collapse
Affiliation(s)
- Maddalena Mereu
- Psychobiology Section; Molecular Targets & Medications Discovery Branch; Department of Health and Human Services; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| | - Valeria Tronci
- Psychobiology Section; Molecular Targets & Medications Discovery Branch; Department of Health and Human Services; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| | - Lauren E. Chun
- Psychobiology Section; Molecular Targets & Medications Discovery Branch; Department of Health and Human Services; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| | - Alexandra M. Thomas
- Psychobiology Section; Molecular Targets & Medications Discovery Branch; Department of Health and Human Services; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| | - Jennifer L. Green
- Psychobiology Section; Molecular Targets & Medications Discovery Branch; Department of Health and Human Services; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| | - Jonathan L. Katz
- Psychobiology Section; Molecular Targets & Medications Discovery Branch; Department of Health and Human Services; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| | - Gianluigi Tanda
- Psychobiology Section; Molecular Targets & Medications Discovery Branch; Department of Health and Human Services; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| |
Collapse
|
18
|
Fanarioti E, Mavrikaki M, Panagis G, Mitsacos A, Nomikos GG, Giompres P. Behavioral and neurochemical changes in mesostriatal dopaminergic regions of the rat after chronic administration of the cannabinoid receptor agonist WIN55,212-2. Int J Neuropsychopharmacol 2014; 18:pyu097. [PMID: 25522428 PMCID: PMC4438542 DOI: 10.1093/ijnp/pyu097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/14/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The endocannabinoid system interacts extensively with other neurotransmitter systems and has been implicated in a variety of functions, including regulation of basal ganglia circuits and motor behavior. The present study examined the effects of repeated administration of the nonselective cannabinoid receptor 1 agonist WIN55,212-2 on locomotor activity and on binding and mRNA levels of dopamine receptors and transporters and GABAA receptors in mesostriatal dopaminergic regions of the rat. METHODS Rats received systemic injections of WIN55,212-2 (0, 0.1, 0.3, or 1mg/kg, intraperitoneally) for 20 consecutive days. Locomotor activity was measured on days 1, 10, and 20. Following the last measurement, rats were euthanized and prepared for in vitro binding and in situ hybridization experiments. RESULTS Acutely, 0.3 and 1mg/kg of WIN55,212-2 produced hypolocomotion, which was sustained for the next 2 measurements, compared to vehicle. Repeated administration of WIN55,212-2 decreased the mRNA levels of the D2 autoreceptors in substantia nigra and ventral tegmental area and increased D1 receptor mRNA and binding in nucleus accumbens. Furthermore, both dopamine receptor and transporter binding and mRNA levels were decreased in substantia nigra. Moreover, repeated administration of WIN55,212-2 decreased GABAA receptor binding levels in dorsal striatum and substantia nigra. CONCLUSIONS Our data indicate that chronic WIN55,212-2 administration results in sustained effects on locomotor activity, similar to those observed after acute administration, and modulates the dopaminergic and GABAergic systems in a region-, dose-, and neurotransmitter-selective manner.
Collapse
MESH Headings
- Animals
- Basal Ganglia/drug effects
- Basal Ganglia/metabolism
- Behavior, Animal/drug effects
- Benzoxazines/administration & dosage
- Benzoxazines/pharmacology
- Cannabinoid Receptor Agonists/administration & dosage
- Cannabinoid Receptor Agonists/pharmacology
- Dopamine Plasma Membrane Transport Proteins/genetics
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Dose-Response Relationship, Drug
- Injections, Intraperitoneal
- Male
- Morpholines/administration & dosage
- Morpholines/pharmacology
- Motor Activity/drug effects
- Naphthalenes/administration & dosage
- Naphthalenes/pharmacology
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Time Factors
Collapse
Affiliation(s)
- Eleni Fanarioti
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos)
| | - Maria Mavrikaki
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos)
| | - George Panagis
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos)
| | - Ada Mitsacos
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos)
| | - George G Nomikos
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos)
| | - Panagiotis Giompres
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos).
| |
Collapse
|
19
|
Wang N, Su P, Zhang Y, Lu J, Xing B, Kang K, Li W, Wang Y. Protein kinase D1-dependent phosphorylation of dopamine D1 receptor regulates cocaine-induced behavioral responses. Neuropsychopharmacology 2014; 39:1290-301. [PMID: 24362306 PMCID: PMC3957125 DOI: 10.1038/npp.2013.341] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 01/06/2023]
Abstract
The dopamine (DA) D1 receptor (D1R) is critically involved in reward and drug addiction. Phosphorylation-mediated desensitization or internalization of D1R has been extensively investigated. However, the potential for upregulation of D1R function through phosphorylation remains to be determined. Here we report that acute cocaine exposure induces protein kinase D1 (PKD1) activation in the rat striatum, and knockdown of PKD1 in the rat dorsal striatum attenuates cocaine-induced locomotor hyperactivity. Moreover, PKD1-mediated phosphorylation of serine 421 (S421) of D1R promotes surface localization of D1R and enhances downstream extracellular signal-regulated kinase signaling in D1R-transfected HEK 293 cells. Importantly, injection of the peptide Tat-S421, an engineered Tat fusion-peptide targeting S421 (Tat-S421), into the rat dorsal striatum inhibits cocaine-induced locomotor hyperactivity and injection of Tat-S421 into the rat hippocampus or the shell of the nucleus accumbens (NAc) also inhibits cocaine-induced conditioned place preference (CPP). However, injection of Tat-S421 into the rat NAc shell does not establish CPP by itself and injection of Tat-S421 into the hippocampus does not influence spatial learning and memory. Thus, targeting S421 of D1R represents a promising strategy for the development of pharmacotherapeutic treatments for drug addiction and other disorders that result from DA imbalances.
Collapse
Affiliation(s)
- Ning Wang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Ping Su
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Ying Zhang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Jie Lu
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Baoming Xing
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Kai Kang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Wenqi Li
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China,Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing 100191, China, Tel/Fax: +86 10 82801119, E-mail:
| |
Collapse
|
20
|
Hopf FW, Seif T, Chung S, Civelli O. MCH and apomorphine in combination enhance action potential firing of nucleus accumbens shell neurons in vitro. PeerJ 2013; 1:e61. [PMID: 23646281 PMCID: PMC3642701 DOI: 10.7717/peerj.61] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/12/2013] [Indexed: 11/20/2022] Open
Abstract
The MCH and dopamine receptor systems have been shown to modulate a number of behaviors related to reward processing, addiction, and neuropsychiatric conditions such as schizophrenia and depression. In addition, MCH and dopamine receptors can interact in a positive manner, for example in the expression of cocaine self-administration. A recent report (Chung et al., 2011a) showed that the DA1/DA2 dopamine receptor activator apomorphine suppresses pre-pulse inhibition, a preclinical model for some aspects of schizophrenia. Importantly, MCH can enhance the effects of lower doses of apomorphine, suggesting that co-modulation of dopamine and MCH receptors might alleviate some symptoms of schizophrenia with a lower dose of dopamine receptor modulator and thus fewer potential side effects. Here, we investigated whether MCH and apomorphine could enhance action potential firing in vitro in the nucleus accumbens shell (NAshell), a region which has previously been shown to mediate some behavioral effects of MCH. Using whole-cell patch-clamp electrophysiology, we found that MCH, which has no effect on firing on its own, was able to increase NAshell firing when combined with a subthreshold dose of apomorphine. Further, this MCH/apomorphine increase in firing was prevented by an antagonist of either a DA1 or a DA2 receptor, suggesting that apomorphine acts through both receptor types to enhance NAshell firing. The MCH/apomorphine-mediated firing increase was also prevented by an MCH receptor antagonist or a PKA inhibitor. Taken together, our results suggest that MCH can interact with lower doses of apomorphine to enhance NAshell firing, and thus that MCH and apomorphine might interact in vivo within the NAshell to suppress pre-pulse inhibition.
Collapse
Affiliation(s)
- F Woodward Hopf
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California , San Francisco, Emeryville, CA , USA
| | | | | | | |
Collapse
|
21
|
Loewinger GC, Oleson EB, Cheer JF. Using dopamine research to generate rational cannabinoid drug policy. Drug Test Anal 2013; 5:22-6. [PMID: 22991092 PMCID: PMC5819603 DOI: 10.1002/dta.1410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/13/2012] [Indexed: 01/23/2023]
Abstract
The recent rise in the recreational use of synthetic cannabinoids (e.g. 'K2' and 'Spice') has been accompanied by a corresponding increase in regulation. Besides prohibition of specific compounds and general class bans in over forty states, five synthetic cannabinoids (CB) are federally regulated under a 'temporary' ban and are currently under a formal review to determine whether to permanently schedule them. Whether through explicit prohibition of specific chemicals, or potential de facto bans of unofficially scheduled compounds through the analogue act, scheduling CBs may significantly impede researching their therapeutic utility and elucidating physiological roles of the endogenous CB system. We argue that a review of neuroscience research suggests that synthetic CBs that act like Δ⁹-tetrahydrocannabinol (THC) by directly binding to and stimulating CB receptors (i.e. direct agonists), as well as novel drugs that indirectly stimulate these receptors by increasing levels of endogenous CB neurotransmitters (i.e. indirect agonists) have therapeutic value. Specifically, neurochemical research into how CBs influence mesolimbic dopamine release, a reliable and consistent marker of drugs' rewarding/reinforcing effects, provides the most useful indication of CB abuse liability, and may have implications for the generation of rational drug policy. It demonstrates that direct CB receptor agonists, but not indirect agonists, increase mesolimbic dopamine release. Thus, while direct CB receptor agonists pose an abuse liability, indirect agonists do not. We recommend regulatory agencies revise policies that treat these separate CB classes similarly and to curb regulation aimed at any CB receptor agonists as Schedule I, as this ignores their medicinal properties.
Collapse
Affiliation(s)
- G. C. Loewinger
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - E. B. Oleson
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J. F. Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Abstract
As a widely used intravenous short-acting anesthetic, propofol is recently indicated by clinical and animal studies for its abuse potential, but the mechanism underlying propofol abuse is largely unknown. This study examined the contribution of dopamine receptor subtype (D1 and D2 receptors) and neuroanatomical locus (i.e. nuclear accumbens) in the maintenance of propofol self-administration in rats. After the acquisition and maintenance of self-administration of propofol (1.7 mg/kg/infusion) under a fixed ratio (FR1) schedule of reinforcement over 14 days, rats were treated by either intraperitoneal injection or intra-nucleus accumbens (NAc) injection of D1 receptor antagonist (SCH23390) or D2 receptor antagonists (spiperone and eticlopride) 10 min prior to the subsequent propofol self-administration. We demonstrated (i) systemic administration of SCH23390 (10, 30, 100 μg/kg, i.p.) dose-dependently decreased the rate of propofol-maintained self-administration, suggesting a critical role of the D1 receptor in mediating propofol self-administration; (ii) the blockade of the propofol self-administration by SCH23390 was specific since spiperone and eticlopride did not affect propofol self-administration and SCH23390 at these doses did not affect food-maintained responding under an FR5 schedule; (iii) intra-accumbenal injection of SCH23390 (2.5 μg/site) but not eticopride (3.0 μg/site) attenuated the propofol self-administration, localizing nuclear accumbal D1 receptors as a critical locus in the reinforcement of propofol. Together, these findings provide the first direct evidence that D1 receptors in nuclear accumbens play an important role in the maintenance of propofol self-administration.
Collapse
|
23
|
Mulvihill MM, Nomura DK. Therapeutic potential of monoacylglycerol lipase inhibitors. Life Sci 2012; 92:492-7. [PMID: 23142242 DOI: 10.1016/j.lfs.2012.10.025] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 10/17/2012] [Accepted: 10/23/2012] [Indexed: 01/12/2023]
Abstract
Marijuana and aspirin have been used for millennia to treat a wide range of maladies including pain and inflammation. Both cannabinoids, like marijuana, that exert anti-inflammatory action through stimulating cannabinoid receptors, and cyclooxygenase (COX) inhibitors, like aspirin, that suppress pro-inflammatory eicosanoid production have shown beneficial outcomes in mouse models of neurodegenerative diseases and cancer. Both cannabinoids and COX inhibitors, however, have untoward effects that discourage their chronic usage, including cognitive deficits and gastrointestinal toxicity, respectively. Recent studies have uncovered that the serine hydrolase monoacylglycerol lipase (MAGL) links the endocannabinoid and eicosanoid systems together through hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) to provide the major arachidonic acid (AA) precursor pools for pro-inflammatory eicosanoid synthesis in specific tissues. Studies in recent years have shown that MAGL inhibitors elicit anti-nociceptive, anxiolytic, and anti-emetic responses and attenuate precipitated withdrawal symptoms in addiction paradigms through enhancing endocannabinoid signaling. MAGL inhibitors have also been shown to exert anti-inflammatory action in the brain and protect against neurodegeneration through lowering eicosanoid production. In cancer, MAGL inhibitors have been shown to have anti-cancer properties not only through modulating the endocannabinoid-eicosanoid network, but also by controlling fatty acid release for the synthesis of protumorigenic signaling lipids. Thus, MAGL serves as a critical node in simultaneously coordinating multiple lipid signaling pathways in both physiological and disease contexts. This review will discuss the diverse (patho)physiological roles of MAGL and the therapeutic potential of MAGL inhibitors in treating a vast array of complex human diseases.
Collapse
Affiliation(s)
- Melinda M Mulvihill
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA
| | | |
Collapse
|
24
|
Luchicchi A, Pistis M. Anandamide and 2-arachidonoylglycerol: Pharmacological Properties, Functional Features, and Emerging Specificities of the Two Major Endocannabinoids. Mol Neurobiol 2012; 46:374-92. [DOI: 10.1007/s12035-012-8299-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 07/03/2012] [Indexed: 12/18/2022]
|
25
|
Wolf ME, Tseng KY. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: when, how, and why? Front Mol Neurosci 2012; 5:72. [PMID: 22754497 PMCID: PMC3384237 DOI: 10.3389/fnmol.2012.00072] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/21/2012] [Indexed: 11/13/2022] Open
Abstract
In animal models of drug addiction, cocaine exposure has been shown to increase levels of calcium-permeable AMPA receptors (CP-AMPARs) in two brain regions that are critical for motivation and reward-the ventral tegmental area (VTA) and the nucleus accumbens (NAc). This review compares CP-AMPAR plasticity in the two brain regions and addresses its functional significance. In VTA dopamine neurons, cocaine exposure results in synaptic insertion of high conductance CP-AMPARs in exchange for lower conductance calcium-impermeable AMPARs (CI-AMPARs). This plasticity is rapid in onset (hours), GluA2-dependent, and can be observed with a single cocaine injection. Whereas it is short-lived after experimenter-administered cocaine, it persists for months after cocaine self-administration. In addition to strengthening synapses and altering Ca(2+) signaling, CP-AMPAR insertion alters subsequent induction of plasticity at VTA synapses. However, CP-AMPAR insertion is unlikely to mediate the increased DA cell activity that occurs during early withdrawal from cocaine exposure. Metabotropic glutamate receptor 1 (mGluR1) exerts a negative influence on CP-AMPAR accumulation in the VTA. Acutely, mGluR1 stimulation elicits a form of LTD resulting from CP-AMPAR removal and CI-AMPAR insertion. In medium spiny neurons (MSNs) of the NAc, extended access cocaine self-administration is required to increase CP-AMPAR levels. This is first detected after approximately a month of withdrawal and then persists. Once present in NAc synapses, CP-AMPARs mediate the expression of incubation of cue-induced cocaine craving. The mechanism of their accumulation may be GluA1-dependent, which differs from that observed in the VTA. However, similar to VTA, mGluR1 stimulation removes CP-AMPARs from MSN synapses. Loss of mGluR1 tone during cocaine withdrawal may contribute to CP-AMPAR accumulation in the NAc. Thus, results in both brain regions point to the possibility of using positive modulators of mGluR1 as treatments for cocaine addiction.
Collapse
Affiliation(s)
- Marina E. Wolf
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North ChicagoIL, USA
| | - Kuei Y. Tseng
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, North ChicagoIL, USA
| |
Collapse
|
26
|
Decreased cocaine motor sensitization and self-administration in mice overexpressing cannabinoid CB₂ receptors. Neuropsychopharmacology 2012; 37:1749-63. [PMID: 22414816 PMCID: PMC3358745 DOI: 10.1038/npp.2012.22] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The potential involvement of the cannabinoid CB₂ receptors (CB₂r) in the adaptive responses induced by cocaine was studied in transgenic mice overexpressing the CB₂r (CB₂xP) and in wild-type (WT) littermates. For this purpose, the acute and sensitized locomotor responses to cocaine, conditioned place preference, and cocaine intravenous self-administration were evaluated. In addition, we assessed whether CB₂r were localized in neurons and/or astrocytes, and whether they colocalized with dopamine D1 and D2 receptors (D1Dr and D2Dr). Dopamine (DA) extracellular levels in the nucleus accumbens (NAcc), and gene expression of tyrosine hydroxylase (TH) and DA transporter (DAT) in the ventral tegmental area (VTA), and μ-opioid and cannabinoid CB₁ receptors in the NAcc were also studied in both genotypes. CB₂xP mice showed decreased motor response to acute administration of cocaine (10-20 mg/kg) and cocaine-induced motor sensitization compared with WT mice. CB₂xP mice presented cocaine-induced conditioned place aversion and self-administered less cocaine than WT mice. CB₂r were found in neurons and astrocytes and colocalized with D2Dr in the VTA and NAcc. No significant differences in extracellular DA levels in the NAcc were observed between genotypes after cocaine administration. Under baseline conditions, TH and DAT gene expression was higher and μ-opioid receptor gene expression was lower in CB₂xP than in WT mice. However, both genotypes showed similar changes in TH and μ-opioid receptor gene expression after cocaine challenge independently of the pretreatment received. Importantly, the cocaine challenge decreased DAT gene expression to a lesser extent in cocaine-pretreated CB₂xP than in cocaine-pretreated WT mice. These results revealed that CB₂r are involved in cocaine motor responses and cocaine self-administration, suggesting that this receptor could represent a promising target to develop novel treatments for cocaine addiction.
Collapse
|
27
|
|