1
|
Abd Elrazik NA, Abd El Salam ASG. Diacerein ameliorates thioacetamide-induced hepatic encephalopathy in rats via modulation of TLR4/AQP4/MMP-9 axis. Metab Brain Dis 2024; 40:10. [PMID: 39556255 PMCID: PMC11573817 DOI: 10.1007/s11011-024-01457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/27/2024] [Indexed: 11/19/2024]
Abstract
Astrocyte swelling, blood brain barrier (BBB) dissipation and the subsequent brain edema are serious consequences of persistent hyperammonemia in hepatic encephalopathy (HE) in which if inadequately controlled it will lead to brain death. The current study highlights the potential neuroprotective effect of diacerein against thioacetamide (TAA)-induced HE in acute liver failure rat model. HE was induced in male Sprague-Dawley rats via I.P. injection of TAA (200 mg/kg) for three alternative times/week at 3rd week of the experiment. Diacerein (50 mg/kg) was gavaged for 14 days prior to induction of HE and for further 7 days together with TAA injection for an overall period of 21 days. Diacerein attenuated TAA-induced HE in acute liver failure rat model; as proofed by significant lowering of serum and brain ammonia concentrations, serum AST and ALT activities and significant attenuation of both brain and hepatic MDA contents and IL-1β with marked increases in GSH contents (P < 0.0001). The neuroprotective effect of diacerein was demonstrated by marked improvement of motor and cognitive deficits, brain histopathological changes; hallmarks of HE. As shown by immunohistochemical results, diacerein markedly downregulated brain TLR4 expression which in turn significantly increased the GFAP expression, and significantly decreased AQP4 expression; the astrocytes swelling biomarkers (P < 0.0001). Moreover, diacerein preserved BBB integrity via downregulation of MMP-9 mediated digestion of tight junction proteins such as occludin (P < 0.0001). Collectively, diacerein ameliorated cerebral edema and maintained BBB integrity via modulation of TLR4/AQP4/MMP-9 axis thus may decrease the progression of HE induced in acute liver failure.
Collapse
Affiliation(s)
- Nesma A Abd Elrazik
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | | |
Collapse
|
2
|
Alhadidi QM, Bahader GA, Arvola O, Kitchen P, Shah ZA, Salman MM. Astrocytes in functional recovery following central nervous system injuries. J Physiol 2024; 602:3069-3096. [PMID: 37702572 PMCID: PMC11421637 DOI: 10.1113/jp284197] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.
Collapse
Affiliation(s)
- Qasim M Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala, Iraq
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Oiva Arvola
- Division of Anaesthesiology, Jorvi Hospital, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Abd El Salam ASG, Abd Elrazik NA. Cinnamaldehyde/lactulose combination therapy alleviates thioacetamide-induced hepatic encephalopathy via targeting P2X7R-mediated NLRP3 inflammasome signaling. Life Sci 2024; 344:122559. [PMID: 38479595 DOI: 10.1016/j.lfs.2024.122559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
AIMS Cinnamaldehyde (CA), the main active constituent of cinnamon oil, is reported to have neuroprotective effects. However, the potential benefits of CA for brain protection in hepatic encephalopathy (HE) are still not understood. Thus, the present study investigates the possible ameliorative effect of CA (70 mg/kg/day, I.P.) either alone or in combination with lactulose (Lac) (5.3 g/kg/day, oral) against thioacetamide (TAA)-induced hepatic encephalopathy in rats. MATERIALS AND METHODS For induction of HE, TAA (200 mg/kg) was intraperitoneally administered for 1 week at alternative days. CA, Lac and Lac+CA were administered for 14 days prior to and for further 7 days together with TAA injection. KEY FINDINGS CA, Lac and Lac+CA combination effectively attenuated TAA-induced HE; as indicated by the improvement in behavioral tests, mitigation of pathological abnormalities in both liver and brain, the significant reduction in serum hyperammonemia and amelioration in liver function biomarkers; ALT and AST. This was accompanied with a substantial restoration of redox state in liver and brain; MDA and GSH levels. Moreover, CA, Lac and Lac+CA combination reduced neuroinflammation as demonstrated by the notable attenuation of P2X7R, NLRP3, caspase-1, IL-1β, GFAP and Iba1 brain levels, as well as the amelioration of brain edema as manifested by reduction in AQP4 levels in brain. SIGNIFICANCE Our study has demonstrated that CA in combination with Lac possesses a superior neuroprotective effect over Lac alone against TAA-induced HE by attenuation of P2X7R/NLRP3 mediated neuroinflammation and relieving brain edema.
Collapse
Affiliation(s)
| | - Nesma A Abd Elrazik
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
4
|
Shang P, Zheng R, Wu K, Yuan C, Pan S. New Insights on Mechanisms and Therapeutic Targets of Cerebral Edema. Curr Neuropharmacol 2024; 22:2330-2352. [PMID: 38808718 PMCID: PMC11451312 DOI: 10.2174/1570159x22666240528160237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 05/30/2024] Open
Abstract
Cerebral Edema (CE) is the final common pathway of brain death. In severe neurological disease, neuronal cell damage first contributes to tissue edema, and then Increased Intracranial Pressure (ICP) occurs, which results in diminishing cerebral perfusion pressure. In turn, anoxic brain injury brought on by decreased cerebral perfusion pressure eventually results in neuronal cell impairment, creating a vicious cycle. Traditionally, CE is understood to be tightly linked to elevated ICP, which ultimately generates cerebral hernia and is therefore regarded as a risk factor for mortality. Intracranial hypertension and brain edema are two serious neurological disorders that are commonly treated with mannitol. However, mannitol usage should be monitored since inappropriate utilization of the substance could conversely have negative effects on CE patients. CE is thought to be related to bloodbrain barrier dysfunction. Nonetheless, a fluid clearance mechanism called the glial-lymphatic or glymphatic system was updated. This pathway facilitates the transport of cerebrospinal fluid (CSF) into the brain along arterial perivascular spaces and later into the brain interstitium. After removing solutes from the neuropil into meningeal and cervical lymphatic drainage arteries, the route then directs flows into the venous perivascular and perineuronal regions. Remarkably, the dual function of the glymphatic system was observed to protect the brain from further exacerbated damage. From our point of view, future studies ought to concentrate on the management of CE based on numerous targets of the updated glymphatic system. Further clinical trials are encouraged to apply these agents to the clinic as soon as possible.
Collapse
Affiliation(s)
- Pei Shang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Ruoyi Zheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kou Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao Yuan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Toader C, Tataru CP, Florian IA, Covache-Busuioc RA, Dumitrascu DI, Glavan LA, Costin HP, Bratu BG, Ciurea AV. From Homeostasis to Pathology: Decoding the Multifaceted Impact of Aquaporins in the Central Nervous System. Int J Mol Sci 2023; 24:14340. [PMID: 37762642 PMCID: PMC10531540 DOI: 10.3390/ijms241814340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaporins (AQPs), integral membrane proteins facilitating selective water and solute transport across cell membranes, have been the focus of extensive research over the past few decades. Particularly noteworthy is their role in maintaining cellular homeostasis and fluid balance in neural compartments, as dysregulated AQP expression is implicated in various degenerative and acute brain pathologies. This article provides an exhaustive review on the evolutionary history, molecular classification, and physiological relevance of aquaporins, emphasizing their significance in the central nervous system (CNS). The paper journeys through the early studies of water transport to the groundbreaking discovery of Aquaporin 1, charting the molecular intricacies that make AQPs unique. It delves into AQP distribution in mammalian systems, detailing their selective permeability through permeability assays. The article provides an in-depth exploration of AQP4 and AQP1 in the brain, examining their contribution to fluid homeostasis. Furthermore, it elucidates the interplay between AQPs and the glymphatic system, a critical framework for waste clearance and fluid balance in the brain. The dysregulation of AQP-mediated processes in this system hints at a strong association with neurodegenerative disorders such as Parkinson's Disease, idiopathic normal pressure hydrocephalus, and Alzheimer's Disease. This relationship is further explored in the context of acute cerebral events such as stroke and autoimmune conditions such as neuromyelitis optica (NMO). Moreover, the article scrutinizes AQPs at the intersection of oncology and neurology, exploring their role in tumorigenesis, cell migration, invasiveness, and angiogenesis. Lastly, the article outlines emerging aquaporin-targeted therapies, offering a glimpse into future directions in combatting CNS malignancies and neurodegenerative diseases.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
6
|
Panchenko PE, Hippauf L, Konsman JP, Badaut J. Do astrocytes act as immune cells after pediatric TBI? Neurobiol Dis 2023; 185:106231. [PMID: 37468048 PMCID: PMC10530000 DOI: 10.1016/j.nbd.2023.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023] Open
Abstract
Astrocytes are in contact with the vasculature, neurons, oligodendrocytes and microglia, forming a local network with various functions critical for brain homeostasis. One of the primary responders to brain injury are astrocytes as they detect neuronal and vascular damage, change their phenotype with morphological, proteomic and transcriptomic transformations for an adaptive response. The role of astrocytic responses in brain dysfunction is not fully elucidated in adult, and even less described in the developing brain. Children are vulnerable to traumatic brain injury (TBI), which represents a leading cause of death and disability in the pediatric population. Pediatric brain trauma, even with mild severity, can lead to long-term health complications, such as cognitive impairments, emotional disorders and social dysfunction later in life. To date, the underlying pathophysiology is still not fully understood. In this review, we focus on the astrocytic response in pediatric TBI and propose a potential immune role of the astrocyte in response to trauma. We discuss the contribution of astrocytes in the local inflammatory cascades and secretion of various immunomodulatory factors involved in the recruitment of local microglial cells and peripheral immune cells through cerebral blood vessels. Taken together, we propose that early changes in the astrocytic phenotype can alter normal development of the brain, with long-term consequences on neurological outcomes, as described in preclinical models and patients.
Collapse
Affiliation(s)
| | - Lea Hippauf
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France
| | | | - Jerome Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
7
|
Seblani M, Decherchi P, Brezun JM. Edema after CNS Trauma: A Focus on Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24087159. [PMID: 37108324 PMCID: PMC10138956 DOI: 10.3390/ijms24087159] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Edema after spinal cord injury (SCI) is one of the first observations after the primary injury and lasts for few days after trauma. It has serious consequences on the affected tissue and can aggravate the initial devastating condition. To date, the mechanisms of the water content increase after SCI are not fully understood. Edema formation results in a combination of interdependent factors related to mechanical damage after the initial trauma progressing, along with the subacute and acute phases of the secondary lesion. These factors include mechanical disruption and subsequent inflammatory permeabilization of the blood spinal cord barrier, increase in the capillary permeability, deregulation in the hydrostatic pressure, electrolyte-imbalanced membranes and water uptake in the cells. Previous research has attempted to characterize edema formation by focusing mainly on brain swelling. The purpose of this review is to summarize the current understanding of the differences in edema formation in the spinal cord and brain, and to highlight the importance of elucidating the specific mechanisms of edema formation after SCI. Additionally, it outlines findings on the spatiotemporal evolution of edema after spinal cord lesion and provides a general overview of prospective treatment strategies by focusing on insights to prevent edema formation after SCI.
Collapse
Affiliation(s)
- Mostafa Seblani
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, CEDEX 09, France
| | - Patrick Decherchi
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, CEDEX 09, France
| | - Jean-Michel Brezun
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, CEDEX 09, France
| |
Collapse
|
8
|
Ishida Y, Nosaka M, Ishigami A, Kondo T. Forensic application of aquaporins. Leg Med (Tokyo) 2023; 63:102249. [PMID: 37060638 DOI: 10.1016/j.legalmed.2023.102249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/04/2023] [Indexed: 04/03/2023]
Abstract
Aquaporins (AQPs) are a family of water channel proteins that primarily elicit the basic functions of water transport and osmotic homeostasis. To date, at least 17 mammalian AQPs have been identified, AQP-0 to -12 have been found in higher orders including human, and AQP-13 to -16 have been described in older lineages. Moreover, these proteins have recently been shown to regulate many biological processes through unique activities, such as cell proliferation, migration, apoptosis, and mitochondrial metabolism. Several studies have focused on the involvement of AQPs in cell biology aspect, showing that they are involved in a variety of physiological processes and pathophysiological conditions. Furthermore, in the field of forensic medicine, studies on whether AQPs can be a useful marker for diagnosing various causes of death have been conducted using autopsy samples and animal experiments, which have produced interesting results. Herein, we review certain observations regarding AQPs and discuss their potential to contribute to the future practice of forensic research.
Collapse
|
9
|
Xiao M, Hou J, Xu M, Li S, Yang B. Aquaporins in Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:99-124. [PMID: 36717489 DOI: 10.1007/978-981-19-7415-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) mediate water flux between the four distinct water compartments in the central nervous system (CNS). In the present chapter, we mainly focus on the expression and function of the nine AQPs expressed in the CNS, which include five members of aquaporin subfamily: AQP1, AQP4, AQP5, AQP6, and AQP8; three members of aquaglyceroporin subfamily: AQP3, AQP7, and AQP9; and one member of superaquaporin subfamily: AQP11. In addition, AQP1, AQP2, and AQP4 expressed in the peripheral nervous system are also reviewed. AQP4, the predominant water channel in the CNS, is involved both in the astrocyte swelling of cytotoxic edema and the resolution of vasogenic edema and is of pivotal importance in the pathology of brain disorders such as neuromyelitis optica, brain tumors, and neurodegenerative disorders. Moreover, AQP4 has been demonstrated as a functional regulator of recently discovered glymphatic system that is a main contributor to clearance of toxic macromolecule from the brain. Other AQPs are also involved in a variety of important physiological and pathological process in the brain. It has been suggested that AQPs could represent an important target in treatment of brain disorders like cerebral edema. Future investigations are necessary to elucidate the pathological significance of AQPs in the CNS.
Collapse
Affiliation(s)
- Ming Xiao
- Jiangsu Province, Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jiaoyu Hou
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengmeng Xu
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shao Li
- Department of Physiology, Dalian Medical University, Dalian, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
10
|
Soden PA, Henderson AR, Lee E. A Microfluidic Model of AQP4 Polarization Dynamics and Fluid Transport in the Healthy and Inflamed Human Brain: The First Step Towards Glymphatics-on-a-Chip. Adv Biol (Weinh) 2022; 6:e2200027. [PMID: 35922370 PMCID: PMC9771879 DOI: 10.1002/adbi.202200027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/01/2022] [Indexed: 01/28/2023]
Abstract
Dysfunction of the aquaporin-4 (AQP4)-dependent glymphatic waste clearance pathway has recently been implicated in the pathogenesis of several neurodegenerative diseases. However, it is difficult to unravel the causative relationship between glymphatic dysfunction, AQP4 depolarization, protein aggregation, and inflammation in neurodegeneration using animal models alone. There is currently a clear, unmet need for in vitro models of the brain's waterscape, and the first steps towards a bona fide "glymphatics-on-a-chip" are taken in the present study. It is demonstrated that chronic exposure to lipopolysaccharide (LPS), amyloid-β(1-42) oligomers, and an AQP4 inhibitor impairs the drainage of fluid and amyloid-β(1-40) tracer in a gliovascular unit (GVU)-on-a-chip model containing human astrocytes and brain microvascular endothelial cells. The LPS-induced drainage impairment is partially retained following cell lysis, indicating that neuroinflammation induces parallel changes in cell-dependent and matrisome-dependent fluid transport pathways in GVU-on-a-chip. Additionally, AQP4 depolarization is observed following LPS treatment, suggesting that LPS-induced drainage impairments on-chip may be driven in part by changes in AQP4-dependent fluid dynamics.
Collapse
Affiliation(s)
- Paul A Soden
- College of Human Ecology, Cornell University, Ithaca, NY, 14853, USA
| | - Aria R Henderson
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
11
|
Bai Y, Yuan M, Mi H, Zhang F, Liu X, Lu C, Bao Y, Li Y, Lu Q. Hypothermia reduces glymphatic transportation in traumatic edematous brain assessed by intrathecal dynamic contrast-enhanced MRI. Front Neurol 2022; 13:957055. [PMID: 36341130 PMCID: PMC9632734 DOI: 10.3389/fneur.2022.957055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/03/2022] [Indexed: 02/28/2024] Open
Abstract
The glymphatic system has recently been shown to clear brain extracellular solutes and can be extensively impaired after traumatic brain injury (TBI). Despite hypothermia being identified as a protective method for the injured brain via minimizing the formation of edema in the animal study, little is known about how hypothermia affects the glymphatic system following TBI. We use dynamic contrast-enhanced MRI (DCE-MRI) following cisterna magna infusion with a low molecular weight contrast agent to track glymphatic transport in male Sprague-Dawley rats following TBI with hypothermia treatment and use diffusion-weighted imaging (DWI) sequence to identify edema after TBI, and further distinguish between vasogenic and cytotoxic edema. We found that hypothermia could attenuate brain edema, as demonstrated by smaller injured lesions and less vasogenic edema in most brain subregions. However, in contrast to reducing cerebral edema, hypothermia exacerbated the reduction of efficiency of glymphatic transportation after TBI. This deterioration of glymphatic drainage was present brain-wide and showed hemispherical asymmetry and regional heterogeneity across the brain, associated with vasogenic edema. Moreover, our data show that glymphatic transport reduction and vasogenic edema are closely related to reducing perivascular aquaporin-4 (AQP4) expression. The suppression of glymphatic transportation might eliminate the benefits of brain edema reduction induced by hypothermia and provide an alternative pathophysiological factor indicating injury to the brain after TBI. Thus, this study poses a novel emphasis on the potential role of hypothermia in managing severe TBI.
Collapse
Affiliation(s)
- Yingnan Bai
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Mingyuan Yuan
- Department of Radiology, Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Honglan Mi
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fengchen Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyu Liu
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Lu
- Shanghai Wei Yu International School, Shanghai, China
| | - Yinghui Bao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehua Li
- Department of Radiology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lu
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Shanghai East Hospital Tongji University, Shanghai, China
| |
Collapse
|
12
|
Dickerson M, Murphy S, Hyppolite N, Brolinson PG, VandeVord P. Osteopathy in the Cranial Field as a Method to Enhance Brain Injury Recovery: A Preliminary Study. Neurotrauma Rep 2022; 3:456-472. [PMCID: PMC9622209 DOI: 10.1089/neur.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Michelle Dickerson
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Susan Murphy
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Natalie Hyppolite
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | | | - Pamela VandeVord
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
- Salem VA Medical Center, Salem, Virginia, USA
| |
Collapse
|
13
|
Nwafor DC, Brichacek AL, Foster CH, Lucke-Wold BP, Ali A, Colantonio MA, Brown CM, Qaiser R. Pediatric Traumatic Brain Injury: An Update on Preclinical Models, Clinical Biomarkers, and the Implications of Cerebrovascular Dysfunction. J Cent Nerv Syst Dis 2022; 14:11795735221098125. [PMID: 35620529 PMCID: PMC9127876 DOI: 10.1177/11795735221098125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/14/2022] [Indexed: 11/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of pediatric morbidity and mortality. Recent studies suggest that children and adolescents have worse post-TBI outcomes and take longer to recover than adults. However, the pathophysiology and progression of TBI in the pediatric population are studied to a far lesser extent compared to the adult population. Common causes of TBI in children are falls, sports/recreation-related injuries, non-accidental trauma, and motor vehicle-related injuries. A fundamental understanding of TBI pathophysiology is crucial in preventing long-term brain injury sequelae. Animal models of TBI have played an essential role in addressing the knowledge gaps relating to pTBI pathophysiology. Moreover, a better understanding of clinical biomarkers is crucial to diagnose pTBI and accurately predict long-term outcomes. This review examines the current preclinical models of pTBI, the implications of pTBI on the brain’s vasculature, and clinical pTBI biomarkers. Finally, we conclude the review by speculating on the emerging role of the gut-brain axis in pTBI pathophysiology.
Collapse
Affiliation(s)
- Divine C. Nwafor
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- West Virginia University School of Medicine, Morgantown, WV, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Allison L. Brichacek
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Chase H. Foster
- Department of Neurosurgery, George Washington University Hospital, Washington D.C., USA
| | | | - Ahsan Ali
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | - Candice M. Brown
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Rabia Qaiser
- Department of Neurosurgery, Baylor Scott and White, Temple, TX, USA
| |
Collapse
|
14
|
Salman MM, Kitchen P, Halsey A, Wang MX, Törnroth-Horsefield S, Conner AC, Badaut J, Iliff JJ, Bill RM. Emerging roles for dynamic aquaporin-4 subcellular relocalization in CNS water homeostasis. Brain 2022; 145:64-75. [PMID: 34499128 PMCID: PMC9088512 DOI: 10.1093/brain/awab311] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/28/2021] [Accepted: 07/31/2021] [Indexed: 11/25/2022] Open
Abstract
Aquaporin channels facilitate bidirectional water flow in all cells and tissues. AQP4 is highly expressed in astrocytes. In the CNS, it is enriched in astrocyte endfeet, at synapses, and at the glia limitans, where it mediates water exchange across the blood-spinal cord and blood-brain barriers (BSCB/BBB), and controls cell volume, extracellular space volume, and astrocyte migration. Perivascular enrichment of AQP4 at the BSCB/BBB suggests a role in glymphatic function. Recently, we have demonstrated that AQP4 localization is also dynamically regulated at the subcellular level, affecting membrane water permeability. Ageing, cerebrovascular disease, traumatic CNS injury, and sleep disruption are established and emerging risk factors in developing neurodegeneration, and in animal models of each, impairment of glymphatic function is associated with changes in perivascular AQP4 localization. CNS oedema is caused by passive water influx through AQP4 in response to osmotic imbalances. We have demonstrated that reducing dynamic relocalization of AQP4 to the BSCB/BBB reduces CNS oedema and accelerates functional recovery in rodent models. Given the difficulties in developing pore-blocking AQP4 inhibitors, targeting AQP4 subcellular localization opens up new treatment avenues for CNS oedema, neurovascular and neurodegenerative diseases, and provides a framework to address fundamental questions about water homeostasis in health and disease.
Collapse
Affiliation(s)
- Mootaz M Salman
- Department of Physiology, Anatomy and Genetics,
University of Oxford, Oxford OX1 3PT, UK
| | - Philip Kitchen
- School of Biosciences, College of Health and Life
Sciences, Aston University, Aston Triangle,
Birmingham B4 7ET, UK
| | - Andrea Halsey
- Institute of Clinical Sciences, College of Medical
and Dental Sciences, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK
| | - Marie Xun Wang
- Department of Psychiatry and Behavioral Sciences,
University of Washington School of Medicine, Seattle, WA, USA
| | | | - Alex C Conner
- Institute of Clinical Sciences, College of Medical
and Dental Sciences, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK
| | - Jerome Badaut
- CNRS-UMR 5536-Centre de Résonance
Magnétique des systèmes Biologiques, Université de
Bordeaux, 33076 Bordeaux, France
| | - Jeffrey J Iliff
- Department of Psychiatry and Behavioral Sciences,
University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, University of Washington
School of Medicine, Seattle, WA, USA
- VISN 20 Mental Illness Research, Education and
Clinical Center, VA Puget Sound Health Care System, Seattle, WA,
USA
| | - Roslyn M Bill
- School of Biosciences, College of Health and Life
Sciences, Aston University, Aston Triangle,
Birmingham B4 7ET, UK
| |
Collapse
|
15
|
Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front Neurol 2021; 12:767470. [PMID: 34966347 PMCID: PMC8710539 DOI: 10.3389/fneur.2021.767470] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland.,Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
16
|
Carlstrom LP, Eltanahy A, Perry A, Rabinstein AA, Elder BD, Morris JM, Meyer FB, Graffeo CS, Lundgaard I, Burns TC. A clinical primer for the glymphatic system. Brain 2021; 145:843-857. [PMID: 34888633 DOI: 10.1093/brain/awab428] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/14/2022] Open
Abstract
The complex and dynamic system of fluid flow through the perivascular and interstitial spaces of the central nervous system has new-found implications for neurological diseases. Cerebrospinal fluid movement throughout the CNS parenchyma is more dynamic than could be explained via passive diffusion mechanisms alone. Indeed, a semi-structured glial-lymphatic (glymphatic) system of astrocyte-supported extracellular perivascular channels serves to directionally channel extracellular fluid, clearing metabolites and peptides to optimize neurologic function. Clinical studies of the glymphatic network has to date proven challenging, with most data gleaned from rodent models and post-mortem investigations. However, increasing evidence suggests that disordered glymphatic function contributes to the pathophysiology of CNS aging, neurodegenerative disease, and CNS injuries, as well as normal pressure hydrocephalus. Unlocking such pathophysiology could provide important avenues toward novel therapeutics. We here provide a multidisciplinary overview of glymphatics and critically review accumulating evidence regarding its structure, function, and hypothesized relevance to neurological disease. We highlight emerging technologies of relevance to the longitudinal evaluation of glymphatic function in health and disease. Finally, we discuss the translational opportunities and challenges of studying glymphatic science.
Collapse
Affiliation(s)
- Lucas P Carlstrom
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Ahmed Eltanahy
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Avital Perry
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Benjamin D Elder
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Fredric B Meyer
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Iben Lundgaard
- Departments of Experimental Medical Science, Lund University, Lund 228 11 Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund 228 11 Sweden
| | - Terry C Burns
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
17
|
Amoo M, O'Halloran PJ, Henry J, Husien MB, Brennan P, Campbell M, Caird J, Curley GF. Permeability of the Blood-Brain Barrier after Traumatic Brain Injury; Radiological Considerations. J Neurotrauma 2021; 39:20-34. [PMID: 33632026 DOI: 10.1089/neu.2020.7545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, especially in young persons, and constitutes a major socioeconomic burden worldwide. It is regarded as the leading cause of mortality and morbidity in previously healthy young persons. Most of the mechanisms underpinning the development of secondary brain injury are consequences of disruption of the complex relationship between the cells and proteins constituting the neurovascular unit or a direct result of loss of integrity of the tight junctions (TJ) in the blood-brain barrier (BBB). A number of changes have been described in the BBB after TBI, including loss of TJ proteins, pericyte loss and migration, and altered expressions of water channel proteins at astrocyte end-feet processes. There is a growing research interest in identifying optimal biological and radiological biomarkers of severity of BBB dysfunction and its effects on outcomes after TBI. This review explores the microscopic changes occurring at the neurovascular unit, after TBI, and current radiological adjuncts for its evaluation in pre-clinical and clinical practice.
Collapse
Affiliation(s)
- Michael Amoo
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland.,Beacon Academy, Beacon Hospital, Sandyford, Dublin, Ireland
| | - Philip J O'Halloran
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Neurosurgery, Royal London Hospital, Whitechapel, London, United Kingdom
| | - Jack Henry
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Mohammed Ben Husien
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul Brennan
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | | | - John Caird
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Gerard F Curley
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
18
|
Fournier ML, Clément T, Aussudre J, Plesnila N, Obenaus A, Badaut J. Contusion Rodent Model of Traumatic Brain Injury: Controlled Cortical Impact. Methods Mol Biol 2021; 2193:49-65. [PMID: 32808258 DOI: 10.1007/978-1-0716-0845-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Traumatic brain injury (TBI) is a heterogeneous brain injury which represents one of the leading causes of mortality and disability worldwide. Rodent TBI models are helpful to examine the cellular and molecular mechanisms after injury. Controlled cortical impact (CCI) is one of the most commonly used TBI models in rats and mice, based on its consistency of injury and ease of implementation. Here, we describe a CCI protocol to induce a moderate contusion to the somatosensory motor cortex. We provide additional protocols for monitoring animals after CCI induction.
Collapse
Affiliation(s)
| | - Tifenn Clément
- CNRS UMR5287, INCIA, University of Bordeaux, Bordeaux, France
| | | | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - André Obenaus
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jérôme Badaut
- CNRS UMR5287, INCIA, University of Bordeaux, Bordeaux, France.
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
19
|
Lu H, Zhan Y, Ai L, Chen H, Chen J. AQP4-siRNA alleviates traumatic brain edema by altering post-traumatic AQP4 polarity reversal in TBI rats. J Clin Neurosci 2020; 81:113-119. [PMID: 33222898 DOI: 10.1016/j.jocn.2020.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/13/2020] [Accepted: 09/06/2020] [Indexed: 11/18/2022]
Abstract
The spatial and temporal distribution of aquaporin-4 (AQP4) expression in rat brain following brain trauma and AQP4-siRNA treatment, as well as corresponding pathological changes, were studied to explore the mechanism underlying the effect of AQP4-siRNA treatment on traumatic brain injury (TBI). The rats in the sham operation group had normal structure, with AQP4 located in the perivascular end-foot membranes and astrocytic membranes in a polarized pattern. The accelerated polarity reversal was observed in the TBI group in 1-12 h after TBI. During this period, AQP4 abundance on the astrocytic membrane is gradually increased, while AQP4 abundance on the perivascular end-foot membrane declined rapidly. Twelve hours after TBI, AQP4 expression was depolarized, showing a shift from the perivascular end-foot membrane to the astrocytic membrane. Pathological observation showed that vasogenic edema occurred immediately after TBI, at which time the extracellular space was expanded, leading to severe intracellular edema. AQP4-siRNA reduced the polarity reversal index at the early stage of TBI recovery and reduced edema, demonstrating the potential benefit of reduced AQP4 expression during recovery from TBI.
Collapse
Affiliation(s)
- Hong Lu
- Department of Radiology, Chongqing The Seventh Peoplés Hospital, Chongqing, China
| | - Yuefu Zhan
- Department of Radiology, Hainan Women and Children's Medical Center, No. 15, Long Kun Nan road, Haikou, Hainan 572500, China.
| | - Li Ai
- Department of Radiology, Chongqing The Seventh Peoplés Hospital, Chongqing, China
| | - Haixia Chen
- Department of Radiology, Chongqing The Seventh Peoplés Hospital, Chongqing, China
| | - Jianqiang Chen
- Department of Radiology, Xiangya School of Medicine Affiliated Haikou Hospital, Central South University, Haikou, Hainan 570208, China.
| |
Collapse
|
20
|
Drug development in targeting ion channels for brain edema. Acta Pharmacol Sin 2020; 41:1272-1288. [PMID: 32855530 PMCID: PMC7609292 DOI: 10.1038/s41401-020-00503-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/02/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.
Collapse
|
21
|
Sabouri E, Majdi A, Jangjui P, Rahigh Aghsan S, Naseri Alavi SA. Neutrophil-to-Lymphocyte Ratio and Traumatic Brain Injury: A Review Study. World Neurosurg 2020; 140:142-147. [DOI: 10.1016/j.wneu.2020.04.185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/28/2022]
|
22
|
Cash A, Theus MH. Mechanisms of Blood-Brain Barrier Dysfunction in Traumatic Brain Injury. Int J Mol Sci 2020; 21:ijms21093344. [PMID: 32397302 PMCID: PMC7246537 DOI: 10.3390/ijms21093344] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injuries (TBIs) account for the majority of injury-related deaths in the United States with roughly two million TBIs occurring annually. Due to the spectrum of severity and heterogeneity in TBIs, investigation into the secondary injury is necessary in order to formulate an effective treatment. A mechanical consequence of trauma involves dysregulation of the blood–brain barrier (BBB) which contributes to secondary injury and exposure of peripheral components to the brain parenchyma. Recent studies have shed light on the mechanisms of BBB breakdown in TBI including novel intracellular signaling and cell–cell interactions within the BBB niche. The current review provides an overview of the BBB, novel detection methods for disruption, and the cellular and molecular mechanisms implicated in regulating its stability following TBI.
Collapse
Affiliation(s)
- Alison Cash
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
| | - Michelle H. Theus
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
- The Center for Regenerative Medicine, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: 1-540-231-0909; Fax: 1-540-231-7425
| |
Collapse
|
23
|
Zeynalov E, Jones SM, Elliott JP. Vasopressin and vasopressin receptors in brain edema. VITAMINS AND HORMONES 2020; 113:291-312. [DOI: 10.1016/bs.vh.2019.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Bertalan G, Klein C, Schreyer S, Steiner B, Kreft B, Tzschätzsch H, de Schellenberger AA, Nieminen-Kelhä M, Braun J, Guo J, Sack I. Biomechanical properties of the hypoxic and dying brain quantified by magnetic resonance elastography. Acta Biomater 2020; 101:395-402. [PMID: 31726251 DOI: 10.1016/j.actbio.2019.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022]
Abstract
Respiratory arrest is a major life-threatening condition leading to cessation of vital functions and hypoxic-anoxic injury of the brain. The progressive structural tissue changes characterizing the dying brain biophysically are unknown. Here we use noninvasive magnetic resonance elastography to show that biomechanical tissue properties are highly sensitive to alterations in the brain in the critical period before death. Our findings demonstrate that brain stiffness increases after respiratory arrest even when cardiac function is still preserved. Within 5 min of cardiac arrest, cerebral stiffness further increases by up to 30%. This early mechanical signature of the dying brain can be explained by water accumulation and redistribution from extracellular spaces into cells. These processes, together, increase interstitial and intracellular pressure as revealed by magnetic resonance spectroscopy and diffusion-weighted imaging. Our data suggest that the fast response of cerebral stiffness to respiratory arrest enables the monitoring of life-threatening brain pathology using noninvasive in vivo imaging. STATEMENT OF SIGNIFICANCE: Hypoxia-anoxia is a life-threatening condition eventually leading to brain death. Therefore, monitoring vital brain functions in patients at risk is urgently required during emergency care or treatment of acute brain damage due to insufficient oxygen supply. In mouse model of hypoxia-anoxia, we have shown for the first time that biophysical tissue parameters such as brain stiffness changed markedly during the process of death.
Collapse
Affiliation(s)
- Gergely Bertalan
- Department of Radiology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Charlotte Klein
- Department of Neurology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Stefanie Schreyer
- Department of Neurology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Barbara Steiner
- Department of Neurology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Bernhard Kreft
- Department of Radiology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Heiko Tzschätzsch
- Department of Radiology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Angela Ariza de Schellenberger
- Department of Radiology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Jürgen Braun
- Institute for Medical Informatics, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Jing Guo
- Department of Radiology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.
| | - Ingolf Sack
- Department of Radiology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| |
Collapse
|
25
|
Fraunberger E, Esser MJ. Neuro-Inflammation in Pediatric Traumatic Brain Injury-from Mechanisms to Inflammatory Networks. Brain Sci 2019; 9:E319. [PMID: 31717597 PMCID: PMC6895990 DOI: 10.3390/brainsci9110319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Compared to traumatic brain injury (TBI) in the adult population, pediatric TBI has received less research attention, despite its potential long-term impact on the lives of many children around the world. After numerous clinical trials and preclinical research studies examining various secondary mechanisms of injury, no definitive treatment has been found for pediatric TBIs of any severity. With the advent of high-throughput and high-resolution molecular biology and imaging techniques, inflammation has become an appealing target, due to its mixed effects on outcome, depending on the time point examined. In this review, we outline key mechanisms of inflammation, the contribution and interactions of the peripheral and CNS-based immune cells, and highlight knowledge gaps pertaining to inflammation in pediatric TBI. We also introduce the application of network analysis to leverage growing multivariate and non-linear inflammation data sets with the goal to gain a more comprehensive view of inflammation and develop prognostic and treatment tools in pediatric TBI.
Collapse
Affiliation(s)
- Erik Fraunberger
- Alberta Children’s Hospital Research Institute, Calgary, AB T3B 6A8, Canada;
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Michael J. Esser
- Alberta Children’s Hospital Research Institute, Calgary, AB T3B 6A8, Canada;
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pediatrics, Cumming School Of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
26
|
Cannella LA, McGary H, Ramirez SH. Brain interrupted: Early life traumatic brain injury and addiction vulnerability. Exp Neurol 2019; 317:191-201. [PMID: 30862466 PMCID: PMC6544498 DOI: 10.1016/j.expneurol.2019.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/27/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022]
Abstract
Recent reports provide evidence for increased risk of substance use disorders (SUD) among patients with a history of early-life traumatic brain injury (TBI). Preclinical research utilizing animal models of TBI have identified injury-induced inflammation, blood-brain barrier permeability, and changes to synapses and neuronal networks within regions of the brain associated with the perception of reward. Importantly, these reward pathway networks are underdeveloped during childhood and adolescence, and early-life TBI pathology may interrupt ongoing maturation. As such, maladaptive changes induced by juvenile brain injury may underlie increased susceptibility to SUD. In this review, we describe the available clinical and preclinical evidence that identifies SUD as a persistent psychiatric consequence of pediatric neurotrauma by discussing (1) the incidence of early-life TBI, (2) how preclinical studies model TBI and SUD, (3) TBI-induced neuropathology and neuroinflammation in the corticostriatal regions of the brain, and (4) the link between childhood or adolescent TBI and addiction in adulthood. In summary, preclinical research utilizes an innovative combination of models of early-life TBI and SUD to recapitulate clinical features and to determine how TBI promotes a risk for the development of SUD. However, causal processes that link TBI and SUD remain unclear. Additional research to identify and therapeutically target underlying mechanisms of aberrant reward pathway development will provide a launching point for TBI and SUD treatment strategies.
Collapse
Affiliation(s)
- Lee Anne Cannella
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hannah McGary
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; Shriners Hospitals Pediatric Research Center, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
27
|
Li J, Jia M, Chen G, Nie S, Zheng C, Zeng W, Xu Y, Wang C, Cao X, Liu Q. Involvement of p38 mitogen‐activated protein kinase in altered expressions of AQP1 and AQP4 after carbon monoxide poisoning in rat astrocytes. Basic Clin Pharmacol Toxicol 2019; 125:394-404. [PMID: 31063681 DOI: 10.1111/bcpt.13247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jinlan Li
- Department of Neurology Enshi Tujia and Miao Autonomous Prefecture Center Hospital Enshi China
| | - Min Jia
- Department of Neurology Enshi Tujia and Miao Autonomous Prefecture Center Hospital Enshi China
| | - Guiqin Chen
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Shuke Nie
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Cong Zheng
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Weiqi Zeng
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Congping Wang
- Department of Neurology Enshi Tujia and Miao Autonomous Prefecture Center Hospital Enshi China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Qunhui Liu
- Department of Neurology Enshi Tujia and Miao Autonomous Prefecture Center Hospital Enshi China
| |
Collapse
|
28
|
Glober NK, Sprague S, Ahmad S, Mayfield KG, Fletcher LM, Digicaylioglu MH, Sayre NL. Acetazolamide Treatment Prevents Redistribution of Astrocyte Aquaporin 4 after Murine Traumatic Brain Injury. NEUROSCIENCE JOURNAL 2019; 2019:2831501. [PMID: 31187032 PMCID: PMC6521570 DOI: 10.1155/2019/2831501] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 01/18/2023]
Abstract
After traumatic brain injury (TBI), multiple ongoing processes contribute to worsening and spreading of the primary injury to create a secondary injury. One major process involves disrupted fluid regulation to create vascular and cytotoxic edema in the affected area. Although understanding of factors that influence edema is incomplete, the astrocyte water channel Aquaporin 4 (AQP4) has been identified as an important mediator and therefore attractive drug target for edema prevention. The FDA-approved drug acetazolamide has been administered safely to patients for years in the United States. To test whether acetazolamide altered AQP4 function after TBI, we utilized in vitro and in vivo models of TBI. Our results suggest that AQP4 localization is altered after TBI, similar to previously published reports. Treatment with acetazolamide prevented AQP4 reorganization, both in human astrocyte in vitro and in mice in vivo. Moreover, acetazolamide eliminated cytotoxic edema in our in vivo mouse TBI model. Our results suggest a possible clinical role for acetazolamide in the treatment of TBI.
Collapse
Affiliation(s)
- Nancy K. Glober
- Department of Emergency Medicine, Stanford University, Palo Alto, California, USA
| | - Shane Sprague
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Sadiya Ahmad
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Katherine G. Mayfield
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Lauren M. Fletcher
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Murat H. Digicaylioglu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Naomi L. Sayre
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- South Texas Veteran's Health Care System, San Antonio, Texas, USA
| |
Collapse
|
29
|
Ichkova A, Fukuda AM, Nishiyama N, Paris G, Obenaus A, Badaut J. Small Interference RNA Targeting Connexin-43 Improves Motor Function and Limits Astrogliosis After Juvenile Traumatic Brain Injury. ASN Neuro 2019; 11:1759091419847090. [PMID: 31194577 PMCID: PMC6566476 DOI: 10.1177/1759091419847090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 01/22/2023] Open
Abstract
Juvenile traumatic brain injury (jTBI) is the leading cause of death and disability for children and adolescents worldwide, but there are no pharmacological treatments available. Aquaporin 4 (AQP4), an astrocytic perivascular protein, is increased after jTBI, and inhibition of its expression with small interference RNA mitigates edema formation and reduces the number of reactive astrocytes after jTBI. Due to the physical proximity of AQP4 and gap junctions, coregulation of AQP4 and connexin 43 (Cx43) expressions, and the possibility of water diffusion via gap junctions, we decided to address the potential role of astrocytic gap junctions in jTBI pathophysiology. We evaluated the role of Cx43 in the spread of the secondary injuries via the astrocyte network, such as edema formation associated with blood–brain barrier dysfunctions, astrogliosis, and behavioral outcome. We observed that Cx43 was altered after jTBI with increased expression in the perilesional cortex and in the hippocampus at several days post injury. In a second set of experiments, cortical injection of small interference RNA against Cx43 decreased Cx43 protein expression, improved motor function recovery, and decreased astrogliosis but did not result in differences in edema formation as measured via T2-weighted imaging or diffusion-weighted imaging at 1 day or 3 days. Based on our findings, we can speculate that while decreasing Cx43 has beneficial roles, it likely does not contribute to the spread of edema early after jTBI.
Collapse
Affiliation(s)
| | - Andrew M. Fukuda
- Department of Physiology, Loma Linda University, CA, USA
- Department of Pediatrics, Loma Linda University Medical Center, CA, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Nina Nishiyama
- Department of Pediatrics, Loma Linda University Medical Center, CA, USA
| | - Germaine Paris
- Department of Pediatrics, Loma Linda University Medical Center, CA, USA
| | - Andre Obenaus
- Department of Pediatrics, Loma Linda University Medical Center, CA, USA
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, CA, USA
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - Jerome Badaut
- CNRS UMR5287, University of Bordeaux, France
- Department of Physiology, Loma Linda University, CA, USA
- Department of Pediatrics, Loma Linda University Medical Center, CA, USA
| |
Collapse
|
30
|
Clément T, Rodriguez-Grande B, Badaut J. Aquaporins in brain edema. J Neurosci Res 2018; 98:9-18. [DOI: 10.1002/jnr.24354] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Tifenn Clément
- CNRS UMR 5287, INCIA, University of Bordeaux; Bordeaux France
| | | | - Jérôme Badaut
- CNRS UMR 5287, INCIA, University of Bordeaux; Bordeaux France
- Department of Basic Science; Loma Linda University School of Medicine; Loma Linda California
| |
Collapse
|
31
|
Immunohistochemical Evaluation of Aquaporin-4 and its Correlation with CD68, IBA-1, HIF-1α, GFAP, and CD15 Expressions in Fatal Traumatic Brain Injury. Int J Mol Sci 2018; 19:ijms19113544. [PMID: 30423808 PMCID: PMC6274714 DOI: 10.3390/ijms19113544] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Our understanding of its pathobiology has substantially increased. Following TBI, the following occur, edema formation, brain swelling, increased intracranial pressure, changes in cerebral blood flow, hypoxia, neuroinflammation, oxidative stress, excitotoxicity, and apoptosis. Experimental animal models have been developed. However, the difficulty in mimicking human TBI explains why few neuroprotective strategies, drawn up on the basis of experimental studies, have translated into improved therapeutic strategies for TBI patients. In this study, we retrospectively examined brain samples in 145 cases of death after different survival times following TBI, to investigate aquaporin-4 (AQP4) expression and correlation with hypoxia, and neuroinflammation in human TBI. Antibodies anti-glial fibrillary acid protein (GFAP), aquaporin-4 (AQP4), hypoxia induced factor-1α (HIF-1α), macrophage/phagocytic activation (CD68), ionized calcium-binding adapter molecule-1 (IBA-1), and neutrophils (CD15) were used. AQP4 showed a significant, progressive increase between the control group and groups 2 (one-day survival) and 3 (three-day survival). There were further increases in AQP4 immunopositivity in groups 4 (seven-day survival), 5 (14-dayssurvival), and 6 (30-day survival), suggesting an upregulation of AQP4 at 7 to 30 days compared to group 1. GFAP showed its highest expression in non-acute cases at the astrocytic level compared with the acute TBI group. Data emerging from the HIF-1α reaction showed a progressive, significant increase. Immunohistochemistry with IBA-1 revealed activated microglia starting three days after trauma and progressively increasing in the next 15 to 20 days after the initial trauma. CD68 expression demonstrated basal macrophage and phagocytic activation mostly around blood vessels. Starting from one to three days of survival after TBI, an increase in the number of CD68 cells was progressively observed; at 15 and 30 days of survival, CD68 showed the most abundant immunopositivity inside or around the areas of necrosis. These findings need to be developed further to gain insight into the mechanisms through which brain AQP4 is upregulated. This could be of the utmost clinicopathological importance.
Collapse
|
32
|
Halsey AM, Conner AC, Bill RM, Logan A, Ahmed Z. Aquaporins and Their Regulation after Spinal Cord Injury. Cells 2018; 7:E174. [PMID: 30340399 PMCID: PMC6210264 DOI: 10.3390/cells7100174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 11/16/2022] Open
Abstract
After injury to the spinal cord, edema contributes to the underlying detrimental pathophysiological outcomes that lead to worsening of function. Several related membrane proteins called aquaporins (AQPs) regulate water movement in fluid transporting tissues including the spinal cord. Within the cord, AQP1, 4 and 9 contribute to spinal cord injury (SCI)-induced edema. AQP1, 4 and 9 are expressed in a variety of cells including astrocytes, neurons, ependymal cells, and endothelial cells. This review discusses some of the recent findings of the involvement of AQP in SCI and highlights the need for further study of these proteins to develop effective therapies to counteract the negative effects of SCI-induced edema.
Collapse
Affiliation(s)
- Andrea M Halsey
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Alex C Conner
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
33
|
Yong YX, Li YM, Lian J, Luo CM, Zhong DX, Han K. Inhibitory role of lentivirus-mediated aquaporin-4 gene silencing in the formation of glial scar in a rat model of traumatic brain injury. J Cell Biochem 2018; 120:368-379. [PMID: 30246455 DOI: 10.1002/jcb.27390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI), an acute degenerative pathology of the central nervous system, is a leading cause of death and disability. As the glial scar is a mechanical barrier to nerve regeneration, inhibitory molecules in the forming scar and methods to overcome them have suggested molecular modification strategies to allow neuronal growth and functional regeneration. Herein, we aim to investigate the effects of aquaporin-4 (AQP4) gene silencing on the glial scar formation after TBI by establishing rat models. After modeling, TBI rats were transfected with AQP4 small hairpin RNA [shRNA] (AQP4 gene silencing by lentiviral vector-delivered shRNA) and empty vectors, respectively. Neurological functions of the rats were evaluated after TBI. The hematoxylin and eosin staining was conducted to observe histomorphological changes in rat brain tissues. The messenger RNA (mRNA) and protein expressions of glial fibrillary acidic protein (GFAP), vimentin, fibronectin, laminin, and AQP4 were measured by reverse transcription-quantitative polymerase chain reaction and Western blot analysis. The ratio of positive expression area was calculated, and the glial scar was observed by immunohistochemistry. At the 7th, 14th, and 28th days after TBI, TBI rats treated with AQP4 shRNA showed improved neurological function and lessened histomorphological changes. AQP4 gene silencing mediated by lentivirus decreased the mRNA and protein expressions of GFAP, vimentin, fibronectin, and laminin, the number of positive cells, the ratio of positive expression area, and the glial scar. Our study demonstrates that lentivirus-mediated AQP4 gene silencing could inhibit the formation of glial scar after TBI, which is beneficial to the recovery of neurological function.
Collapse
Affiliation(s)
- Ya-Xiong Yong
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yu-Ming Li
- Department of Neurosurgery, First Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jia Lian
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Chuan-Ming Luo
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - De-Xia Zhong
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Ke Han
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
34
|
Rodriguez-Grande B, Obenaus A, Ichkova A, Aussudre J, Bessy T, Barse E, Hiba B, Catheline G, Barrière G, Badaut J. Gliovascular changes precede white matter damage and long-term disorders in juvenile mild closed head injury. Glia 2018; 66:1663-1677. [DOI: 10.1002/glia.23336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Beatriz Rodriguez-Grande
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Andre Obenaus
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- Department of Pediatrics; Loma Linda University School of Medicine; Loma Linda California
- Basic Science Department; Loma Linda University School of Medicine; Loma Linda California
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences; UC Riverside; Riverside California
- Department of Pediatrics; University of California, Irvine; Irvine California
| | - Aleksandra Ichkova
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Justine Aussudre
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Thomas Bessy
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Elodie Barse
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- EPHE, PSL; Bordeaux France
| | - Bassem Hiba
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Gwénaëlle Catheline
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- EPHE, PSL; Bordeaux France
| | - Grégory Barrière
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
| | - Jerome Badaut
- CNRS UMR5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux; Bordeaux France
- Basic Science Department; Loma Linda University School of Medicine; Loma Linda California
| |
Collapse
|
35
|
Jullienne A, Fukuda AM, Ichkova A, Nishiyama N, Aussudre J, Obenaus A, Badaut J. Modulating the water channel AQP4 alters miRNA expression, astrocyte connectivity and water diffusion in the rodent brain. Sci Rep 2018; 8:4186. [PMID: 29520011 PMCID: PMC5843607 DOI: 10.1038/s41598-018-22268-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/20/2018] [Indexed: 12/27/2022] Open
Abstract
Aquaporins (AQPs) facilitate water diffusion through the plasma membrane. Brain aquaporin-4 (AQP4) is present in astrocytes and has critical roles in normal and disease physiology. We previously showed that a 24.9% decrease in AQP4 expression after in vivo silencing resulted in a 45.8% decrease in tissue water mobility as interpreted from magnetic resonance imaging apparent diffusion coefficients (ADC). Similar to previous in vitro studies we show decreased expression of the gap junction protein connexin 43 (Cx43) in vivo after intracortical injection of siAQP4 in the rat. Moreover, siAQP4 induced a loss of dye-coupling between astrocytes in vitro, further demonstrating its effect on gap junctions. In contrast, silencing of Cx43 did not alter the level of AQP4 or water mobility (ADC) in the brain. We hypothesized that siAQP4 has off-target effects on Cx43 expression via modification of miRNA expression. The decreased expression of Cx43 in siAQP4-treated animals was associated with up-regulation of miR224, which is known to target AQP4 and Cx43 expression. This could be one potential molecular mechanism responsible for the effect of siAQP4 on Cx43 expression, and the resultant decrease in astrocyte connectivity and dramatic effects on ADC values and water mobility.
Collapse
Affiliation(s)
- Amandine Jullienne
- Basic Sciences Department, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Physiology, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Andrew M Fukuda
- Basic Sciences Department, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Physiology, Loma Linda University, Loma Linda, CA, 92354, USA
| | | | - Nina Nishiyama
- Department of Physiology, Loma Linda University, Loma Linda, CA, 92354, USA
| | | | - André Obenaus
- Basic Sciences Department, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, 92697, USA
| | - Jérôme Badaut
- Basic Sciences Department, Loma Linda University, Loma Linda, CA, 92354, USA.
- Department of Physiology, Loma Linda University, Loma Linda, CA, 92354, USA.
- CNRS-UMR 5287, University of Bordeaux, 33076, Bordeaux, France.
| |
Collapse
|
36
|
Dhanda S, Sandhir R. Blood-Brain Barrier Permeability Is Exacerbated in Experimental Model of Hepatic Encephalopathy via MMP-9 Activation and Downregulation of Tight Junction Proteins. Mol Neurobiol 2017; 55:3642-3659. [PMID: 28523565 DOI: 10.1007/s12035-017-0521-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/06/2017] [Indexed: 12/27/2022]
Abstract
The present study was designed to investigate the mechanisms involved in blood-brain barrier (BBB) permeability in bile duct ligation (BDL) model of chronic hepatic encephalopathy (HE). Four weeks after BDL surgery, a significant increase was observed in serum bilirubin levels. Masson trichrome staining revealed severe hepatic fibrosis in the BDL rats. 99mTc-mebrofenin retention was increased in the liver of BDL rats suggesting impaired hepatobiliary transport. An increase in permeability to sodium fluorescein, Evans blue, and fluorescein isothiocyanate (FITC)-dextran along with increase in water and electrolyte content was observed in brain regions of BDL rats suggesting disrupted BBB. Increased brain water content can be attributed to increase in aquaporin-4 mRNA and protein expression in BDL rats. Matrix metalloproteinase-9 (MMP-9) mRNA and protein expression was increased in brain regions of BDL rats. Additionally, mRNA and protein expression of tissue inhibitor of matrix metalloproteinases (TIMPs) was also increased in different regions of brain. A significant decrease in mRNA expression and protein levels of tight junction proteins, viz., occludin, claudin-5, and zona occluden-1 (ZO-1) was observed in different brain regions of BDL rats. VCAM-1 mRNA and protein expression was also found to be significantly upregulated in different brain regions of BDL animals. The findings from the study suggest that increased BBB permeability in HE involves activation of MMP-9 and loss of tight junction proteins.
Collapse
Affiliation(s)
- Saurabh Dhanda
- Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
37
|
Increased cerebral expressions of MMPs, CLDN5, OCLN, ZO1 and AQPs are associated with brain edema following fatal heat stroke. Sci Rep 2017; 7:1691. [PMID: 28490769 PMCID: PMC5431794 DOI: 10.1038/s41598-017-01923-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/06/2017] [Indexed: 01/19/2023] Open
Abstract
Human brain samples were collected from 46 autopsy cases, including 23 fatal heat stroke cases and 23 age-matched controls. Nine candidate reference genes (PES1, POLR2A, IPO8, HMBS, SDHA, GAPDH, UBC, B2M, ACTB) were evaluated in the cerebral cortex of 10 forensic autopsy cases (5 heat stroke and 5 controls), using the geNorm module in qBaseplus software. SDHA, POLR2A, IPO8 and HMBS were identified as the most stable reference genes. Using these validated reference genes, mRNA expressions of Matrix metalloproteinases (MMPs, MMP2 and MMP9), Claudin5 (CLDN5), Occludin (OCLN), Zona occludens protein-1 (ZO1) and Aquaporins (AQPs, AQP1 and AQP4) in the cerebral cortex were examined. Relative mRNA quantification using Taqman real-time PCR assay demonstrated increased calibrated normalized relative quantity (CNRQ) values of MMP9, CLDN5, OCLN, ZO1 and AQP4 in heat stroke cases. Heat stroke cases showed an increase in brain water content, which was found to be positively correlated with MMP9, OCLN, ZO1 and CLDN5 mRNA. When using one conventional reference gene (GAPDH or ACTB) for normalization, no difference was detected between heat stroke and controls. In immunostaining, only AQP4 showed more intense staining in most heat stroke cases. The present study, for the first time, reports increased cerebral MMP9, CLDN5, OCLN, ZO1 and AQP4 in heat stroke and suggest a crucial role of reference gene selection when using postmortem human tissues.
Collapse
|
38
|
Hirt L, Price M, Mastour N, Brunet JF, Barrière G, Friscourt F, Badaut J. Increase of aquaporin 9 expression in astrocytes participates in astrogliosis. J Neurosci Res 2017; 96:194-206. [PMID: 28419510 DOI: 10.1002/jnr.24061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 01/01/2023]
Abstract
Here we assess the potential functional role of increased aquaporin 9 (APQ9) in astrocytes. Increased AQP9 expression was achieved in primary astrocyte cultures by transfection of a plasmid-containing green fluorescent protein fused to either wild-type or mutated human AQP9. Increased AQP9 expression and phosphorylation at Ser222 were associated with a significant change in astrocyte morphology, mainly with a higher number of processes. Similar phenotypic changes are observed in astrogliosis processes after injury. In parallel, we observed that in vivo, thrombin preconditioning before ischemic stroke induced an early increase in AQP9 expression in the male mouse brain. This increased AQP9 expression was also associated with astrocyte morphological changes, especially in the white matter tract. Astrocyte reactivity is debated as being either beneficial or deleterious. As thrombin preconditioning leads to a decrease in lesion size after stroke, our data suggest that the early increase in AQP9 concomitant with astrocyte reactivity leads to a beneficial effect. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lorenz Hirt
- Neurology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Melanie Price
- Neurology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Nabil Mastour
- Neurosurgery Research Group, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Jean-François Brunet
- Neurosurgery Research Group, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | | | - Jerome Badaut
- CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France
| |
Collapse
|
39
|
Ichkova A, Rodriguez-Grande B, Bar C, Villega F, Konsman JP, Badaut J. Vascular impairment as a pathological mechanism underlying long-lasting cognitive dysfunction after pediatric traumatic brain injury. Neurochem Int 2017; 111:93-102. [PMID: 28377126 DOI: 10.1016/j.neuint.2017.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in children. Indeed, the acute mechanical injury often evolves to a chronic brain disorder with long-term cognitive, emotional and social dysfunction even in the case of mild TBI. Contrary to the commonly held idea that children show better recovery from injuries than adults, pediatric TBI patients actually have worse outcome than adults for the same injury severity. Acute trauma to the young brain likely interferes with the fine-tuned developmental processes and may give rise to long-lasting consequences on brain's function. This review will focus on cerebrovascular dysfunction as an important early event that may lead to long-term phenotypic changes in the brain after pediatric TBI. These, in turn may be associated with accelerated brain aging and cognitive dysfunction. Finally, since no effective treatments are currently available, understanding the unique pathophysiological mechanisms of pediatric TBI is crucial for the development of new therapeutic options.
Collapse
Affiliation(s)
| | | | - Claire Bar
- CNRS UMR 5287, INCIA, University of Bordeaux, France; Department of Pediatric Neurology, University Children's Hospital of Bordeaux, France
| | - Frederic Villega
- Department of Pediatric Neurology, University Children's Hospital of Bordeaux, France
| | | | - Jerome Badaut
- CNRS UMR 5287, INCIA, University of Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
40
|
Pérez-Hernández M, Fernández-Valle ME, Rubio-Araiz A, Vidal R, Gutiérrez-López MD, O'Shea E, Colado MI. 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) produces edema due to BBB disruption induced by MMP-9 activation in rat hippocampus. Neuropharmacology 2017; 118:157-166. [PMID: 28322979 DOI: 10.1016/j.neuropharm.2017.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 10/20/2022]
Abstract
The recreational drug of abuse, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier (BBB) integrity in rats through an early P2X7 receptor-mediated event which induces MMP-9 activity. Increased BBB permeability often causes plasma proteins and water to access cerebral tissue leading to vasogenic edema formation. The current study was performed to examine the effect of a single neurotoxic dose of MDMA (12.5 mg/kg, i.p.) on in vivo edema development associated with changes in the expression of the perivascular astrocytic water channel, AQP4, as well as in the expression of the tight-junction (TJ) protein, claudin-5 and Evans Blue dye extravasation in the hippocampus of adult male Dark Agouti rats. We also evaluated the ability of the MMP-9 inhibitor, SB-3CT (25 mg/kg, i.p.), to prevent these changes in order to validate the involvement of MMP-9 activation in MDMA-induced BBB disruption. The results show that MDMA produces edema of short duration temporally associated with changes in AQP4 expression and a reduction in claudin-5 expression, changes which are prevented by SB-3CT. In addition, MDMA induces a short-term increase in both tPA activity and expression, a serine-protease which is involved in BBB disruption and upregulation of MMP-9 expression. In conclusion, this study provides evidence enough to conclude that MDMA induces edema of short duration due to BBB disruption mediated by MMP-9 activation.
Collapse
Affiliation(s)
- Mercedes Pérez-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Ana Rubio-Araiz
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rebeca Vidal
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Dolores Gutiérrez-López
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Esther O'Shea
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - María Isabel Colado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
41
|
Hirt L, Fukuda AM, Ambadipudi K, Rashid F, Binder D, Verkman A, Ashwal S, Obenaus A, Badaut J. Improved long-term outcome after transient cerebral ischemia in aquaporin-4 knockout mice. J Cereb Blood Flow Metab 2017; 37:277-290. [PMID: 26767580 PMCID: PMC5363745 DOI: 10.1177/0271678x15623290] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/07/2023]
Abstract
A hallmark of stroke is water accumulation (edema) resulting from dysregulation of osmotic homeostasis. Brain edema contributes to tissue demise and may lead to increased intracranial pressure and lethal herniation. Currently, there are only limited treatments to prevent edema formation following stroke. Aquaporin 4 (AQP4), a brain water channel, has become a focus of interest for therapeutic approaches targeting edema. At present, there are no pharmacological tools to block AQP4. The role of AQP4 in edema after brain injury remains unclear with conflicting results from studies using AQP4-/- mice and of AQP4 expression following stroke. Here, we studied AQP4 and its role in edema formation by testing AQP4-/- mice in a model of middle cerebral artery occlusion using novel quantitative MRI water content measurements, histology and behavioral changes as outcome measures. Absence of AQP4 was associated with decreased mortality and increased motor recovery 3 to 14 days after stroke. Behavioral improvement was associated with decreased lesion volume, neuronal cell death and neuroinflammation in AQP4-/- compared to wild type mice. Our data suggest that the lack of AQP4 confers an overall beneficial role at long term with improved neuronal survival and reduced neuroinflammation, but without a direct effect on edema formation.
Collapse
Affiliation(s)
- Lorenz Hirt
- Department of Clinical Neurosciences, Neurology Service, Centre Hospitalier Universitaire Vaudois and Lausanne University, Switzerland
| | - Andrew M Fukuda
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Kamalakar Ambadipudi
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Faisil Rashid
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Devin Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Alan Verkman
- Medicine and Physiology, Cardiovascular Research Institute, University of California San Francisco, CA, USA
| | - Stephen Ashwal
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Andre Obenaus
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Jerome Badaut
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, CA, USA .,Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA.,CNRS UMR5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
42
|
Abstract
Aquaporins (AQPs ) mediate water flux between the four distinct water compartments in the central nervous system (CNS). In the present chapter, we mainly focus on the expression and function of the 9 AQPs expressed in the CNS, which include five members of aquaporin subfamily: AQP1, AQP4, AQP5, AQP6, and AQP8; three members of aquaglyceroporin subfamily: AQP3, AQP7, and AQP9; and one member of superaquaporin subfamily: AQP11. In addition, AQP1, AQP2 and AQP4 expressed in the peripheral nervous system (PNS) are also reviewed. AQP4, the predominant water channel in the CNS, is involved both in the astrocyte swelling of cytotoxic edema and the resolution of vasogenic edema, and is of pivotal importance in the pathology of brain disorders such as neuromyelitis optica , brain tumors and Alzheimer's disease. Other AQPs are also involved in a variety of important physiological and pathological process in the brain. It has been suggested that AQPs could represent an important target in treatment of brain disorders like cerebral edema. Future investigations are necessary to elucidate the pathological significance of AQPs in the CNS.
Collapse
|
43
|
Peixoto-Santos JE, Kandratavicius L, Velasco TR, Assirati JA, Carlotti CG, Scandiuzzi RC, Salmon CEG, Santos ACD, Leite JP. Individual hippocampal subfield assessment indicates that matrix macromolecules and gliosis are key elements for the increased T2 relaxation time seen in temporal lobe epilepsy. Epilepsia 2016; 58:149-159. [PMID: 27864825 DOI: 10.1111/epi.13620] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Increased T2 relaxation time is often seen in temporal lobe epilepsy (TLE) with hippocampal sclerosis. Water content directly affects the effective T2 in a voxel. Our aim was to evaluate the relation between T2 values and two molecules associated with brain water homeostasis aquaporin 4 (AQP4) and chondroitin sulfate proteoglycan (CSPG), as well as cellular populations in the hippocampal region of patients with TLE. METHODS Hippocampal T2 imaging and diffusion tensor imaging (DTI) were obtained from 42 drug-resistant patients with TLE and 20 healthy volunteers (radiologic controls, RCs). A similar protocol (ex vivo) was applied to hippocampal sections from the same TLE cases and 14 autopsy control hippocampi (histologic and radiologic controls, HRCs), and each hippocampal subfield was evaluated. Hippocampal sections from TLE cases and HRC controls were submitted to immunohistochemistry for neurons (neuron nuclei [NeuN]), reactive astrocytes (glial fibrillary acidic protein [GFAP]), activated microglia (human leukocyte antigen-D-related [HLA-DR]), polarized AQP4, and CSPG. RESULTS Patients with TLE had higher in vivo and ex vivo hippocampal T2 relaxation time. Hippocampi from epilepsy cases had lower neuron density, higher gliosis, decreased AQP4 polarization, and increased CSPG immunoreactive area. In vivo relaxation correlated with astrogliosis in the subiculum and extracellular CSPG in the hilus. Ex vivo T2 relaxation time correlated with astrogliosis in the hilus, CA4, and subiculum, and with microgliosis in CA1. The difference between in vivo and ex vivo relaxation ratio correlated with mean diffusivity and with the immunopositive area for CSPG in the hilus. SIGNIFICANCE Our data indicate that astrogliosis, microgliosis, and CSPG expression correlate with the increased T2 relaxation time seen in the hippocampi of patients with TLE.
Collapse
Affiliation(s)
- Jose Eduardo Peixoto-Santos
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ludmyla Kandratavicius
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Tonicarlo Rodrigues Velasco
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Joao Alberto Assirati
- Department of Surgery and Anatomy, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos Gilberto Carlotti
- Department of Surgery and Anatomy, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Renata Caldo Scandiuzzi
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos Ernesto Garrido Salmon
- Department of Physics and Mathematics, Faculty of Philosophy, Science and Languages of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Antonio Carlos Dos Santos
- Department of Internal Medicine, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Joao Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
44
|
Hsu Y, Tran M, Linninger AA. Dynamic regulation of aquaporin-4 water channels in neurological disorders. Croat Med J 2016; 56:401-21. [PMID: 26526878 PMCID: PMC4655926 DOI: 10.3325/cmj.2015.56.401] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aquaporin-4 water channels play a central role in brain water regulation in neurological disorders. Aquaporin-4 is abundantly expressed at the astroglial endfeet facing the cerebral vasculature and the pial membrane, and both its expression level and subcellular localization significantly influence brain water transport. However, measurements of aquaporin-4 levels in animal models of brain injury often report opposite trends of change at the injury core and the penumbra. Furthermore, aquaporin-4 channels play a beneficial role in brain water clearance in vasogenic edema, but a detrimental role in cytotoxic edema and exacerbate cell swelling. In light of current evidence, we still do not have a complete understanding of the role of aquaporin-4 in brain water transport. In this review, we propose that the regulatory mechanisms of aquaporin-4 at the transcriptional, translational, and post-translational levels jointly regulate water permeability in the short and long time scale after injury. Furthermore, in order to understand why aquaporin-4 channels play opposing roles in cytotoxic and vasogenic edema, we discuss experimental evidence on the dynamically changing osmotic gradients between blood, extracellular space, and the cytosol during the formation of cytotoxic and vasogenic edema. We conclude with an emerging picture of the distinct osmotic environments in cytotoxic and vasogenic edema, and propose that the directions of aquaporin-4-mediated water clearance in these two types of edema are distinct. The difference in water clearance pathways may provide an explanation for the conflicting observations of the roles of aquaporin-4 in edema resolution.
Collapse
Affiliation(s)
| | | | - Andreas A Linninger
- Andreas Linninger, 851 S Morgan St., SEO 218, MC 063, Chicago, IL 60607, USA,
| |
Collapse
|
45
|
Vardakis JC, Chou D, Tully BJ, Hung CC, Lee TH, Tsui PH, Ventikos Y. Investigating cerebral oedema using poroelasticity. Med Eng Phys 2015; 38:48-57. [PMID: 26749338 DOI: 10.1016/j.medengphy.2015.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 08/05/2015] [Accepted: 09/10/2015] [Indexed: 12/21/2022]
Abstract
Cerebral oedema can be classified as the tangible swelling produced by expansion of the interstitial fluid volume. Hydrocephalus can be succinctly described as the abnormal accumulation of cerebrospinal fluid (CSF) within the brain which ultimately leads to oedema within specific sites of parenchymal tissue. Using hydrocephalus as a test bed, one is able to account for the necessary mechanisms involved in the interaction between oedema formation and cerebral fluid production, transport and drainage. The current state of knowledge about integrative cerebral dynamics and transport phenomena indicates that poroelastic theory may provide a suitable framework to better understand various diseases. In this work, Multiple-Network Poroelastic Theory (MPET) is used to develop a novel spatio-temporal model of fluid regulation and tissue displacement within the various scales of the cerebral environment. The model is applied through two formats, a one-dimensional finite difference - Computational Fluid Dynamics (CFD) coupling framework, as well as a two-dimensional Finite Element Method (FEM) formulation. These are used to investigate the role of endoscopic fourth ventriculostomy in alleviating oedema formation due to fourth ventricle outlet obstruction (1D coupled model) in addition to observing the capability of the FEM template in capturing important characteristics allied to oedema formation, like for instance in the periventricular region (2D model).
Collapse
Affiliation(s)
- John C Vardakis
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Dean Chou
- Institute of Biomedical Engineering & Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Brett J Tully
- First Light Fusion Ltd., Begbroke Science Park, Begbroke, Oxfordshire OX5 1PF, UK
| | - Chang C Hung
- Stroke Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Taoyuan, Taiwan; Department of Electrical Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Tsong H Lee
- Stroke Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Taoyuan, Taiwan
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.
| |
Collapse
|
46
|
Simon MJ, Iliff JJ. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim Biophys Acta Mol Basis Dis 2015; 1862:442-51. [PMID: 26499397 DOI: 10.1016/j.bbadis.2015.10.014] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/23/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022]
Abstract
Cerebrospinal fluid (CSF) circulation and turnover provides a sink for the elimination of solutes from the brain interstitium, serving an important homeostatic role for the function of the central nervous system. Disruption of normal CSF circulation and turnover is believed to contribute to the development of many diseases, including neurodegenerative conditions such as Alzheimer's disease, ischemic and traumatic brain injury, and neuroinflammatory conditions such as multiple sclerosis. Recent insights into CSF biology suggesting that CSF and interstitial fluid exchange along a brain-wide network of perivascular spaces termed the 'glymphatic' system suggest that CSF circulation may interact intimately with glial and vascular function to regulate basic aspects of brain function. Dysfunction within this glial vascular network, which is a feature of the aging and injured brain, is a potentially critical link between brain injury, neuroinflammation and the development of chronic neurodegeneration. Ongoing research within this field may provide a powerful new framework for understanding the common links between neurodegenerative, neurovascular and neuroinflammatory disease, in addition to providing potentially novel therapeutic targets for these conditions. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
Affiliation(s)
- Matthew J Simon
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA; Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA; Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
47
|
Hubbard JA, Hsu MS, Seldin MM, Binder DK. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain. ASN Neuro 2015; 7:7/5/1759091415605486. [PMID: 26489685 PMCID: PMC4623559 DOI: 10.1177/1759091415605486] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits.
Collapse
Affiliation(s)
- Jacqueline A Hubbard
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Mike S Hsu
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Marcus M Seldin
- Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
48
|
Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 2015; 144:103-20. [PMID: 26455456 DOI: 10.1016/j.pneurobio.2015.09.008] [Citation(s) in RCA: 412] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/06/2015] [Accepted: 09/05/2015] [Indexed: 01/04/2023]
Abstract
Astrocytes are the most abundant cell type within the central nervous system. They play essential roles in maintaining normal brain function, as they are a critical structural and functional part of the tripartite synapses and the neurovascular unit, and communicate with neurons, oligodendrocytes and endothelial cells. After an ischemic stroke, astrocytes perform multiple functions both detrimental and beneficial, for neuronal survival during the acute phase. Aspects of the astrocytic inflammatory response to stroke may aggravate the ischemic lesion, but astrocytes also provide benefit for neuroprotection, by limiting lesion extension via anti-excitotoxicity effects and releasing neurotrophins. Similarly, during the late recovery phase after stroke, the glial scar may obstruct axonal regeneration and subsequently reduce the functional outcome; however, astrocytes also contribute to angiogenesis, neurogenesis, synaptogenesis, and axonal remodeling, and thereby promote neurological recovery. Thus, the pivotal involvement of astrocytes in normal brain function and responses to an ischemic lesion designates them as excellent therapeutic targets to improve functional outcome following stroke. In this review, we will focus on functions of astrocytes and astrocyte-mediated events during stroke and recovery. We will provide an overview of approaches on how to reduce the detrimental effects and amplify the beneficial effects of astrocytes on neuroprotection and on neurorestoration post stroke, which may lead to novel and clinically relevant therapies for stroke.
Collapse
Affiliation(s)
- Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
49
|
Margulies S, Anderson G, Atif F, Badaut J, Clark R, Empey P, Guseva M, Hoane M, Huh J, Pauly J, Raghupathi R, Scheff S, Stein D, Tang H, Hicks M. Combination Therapies for Traumatic Brain Injury: Retrospective Considerations. J Neurotrauma 2015; 33:101-12. [PMID: 25970337 DOI: 10.1089/neu.2014.3855] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Patients enrolled in clinical trials for traumatic brain injury (TBI) may present with heterogeneous features over a range of injury severity, such as diffuse axonal injury, ischemia, edema, hemorrhage, oxidative damage, mitochondrial and metabolic dysfunction, excitotoxicity, inflammation, and other pathophysiological processes. To determine whether combination therapies might be more effective than monotherapy at attenuating moderate TBI or promoting recovery, the National Institutes of Health funded six preclinical studies in adult and immature male rats to evaluate promising acute treatments alone and in combination. Each of the studies had a solid rationale for its approach based on previous research, but only one reported significant improvements in long-term outcomes across a battery of behavioral tests. Four studies had equivocal results because of a lack of sensitivity of the outcome assessments. One study demonstrated worse results with the combination in comparison with monotherapies. While specific research findings are reported elsewhere, this article provides an overview of the study designs, insights, and recommendations for future research aimed at therapy development for TBI.
Collapse
Affiliation(s)
- Susan Margulies
- 1 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Gail Anderson
- 2 Department of Pharmacy, Pharmaceutics, and Neurological Surgery, University of Washington , Seattle, Washington
| | - Fahim Atif
- 3 Department of Emergency Medicine, Emory University , Atlanta, Georgia
| | - Jerome Badaut
- 4 Institut of Neuroscience Cognitive and Integrative of Aquitaine (INCIA), University of Bordeaux , Bordeaux, France
| | - Robert Clark
- 5 Safar Center for Resuscitation Research and Department of Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Philip Empey
- 6 Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy , Pittsburgh, Pennsylvania
| | - Maria Guseva
- 7 Fresenius Kabi USA, LLC , Lake Zurich, Illinois
| | - Michael Hoane
- 8 Department of Psychology, Southern Illinois University , Carbondale, Illinois
| | - Jimmy Huh
- 9 Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| | - Jim Pauly
- 10 Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky
| | - Ramesh Raghupathi
- 11 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Stephen Scheff
- 12 Center on Aging, University of Kentucky , Lexington, Kentucky
| | - Donald Stein
- 3 Department of Emergency Medicine, Emory University , Atlanta, Georgia
| | - Huiling Tang
- 3 Department of Emergency Medicine, Emory University , Atlanta, Georgia
| | | |
Collapse
|
50
|
Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 2015; 34:16180-93. [PMID: 25471560 DOI: 10.1523/jneurosci.3020-14.2014] [Citation(s) in RCA: 731] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is an established risk factor for the early development of dementia, including Alzheimer's disease, and the post-traumatic brain frequently exhibits neurofibrillary tangles comprised of aggregates of the protein tau. We have recently defined a brain-wide network of paravascular channels, termed the "glymphatic" pathway, along which CSF moves into and through the brain parenchyma, facilitating the clearance of interstitial solutes, including amyloid-β, from the brain. Here we demonstrate in mice that extracellular tau is cleared from the brain along these paravascular pathways. After TBI, glymphatic pathway function was reduced by ∼60%, with this impairment persisting for at least 1 month post injury. Genetic knock-out of the gene encoding the astroglial water channel aquaporin-4, which is importantly involved in paravascular interstitial solute clearance, exacerbated glymphatic pathway dysfunction after TBI and promoted the development of neurofibrillary pathology and neurodegeneration in the post-traumatic brain. These findings suggest that chronic impairment of glymphatic pathway function after TBI may be a key factor that renders the post-traumatic brain vulnerable to tau aggregation and the onset of neurodegeneration.
Collapse
|