1
|
Saha R, Wüstner LS, Chakraborty D, Anunu R, Mandel S, Hazra JD, Kriebel M, Volkmer H, Kaphzan H, Richter-Levin G. Intra-BLA alteration of interneurons' modulation of activity in rats, reveals a dissociation between effects on anxiety symptoms and extinction learning. Neurobiol Stress 2024; 33:100681. [PMID: 39512628 PMCID: PMC11541825 DOI: 10.1016/j.ynstr.2024.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/19/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
The basolateral amygdala (BLA) is a dynamic brain region involved in emotional experiences and subject to long-term plasticity. The BLA also modulates activity, plasticity, and related behaviors associated with other brain regions, including the mPFC and hippocampus. Accordingly, intra-BLA plasticity can be expected to alter both BLA-dependent behaviors and behaviors mediated by other brain regions. Lasting intra-BLA plasticity may be considered a form of metaplasticity, since it will affect subsequent plasticity and response to challenges later on. Activity within the BLA is tightly modulated by GABAergic interneurons, and thus inducing lasting alteration of GABAergic modulation of principal neurons may have an impactful metaplastic effect on BLA functioning. Previously, we demonstrated that intra-BLA knockdown (KD) of neurofascin (NF) reduced GABAergic synapses exclusively at the axon initial segment (AIS). Here, by reducing the expression of the tyrosine kinase receptor ephrin A7 (EphA7), we selectively impaired the modulatory function of a different subpopulation of interneurons, specifically targeting the soma and proximal dendrites of principal neurons. This perturbation induced an expected reduction in the spontaneous inhibitory synaptic input and an increase in the excitatory spontaneous synaptic activity, most probably due to the reduction of inhibitory tone. Moreover, this increased synaptic activity was followed by a reduction in intrinsic excitability. While intra-BLA NF-KD resulted in impaired extinction learning, without increased symptoms of anxiety, intra-BLA reduction of EphA7 expression resulted in increased symptoms of anxiety, as measured in the elevated plus maze, but without affecting fear conditioning or extinction learning. These results confirm the role of the BLA and intra-BLA metaplasticity in stress-induced increased anxiety symptoms and in impaired fear extinction learning but reveals a difference in intra-BLA mechanisms involved. The results also confirm the contribution of GABAergic interneurons to these effects but indicate selective roles for different subpopulations of intra-BLA interneurons.
Collapse
Affiliation(s)
- Rinki Saha
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Lisa-Sophie Wüstner
- Dept. Molecular Biology, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Darpan Chakraborty
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Rachel Anunu
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Silvia Mandel
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Joyeeta Dutta Hazra
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
| | - Martin Kriebel
- Dept. Molecular Biology, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Hansjuergen Volkmer
- Dept. Molecular Biology, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
- Psychology Department, University of Haifa, 3498838, Haifa, Israel
| |
Collapse
|
2
|
de Sousa EB, Heymbeeck JAA, Feitosa LM, Xavier AGO, Dos Santos Campos K, do Socorro Dos Santos Rodrigues L, de Freitas LM, do Carmo Silva RX, Ikeda SR, de Nazaré Dos Santos Silva S, Rocha SP, do Nascimento WL, da Silva Moraes ER, Herculano AM, Maximino C, Pereira A, Lima-Maximino M. Activation of NOS-cGMP pathways promotes stress-induced sensitization of behavioral responses in zebrafish. Pharmacol Biochem Behav 2024; 243:173816. [PMID: 38971472 DOI: 10.1016/j.pbb.2024.173816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Nitric oxide (NO) is a molecule involved in plasticity across levels and systems. The role of NOergic pathways in stress-induced sensitization (SIS) of behavioral responses, in which a particular stressor triggers a state of hyper-responsiveness to other stressors after an incubation period, was assessed in adult zebrafish. In this model, adult zebrafish acutely exposed to a fear-inducing conspecific alarm substance (CAS) and left undisturbed for an incubation period show increased anxiety-like behavior 24 h after exposure. CAS increased forebrain glutamate immediately after stress and 30 min after stress, an effect that was accompanied by increased nitrite levels immediately after stress, 30 min after stress, 90 min after stress, and 24 h after stress. CAS also increased nitrite levels in the head kidney, where cortisol is produced in zebrafish. CAS-elicited nitrite responses in the forebrain 90 min (but not 30 min) after stress were prevented by a NOS-2 blocker. Blocking NOS-1 30 min after stress prevents SIS; blocking NOS-2 90 min after stress also prevents stress-induced sensitization, as does blocking calcium-activated potassium channels in this latter time window. Stress-induced sensitization is also prevented by blocking guanylate cyclase activation in both time windows, and cGMP-dependent channel activation in the second time window. These results suggest that different NO-related pathways converge at different time windows of the incubation period to induce stress-induced sensitization.
Collapse
Affiliation(s)
- Eveline Bezerra de Sousa
- Laboratório de Bacteriologia e Neuropatologia, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil; Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - João Alphonse Apóstolo Heymbeeck
- Laboratório de Neurofarmacologia e Biofísica, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil; Programa de Pós-Graduação em Neurociências e Comportamento, Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - Leonardo Miranda Feitosa
- Laboratório de Neurofarmacologia e Biofísica, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil; Programa de Pós-Graduação em Neurociências e Comportamento, Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | | | - Kimberly Dos Santos Campos
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | | | - Larissa Mota de Freitas
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | - Rhayra Xavier do Carmo Silva
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | - Saulo Rivera Ikeda
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | | | - Sueslene Prado Rocha
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | - Wilker Leite do Nascimento
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | | | - Anderson Manoel Herculano
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá, PA, Brazil.
| | - Antonio Pereira
- Laboratório de Processamento de Sinais, Instituto de Tecnologia, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - Monica Lima-Maximino
- Laboratório de Neurofarmacologia e Biofísica, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil; Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| |
Collapse
|
3
|
Brown R, Cherian K, Jones K, Wickham R, Gomez R, Sahlem G. Repetitive transcranial magnetic stimulation for post-traumatic stress disorder in adults. Cochrane Database Syst Rev 2024; 8:CD015040. [PMID: 39092744 PMCID: PMC11295260 DOI: 10.1002/14651858.cd015040.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
BACKGROUND The estimated lifetime prevalence of post-traumatic stress disorder (PTSD) in adults worldwide has been estimated at 3.9%. PTSD appears to contribute to alterations in neuronal network connectivity patterns. Current pharmacological and psychotherapeutic treatments for PTSD are associated with inadequate symptom improvement and high dropout rates. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive therapy involving induction of electrical currents in cortical brain tissue, may be an important treatment option for PTSD to improve remission rates and for people who cannot tolerate existing treatments. OBJECTIVES To assess the effects of repetitive transcranial magnetic stimulation (rTMS) on post-traumatic stress disorder (PTSD) in adults. SEARCH METHODS We searched the Cochrane Common Mental Disorders Controlled Trials Register, CENTRAL, MEDLINE, Embase, three other databases, and two clinical trials registers. We checked reference lists of relevant articles. The most recent search was January 2023. SELECTION CRITERIA We included randomized controlled trials (RCTs) assessing the efficacy and safety of rTMS versus sham rTMS for PTSD in adults from any treatment setting, including veterans. Eligible trials employed at least five rTMS treatment sessions with both active and sham conditions. We included trials with combination interventions, where a pharmacological agent or psychotherapy was combined with rTMS for both intervention and control groups. We included studies meeting the above criteria regardless of whether they reported any of our outcomes of interest. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the risk of bias in accordance with Cochrane standards. Primary outcomes were PTSD severity immediately after treatment and serious adverse events during active treatment. Secondary outcomes were PTSD remission, PTSD response, PTSD severity at two follow-up time points after treatment, dropouts, and depression and anxiety severity immediately after treatment. MAIN RESULTS We included 13 RCTs in the review (12 published; 1 unpublished dissertation), with 577 participants. Eight studies included stand-alone rTMS treatment, four combined rTMS with an evidence-based psychotherapeutic treatment, and one investigated rTMS as an adjunctive to treatment-as-usual. Five studies were conducted in the USA, and some predominantly included white, male veterans. Active rTMS probably makes little to no difference to PTSD severity immediately following treatment (standardized mean difference (SMD) -0.14, 95% confidence interval (CI) -0.54 to 0.27; 3 studies, 99 participants; moderate-certainty evidence). We downgraded the certainty of evidence by one level for imprecision (sample size insufficient to detect a difference of medium effect size). We deemed one study as having a low risk of bias and the remaining two as having 'some concerns' for risk of bias. A sensitivity analysis of change-from-baseline scores enabled inclusion of a greater number of studies (6 studies, 252 participants). This analysis yielded a similar outcome to our main analysis but also indicated significant heterogeneity in efficacy across studies, including two studies with a high risk of bias. Reported rates of serious adverse events were low, with seven reported (active rTMS: 6; sham rTMS: 1). The evidence is very uncertain about the effect of active rTMS on serious adverse events (odds ratio (OR) 5.26, 95% CI 0.26 to 107.81; 5 studies, 251 participants; very low-certainty evidence [Active rTMS: 23/1000, sham rTMS: 4/1000]). We downgraded the evidence by one level for risk of bias and two levels for imprecision. We rated four of five studies as having a high risk of bias, and the fifth as 'some concerns' for bias. We were unable to assess PTSD remission immediately after treatment as none of the included studies reported this outcome. AUTHORS' CONCLUSIONS Based on moderate-certainty evidence, our review suggests that active rTMS probably makes little to no difference to PTSD severity immediately following treatment compared to sham stimulation. However, significant heterogeneity in efficacy was detected when we included a larger number of studies in sensitivity analysis. We observed considerable variety in participant and protocol characteristics across studies included in this review. For example, studies tended to be weighted towards inclusion of either male veterans or female civilians. Studies varied greatly in terms of the proportion of the sample with comorbid depression. Study protocols differed in treatment design and stimulation parameters (e.g. session number/duration, treatment course length, stimulation intensity/frequency, location of stimulation). These differences may affect efficacy, particularly when considering interactions with participant factors. Reported rates of serious adverse events were very low (< 1%) across active and sham conditions. It is uncertain whether rTMS increases the risk of serious adverse event occurrence, as our certainty of evidence was very low. Studies frequently lacked clear definitions for serious adverse events, as well as detail on tracking/assessment of data and information on the safety population. Increased reporting on these elements would likely aid the advancement of both research and clinical recommendations of rTMS for PTSD. Currently, there is insufficient evidence to meta-analyze PTSD remission, PTSD treatment response, and PTSD severity at different periods post-treatment. Further research into these outcomes could inform the clinical use of rTMS. Additionally, the relatively large contribution of data from trials that focused on white male veterans may limit the generalizability of our conclusions. This could be addressed by prioritizing recruitment of more diverse participant samples.
Collapse
Affiliation(s)
- Randi Brown
- Clinical Psychology, Palo Alto University, Palo Alto, CA, USA
| | - Kirsten Cherian
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine Jones
- Sheffield Centre for Health and Related Research, University of Sheffield, Sheffield, UK
| | - Robert Wickham
- Department of Psychological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Rowena Gomez
- Clinical Psychology, Palo Alto University, Palo Alto, CA, USA
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory Sahlem
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Bin Ibrahim MZ, Wang Z, Sajikumar S. Synapses tagged, memories kept: synaptic tagging and capture hypothesis in brain health and disease. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230237. [PMID: 38853570 PMCID: PMC11343274 DOI: 10.1098/rstb.2023.0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 06/11/2024] Open
Abstract
The synaptic tagging and capture (STC) hypothesis lays the framework on the synapse-specific mechanism of protein synthesis-dependent long-term plasticity upon synaptic induction. Activated synapses will display a transient tag that will capture plasticity-related products (PRPs). These two events, tag setting and PRP synthesis, can be teased apart and have been studied extensively-from their electrophysiological and pharmacological properties to the molecular events involved. Consequently, the hypothesis also permits interactions of synaptic populations that encode different memories within the same neuronal population-hence, it gives rise to the associativity of plasticity. In this review, the recent advances and progress since the experimental debut of the STC hypothesis will be shared. This includes the role of neuromodulation in PRP synthesis and tag integrity, behavioural correlates of the hypothesis and modelling in silico. STC, as a more sensitive assay for synaptic health, can also assess neuronal aberrations. We will also expound how synaptic plasticity and associativity are altered in ageing-related decline and pathological conditions such as juvenile stress, cancer, sleep deprivation and Alzheimer's disease. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Mohammad Zaki Bin Ibrahim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
| | - Zijun Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
| |
Collapse
|
5
|
Pintori N, Piva A, Mottarlini F, Díaz FC, Maggi C, Caffino L, Fumagalli F, Chiamulera C. Brief exposure to enriched environment rapidly shapes the glutamate synapses in the rat brain: A metaplastic fingerprint. Eur J Neurosci 2024; 59:982-995. [PMID: 38378276 DOI: 10.1111/ejn.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024]
Abstract
Environmental enrichment (EE) has been shown to produce beneficial effects in addiction disorders; however, due to its configurational complexity, the underlying mechanisms are not yet fully elucidated. Recent evidence suggests that EE, acting as a metaplastic agent, may affect glutamatergic mechanisms underlying appetitive memory and, in turn, modulate reward-seeking behaviours: here, we have investigated such a possibility following a brief EE exposure. Adult male Sprague-Dawley rats were exposed to EE for 22 h and the expression of critical elements of the glutamate synapse was measured 2 h after the end of EE in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and hippocampus (Hipp) brain areas, which are critical for reward and memory. We focused our investigation on the expression of NMDA and AMPA receptor subunits, their scaffolding proteins SAP102 and SAP97, vesicular and membrane glutamate transporters vGluT1 and GLT-1, and critical structural components such as proteins involved in morphology and function of glutamatergic synapses, PSD95 and Arc/Arg3.1. Our findings demonstrate that a brief EE exposure induces metaplastic changes in glutamatergic mPFC, NAc and Hipp. Such changes are area-specific and involve postsynaptic NMDA/AMPA receptor subunit composition, as well as changes in the expression of their main scaffolding proteins, thus influencing the retention of such receptors at synaptic sites. Our data indicate that brief EE exposure is sufficient to dynamically modulate the glutamatergic synapses in mPFC-NAc-Hipp circuits, which may modulate rewarding and memory processes.
Collapse
Affiliation(s)
- Nicholas Pintori
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
- Current Affiliation: Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Alessandro Piva
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Coralie Maggi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Cristiano Chiamulera
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
6
|
De Smet S, Razza LB, Pulopulos MM, De Raedt R, Baeken C, Brunoni AR, Vanderhasselt MA. Stress priming transcranial direct current stimulation (tDCS) enhances updating of emotional content in working memory. Brain Stimul 2024; 17:434-443. [PMID: 38565374 DOI: 10.1016/j.brs.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) targeting the prefrontal cortex has emerged as a valuable tool in psychiatric research. Understanding the impact of affective states, such as stress at the time of stimulation, on the efficacy of prefrontal tDCS is crucial for advancing tDCS interventions. Stress-primed tDCS, wherein stress is used as a priming agent, has the potential to modulate neural plasticity and enhance cognitive functions, particularly in emotional working memory. However, prior research using stress-primed tDCS focused solely on non-emotional working memory performance, yielding mixed results. In this sham-controlled study, we addressed this gap by investigating the effects of stress-primed bifrontal tDCS (active versus sham) on both non-emotional and emotional working memory performance. The study was conducted in 146 healthy individuals who were randomly assigned to four experimental groups. The Trier Social Stress Test (TSST) or a control variant of the test was used to induce a stress versus control state. The results showed that stress priming significantly enhanced the effects of tDCS on the updating of emotional content in working memory, as evidenced by improved accuracy. Notably, no significant effects of stress priming were found for non-emotional working memory performance. These findings highlight the importance of an individual's prior affective state in shaping their response to tDCS, especially in the context of emotional working memory.
Collapse
Affiliation(s)
- Stefanie De Smet
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium; Brain Stimulation and Cognition (BSC) Lab, Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Lais B Razza
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium
| | - Matias M Pulopulos
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Chris Baeken
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands
| | - Andre R Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, Av. Prof Lineu Prestes 2565, 05508-000, São Paulo, Brazil; Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium
| |
Collapse
|
7
|
Hazra S, Hazra JD, Bar-On RA, Duan Y, Edut S, Cao X, Richter-Levin G. The role of hippocampal CaMKII in resilience to trauma-related psychopathology. Neurobiol Stress 2022; 21:100506. [PMID: 36532378 PMCID: PMC9755065 DOI: 10.1016/j.ynstr.2022.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Traumatic stress exposure can form persistent trauma-related memories. However, only a minority of individuals develop post-traumatic stress disorder (PTSD) symptoms upon exposure. We employed a rat model of PTSD, which enables differentiating between exposed-affected and exposed-unaffected individuals. Two weeks after the end of exposure, male rats were tested behaviorally, following an exposure to a trauma reminder, identifying them as trauma 'affected' or 'unaffected.' In light of the established role of hippocampal synaptic plasticity in stress and the essential role of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in hippocampal based synaptic plasticity, we pharmacologically inhibited CaMKII or knocked-down (kd) αCaMKII (in two separate experiments) in the dorsal dentate gyrus of the hippocampus (dDG) following exposure to the same trauma paradigm. Both manipulations brought down the prevalence of 'affected' individuals in the trauma-exposed population. A day after the last behavioral test, long-term potentiation (LTP) was examined in the dDG as a measure of synaptic plasticity. Trauma exposure reduced the ability to induce LTP, whereas, contrary to expectation, αCaMKII-kd reversed this effect. Further examination revealed that reducing αCaMKII expression enables the formation of αCaMKII-independent LTP, which may enable increased resilience in the face of a traumatic experience. The current findings further emphasize the pivotal role dDG has in stress resilience.
Collapse
Affiliation(s)
- Somoday Hazra
- Sagol Department of Neurobiology, University of Haifa, Haifa, Mount Carmel, 3498838, Israel
- The Integrated Brain and Behavior Research Center IBBR, University of Haifa, Mount Carmel, 3498838, Israel
| | - Joyeeta Dutta Hazra
- Sagol Department of Neurobiology, University of Haifa, Haifa, Mount Carmel, 3498838, Israel
- The Integrated Brain and Behavior Research Center IBBR, University of Haifa, Mount Carmel, 3498838, Israel
| | - Rani Amit Bar-On
- Faculty of Social Sciences, University of Haifa, Mount Carmel, 3498838, Israel
| | - Yanhong Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Shahaf Edut
- Sagol Department of Neurobiology, University of Haifa, Haifa, Mount Carmel, 3498838, Israel
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Mount Carmel, 3498838, Israel
- The Integrated Brain and Behavior Research Center IBBR, University of Haifa, Mount Carmel, 3498838, Israel
- Psychology Department, University of Haifa, Mount Carmel, 3498838, Israel
| |
Collapse
|
8
|
Raghuraman R, Manakkadan A, Richter-Levin G, Sajikumar S. Inhibitory Metaplasticity in Juvenile Stressed Rats Restores Associative Memory in Adulthood by Regulating Epigenetic Complex G9a/GLP. Int J Neuropsychopharmacol 2022; 25:576-589. [PMID: 35089327 PMCID: PMC9352179 DOI: 10.1093/ijnp/pyac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Exposure to juvenile stress was found to have long-term effects on the plasticity and quality of associative memory in adulthood, but the underlying mechanisms are still poorly understood. METHODS Three- to four week-old male Wistar rats were subjected to a 3-day juvenile stress paradigm. Their electrophysiological correlates of memory using the adult hippocampal slice were inspected to detect alterations in long-term potentiation and synaptic tagging and capture model of associativity. These cellular alterations were tied in with the behavioral outcome by subjecting the rats to a step-down inhibitory avoidance paradigm to measure strength in their memory. Given the role of epigenetic response in altering plasticity as a repercussion of juvenile stress, we aimed to chart out the possible epigenetic marker and its regulation in the long-term memory mechanisms using quantitative reverse transcription polymerase chain reaction. RESULTS We demonstrate that even long after the elimination of actual stressors, an inhibitory metaplastic state is evident, which promotes synaptic competition over synaptic cooperation and decline in latency of associative memory in the behavioral paradigm despite the exposure to novelty. Mechanistically, juvenile stress led to a heightened expression of the epigenetic marker G9a/GLP complex, which is thus far ascribed to transcriptional silencing and goal-directed behavior. CONCLUSIONS The blockade of the G9a/GLP complex was found to alleviate deficits in long-term plasticity and associative memory during the adulthood of animals exposed to juvenile stress. Our data provide insights on the long-term effects of juvenile stress that involve epigenetic mechanisms, which directly impact long-term plasticity, synaptic tagging and capture, and associative memory.
Collapse
Affiliation(s)
- Radha Raghuraman
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Anoop Manakkadan
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Gal Richter-Levin
- Sagol department of Neurobiology, Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| |
Collapse
|
9
|
Correa J, Tintorelli R, Budriesi P, Viola H. Persistence of spatial memory induced by spaced training involves a behavioral-tagging process. Neuroscience 2022; 497:215-227. [PMID: 35276307 DOI: 10.1016/j.neuroscience.2022.02.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/04/2022] [Accepted: 02/26/2022] [Indexed: 11/27/2022]
Abstract
Spaced training, which involves long inter-trial intervals, has positive effects on memories. One of the main attributes of long-term memories (LTM) is persistence. Here, to identify the process that promotes LTM persistence by spaced learning, we used the spatial object recognition (SOR) task. The protocol consisted of a first strong training session that induced LTM formation (tested 1 day after training), but not LTM persistence (tested 7 or 14 days after training); and a second weak training session that promoted memory persistence when applied 1 day, but not 7 days, after the first training. We propose that the promotion of memory persistence is based on the Behavioral Tagging (BT) mechanism operating when the memory trace is retrieved. BT involves the setting of a tag induced by learning which gives rise to input selectivity, and the use of plasticity-related proteins (PRPs) to establish the mnemonic trace. We postulate that retraining will mainly retag the sites initially activated by the original learning, where the PRPs needed for memory expression and/or induced by retrieval would be used to maintain a persistent mnemonic trace. Our results suggest that the mechanism of memory expression, but not those of memory reinforcement or reconsolidation, is necessary to promote memory persistence after retraining. The molecular mechanisms involve ERKs1/2 activity to set the SOR learning tag, and the availability of GluA2-containing AMPA receptor. In conclusion, both the synthesis of PRPs and the setting of a learning tag are key processes triggered by retraining that allow SOR memory persistence.
Collapse
Affiliation(s)
- J Correa
- Facultad de Medicina. Universidad de Buenos Aires. Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - R Tintorelli
- Facultad de Medicina. Universidad de Buenos Aires. Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - P Budriesi
- Facultad de Medicina. Universidad de Buenos Aires. Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - H Viola
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina; Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina.
| |
Collapse
|
10
|
Duffau H. Introducing the concept of brain metaplasticity in glioma: how to reorient the pattern of neural reconfiguration to optimize the therapeutic strategy. J Neurosurg 2022; 136:613-617. [PMID: 34624858 DOI: 10.3171/2021.5.jns211214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hugues Duffau
- 1Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center; Team "Neuroplasticity, Stem Cells and Glial Tumors," Institute of Functional Genomics, INSERM U-1191, University of Montpellier; and University of Montpellier, France
| |
Collapse
|
11
|
Pintori N, Piva A, Guardiani V, Decimo I, Chiamulera C. Brief Environmental Enrichment exposure enhances contextual-induced sucrose-seeking with and without memory reactivation in rats. Behav Brain Res 2022; 416:113556. [PMID: 34474039 DOI: 10.1016/j.bbr.2021.113556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Chronic Environmental Enrichment (EE) has been shown to prevent the relapse to addictive behaviours, such as drug-taking and -seeking. Recently, acute EE was shown to reduce cue-induced sucrose-seeking, but its effects on contextual (Cx)-induced sucrose-seeking is still unknown. Here we report the effects of brief EE exposure on Cx-induced sucrose-seeking with and without prior Cx-memory reactivation. Adult male Sprague-Dawley rats were trained to sucrose self-administration associated to a specific conditioning Cx (CxA), followed by a 7-day extinction in a different Cx (CxB). Afterwards, rats were exposed for 22 h to EE, and 1 h later to either i) Cx-induced sucrose-seeking (1 h, renewal without Cx-memory reactivation), ii) or two different Cx-memory reactivations: short (2-min) and long (15-min) CxA-retrieval session (Cx-Ret). In Cx-Ret experiments, CxA-induced sucrose-seeking test (1 h) was done after a subsequent 3-day extinction phase. The assessment of molecular markers of memory reactivation/reconsolidation, Zif-268 and rpS6P, was performed 2 h after Cx-Ret. Brief EE exposure enhanced Cx-induced sucrose-seeking without and with short but not long Cx-retrieval. Moreover, EE impaired discriminative responding at test prior to long, whereas improved it with or without short Cx-retrieval. Different changes in Zif-268 and rpS6P expression induced by short vs. long Cx-Ret were correlated to behavioural data, suggesting the occurrence of different memory processes affected by EE. Our data show that brief EE exposure may differently affect subsequent appetitive relapse depending on the modality of re-exposure to conditioned context. This finding suggests caution and further studies to understand the proper conditions for the use of EE against appetitive and addiction disorders.
Collapse
Affiliation(s)
- N Pintori
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy.
| | - A Piva
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - V Guardiani
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - I Decimo
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - C Chiamulera
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
12
|
Intrauterine Growth Restriction Causes Abnormal Embryonic Dentate Gyrus Neurogenesis in Mouse Offspring That Leads to Adult Learning and Memory Deficits. eNeuro 2021; 8:ENEURO.0062-21.2021. [PMID: 34544755 PMCID: PMC8503959 DOI: 10.1523/eneuro.0062-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
Human infants who suffer from intrauterine growth restriction (IUGR), which is a failure to attain their genetically predetermined weight, are at increased risk for postnatal learning and memory deficits. Hippocampal dentate gyrus (DG) granule neurons play an important role in memory formation; however, it is unknown whether IUGR affects embryonic DG neurogenesis, which could provide a potential mechanism underlying abnormal postnatal learning and memory function. Using a mouse model of the most common cause of IUGR, induced by hypertensive disease of pregnancy, we first assessed adult learning and memory function. We quantified the percentages of embryonic hippocampal DG neural stem cells (NSCs) and progenitor cells and developing glutamatergic granule neurons, as well as hippocampal volumes and neuron cell count and morphology 18 and 40 d after delivery. We characterized the differential embryonic hippocampal transcriptomic pathways between appropriately grown and IUGR mouse offspring. We found that IUGR offspring of both sexes had short-term adult learning and memory deficits. Prenatally, we found that IUGR caused accelerated embryonic DG neurogenesis and Sox2+ neural stem cell depletion. IUGR mice were marked by decreased hippocampal volumes and decreased doublecortin+ neuronal progenitors with increased mean dendritic lengths at postnatal day 18. Consistent with its known molecular role in embryonic DG neurogenesis, we also found evidence for decreased Wnt pathway activity during IUGR. In conclusion, we have discovered that postnatal memory deficits are associated with accelerated NSC differentiation and maturation into glutamatergic granule neurons following IUGR, a phenotype that could be explained by decreased embryonic Wnt signaling.
Collapse
|
13
|
Olfactory learning and memory in the greater short-nosed fruit bat Cynopterus sphinx: the influence of conspecifics distress calls. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:667-679. [PMID: 34426872 DOI: 10.1007/s00359-021-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 07/13/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
This study was designed to test whether Cynopterus sphinx distress calls influence olfactory learning and memory in conspecifics. Bats were exposed to distress calls/playbacks (PBs) of distress calls/modified calls and were then trained to novel odors. Bats exposed to distress calls/PBs made significantly fewer feeding attempts and bouts of PBs exposed to modified calls, which significantly induced the expression of c-Fos in the caudomedial neostriatum (NCM) and the amygdala compared to bats exposed to modified calls and trained controls. However, the expression of c-Fos in the hippocampus was not significantly different between the experimental groups. Further, protein phosphatase-1 (PP-1) expression was significantly lower, and the expression levels of E1A homologue of CREB-binding protein (CBP) (P300), brain-derived neurotrophic factor (BDNF) and its tyrosine kinase B1 (TrkB1) receptor were significantly higher in the hippocampus of control/bats exposed to modified calls compared to distress calls/PBs of distress call-exposed bats. Exposure to the call possibly alters the reciprocal interaction between the amygdala and the hippocampus, accordingly regulating the expression levels of PP1, P300 and BDNF and its receptor TrkB1 following training to the novel odor. Thus, the learning and memory consolidation processes were disrupted and showed fewer feeding attempts and bouts. This model may be helpful for understanding the contributions of stressful social communications to human disorders.
Collapse
|
14
|
The Imbalanced Plasticity Hypothesis of Schizophrenia-Related Psychosis: A Predictive Perspective. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:679-697. [PMID: 34050524 DOI: 10.3758/s13415-021-00911-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
A considerable number of studies have attempted to account for the psychotic aspects of schizophrenia in terms of the influential predictive coding (PC) hypothesis. We argue that the prediction-oriented perspective on schizophrenia-related psychosis may benefit from a mechanistic model that: 1) gives due weight to the extent to which alterations in short- and long-term synaptic plasticity determine the degree and the direction of the functional disruption that occurs in psychosis; and 2) addresses the distinction between the two central syndromes of psychosis in schizophrenia: disorganization and reality-distortion. To accomplish these goals, we propose the Imbalanced Plasticity Hypothesis - IPH, and demonstrate that it: 1) accounts for commonalities and differences between disorganization and reality distortion in terms of excessive (hyper) or insufficient (hypo) neuroplasticity, respectively; 2) provides distinct predictions in the cognitive and electrophysiological domains; and 3) is able to reconcile conflicting PC-oriented accounts of psychosis.
Collapse
|
15
|
Richter-Levin G, Sandi C. Title: "Labels Matter: Is it stress or is it Trauma?". Transl Psychiatry 2021; 11:385. [PMID: 34247187 PMCID: PMC8272714 DOI: 10.1038/s41398-021-01514-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
In neuroscience, the term 'Stress' has a negative connotation because of its potential to trigger or exacerbate psychopathologies. Yet in the face of exposure to stress, the more common reaction to stress is resilience, indicating that resilience is the rule and stress-related pathology the exception. This is critical because neural mechanisms associated with stress-related psychopathology are expected to differ significantly from those associated with resilience.Research labels and terminology affect research directions, conclusions drawn from the results, and the way we think about a topic, while choice of labels is often influenced by biases and hidden assumptions. It is therefore important to adopt a terminology that differentiates between stress conditions, leading to different outcomes.Here, we propose to conceptually associate the term 'stress'/'stressful experience' with 'stress resilience', while restricting the use of the term 'trauma' only in reference to exposures that lead to pathology. We acknowledge that there are as yet no ideal ways for addressing the murkiness of the border between stressful and traumatic experiences. Yet ignoring these differences hampers our ability to elucidate the mechanisms of trauma-related pathologies on the one hand, and of stress resilience on the other. Accordingly, we discuss how to translate such conceptual terminology into research practice.
Collapse
Affiliation(s)
- Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.
- Psychology Department, University of Haifa, Haifa, Israel.
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel.
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
16
|
Piva A, Caffino L, Mottarlini F, Pintori N, Castillo Díaz F, Fumagalli F, Chiamulera C. Metaplastic Effects of Ketamine and MK-801 on Glutamate Receptors Expression in Rat Medial Prefrontal Cortex and Hippocampus. Mol Neurobiol 2021; 58:3443-3456. [PMID: 33723767 PMCID: PMC8257545 DOI: 10.1007/s12035-021-02352-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/05/2021] [Indexed: 12/16/2022]
Abstract
Ketamine and MK-801 by blocking NMDA receptors may induce reinforcing effects as well as schizophrenia-like symptoms. Recent results showed that ketamine can also effectively reverse depressive signs in patients' refractory to standard therapies. This evidence clearly points to the need of characterization of effects of these NMDARs antagonists on relevant brain areas for mood disorders. The aim of the present study was to investigate the molecular changes occurring at glutamatergic synapses 24 h after ketamine or MK-801 treatment in the rat medial prefrontal cortex (mPFC) and hippocampus (Hipp). In particular, we analyzed the levels of the glutamate transporter-1 (GLT-1), NMDA receptors, AMPA receptors subunits, and related scaffolding proteins. In the homogenate, we found a general decrease of protein levels, whereas their changes in the post-synaptic density were more complex. In fact, ketamine in the mPFC decreased the level of GLT-1 and increased the level of GluN2B, GluA1, GluA2, and scaffolding proteins, likely indicating a pattern of enhanced excitability. On the other hand, MK-801 only induced sparse changes with apparently no correlation to functional modification. Differently from mPFC, in Hipp, both substances reduced or caused no changes of glutamate receptors and scaffolding proteins expression. Ketamine decreased NMDA receptors while increased AMPA receptors subunit ratios, an effect indicative of permissive metaplastic modulation; conversely, MK-801 only decreased the latter, possibly representing a blockade of further synaptic plasticity. Taken together, these findings indicate a fine tuning of glutamatergic synapses by ketamine compared to MK-801 both in the mPFC and Hipp.
Collapse
Affiliation(s)
- Alessandro Piva
- Neuropsychopharmacology Lab, Section Pharmacology, Department Diagnostic & Public Health, University of Verona, Policlinico GB Rossi, P.le Scuro 10, 37134, Verona, Italy.
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Nicholas Pintori
- Neuropsychopharmacology Lab, Section Pharmacology, Department Diagnostic & Public Health, University of Verona, Policlinico GB Rossi, P.le Scuro 10, 37134, Verona, Italy
| | - Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Cristiano Chiamulera
- Neuropsychopharmacology Lab, Section Pharmacology, Department Diagnostic & Public Health, University of Verona, Policlinico GB Rossi, P.le Scuro 10, 37134, Verona, Italy
| |
Collapse
|
17
|
Pang TY, Yaeger JDW, Summers CH, Mitra R. Cardinal role of the environment in stress induced changes across life stages and generations. Neurosci Biobehav Rev 2021; 124:137-150. [PMID: 33549740 PMCID: PMC9286069 DOI: 10.1016/j.neubiorev.2021.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/20/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
The stress response in rodents and humans is exquisitely dependent on the environmental context. The interactive element of the environment is typically studied by creating laboratory models of stress-induced plasticity manifested in behavior or the underlying neuroendocrine mediators of the behavior. Here, we discuss three representative sets of studies where the role of the environment in mediating stress sensitivity or stress resilience is considered across varying windows of time. Collectively, these studies testify that environmental variation at an earlier time point modifies the relationship between stressor and stress response at a later stage. The metaplastic effects of the environment on the stress response remain possible across various endpoints, including behavior, neuroendocrine regulation, region-specific neural plasticity, and regulation of receptors. The timescale of such variation spans adulthood, across stages of life history and generational boundaries. Thus, environmental variables are powerful determinants of the observed diversity in stress response. The predominant role of the environment suggests that it is possible to promote stress resilience through purposeful modification of the environment.
Collapse
Affiliation(s)
- Terence Y Pang
- Florey Institute of Neuroscience and Mental Health, Parkville, 3052, VIC, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, 3010, VIC, Australia
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
18
|
Lopes da Cunha P, Tintorelli R, Correa J, Budriesi P, Viola H. Behavioral tagging as a mechanism for aversive-memory formation under acute stress. Eur J Neurosci 2021; 55:2651-2665. [PMID: 33914357 DOI: 10.1111/ejn.15249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
The behavioral tagging (BT) hypothesis postulates that a weak learning experience, which only induces short-term memory, may benefit from another event that provides plasticity-related proteins (PRPs) to establish a long-lasting memory. According to BT, the weak experience sets a transient learning tag at specific activated sites, and its temporal and spatial convergence with the PRPs allows the long-term memory (LTM) formation. In this work, rats were subjected to a weak inhibitory avoidance (IAw) training and we observed that acute stress (elevated platform, EP) experienced 1 hr before IAw promoted IA-LTM formation. This effect was dependent on glucocorticoid-receptor activity as well as protein synthesis in the dorsal hippocampus. However, the same stress has negative effects on IA-LTM formation when training is strong, probably by competing for necessary PRPs. Furthermore, our experiments showed that EP immediately after training did not impair the setting of the learning tag and even facilitated IA-LTM formation. These findings reveal different impacts of a given acute stressful experience on the formation of an aversive memory that could be explained by BT processes.
Collapse
Affiliation(s)
- Pamela Lopes da Cunha
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ramiro Tintorelli
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Correa
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Budriesi
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Haydee Viola
- Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular "Dr. Hector Maldonado" (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Jabeen F, Gerritsen C, Treur J. Healing the next generation: an adaptive agent model for the effects of parental narcissism. Brain Inform 2021; 8:4. [PMID: 33655460 PMCID: PMC7925789 DOI: 10.1186/s40708-020-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 11/10/2022] Open
Abstract
Parents play an important role in the mental development of a child. In our previous work, we addressed how a narcissistic parent influences a child (online/offline) when (s)he is happy and admires the child. Now, we address the influence of a parent who is not so much pleased, and may curse the child for being the reason for his or her unhappiness. An abusive relationship with a parent can also cause trauma and poor mental health of the child. We also address how certain coping behaviors can help the child cope with such a situation. Therefore, the aim of the study is threefold. We present an adaptive agent model of a child, while incorporating the concept of mirroring through social contagion, the avoidance behaviors from a child, and the effects of regulation strategies to cope with stressful situations.
Collapse
Affiliation(s)
- Fakhra Jabeen
- Social AI Group, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | | | - Jan Treur
- Social AI Group, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Bolton JL, Schulmann A, Garcia-Curran MM, Regev L, Chen Y, Kamei N, Shao M, Singh-Taylor A, Jiang S, Noam Y, Molet J, Mortazavi A, Baram TZ. Unexpected Transcriptional Programs Contribute to Hippocampal Memory Deficits and Neuronal Stunting after Early-Life Adversity. Cell Rep 2020; 33:108511. [PMID: 33326786 PMCID: PMC7817243 DOI: 10.1016/j.celrep.2020.108511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 07/08/2020] [Accepted: 11/19/2020] [Indexed: 01/23/2023] Open
Abstract
Early-life adversity (ELA) is associated with lifelong memory deficits, yet the responsible mechanisms remain unclear. We impose ELA by rearing rat pups in simulated poverty, assess hippocampal memory, and probe changes in gene expression, their transcriptional regulation, and the consequent changes in hippocampal neuronal structure. ELA rats have poor hippocampal memory and stunted hippocampal pyramidal neurons associated with ~140 differentially expressed genes. Upstream regulators of the altered genes include glucocorticoid receptor and, unexpectedly, the transcription factor neuron-restrictive silencer factor (NRSF/REST). NRSF contributes critically to the memory deficits because blocking its function transiently following ELA rescues spatial memory and restores the dendritic arborization of hippocampal pyramidal neurons in ELA rats. Blocking NRSF function in vitro augments dendritic complexity of developing hippocampal neurons, suggesting that NRSF represses genes involved in neuronal maturation. These findings establish important, surprising contributions of NRSF to ELA-induced transcriptional programming that disrupts hippocampal maturation and memory function.
Collapse
Affiliation(s)
- Jessica L Bolton
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Anton Schulmann
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Megan M Garcia-Curran
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Limor Regev
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Yuncai Chen
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Noriko Kamei
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Manlin Shao
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Akanksha Singh-Taylor
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Shan Jiang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Yoav Noam
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Jenny Molet
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-4475, USA
| | - Tallie Z Baram
- Department of Pediatrics, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA 92697-4475, USA; Department of Neurology, University of California, Irvine, Irvine, CA 92697-4475, USA.
| |
Collapse
|
21
|
Social Transmission and Buffering of Hippocampal Metaplasticity after Stress in Mice. J Neurosci 2020; 41:1317-1330. [PMID: 33310752 DOI: 10.1523/jneurosci.1751-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
In social animals, the behavioral and hormonal responses to stress can be transmitted from one individual to another through a social transmission process, and, conversely, social support ameliorates stress responses, a phenomenon referred to as social buffering. Metaplasticity represents activity-dependent synaptic changes that modulate the ability to elicit subsequent synaptic plasticity. Authentic stress can induce hippocampal metaplasticity, but whether transmitted stress has the same ability remains unknown. Here, using an acute restraint-tailshock stress paradigm, we report that both authentic and transmitted stress in adult male mice trigger metaplastic facilitation of long-term depression (LTD) induction at hippocampal CA1 synapses. Using LTD as a readout of persistent synaptic consequences of stress, our findings demonstrate that, in a male-male dyad, stress transmission happens in nearly half of naive partners and stress buffering occurs in approximately half of male stressed mice that closely interact with naive partners. By using a social-confrontation tube test to assess the dominant-subordinate relationship in a male-male dyad, we found that stressed subordinate mice are not buffered by naive dominant partners and that stress transmission is exhibited in ∼60% of dominant naive partners. Furthermore, the appearance of stress transmission correlates with more time spent in sniffing the anogenital area of stressed mice, and the appearance of stress buffering correlates with more time engaged in allogrooming from naive partners. Chemical ablation of the olfactory epithelium with dichlobenil or physical separation between social contacts diminishes stress transmission. Together, our data demonstrate that transmitted stress can elicit metaplastic facilitation of LTD induction as authentic stress.SIGNIFICANCE STATEMENT Social animals can acquire information about their environment through interactions with conspecifics. Stress can induce enduring changes in neural activity and synaptic function. Current studies are already unraveling the transmission and buffering of stress responses between individuals, but little is known about the relevant synaptic changes associated with social transmission and buffering of stress. Here, we show that authentic and transmitted stress can prime glutamatergic synapses onto hippocampal CA1 neurons to undergo long-term depression. This hippocampal metaplasticity is bufferable following social interactions with naive partners. Hierarchical status of naive partners strongly affects the social buffering effect on synaptic consequences of stress. This work provides novel insights into the conceptual framework for synaptic changes with social transmission and buffering of stress.
Collapse
|
22
|
Saha R, Kriebel M, Anunu R, Volkmer H, Richter-Levin G. Intra-amygdala metaplasticity modulation of fear extinction learning. Eur J Neurosci 2020; 55:2455-2463. [PMID: 33305403 DOI: 10.1111/ejn.15080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022]
Abstract
The amygdala is a key brain region involved in emotional memory formation. It is also responsible for memory modulation in other brain areas. Under extreme conditions, amygdala modulation may lead to the generation of abnormal plasticity and trauma-related psychopathologies. However, the amygdala itself is a dynamic brain region, which is amenable to long-term plasticity and is affected by emotional experiences. These alterations may modify the way the amygdala modulates activity and plasticity in other related brain regions, which in turn may alter the animal's response to subsequent challenges in what could be termed as "Behavioral metaplasticity."Because of the reciprocal interactions between the amygdala and other emotion processing regions, such as the medial prefrontal cortex (mPFC) or the hippocampus, experience-induced intra-amygdala metaplasticity could lead to alterations in mPFC-dependent or hippocampus-dependent behaviors. While initiated by alterations within the basolateral amygdala (BLA), such alterations in other brain regions may come to be independent of BLA modulation, thus establishing what may be termed "Trans-regional metaplasticity." In this article, we review evidence supporting the notions of intra-BLA metaplasticity and how this may develop into "Trans-regional metaplasticity." Future research is needed to understand how such dynamic metaplastic alterations contribute to developing psychopathologies, and how this knowledge may be translated into promoting novel interventions in psychopathologies associated with fear, stress, and trauma.
Collapse
Affiliation(s)
- Rinki Saha
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Martin Kriebel
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Rachel Anunu
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Hansjuergen Volkmer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,Department of Psychology, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| |
Collapse
|
23
|
Penhune VB. A gene-maturation-environment model for understanding sensitive period effects in musical training. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Hoy KC, Strain MM, Turtle JD, Lee KH, Huie JR, Hartman JJ, Tarbet MM, Harlow ML, Magnuson DSK, Grau JW. Evidence That the Central Nervous System Can Induce a Modification at the Neuromuscular Junction That Contributes to the Maintenance of a Behavioral Response. J Neurosci 2020; 40:9186-9209. [PMID: 33097637 PMCID: PMC7687054 DOI: 10.1523/jneurosci.2683-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/21/2022] Open
Abstract
Neurons within the spinal cord are sensitive to environmental relations and can bring about a behavioral modification without input from the brain. For example, rats that have undergone a thoracic (T2) transection can learn to maintain a hind leg in a flexed position to minimize exposure to a noxious electrical stimulation (shock). Inactivating neurons within the spinal cord with lidocaine, or cutting communication between the spinal cord and the periphery (sciatic transection), eliminates the capacity to learn, which implies that it depends on spinal neurons. Here we show that these manipulations have no effect on the maintenance of the learned response, which implicates a peripheral process. EMG showed that learning augments the muscular response evoked by motoneuron output and that this effect survives a sciatic transection. Quantitative fluorescent imaging revealed that training brings about an increase in the area and intensity of ACh receptor labeling at the neuromuscular junction (NMJ). It is hypothesized that efferent motoneuron output, in conjunction with electrical stimulation of the tibialis anterior muscle, strengthens the connection at the NMJ in a Hebbian manner. Supporting this, paired stimulation of the efferent nerve and tibialis anterior generated an increase in flexion duration and augmented the evoked electrical response without input from the spinal cord. Evidence is presented that glutamatergic signaling contributes to plasticity at the NMJ. Labeling for vesicular glutamate transporter is evident at the motor endplate. Intramuscular application of an NMDAR antagonist blocked the acquisition/maintenance of the learned response and the strengthening of the evoked electrical response.SIGNIFICANCE STATEMENT The neuromuscular junction (NMJ) is designed to faithfully elicit a muscular contraction in response to neural input. From this perspective, encoding environmental relations (learning) and the maintenance of a behavioral modification over time (memory) are assumed to reflect only modifications upstream from the NMJ, within the CNS. The current results challenge this view. Rats were trained to maintain a hind leg in a flexed position to avoid noxious stimulation. As expected, treatments that inhibit activity within the CNS, or disrupt peripheral communication, prevented learning. These manipulations did not affect the maintenance of the acquired response. The results imply that a peripheral modification at the NMJ contributes to the maintenance of the learned response.
Collapse
Affiliation(s)
- Kevin C Hoy
- Case Comprehensive Cancer Center/Case Western Reserve School of Medicine, Cleveland, Ohio 44106
| | - Misty M Strain
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, Houston, Texas 78234
| | - Joel D Turtle
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - Kuan H Lee
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - J Russell Huie
- Department of Neuroscience, University of California San Francisco, San Francisco, California 94110
| | - John J Hartman
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - Megan M Tarbet
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - Mark L Harlow
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - David S K Magnuson
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40202
| | - James W Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
25
|
Zhang L, Chen C, Qi J. Activation of HDAC4 and GR signaling contributes to stress-induced hyperalgesia in the medial prefrontal cortex of rats. Brain Res 2020; 1747:147051. [PMID: 32783961 DOI: 10.1016/j.brainres.2020.147051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 01/01/2023]
Abstract
"Stress-induced hyperalgesia (SIH)" is a phenomenon that stress can lead to an increase in pain sensitivity. Epigenetic mechanisms have been known to play fundamental roles in stress and pain. Histone acetylation is an epigenetic feature that is changed in numerous stress-related disease situations. However, epigenetic mechanism for SIH is not well known. We investigated the effect of histone acetylation on pain hypersensitivity using SPS (single-prolonged stress) + CFA (complete Freund's adjuvant) model. We showed that the glucocorticoid receptor (GR)-pERK-pCREB-Fos signaling pathway was upregulated on stress-induced hyperalgesia and the paw withdrawal threshold in the SPS + CFA group dropped significantly compared with the SPS or CFA group. Histone deacetylases 4 (HDAC4)-expressing neurons in the medial prefrontal cortex (mPFC) were increased in the SPS + CFA-exposed group compared with CFA-exposed or SPS-exposed group. And we showed that the effects of stress-induced hyperalgesia were critically regulated via reversible acetylation (HDAC4) of the GR. Inhibiting HDAC4 by microinjection of sodium butyrate into the mPFC could disrupt glucocorticoid receptor (GR) signaling pathway, which lowered SPS + CFA-caused mechanical allodynia and alleviated anxiety-like behavior. Together, our studies suggest that HDAC inhibitors might involve in the process of stress-induced hyperalgesia.
Collapse
Affiliation(s)
- Li Zhang
- Department of Spinal Cord Injury and Rehabilitation, The 960th Hospital of PLA, Jinan 250031, China; Department of Pharmacology, The 960th Hospital of PLA, Jinan 250031, China
| | - Chen Chen
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan 250031, China
| | - Jian Qi
- Department of Spinal Cord Injury and Rehabilitation, The 960th Hospital of PLA, Jinan 250031, China.
| |
Collapse
|
26
|
Abstract
Neuroplasticity is an area of expanding interest in psychiatry. Plasticity and metaplasticity are processes contributing to the scaling up and down of neuronal connections, and they are involved with changes in learning, memory, mood, and sleep. Effective mood treatments, including repetitive transcranial magnetic stimulation (rTMS), are reputed to work via changes in neuronal circuitry. This article explores the interrelatedness of sleep, plasticity, and rTMS treatment. A PubMed-based literature review was conducted to identify all available studies examining the relationship of rTMS, plasticity, and sleep. Key words used in this search included "TMS," "transcranial magnetic stimulation," "plasticity," "metaplasticity," "sleep," and "insomnia." Depressed mood tends to be associated with impaired neural plasticity, while antidepressant treatments can augment neural plasticity. rTMS impacts plasticity, yielding long-lasting effects, with differing impacts on the waking and sleeping brain. Higher quality sleep promotes plasticity and learning. Reports on the sleep impact of high-frequency and low-frequency rTMS are mixed. The efficacy of rTMS may rely on brain plasticity manipulation, enhanced via the stimulation of neural circuits. Total sleep time and sleep continuity are sleep qualities that are likely necessary but insufficient for the homeostatic plasticity driven by slow-wave sleep. Understanding the relationship between sleep and rTMS treatment is likely critical to enhancing outcomes.
Collapse
|
27
|
Chiamulera C, Piva A, Abraham WC. Glutamate receptors and metaplasticity in addiction. Curr Opin Pharmacol 2020; 56:39-45. [PMID: 33128937 DOI: 10.1016/j.coph.2020.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
Chronic drug use is a neuroadaptive disorder characterized by strong and persistent plasticity in the mesocorticolimbic reward system. Long-lasting effects of drugs of abuse rely on their ability to hijack glutamate receptor activity and long-term synaptic plasticity processes like long-term potentiation and depression. Importantly, metaplasticity-based modulation of synaptic plasticity contributes to durable neurotransmission changes in mesocorticolimbic pathways including the ventral tegmental area and the nucleus accumbens, causing 'maladaptive' drug memory and higher risk for drug-seeking relapse. On the other hand, drug-induced metaplasticity can make appetitive memories more malleable to modification, offering a potential target mechanism for intervention. Here we review the literature on the role of glutamate receptors in addiction-related metaplasticity phenomena.
Collapse
Affiliation(s)
- Cristiano Chiamulera
- Neuropsychopharmacology Lab, Section Pharmacology, Department Diagnostic & Public Health, University of Verona, Verona, Italy.
| | - Alessandro Piva
- Neuropsychopharmacology Lab, Section Pharmacology, Department Diagnostic & Public Health, University of Verona, Verona, Italy
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
28
|
Dumetz F, Ginieis R, Bure C, Marie A, Alfos S, Pallet V, Bosch-Bouju C. Neuronal morphology and synaptic plasticity in the hippocampus of vitamin A deficient rats. Nutr Neurosci 2020; 25:779-790. [DOI: 10.1080/1028415x.2020.1809877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Fabien Dumetz
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Rachel Ginieis
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Corinne Bure
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
| | - Anaïs Marie
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Serge Alfos
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Véronique Pallet
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | | |
Collapse
|
29
|
Endocannabinoid-Epigenetic Cross-Talk: A Bridge toward Stress Coping. Int J Mol Sci 2020; 21:ijms21176252. [PMID: 32872402 PMCID: PMC7504015 DOI: 10.3390/ijms21176252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
There is no argument with regard to the physical and psychological stress-related nature of neuropsychiatric disorders. Yet, the mechanisms that facilitate disease onset starting from molecular stress responses are elusive. Environmental stress challenges individuals’ equilibrium, enhancing homeostatic request in the attempt to steer down arousal-instrumental molecular pathways that underlie hypervigilance and anxiety. A relevant homeostatic pathway is the endocannabinoid system (ECS). In this review, we summarize recent discoveries unambiguously listing ECS as a stress coping mechanism. As stress evokes huge excitatory responses in emotional-relevant limbic areas, the ECS limits glutamate release via 2-arachydonilglycerol (2-AG) stress-induced synthesis and retrograde cannabinoid 1 (CB1)-receptor activation at the synapse. However, ECS shows intrinsic vulnerability as 2-AG overstimulation by chronic stress rapidly leads to CB1-receptor desensitization. In this review, we emphasize the protective role of 2-AG in stress-response termination and stress resiliency. Interestingly, we discuss ECS regulation with a further nuclear homeostatic system whose nature is exquisitely epigenetic, orchestrated by Lysine Specific Demethylase 1. We here emphasize a remarkable example of stress-coping network where transcriptional homeostasis subserves synaptic and behavioral adaptation, aiming at reducing psychiatric effects of traumatic experiences.
Collapse
|
30
|
Grau JW, Baine RE, Bean PA, Davis JA, Fauss GN, Henwood MK, Hudson KE, Johnston DT, Tarbet MM, Strain MM. Learning to promote recovery after spinal cord injury. Exp Neurol 2020; 330:113334. [PMID: 32353465 PMCID: PMC7282951 DOI: 10.1016/j.expneurol.2020.113334] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/19/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
The present review explores the concept of learning within the context of neurorehabilitation after spinal cord injury (SCI). The aim of physical therapy and neurorehabilitation is to bring about a lasting change in function-to encourage learning. Traditionally, it was assumed that the adult spinal cord is hardwired-immutable and incapable of learning. Research has shown that neurons within the lower (lumbosacral) spinal cord can support learning after communication with the brain has been disrupted by means of a thoracic transection. Noxious stimulation can sensitize nociceptive circuits within the spinal cord, engaging signal pathways analogous to those implicated in brain-dependent learning and memory. After a spinal contusion injury, pain input can fuel hemorrhage, increase the area of tissue loss (secondary injury), and undermine long-term recovery. Neurons within the spinal cord are sensitive to environmental relations. This learning has a metaplastic effect that counters neural over-excitation and promotes adaptive learning through an up-regulation of brain-derived neurotrophic factor (BDNF). Exposure to rhythmic stimulation, treadmill training, and cycling also enhances the expression of BDNF and counters the development of nociceptive sensitization. SCI appears to enable plastic potential within the spinal cord by down-regulating the Cl- co-transporter KCC2, which reduces GABAergic inhibition. This enables learning, but also fuels over-excitation and nociceptive sensitization. Pairing epidural stimulation with activation of motor pathways also promotes recovery after SCI. Stimulating motoneurons in response to activity within the motor cortex, or a targeted muscle, has a similar effect. It is suggested that a neurofunctionalist approach can foster the discovery of processes that impact spinal function and how they may be harnessed to foster recovery after SCI.
Collapse
Affiliation(s)
- James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Rachel E Baine
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Paris A Bean
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Jacob A Davis
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Gizelle N Fauss
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Melissa K Henwood
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Kelsey E Hudson
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - David T Johnston
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Megan M Tarbet
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Misty M Strain
- Battlefield Pain Research, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, BHT-1, BSA Fort Sam Houston, TX 78234, USA
| |
Collapse
|
31
|
Wu Y, Mitra R. Prefrontal-hippocampus plasticity reinstated by an enriched environment during stress. Neurosci Res 2020; 170:360-363. [PMID: 32710912 DOI: 10.1016/j.neures.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 07/09/2020] [Indexed: 01/17/2023]
Abstract
Chronic stress causes dendritic atrophy of neurons within the hippocampus and medial prefrontal cortex. In this report, we show that chronic stress leads to reduced long-term potentiation in the pathway from the hippocampus to the medial prefrontal cortex of rats; and that such reduction is rescued by enriched housing environment. Connectivity between the hippocampus and medial prefrontal cortex is proposed to be an essential substrate that is often compromised in several psychiatric disorders. Our observations suggest that a short period of complexity in the housing environment has the potential to protect the functional integrity of this important connection.
Collapse
Affiliation(s)
- You Wu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 63755 Singapore
| | - Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 63755 Singapore.
| |
Collapse
|
32
|
GABAergic Transmission in the Basolateral Amygdala Differentially Modulates Plasticity in the Dentate Gyrus and the CA1 Areas. Int J Mol Sci 2020; 21:ijms21113786. [PMID: 32471158 PMCID: PMC7312428 DOI: 10.3390/ijms21113786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 11/17/2022] Open
Abstract
The term "metaplasticity" is used to describe changes in synaptic plasticity sensitivity following an electrical, biochemical, or behavioral priming stimulus. For example, priming the basolateral amygdala (BLA) enhances long-term potentiation (LTP) in the dentate gyrus (DG) but decreases LTP in the CA1. However, the mechanisms underlying these metaplastic effects are only partly understood. Here, we examined whether the mechanism underlying these effects of BLA priming involves intra-BLA GABAergic neurotransmission. Low doses of muscimol, a GABAA receptor (GABAAR) agonist, were microinfused into the rat BLA before or after BLA priming. Our findings show that BLA GABAAR activation via muscimol mimicked the previously reported effects of electrical BLA priming on LTP in the perforant path and the ventral hippocampal commissure-CA1 pathways, decreasing CA1 LTP and increasing DG LTP. Furthermore, muscimol application before or after tetanic stimulation of the ventral hippocampal commissure-CA1 pathways attenuated the BLA priming-induced decrease in CA1 LTP. In contrast, muscimol application after tetanic stimulation of the perforant path attenuated the BLA priming-induced increase in DG LTP. The data indicate that GABAAR activation mediates metaplastic effects of the BLA on plasticity in the CA1 and the DG, but that the same GABAAR activation induces an intra-BLA form of metaplasticity, which alters the way BLA priming may modulate plasticity in other brain regions. These results emphasize the need for developing a dynamic model of BLA modulation of plasticity, a model that may better capture processes underlying memory alterations associated with emotional arousing or stressful events.
Collapse
|
33
|
Piva A, Caffino L, Padovani L, Pintori N, Mottarlini F, Sferrazza G, Paolone G, Fumagalli F, Chiamulera C. The metaplastic effects of ketamine on sucrose renewal and contextual memory reconsolidation in rats. Behav Brain Res 2020; 379:112347. [DOI: 10.1016/j.bbr.2019.112347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022]
|
34
|
Abraham WC, Richter-Levin G. From Synaptic Metaplasticity to Behavioral Metaplasticity. Neurobiol Learn Mem 2019; 154:1-4. [PMID: 30217268 DOI: 10.1016/j.nlm.2018.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Gal Richter-Levin
- Sagol Department of Neuroscience, Department of Psychology, The Integrated Brain & Behavior Researcher Center, University of Haifa, Haifa, Israel
| |
Collapse
|
35
|
Bolton JL, Short AK, Simeone KA, Daglian J, Baram TZ. Programming of Stress-Sensitive Neurons and Circuits by Early-Life Experiences. Front Behav Neurosci 2019; 13:30. [PMID: 30833892 PMCID: PMC6387907 DOI: 10.3389/fnbeh.2019.00030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
Early-life experiences influence brain structure and function long-term, contributing to resilience or vulnerability to stress and stress-related disorders. Therefore, understanding the mechanisms by which early-life experiences program specific brain cells and circuits to shape life-long cognitive and emotional functions is crucial. We identify the population of corticotropin-releasing hormone (CRH)-expressing neurons in the hypothalamic paraventricular nucleus (PVN) as a key, early target of early-life experiences. Adverse experiences increase excitatory neurotransmission onto PVN CRH cells, whereas optimal experiences, such as augmented and predictable maternal care, reduce the number and function of glutamatergic inputs onto this cell population. Altered synaptic neurotransmission is sufficient to initiate large-scale, enduring epigenetic re-programming within CRH-expressing neurons, associated with stress resilience and additional cognitive and emotional outcomes. Thus, the mechanisms by which early-life experiences influence the brain provide tractable targets for intervention.
Collapse
Affiliation(s)
- Jessica L Bolton
- Departments of Pediatrics, Anatomy/Neurobiology, Neurology, University of California, Irvine, Irvine, CA, United States
| | - Annabel Katherine Short
- Departments of Pediatrics, Anatomy/Neurobiology, Neurology, University of California, Irvine, Irvine, CA, United States
| | - Kristina A Simeone
- Departments of Pediatrics, Anatomy/Neurobiology, Neurology, University of California, Irvine, Irvine, CA, United States
| | - Jennifer Daglian
- Departments of Pediatrics, Anatomy/Neurobiology, Neurology, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z Baram
- Departments of Pediatrics, Anatomy/Neurobiology, Neurology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
36
|
Seibt J, Frank MG. Primed to Sleep: The Dynamics of Synaptic Plasticity Across Brain States. Front Syst Neurosci 2019; 13:2. [PMID: 30774586 PMCID: PMC6367653 DOI: 10.3389/fnsys.2019.00002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/09/2019] [Indexed: 11/13/2022] Open
Abstract
It is commonly accepted that brain plasticity occurs in wakefulness and sleep. However, how these different brain states work in concert to create long-lasting changes in brain circuitry is unclear. Considering that wakefulness and sleep are profoundly different brain states on multiple levels (e.g., cellular, molecular and network activation), it is unlikely that they operate exactly the same way. Rather it is probable that they engage different, but coordinated, mechanisms. In this article we discuss how plasticity may be divided across the sleep-wake cycle, and how synaptic changes in each brain state are linked. Our working model proposes that waking experience triggers short-lived synaptic events that are necessary for transient plastic changes and mark (i.e., 'prime') circuits and synapses for further processing in sleep. During sleep, synaptic protein synthesis at primed synapses leads to structural changes necessary for long-term information storage.
Collapse
Affiliation(s)
- Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| | - Marcos G. Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, United States
| |
Collapse
|
37
|
Richter-Levin G, Stork O, Schmidt MV. Animal models of PTSD: a challenge to be met. Mol Psychiatry 2019; 24:1135-1156. [PMID: 30816289 PMCID: PMC6756084 DOI: 10.1038/s41380-018-0272-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 08/13/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
Recent years have seen increased interest in psychopathologies related to trauma exposure. Specifically, there has been a growing awareness to posttraumatic stress disorder (PTSD) in part due to terrorism, climate change-associated natural disasters, the global refugee crisis, and increased violence in overpopulated urban areas. However, notwithstanding the increased awareness to the disorder, the increasing number of patients, and the devastating impact on the lives of patients and their families, the efficacy of available treatments remains limited and highly unsatisfactory. A major scientific effort is therefore devoted to unravel the neural mechanisms underlying PTSD with the aim of paving the way to developing novel or improved treatment approaches and drugs to treat PTSD. One of the major scientific tools used to gain insight into understanding physiological and neuronal mechanisms underlying diseases and for treatment development is the use of animal models of human diseases. While much progress has been made using these models in understanding mechanisms of conditioned fear and fear memory, the gained knowledge has not yet led to better treatment options for PTSD patients. This poor translational outcome has already led some scientists and pharmaceutical companies, who do not in general hold opinions against animal models, to propose that those models should be abandoned. Here, we critically examine aspects of animal models of PTSD that may have contributed to the relative lack of translatability, including the focus on the exposure to trauma, overlooking individual and sex differences, and the contribution of risk factors. Based on findings from recent years, we propose research-based modifications that we believe are required in order to overcome some of the shortcomings of previous practice. These modifications include the usage of animal models of PTSD which incorporate risk factors and of the behavioral profiling analysis of individuals in a sample. These modifications are aimed to address factors such as individual predisposition and resilience, thus taking into consideration the fact that only a fraction of individuals exposed to trauma develop PTSD. We suggest that with an appropriate shift of practice, animal models are not only a valuable tool to enhance our understanding of fear and memory processes, but could serve as effective platforms for understanding PTSD, for PTSD drug development and drug testing.
Collapse
Affiliation(s)
- Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel. .,The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel. .,Psychology Department, University of Haifa, Haifa, Israel.
| | - Oliver Stork
- 0000 0001 1018 4307grid.5807.aDepartment of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany ,grid.452320.2Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Mathias V. Schmidt
- 0000 0000 9497 5095grid.419548.5Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
38
|
Barfield ET, Gourley SL. Prefrontal cortical trkB, glucocorticoids, and their interactions in stress and developmental contexts. Neurosci Biobehav Rev 2018; 95:535-558. [PMID: 30477984 PMCID: PMC6392187 DOI: 10.1016/j.neubiorev.2018.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
The tropomyosin/tyrosine receptor kinase B (trkB) and glucocorticoid receptor (GR) regulate neuron structure and function and the hormonal stress response. Meanwhile, disruption of trkB and GR activity (e.g., by chronic stress) can perturb neuronal morphology in cortico-limbic regions implicated in stressor-related illnesses like depression. Further, several of the short- and long-term neurobehavioral consequences of stress depend on the developmental timing and context of stressor exposure. We review how the levels and activities of trkB and GR in the prefrontal cortex (PFC) change during development, interact, are modulated by stress, and are implicated in depression. We review evidence that trkB- and GR-mediated signaling events impact the density and morphology of dendritic spines, the primary sites of excitatory synapses in the brain, highlighting effects in adolescents when possible. Finally, we review the role of neurotrophin and glucocorticoid systems in stress-related metaplasticity. We argue that better understanding the long-term effects of developmental stressors on PFC trkB, GR, and related factors may yield insights into risk for chronic, remitting depression and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Elizabeth T Barfield
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| | - Shannon L Gourley
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Molecular and Systems Pharmacology Program, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
39
|
Lopes da Cunha P, Villar ME, Ballarini F, Tintorelli R, Ana María Viola H. Spatial object recognition memory formation under acute stress. Hippocampus 2018; 29:491-499. [PMID: 30295349 DOI: 10.1002/hipo.23037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 01/30/2023]
Abstract
Stress is known to have a critical impact on memory processes. In the present work, we focus on the effects of an acute stress event closely associated to an unrelated learning task. Here, we show that acute stress (elevated platform [EP] session) experienced 1 hr after a weak spatial object recognition (SOR) training, which only induces a short-term memory (STM), promoted the formation of SOR-long term memory (SOR-LTM) in rats. The effect induced by stress was dependent on the activation of glucocorticoid- and mineralocorticoid-receptors, brain-derived neurotrophic factor (BDNF) and protein synthesis in the dorsal hippocampus. In contrast, EP after a strong SOR impaired SOR-LTM probably by interfering with the use of necessary resources. Moreover, we show that the EP session before training induced anterograde interference, which it was not reversed by a subsequent exposure to an open field. Our findings provide novel insights into the impact of stress on LTM formation in rodents and they are discussed under the behavioral analogue of the synaptic tagging and capture hypothesis.
Collapse
Affiliation(s)
- Pamela Lopes da Cunha
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Eugenia Villar
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fabricio Ballarini
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ramiro Tintorelli
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Haydée Ana María Viola
- Instituto de Biología Celular y Neurociencias "Dr Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular "Dr. Hector Maldonado" (FBMC), Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| |
Collapse
|
40
|
Jenkins S, Harker A, Gibb R. Maternal Preconception Stress Alters Prefrontal Cortex Development in Long-Evans Rat Pups without Changing Maternal Care. Neuroscience 2018; 394:98-108. [PMID: 30366025 DOI: 10.1016/j.neuroscience.2018.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023]
Abstract
Stress during development can shift the typical developmental trajectory. Maternal stress prior to conception has recently been shown to exert similar influences on the offspring. The present study questioned if a consistent maternal stressor prior to conception (elevated platform stress) would impact the pre-weaning development of offspring brain and behavior, and if maternal care was vulnerable to this experience. Adult female Long-Evans rats were subjected to elevated platform stress for 27 days prior to mating with non-stressed males. Maternal care was monitored, and pups were assessed in two tests of early behavioral development, negative geotaxis and open field. Pups were perfused at weaning and their brains were extracted and stained with Cresyl Violet, allowing gross measurements of cortical and subcortical structures and estimates of neuron density. Main findings indicate that a change in prefrontal cortical thickness is evident despite no change in maternal care. Female offspring show a decrease in medial-dorsal thalamus size. The current study failed to find an effect of maternal preconception stress on early behavioral development. These results suggest that the PFC, and likely behavior dependent on the PFC, is vulnerable to maternal preconception stress and that a strong sex effect is evident. Further studies should examine how such offspring fare using a lifespan model and investigate potential mechanisms responsible for these effects.
Collapse
Affiliation(s)
- Serena Jenkins
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada.
| | - Allonna Harker
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada.
| | - Robbin Gibb
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
41
|
Extinction of aversive taste memory homeostatically prevents the maintenance of in vivo insular cortex LTP: Calcineurin participation. Neurobiol Learn Mem 2018; 154:54-61. [DOI: 10.1016/j.nlm.2018.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/14/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022]
|
42
|
Khazen T, Shrivastava K, Jada R, Hatoum OA, Maroun M. Different mechanisms underlie stress-induced changes in plasticity and metaplasticity in the prefrontal cortex of juvenile and adult animals. Neurobiol Learn Mem 2018; 154:5-11. [DOI: 10.1016/j.nlm.2018.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/01/2018] [Accepted: 02/09/2018] [Indexed: 12/15/2022]
|
43
|
Juvenile stress leads to long-term immunological metaplasticity-like effects on inflammatory responses in adulthood. Neurobiol Learn Mem 2018; 154:12-21. [DOI: 10.1016/j.nlm.2017.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
|
44
|
Piva A, Gerace E, Di Chio M, Osanni L, Padovani L, Caffino L, Fumagalli F, Pellegrini-Giampietro DE, Chiamulera C. The metaplastic effects of NMDA receptors blockade on reactivation of instrumental memories in rats. Neurobiol Learn Mem 2018; 154:87-96. [DOI: 10.1016/j.nlm.2018.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
|
45
|
Role of endocannabinoids in the hippocampus and amygdala in emotional memory and plasticity. Neuropsychopharmacology 2018; 43:2017-2027. [PMID: 29977073 PMCID: PMC6098035 DOI: 10.1038/s41386-018-0135-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022]
Abstract
Posttraumatic stress disorder (PTSD) is characterized by the reexperiencing of a traumatic event and is associated with slower extinction of fear responses. Impaired extinction of fearful associations to trauma-related cues may interfere with treatment response, and extinction deficits may be premorbid risk factors for the development of PTSD. We examined the effects of exposure to a severe footshock followed by situational reminders (SRs) on extinction, plasticity, and endocannabinoid (eCB) content and activity in the hippocampal CA1 area and basolateral amygdala (BLA). We also examined whether enhancing eCB signaling before extinction, using the fatty acid amide hydrolase (FAAH) inhibitor URB597, could prevent the shock/SRs-induced effects on fear response and plasticity. URB597 administered systemically (0.3 mg/kg) or locally into the CA1 or BLA (0.1 µg/side) prior to extinction decreased fear retrieval and this effect persisted throughout extinction training and did not recuperate during spontaneous recovery. A low dose of the CB1 receptor antagonist AM251 (0.3 mg/kg i.p. or 0.01 µg/0.5 µl intra-CA1 or intra-BLA) blocked these effects suggesting that the effects of URB597 were CB1 receptor-dependent. Exposure to shock and reminders induced behavioral metaplasticity with opposite effects on long-term potentiation (LTP) in the hippocampus (impairment) and the BLA (enhancement). URB597 was found to prevent the opposite shock/SR-induced metaplasticity in hippocampal and BLA-LTP. Exposure to shock and reminders might cause variation in endogenous cannabinoid levels that could affect fear-circuit function. Indeed, exposure to shock and SRs affected eCB content: increased 2-arachidonoyl-glycerol (2-AG) and N-arachidonylethanolamine (AEA) levels in the CA1, decreased serum and BLA AEA levels while shock exposure increased FAAH activity in the CA1 and BLA. FAAH inhibition before extinction abolished fear and modulated LTP in the hippocampus and amygdala, brain regions pertinent to emotional memory. The findings suggest that targeting the eCB system before extinction may be beneficial in fear memory attenuation and these effects may involve metaplasticity in the CA1 and BLA.
Collapse
|
46
|
Inoue R, Abdou K, Hayashi-Tanaka A, Muramatsu SI, Mino K, Inokuchi K, Mori H. Glucocorticoid receptor-mediated amygdalar metaplasticity underlies adaptive modulation of fear memory by stress. eLife 2018; 7:e34135. [PMID: 29941090 PMCID: PMC6019067 DOI: 10.7554/elife.34135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid receptor (GR) is crucial for signaling mediated by stress-induced high levels of glucocorticoids. The lateral nucleus of the amygdala (LA) is a key structure underlying auditory-cued fear conditioning. Here, we demonstrate that genetic disruption of GR in the LA (LAGRKO) resulted in an auditory-cued fear memory deficit for strengthened conditioning. Furthermore, the suppressive effect of a single restraint stress (RS) prior to conditioning on auditory-cued fear memory in floxed GR (control) mice was abolished in LAGRKO mice. Optogenetic induction of long-term depression (LTD) at auditory inputs to the LA reduced auditory-cued fear memory in RS-exposed LAGRKO mice, and in contrast, optogenetic induction of long-term potentiation (LTP) increased auditory-cued fear memory in RS-exposed floxed GR mice. These findings suggest that prior stress suppresses fear conditioning-induced LTP at auditory inputs to the LA in a GR-dependent manner, thereby protecting animals from encoding excessive cued fear memory under stress conditions.
Collapse
Affiliation(s)
- Ran Inoue
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Kareem Abdou
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
- Department of Biochemistry, Faculty of PharmacyCairo UniversityCairoEgypt
| | - Ayumi Hayashi-Tanaka
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Shin-ichi Muramatsu
- Division of Neurology, Department of MedicineJichi Medical UniversityTochigiJapan
- Center for Gene and Cell Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Kaori Mino
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Kaoru Inokuchi
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| |
Collapse
|
47
|
Grau JW, Huang YJ. Metaplasticity within the spinal cord: Evidence brain-derived neurotrophic factor (BDNF), tumor necrosis factor (TNF), and alterations in GABA function (ionic plasticity) modulate pain and the capacity to learn. Neurobiol Learn Mem 2018; 154:121-135. [PMID: 29635030 DOI: 10.1016/j.nlm.2018.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/01/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022]
Abstract
Evidence is reviewed that behavioral training and neural injury can engage metaplastic processes that regulate adaptive potential. This issue is explored within a model system that examines how training affects the capacity to learn within the lower (lumbosacral) spinal cord. Response-contingent (controllable) stimulation applied caudal to a spinal transection induces a behavioral modification indicative of learning. This behavioral change is not observed in animals that receive stimulation in an uncontrollable manner. Exposure to uncontrollable stimulation also engages a process that disables spinal learning for 24-48 h. Controllable stimulation has the opposite effect; it engages a process that enables learning and prevents/reverses the learning deficit induced by uncontrollable stimulation. These observations suggest that a learning episode can impact the capacity to learn in future situations, providing an example of behavioral metaplasticity. The protective/restorative effect of controllable stimulation has been linked to an up-regulation of brain-derived neurotrophic factor (BDNF). The disruption of learning has been linked to the sensitization of pain (nociceptive) circuits, which is enabled by a reduction in GABA-dependent inhibition. After spinal cord injury (SCI), the co-transporter (KCC2) that regulates the outward flow of Cl- is down-regulated. This causes the intracellular concentration of Cl- to increase, reducing (and potentially reversing) the inward flow of Cl- through the GABA-A receptor. The shift in GABA function (ionic plasticity) increases neural excitability caudal to injury and sets the stage for nociceptive sensitization. The injury-induced shift in KCC2 is related to the loss of descending serotonergic (5HT) fibers that regulate plasticity within the spinal cord dorsal horn through the 5HT-1A receptor. Evidence is presented that these alterations in spinal plasticity impact pain in a brain-dependent task (place conditioning). The findings suggest that ionic plasticity can affect learning potential, shifting a neural circuit from dampened/hard-wired to excitable/plastic.
Collapse
Affiliation(s)
- James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | - Yung-Jen Huang
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA
| |
Collapse
|
48
|
Magerl W, Hansen N, Treede RD, Klein T. The human pain system exhibits higher-order plasticity (metaplasticity). Neurobiol Learn Mem 2018; 154:112-120. [PMID: 29631001 DOI: 10.1016/j.nlm.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/21/2018] [Accepted: 04/05/2018] [Indexed: 01/10/2023]
Abstract
The human pain system can be bidirectionally modulated by high-frequency (HFS; 100 Hz) and low-frequency (LFS; 1 Hz) electrical stimulation of nociceptors leading to long-term potentiation or depression of pain perception (pain-LTP or pain-LTD). Here we show that priming a test site by very low-frequency stimulation (VLFS; 0.05 Hz) prevented pain-LTP probably by elevating the threshold (set point) for pain-LTP induction. Conversely, prior HFS-induced pain-LTP was substantially reversed by subsequent VLFS, suggesting that preceding HFS had primed the human nociceptive system for pain-LTD induction by VLFS. In contrast, the pain elicited by the pain-LTP-precipitating conditioning HFS stimulation remained unaffected. In aggregate these experiments demonstrate that the human pain system expresses two forms of higher-order plasticity (metaplasticity) acting in either direction along the pain-LTD to pain-LTP continuum with similar shifts in thresholds for LTD and LTP as in synaptic plasticity, indicating intriguing new mechanisms for the prevention of pain memory and the erasure of hyperalgesia related to an already established pain memory trace. There were no apparent gender differences in either pain-LTP or metaplasticity of pain-LTP. However, individual subjects appeared to present with an individual balance of pain-LTD to pain-LTP (a pain plasticity "fingerprint").
Collapse
Affiliation(s)
- Walter Magerl
- Department of Neurophysiology, Center of Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl-University Heidelberg, Ludolf Krehl-Str. 13-17, 68167 Mannheim, Germany.
| | - Niels Hansen
- Department of Neurophysiology, Center of Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl-University Heidelberg, Ludolf Krehl-Str. 13-17, 68167 Mannheim, Germany; Department of Psychiatry and Psychotherapy & Department of Epileptology, University Hospital Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Center of Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl-University Heidelberg, Ludolf Krehl-Str. 13-17, 68167 Mannheim, Germany
| | - Thomas Klein
- Department of Neurophysiology, Center of Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl-University Heidelberg, Ludolf Krehl-Str. 13-17, 68167 Mannheim, Germany
| |
Collapse
|
49
|
Kozel FA, Motes MA, Didehbani N, DeLaRosa B, Bass C, Schraufnagel CD, Jones P, Morgan CR, Spence JS, Kraut MA, Hart J. Repetitive TMS to augment cognitive processing therapy in combat veterans of recent conflicts with PTSD: A randomized clinical trial. J Affect Disord 2018; 229:506-514. [PMID: 29351885 DOI: 10.1016/j.jad.2017.12.046] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/22/2017] [Accepted: 12/26/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND The objective was to test whether repetitive Transcranial Magnetic Stimulation (rTMS) just prior to Cognitive Processing Therapy (CPT) would significantly improve the clinical outcome compared to sham rTMS prior to CPT in veterans with PTSD. METHODS Veterans 18-60 years of age with current combat-related PTSD symptoms were randomized, using a 1:1 ratio in a parallel design, to active (rTMS+CPT) versus sham (sham+CPT) rTMS just prior to weekly CPT for 12-15 sessions. Blinded raters evaluated veterans at baseline, after the 5th and 9th treatments, and at 1, 3, and 6 months post-treatment. Clinician Administered PTSD Scale (CAPS) was the primary outcome measure with the PTSD Checklist (PCL) as a secondary outcome measure. The TMS coil (active or sham) was positioned over the right dorsolateral prefrontal cortex (110% MT, 1Hz continuously for 30min, 1800 pulses/treatment). RESULTS Of the 515 individuals screened for the study, 103 participants were randomized to either active (n = 54) or sham rTMS (n = 49). Sixty-two participants (60%) completed treatment and 59 (57%) completed the 6-month assessment. The rTMS+CPT group showed greater symptom reductions from baseline on both CAPS and PCL across CPT sessions and follow-up assessments, t(df ≥ 325) ≤ -2.01, p ≤ 0.023, one-tailed and t(df ≥ 303) ≤ -2.14, p ≤ 0.017, one-tailed, respectively. LIMITATIONS Participants were predominantly male and limited to one era of conflicts as well as those who could safely undergo rTMS. CONCLUSIONS The addition of rTMS to CPT compared to sham with CPT produced significantly greater PTSD symptom reduction early in treatment and was sustained up to six months post-treatment.
Collapse
Affiliation(s)
- F Andrew Kozel
- Mental Health and Behavioral Sciences & HSR&D Center of Innovation on Disability and Rehabilitation Research (CINDRR), James A. Haley Veterans' Hospital and Clinics, Tampa, FL, USA; Department of Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA.
| | | | | | | | | | | | | | | | | | - Michael A Kraut
- Department of Radiology and Radiologic Sciences, Johns Hopkins, University School of Medicine, Baltimore, MD, USA
| | - John Hart
- University of Texas, Dallas, Dallas, TX, USA; Depts. of Neurology and Neurotherapeutics and Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
50
|
Çalışkan G, Stork O. Hippocampal network oscillations as mediators of behavioural metaplasticity: Insights from emotional learning. Neurobiol Learn Mem 2018; 154:37-53. [PMID: 29476822 DOI: 10.1016/j.nlm.2018.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 01/15/2023]
Abstract
Behavioural metaplasticity is evident in experience-dependent changes of network activity patterns in neuronal circuits that connect the hippocampus, amygdala and medial prefrontal cortex. These limbic regions are key structures of a brain-wide neural network that translates emotionally salient events into persistent and vivid memories. Communication in this network by-and-large depends on behavioural state-dependent rhythmic network activity patterns that are typically generated and/or relayed via the hippocampus. In fact, specific hippocampal network oscillations have been implicated to the acquisition, consolidation and retrieval, as well as the reconsolidation and extinction of emotional memories. The hippocampal circuits that contribute to these network activities, at the same time, are subject to both Hebbian and non-Hebbian forms of plasticity during memory formation. Further, it has become evident that adaptive changes in the hippocampus-dependent network activity patterns provide an important means of adjusting synaptic plasticity. We here summarise our current knowledge on how these processes in the hippocampus in interaction with amygdala and medial prefrontal cortex mediate the formation and persistence of emotional memories.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|