1
|
Deng C, Yuan X, Lin X, Liu S. MiR-200a-3p Attenuates Neuropathic Pain by Suppressing the Bromodomain-Containing Protein 3-Nuclear Factor-κB Pathway. J Biochem Mol Toxicol 2024; 38:e70041. [PMID: 39651616 DOI: 10.1002/jbt.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024]
Abstract
MicroRNAs (miRNAs) have key roles in the pathological processes of neuropathic pain. Here, our aim was to elucidate the function of miR-200a-3p as well as its related regulatory mechanism in neuropathic pain. An animal model of neuropathic pain was established by chronic constriction injury (CCI) induction. The knockdown experiments are performed by injecting a lentiviral construct intrathecally. MiR-200a-3p and bromodomain-containing protein 3 (BRD3) expression in rat spinal cord was determined using RT-qPCR. The mechanical, thermal, and cold responses in animals were assessed at the indicated time after surgery. The levels of inflammatory cytokines in rat spinal cord were measured by ELISA. The changes in NF-κB signaling-related molecules in rat spinal cord were determined using western blot and immunofluorescence. MiR-200a-3p was underexpressed in CCI rats in a time-dependent manner. Overexpression of miR-200a-3p decreased mechanical hyperalgesia and thermal sensitivity to attenuate neuropathic pain in rats. BRD3 was targeted by miR-200a-3p. Additionally, downregulation of BRD3 inhibited neuropathic pain progression. Moreover, overexpression of BRD3 rescued the effect of miR-200a-3p on NF-κB signaling and neuropathic pain in CCI rats. MiR-200a-3p attenuates neuropathic pain via downregulating BRD3 to block NF-κB signaling.
Collapse
Affiliation(s)
- Chao Deng
- Department of Pain Treatment, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xuequan Yuan
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xuezheng Lin
- Department of Anesthesia and Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Sitong Liu
- Department of Anesthesia, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Ageeva T, Rizvanov A, Mukhamedshina Y. NF-κB and JAK/STAT Signaling Pathways as Crucial Regulators of Neuroinflammation and Astrocyte Modulation in Spinal Cord Injury. Cells 2024; 13:581. [PMID: 38607020 PMCID: PMC11011519 DOI: 10.3390/cells13070581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Spinal cord injury (SCI) leads to significant functional impairments below the level of the injury, and astrocytes play a crucial role in the pathophysiology of SCI. Astrocytes undergo changes and form a glial scar after SCI, which has traditionally been viewed as a barrier to axonal regeneration and functional recovery. Astrocytes activate intracellular signaling pathways, including nuclear factor κB (NF-κB) and Janus kinase-signal transducers and activators of transcription (JAK/STAT), in response to external stimuli. NF-κB and STAT3 are transcription factors that play a pivotal role in initiating gene expression related to astrogliosis. The JAK/STAT signaling pathway is essential for managing secondary damage and facilitating recovery processes post-SCI: inflammation, glial scar formation, and astrocyte survival. NF-κB activation in astrocytes leads to the production of pro-inflammatory factors by astrocytes. NF-κB and STAT3 signaling pathways are interconnected: NF-κB activation in astrocytes leads to the release of interleukin-6 (IL-6), which interacts with the IL-6 receptor and initiates STAT3 activation. By modulating astrocyte responses, these pathways offer promising avenues for enhancing recovery outcomes, illustrating the crucial need for further investigation into their mechanisms and therapeutic applications in SCI treatment.
Collapse
Affiliation(s)
- Tatyana Ageeva
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
| | - Albert Rizvanov
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Yana Mukhamedshina
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
3
|
Peng L, Bai W, Li J, Xiong L, Huo S, Shao J. Anti-inflammatory and anti-apoptotic effects of Zc3h12d against cerebral ischemia‒reperfusion through the modulation of the NF-κB signaling pathway. BRAIN DISORDERS 2024; 13:100115. [DOI: 10.1016/j.dscb.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
4
|
Sokołowska P, Seweryn Karbownik M, Jóźwiak-Bębenista M, Dobielska M, Kowalczyk E, Wiktorowska-Owczarek A. Antidepressant mechanisms of ketamine's action: NF-κB in the spotlight. Biochem Pharmacol 2023; 218:115918. [PMID: 37952898 DOI: 10.1016/j.bcp.2023.115918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Ketamine recently approved for therapy of treatment-resistant depression shows a complex and not fully understood mechanism of action. Apart from its classical glutamatergic N-methyl-D-aspartate receptor antagonistic action, it is thought that anti-inflammatory properties of the drug are of clinical relevance due to the contribution of activated inflammatory mediators to the pathophysiology of depression and non-responsiveness of a group of patients to current antidepressant therapies. In a search of the mechanism underlying anti-inflammatory effects of ketamine, the nuclear factor kappa B transcription factor (NF-κB) has been proposed as a target for ketamine. The NF-κB forms precisely regulated protein signaling cascades enabling a rapid response to cellular stimuli. In the central nervous systems, NF-κB signaling appears to have pleiotropic but double-edged functions: on the one hand it participates in the regulation of processes that are crucial in the treatment of depression, such as neuroplasticity, neurogenesis or neuronal survival, on the other - in the activation of neuroinflammation and cell death. Ketamine has been found to reduce inflammation mediated by NF-κB, leading to decreased level of pro-inflammatory cytokines and other inflammatory or stress mediators. Therefore, this review presents recent data on the significance of the NF-κB cascade in the mechanism of ketamine's action and its future perspectives in designing new strategies for the treatment of depression.
Collapse
Affiliation(s)
- Paulina Sokołowska
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland.
| | - Michał Seweryn Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Maria Dobielska
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Anna Wiktorowska-Owczarek
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| |
Collapse
|
5
|
Wei HX, Guan YN, Chen PP, Rao ZZ, Yang JS. Upregulation of EphA4 deteriorate brain damage by shifting microglia M1-polarization via NF-κB signaling after focal cerebral ischemia in rats. Heliyon 2023; 9:e18429. [PMID: 37519758 PMCID: PMC10375859 DOI: 10.1016/j.heliyon.2023.e18429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
Ischemic stroke is the main reason of disability and mortality in many countries, and currently has limited treatments. The post-stroke inflammation characterized with microglia activation and polarization has been regarded as a promising therapeutic target for ischemic stroke. After ischemia, the activated microglia polarize to classical (M1) phenotype or alternative (M2) phenotype and exhibit biphasic function. Promoting microglia phenotype shift from deleterious M1 phenotype to neuroprotective M2 phenotype will be promising in stroke treatment. Increasing evidence indicates that the erythropoietin-producing human hepatocellular (Eph) receptor A4 (EphA4), a kind of abundant Eph receptor, distributes mainly in neuron and participates in multiple links of pathological changes after ischemia. This paper discussed the hypothesis that EphA4 receptor could affect ischemic brain injury through EphA4/ephrin bidirectional signaling between neuron and microglia, and then explored its underlying mechanisms. We manipulated EphA4/ephrin signaling with either EphA4 overexpression lentiviral vectors or the short hairpin RNA (shRNA) to upregulate or knock down neuronal EphA4 expression. NF-κB inhibitor pyrrolidine dithiocarbamate ammonium salt (PDTC) was applied to block NF-κB pathway. According to the experimental results, upregulated neuronal EphA4 induced by ischemia deteriorated neurological function as well as brain damage by shifting microglia M1-polarization via promoting NF-κB signaling.
Collapse
Affiliation(s)
- Hui-Xing Wei
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, PR China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, PR China
| | - Yun-Ni Guan
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, PR China
| | - Ping-Ping Chen
- Department of Neurology, Xiang'an Hospital of Xiamen University, Xiamen, PR China
| | - Zhao-Zeng Rao
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, PR China
- Department of Neurology, Longyan People's Hospital, Longyan, PR China
| | - Jin-Shan Yang
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, PR China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, PR China
| |
Collapse
|
6
|
Magalhães HIR, Machado FA, Souza RF, Caetano MAF, Figliuolo VR, Coutinho-Silva R, Castelucci P. Study of the roles of caspase-3 and nuclear factor kappa B in myenteric neurons in a P2X7 receptor knockout mouse model of ulcerative colitis. World J Gastroenterol 2023; 29:3440-3468. [PMID: 37389242 PMCID: PMC10303518 DOI: 10.3748/wjg.v29.i22.3440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND The literature indicates that the enteric nervous system is affected in inflammatory bowel diseases (IBDs) and that the P2X7 receptor triggers neuronal death. However, the mechanism by which enteric neurons are lost in IBDs is unknown.
AIM To study the role of the caspase-3 and nuclear factor kappa B (NF-κB) pathways in myenteric neurons in a P2X7 receptor knockout (KO) mouse model of IBDs.
METHODS Forty male wild-type (WT) C57BL/6 and P2X7 receptor KO mice were euthanized 24 h or 4 d after colitis induction by 2,4,6-trinitrobenzene sulfonic acid (colitis group). Mice in the sham groups were injected with vehicle. The mice were divided into eight groups (n = 5): The WT sham 24 h and 4 d groups, the WT colitis 24 h and 4 d groups, the KO sham 24 h and 4 d groups, and the KO colitis 24 h and 4 d groups. The disease activity index (DAI) was analyzed, the distal colon was collected for immunohistochemistry analyses, and immunofluorescence was performed to identify neurons immunoreactive (ir) for calretinin, P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, and total NF-κB. We analyzed the number of calretinin-ir and P2X7 receptor-ir neurons per ganglion, the neuronal profile area (µm²), and corrected total cell fluorescence (CTCF).
RESULTS Cells double labeled for calretinin and P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, or total NF-κB were observed in the WT colitis 24 h and 4 d groups. The number of calretinin-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (2.10 ± 0.13 vs 3.33 ± 0.17, P < 0.001; 2.92 ± 0.12 vs 3.70 ± 0.11, P < 0.05), but was not significantly different between the KO groups. The calretinin-ir neuronal profile area was increased in the WT colitis 24 h group compared to the WT sham 24 h group (312.60 ± 7.85 vs 278.41 ± 6.65, P < 0.05), and the nuclear profile area was decreased in the WT colitis 4 d group compared to the WT sham 4 d group (104.63 ± 2.49 vs 117.41 ± 1.14, P < 0.01). The number of P2X7 receptor-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (19.49 ± 0.35 vs 22.21 ± 0.18, P < 0.001; 20.35 ± 0.14 vs 22.75 ± 0.51, P < 0.001), and no P2X7 receptor-ir neurons were observed in the KO groups. Myenteric neurons showed ultrastructural changes in the WT colitis 24 h and 4 d groups and in the KO colitis 24 h group. The cleaved caspase-3 CTCF was increased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (485949 ± 14140 vs 371371 ± 16426, P < 0.001; 480381 ± 11336 vs 378365 ± 4053, P < 0.001), but was not significantly different between the KO groups. The total caspase-3 CTCF, phospho-NF-κB CTCF, and total NF-κB CTCF were not significantly different among the groups. The DAI was recovered in the KO groups. Furthermore, we demonstrated that the absence of the P2X7 receptor attenuated inflammatory infiltration, tissue damage, collagen deposition, and the decrease in the number of goblet cells in the distal colon.
CONCLUSION Ulcerative colitis affects myenteric neurons in WT mice but has a weaker effect in P2X7 receptor KO mice, and neuronal death may be associated with P2X7 receptor-mediated caspase-3 activation. The P2X7 receptor can be a therapeutic target for IBDs.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Ribeiro Figliuolo
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Robson Coutinho-Silva
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | |
Collapse
|
7
|
Spohr L, de Aguiar MSS, Bona NP, Luduvico KP, Alves AG, Domingues WB, Blödorn EB, Bortolatto CF, Brüning CA, Campos VF, Stefanello FM, Spanevello RM. Blueberry Extract Modulates Brain Enzymes Activities and Reduces Neuroinflammation: Promising Effect on Lipopolysaccharide-Induced Depressive-Like Behavior. Neurochem Res 2023; 48:846-861. [PMID: 36357747 DOI: 10.1007/s11064-022-03813-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 11/12/2022]
Abstract
Major depressive disorder (MDD) is one of the most common neuropsychiatric disorders with high rates of prevalence and mortality. MDD is pathophysiologically complex, and treatment options are limited. Blueberries are rich in polyphenols and have neuroprotective potential. The aim of this study was to investigate the effects of blueberry extract on neuroinflammatory and neuroplasticity parameters, as well as Na+/K+-ATPase, monoamine oxidase-A (MAO-A), and acetylcholinesterase (AChE) activities in the cerebral cortex and hippocampus of mice subject to lipopolysaccharide (LPS)-induced depressive-like behavior. We also analyzed the interaction between anthocyanins and indoleamine 2 3-dioxygenase (IDO). Male Swiss mice (60-day-old) received vehicle, fluoxetine (20 mg/kg), or blueberry extract (100 or 200 mg/kg) intragastrically for 7 days before intraperitoneal LPS (0.83 mg/kg) injection. Twenty-four hours after LPS administration, the mice were subjected to behavioral tests. Both fluoxetine and blueberry extract (200 mg/kg) decreased the immobility time in the forced swim test, without affecting locomotor activity. Fluoxetine attenuated the decrease of Na+/K+-ATPase in the cerebral cortex, while blueberry extract promoted this same effect in the hippocampus. Additionally, fluoxetine and blueberry extract attenuated the decrease in the activity of MAO-A in the hippocampus. Blueberry extract (200 mg/kg) also prevented LPS-induced increase in AChE activity in the hippocampus as well as LPS upregulation of relative mRNA expression of tumor necrosis factor alpha, interleukin (IL)-1β, and IL-10 in the cerebral cortex. Molecular docking analysis revealed binding sites for malvidin 3-galactoside (- 7.8 kcal/mol) and malvidin 3-glucoside (- 7.9 kcal/mol) residues with IDO. Taken together, these results indicate that blueberry extract improved depression-like behavior and attenuated the neurochemical and molecular changes in the brains of mice challenged with LPS.
Collapse
Affiliation(s)
- Luiza Spohr
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Prédio 29, Campus Capão do Leão, s/n, Caixa Postal 354, Pelotas, RS, CEP 9601090, Brazil.
| | - Mayara Sandrielly Soares de Aguiar
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Prédio 29, Campus Capão do Leão, s/n, Caixa Postal 354, Pelotas, RS, CEP 9601090, Brazil
| | - Natália Pontes Bona
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Karina Pereira Luduvico
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amália Gonçalves Alves
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Bioquímica e Neurofarmacologia Molecular, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - William Borges Domingues
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo Bierhals Blödorn
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Cristiani Folharini Bortolatto
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Bioquímica e Neurofarmacologia Molecular, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - César Augusto Brüning
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Bioquímica e Neurofarmacologia Molecular, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Prédio 29, Campus Capão do Leão, s/n, Caixa Postal 354, Pelotas, RS, CEP 9601090, Brazil.
| |
Collapse
|
8
|
Zhang Y, Jia J. Betaine Mitigates Amyloid-β-Associated Neuroinflammation by Suppressing the NLRP3 and NF-κB Signaling Pathways in Microglial Cells. J Alzheimers Dis 2023; 94:S9-S19. [PMID: 37334594 PMCID: PMC10473109 DOI: 10.3233/jad-230064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Microglia-driven neuroinflammation has been shown to be involved in the entire process of Alzheimer's disease (AD). Betaine is a natural product that exhibits anti-inflammatory activity; however, the exact underlying molecular mechanisms are poorly understood. OBJECTIVE Our study focused on determining the effect of betaine against amyloid-β42 oligomer (AβO)-induced inflammation in microglial BV2 cells and investigating the underlying mechanism. METHODS AβO was used to establish an in vitro AD model using BV2 cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay was used to measure BV2 cell viability with different concentrations of AβO and betaine. Reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assays were used to determine the expression levels of inflammatory factors, such as interleukin-1β (IL-1β), interleukin-18 (IL-18), and tumor necrosis factor α (TNF-α). Western blotting was used to evaluate the activation of the NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome and nuclear transcription factor-κB p65 (NF-κB p65). Moreover, we used phorbol 12-myristate 13-acetate (PMA) to activate NF-κB in order to validate that betaine exerted anti-neuroinflammatory effects through regulation of the NF-κB/NLRP3 signaling pathway. RESULTS We used 2 mM betaine to treat 5μM AβO-induced microglial inflammation. The administration of betaine effectively decreased the levels of IL-1β, IL-18, and TNF-α without affecting cell viability in BV2 microglial cells. CONCLUSION Betaine inhibited AβO-induced neuroinflammation in microglia by inhibiting the activation of the NLRP3 inflammasome and NF-κB, which supports further evaluation of betaine as a potential effective modulator for AD.
Collapse
Affiliation(s)
- Yue Zhang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China
- Center of Alzheimer’s Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, P.R. China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China
| |
Collapse
|
9
|
McCamy KM, Rees KA, Winzer-Serhan UH. Peripheral immune challenges elicit differential up-regulation of hippocampal cytokine and chemokine mRNA expression in a mouse model of the 15q13.3 microdeletion syndrome. Cytokine 2022; 159:156005. [PMID: 36084604 DOI: 10.1016/j.cyto.2022.156005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
The human heterozygous 15q13.3 microdeletion is associated with neuropathological disorders, most prominently with epilepsy and intellectual disability. The 1.5 Mb deletion encompasses six genes (FAN1 [MTMR15], MTMR10, TRPM1, KLF13, OTUD7A, and CHRNA7); all but one (TRPM1) are expressed in the brain. The 15q13.3 microdeletion causes highly variable neurological symptoms, and confounding factors may contribute to a more severe phenotype. CHRNA7 and KLF13 are involved in immune system regulation and altered immune responses may contribute to neurological deficits. We used the Df[h15q13]/+ transgenic mouse model with a heterozygous deletion of the orthologous region (Het) to test the hypothesis that the microdeletion increases innate immune responses compared to wild type (WT). Male and female mice were acutely challenged with the bacteriomimetic lipopolysaccharide (LPS, 0.1 mg/kg, i.p.) or the viral mimetic polyinosinic:polycytidylic acid (Poly(I:C), 5 mg/kg). Hippocampal mRNA expression of pro-inflammatory cytokines and chemokines were determined three hours after injection using quantitative PCR analysis. In controls, expression was not affected by sex or genotype. LPS and Poly(I:C) resulted in significantly increased hippocampal expression of cytokines, chemokines, and interferon-γ (IFNγ), with more robust increases for TNF-α, IL-6, IL-1β, CXCL1, and CCL2 by LPS, higher induction of IFNγ by Poly(I:C), and similar increases of CCL4 and CCL5 by both agents. Generally, Hets exhibited stronger responses than WT mice, and significant effects of genotype or genotype × treatment interactions were detected for CXCL1 and CCL5, and IL-6, IL-1β, and CCL4, respectively, after LPS. Sex differences were detected for some targets. LPS but not Poly(I:C), reduced overnight burrowing independent of sex or genotype, suggesting that LPS induced sickness behavior. Thus, mice carrying the microdeletion have an increased innate immune response following a LPS challenge, but further studies will have to determine the extent and mechanisms of altered immune activation and subsequent contributions to 15q13.3 microdeletion associated deficits.
Collapse
Affiliation(s)
- Kristin M McCamy
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Katherine A Rees
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Ursula H Winzer-Serhan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States.
| |
Collapse
|
10
|
The neuroprotective and neuroplastic potential of glutamatergic therapeutic drugs in bipolar disorder. Neurosci Biobehav Rev 2022; 142:104906. [DOI: 10.1016/j.neubiorev.2022.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
|
11
|
Hu H, Fu M, Li C, Zhang B, Li Y, Hu Q, Zhang M. Herpes simplex virus type 2 inhibits TNF-α-induced NF-κB activation through viral protein ICP22-mediated interaction with p65. Front Immunol 2022; 13:983502. [PMID: 36211339 PMCID: PMC9538160 DOI: 10.3389/fimmu.2022.983502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is a prevalent human pathogen and the main cause of genital herpes. After initial infection, HSV-2 can establish lifelong latency within dorsal root ganglia by evading the innate immunity of the host. NF-κB has a crucial role in regulating cell proliferation, inflammation, apoptosis, and immune responses. It is known that inhibition of NF-κB activation by a virus could facilitate it to establish infection in the host. In the current study, we found that HSV-2 inhibited TNF-α-induced activation of NF-κB-responsive promoter in a dose-dependent manner, while UV-inactivated HSV-2 did not have such capability. We further identified the immediate early protein ICP22 of HSV-2 as a vital viral element in inhibiting the activation of NF-κB-responsive promoter. The role of ICP22 was confirmed in human cervical cell line HeLa and primary cervical fibroblasts in the context of HSV-2 infection, showing that ICP22 deficient HSV-2 largely lost the capability in suppressing NF-κB activation. HSV-2 ICP22 was further shown to suppress the activity of TNF receptor-associated factor 2 (TRAF2)-, IκB kinase α (IKK α)-, IKK β-, IKK γ-, or p65-induced activation of NF-κB-responsive promoter. Mechanistically, HSV-2 ICP22 inhibited the phosphorylation and nuclear translocation of p65 by directly interacting with p65, resulting in the blockade of NF-κB activation. Furthermore, ICP22 from several alpha-herpesviruses could also inhibit NF-κB activation, suggesting the significance of ICP22 in herpesvirus immune evasion. Findings in this study highlight the importance of ICP22 in inhibiting NF-κB activation, revealing a novel mechanism by which HSV-2 evades the host antiviral responses.
Collapse
Affiliation(s)
- Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chuntian Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Binman Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuncheng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
- *Correspondence: Mudan Zhang, ; Qinxue Hu,
| | - Mudan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Mudan Zhang, ; Qinxue Hu,
| |
Collapse
|
12
|
Liu X, Tian W, Zhou M, Xu Q, Feng J, Yang R, He S, Wang G, Lin T, Chen H. Bisabolane-type sesquiterpenes from Vernonia amygdalina: Absolute configuration and anti-inflammatory activity. PHYTOCHEMISTRY 2022; 201:113283. [PMID: 35738434 DOI: 10.1016/j.phytochem.2022.113283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The phytochemical assessment of Vernonia amygdalina resulted in the isolation and identification of seven undescribed bisabolane-type sesquiterpenes designated amygdanoids A-G and one known analogue. This is the first report of this type of sesquiterpene from V. amygdalina. Their structures, including the absolute configurations, were elucidated by comprehensive analysis with HRESIMS, 1D and 2D NMR, quantum chemical calculations of NMR and electronic circular dichroism (ECD), modified Mosher's method, and the in situ dimolybdenum CD method. The anti-inflammatory activity of the isolates was evaluated. All the isolated compounds clearly inhibited the production of NO and the expression of the iNOS protein. Secretion of the COX-2 protein was constrained by amygdanoids A-F. Further investigation suggested that amygdanoids E exhibited anti-inflammatory activity by suppressing the expression of iNOS and COX-2 as well as the PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiangzhong Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Wenjing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China.
| | - Mi Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Qiannan Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Jie Feng
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Renjing Yang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Shoulun He
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Guanghui Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Ting Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Haifeng Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China.
| |
Collapse
|
13
|
Lu Y, Li B, Xu A, Liang X, Xu T, Jin H, Xie Y, Wang R, Liu X, Gao X, Han Y, Zeng J. NF-κB and AP-1 are required for the lipopolysaccharide-induced expression of MCP-1, CXCL1, and Cx43 in cultured rat dorsal spinal cord astrocytes. Front Mol Neurosci 2022; 15:859558. [PMID: 35966011 PMCID: PMC9368326 DOI: 10.3389/fnmol.2022.859558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
TLR4 and Cx43 signaling in dorsal spinal cord has been shown to be involved in the development of neuropathic pain. However, it is not clear whether TLR4 signaling is associated with the expression of MCP-1, CXCL1, and Cx43 in LPS (lipopolysaccharide)-treated rat dorsal spinal cord astrocytes under in vitro condition. In the present study, we found that TLR4 antagonist TAK-242 significantly inhibited LPS-induced MCP-1, CXCL1, and Cx43 expression, suggesting the role of TLR4 in response to LPS in cultured dorsal spinal cord astrocytes. Application of TAK-242 significantly blocked LPS-induced NF-κB and AP-1 activity and the expression of MCP-1, CXCL1 and Cx43. Furthermore, NF-κB inhibitor PDTC and AP-1 inhibitor SR11302 significantly blocked LPS-induced MCP-1, CXCL1, and Cx43 expression. DNA-binding activity of NF-κB, its effect on MCP-1 expression was suppressed by PDTC and SR11302. On the other hand, DNA-binding activity of AP-1, its effect on CXCL1 or Cx43 expression was also suppressed by PDTC and SR11302. In addition, PDTC was found to inhibit the nuclear translocation of AP-1 and the expression of c-Jun induced by LPS, which suggested that NF-κBp65 is essential for the AP-1 activity. Similarly, SR11302 significantly blocked LPS-induced the nuclear translocation of NF-κBp65 and the expression of NF-κBp65 induced by LPS. Pretreatment with CBX, Gap26, or Gap19 (Cx43 blockers) significantly inhibited abnormal astrocytic hemichannel opening and chemokines (MCP-1 and CXCL1) release in LPS-stimulated astrocytes. In summary, cell culture experiments revealed that LPS stimulation could evoke TLR4 signaling with the subsequent activation of NF-κB and AP-1, resulting in the expression of MCP-1, CXCL1, and Cx43. TLR4 activation increased Cx43 hemichannel, but not gap-junction activities and induced the release of the MCP-1 and CXCL1 from astrocytes via Cx43 hemichannel. These findings may help us to understand the role of astrocytic signaling in inflammatory response within dorsal spinal cord tissue.
Collapse
|
14
|
Zhou J, Zhang Z, Yang Y, Liao F, Zhou P, Wang Y, Zhang H, Jiang H, Alinejad T, Shan G, Wu S. Deletion of serine racemase reverses neuronal insulin signaling inhibition by amyloid-β oligomers. J Neurochem 2022; 163:8-25. [PMID: 35839294 DOI: 10.1111/jnc.15664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022]
Abstract
Dysregulation of insulin signaling in the Alzheimer's (AD) brain has been extensively reported. Serine racemase(SR) modulates insulin secretion in pancreatic islets. Similarly, we wonder whether or not SR regulates insulin synthesis and secretion in neurons, thereby modulating insulin signaling in the AD brain. Srr-knockout (Srr-/- ) mice generated with the CRISPR/Cas9 technique were used. Using immunofluorescence and fluorescence in situ hybridization, the levels of insulin protein and insulin(ins2) mRNA significantly increased in the hippocampal but not in the hypothalamic sections of Srr-/- mice compared with WT mice. Using real-time quantitative PCR, ins2 mRNA from primary hippocampal neuronal cultures of Srr-/- mice significantly increased compared with the cultured neurons from WT mice. Notably, the secretion of proinsulin C-peptide increased in Srr-/- neurons relative to WT neurons. By examining the membrane fractional proteins with immunoblotting, Srr-/- neurons retained ATP-dependent potassium channel on plasmalemma and correspondingly contained higher levels of p-AMPK. Under treatment by Aβ42, the phosphorylation levels of insulin receptor substrate at serine 616,636 (p-IRS1ser616,636 ) were significantly lower whereas p-AKT308 and p-AKT473 were higher in Srr-/- neurons, compared with WT neurons, respectively. The phosphorylated form of c-Jun N-terminal kinase decreased in the cultured Srr-/- neurons relative to the WT neurons upon Aβ42 treatment. In contrast, the phosphorylated protein kinase R remained at the same levels. Further, reactive oxygen species reduced in the cultured Srr-/- neurons under Aβ42 treatment relative to the WT neurons. Altogether, our study indicated that Srr deletion promoted insulin synthesis and secretion of proinsulin C-peptide, thereby reversing insulin resistance by Aβ42. This study suggests that targeting the neuronal SR may be utilized to enhance insulin signaling which is inhibited at the early stage of the AD brain.
Collapse
Affiliation(s)
- Jing Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Zhiwen Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Yuanhong Yang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Fei Liao
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Piansi Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Yan Wang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - He Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China.,College of Life and Environmental Sciences, Wenzhou University, Zhejiang, People's Republic of China
| | - Haiyan Jiang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Tahereh Alinejad
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Zhejiang, China
| | - Ge Shan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| |
Collapse
|
15
|
Kuang QX, Luo Y, Lei LR, Guo WX, Li XA, Wang YM, Huo XY, Liu MD, Zhang Q, Feng D, Huang LJ, Wang D, Gu YC, Deng Y, Guo DL. Hydroanthraquinones from Nigrospora sphaerica and Their Anti-inflammatory Activity Uncovered by Transcriptome Analysis. JOURNAL OF NATURAL PRODUCTS 2022; 85:1474-1485. [PMID: 35696541 DOI: 10.1021/acs.jnatprod.1c01141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transcriptome analysis is shown to be an effective strategy to understand the potential function of natural products. Here, it is reported that 11 previously undescribed hydroanthraquinones [nigroquinones A-K (1-11)], along with eight known congeners, were isolated from Nigrospora sphaerica. Their structures were elucidated by interpreting spectroscopic and spectrometric data including high-resolution mass spectra and nuclear magnetic resonance. The absolute configurations of 1-11 were confirmed by electronic circular dichroism calculations. Transcriptome analysis revealed that 3 (isolated in the largest amount) might be anti-inflammatory. Assays based on LPS-induced RAW264.7 macrophages and zebrafish embryos confirmed that some of the isolated hydroanthraquinones attenuated the secretion of pro-inflammatory mediators in vitro and in vivo. Further Western blotting and immunofluorescence experiments indicated that 4 (which showed the most obvious nitric oxide inhibition) could suppress the expression of nuclear factor-kappa-B (NF-κB), phosphorylation of the inhibitor of NF-κB kinase and inhibit the transportation of NF-κB to the nucleus. Hence, the suppression of the NF-κB signaling pathway may be responsible for the anti-inflammatory effect. These results show that bioactivity evaluation on the basis of transcriptome analysis may be effective in the functional exploration of natural products.
Collapse
Affiliation(s)
- Qi-Xuan Kuang
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Yan Luo
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Li-Rong Lei
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Wen-Xiu Guo
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Xin-Ai Li
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Yu-Mei Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Xue-Yan Huo
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Meng-Dan Liu
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Qi Zhang
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Dan Feng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266021, People's Republic of China
| | - Li-Jun Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Berkshire RG42 6EY, U.K
| | - Yun Deng
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Da-Le Guo
- State Key Laboratory of Characteristic Chinese Medicine Resources of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| |
Collapse
|
16
|
Li K, Ly K, Mehta S, Braithwaite A. Importance of crosstalk between the microbiota and the neuroimmune system for tissue homeostasis. Clin Transl Immunology 2022; 11:e1394. [PMID: 35620584 PMCID: PMC9125509 DOI: 10.1002/cti2.1394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022] Open
Abstract
The principal function of inflammation is cellular defence against ‘danger signals’ such as tissue injury and pathogen infection to maintain the homeostasis of the organism. The initiation and progression of inflammation are not autonomous as there is substantial evidence that inflammation is known to be strongly influenced by ‘neuroimmune crosstalk’, involving the production and expression of soluble signalling molecules that interact with cell surface receptors. In addition, microbiota have been found to be involved in the development and function of the nervous and immune systems and play an important role in health and disease. Herein, we provide an outline of the mechanisms of neuroimmune communication in the regulation of inflammation and immune response and then provide evidence for the involvement of microbiota in the development and functions of the host nervous and immune systems. It appears that the nervous and immune systems in multicellular organisms have co‐evolved with the microbiota, such that all components are in communication to maximise the ability of the organism to adapt to a wide range of environmental stresses to maintain or restore tissue homeostasis.
Collapse
Affiliation(s)
- Kunyu Li
- Department of Pathology Dunedin School of Medicine University of Otago Dunedin New Zealand
| | - Kevin Ly
- Department of Pathology Dunedin School of Medicine University of Otago Dunedin New Zealand
| | - Sunali Mehta
- Department of Pathology Dunedin School of Medicine University of Otago Dunedin New Zealand
| | - Antony Braithwaite
- Department of Pathology Dunedin School of Medicine University of Otago Dunedin New Zealand
| |
Collapse
|
17
|
Gao L, Yang WY, Qi H, Sun CJ, Qin XM, Du GH. Unveiling the anti-senescence effects and senescence-associated secretory phenotype (SASP) inhibitory mechanisms of Scutellaria baicalensis Georgi in low glucose-induced astrocytes based on boolean network. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153990. [PMID: 35202958 DOI: 10.1016/j.phymed.2022.153990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Astrocytes senescence has been demonstrated in the aging brain and Alzheimer's disease (AD). Moreover, lower glucose metabolism has been confirmed in the early stage of AD. However, whether low glucose could induce astrocytes senescence remain ambiguous. Studies have shown that the ethanol extracts of Scutellaria baicalensis Georgi (SGE) exert neuroprotective and anti-aging effects, while whether SGE could delay astrocytes senescence was unclear. PURPOSE This study investigated the anti-senescence effect of SGE in low glucose-induced T98G cells and primary astrocytes, and explored the possible mechanisms based on boolean network. METHODS The neuroprotective effects of SGE in low glucose-induced T98G cells were evaluated by measurement of cell viability, LDH, ROS and ATP. The anti-senescence effects of SGE were investigated by detection of senescence-associated β-galactosidase (SA-β-Gal), senescence-associated secretory phenotype (SASP), cell cycle and senescence-related markers. The possible mechanisms of SGE in delaying astrocytes senescence were discovered through integrating transcriptomics with boolean network, and validation experiments were further performed. RESULTS Our results revealed that low glucose could induce astrocytes senescence, and SGE could delay astrocytes senescence by decreasing the staining rate of SA-β-gal, reducing secretions of SASP factors (IL-6, CXCL1, MMP-1), alleviating cell cycle arrest in G0/G1 phase, decreasing the formation of punctate DNA foci and down-regulating the expression of p16INK4A, p21 and γH2A.X. Transcriptomics and further verification results showed that SGE could markedly inhibit the mRNA expression levels of SASP factors (CXCL10, CXCL2, CCL2, IL-6, CXCR4, CCR7). Moreover, C-X-C motif chemokine 10 (CXCL10) was predicted to be the key SASP factor affecting the network stability by using boolean network. Further experiments validated that SGE could markedly reduce CXCL10 level, decrease the secretion of IL-6 and inhibit cell migration in CXCL10 induced primary astrocytes. CONCLUSION In summary, our research unmasks that the anti-senescence effects of SGE were highly correlated with the suppression of SASP secretions, and CXCL10 mediated the SASP inhibition effect of SGE in low glucose-induced astrocytes. Our study highlights that the delay of astrocytes senescence and the inhibition of SASP might be a new mechanism of SGE for alleviating neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| | - Wu-Yan Yang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan, China
| | - Chang-Jun Sun
- Complex Systems Research Center, Shanxi University, Taiyuan, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-Hua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Zhou X, Zhang YN, Li FF, Zhang Z, Cui LY, He HY, Yan X, He WB, Sun HS, Feng ZP, Chu SF, Chen NH. Neuronal chemokine-like-factor 1 (CKLF1) up-regulation promotes M1 polarization of microglia in rat brain after stroke. Acta Pharmacol Sin 2022; 43:1217-1230. [PMID: 34385606 PMCID: PMC9061752 DOI: 10.1038/s41401-021-00746-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 07/16/2021] [Indexed: 11/10/2022] Open
Abstract
The phenotypic transformation of microglia in the ischemic penumbra determines the outcomes of ischemic stroke. Our previous study has shown that chemokine-like-factor 1 (CKLF1) promotes M1-type polarization of microglia. In this study, we investigated the cellular source and transcriptional regulation of CKLF1, as well as the biological function of CKLF1 in ischemic penumbra of rat brain. We showed that CKLF1 was significantly up-regulated in cultured rat cortical neurons subjected to oxygen-glucose deprivation/reoxygenation (ODG/R) injury, but not in cultured rat microglia, astrocytes and oligodendrocytes. In a rat model of middle cerebral artery occlusion, we found that CKLF1 was up-regulated and co-localized with neurons in ischemic penumbra. Furthermore, the up-regulated CKLF1 was accompanied by the enhanced nuclear accumulation of NF-κB. The transcriptional activity of CKLF1 was improved by overexpression of NF-κB in HEK293T cells, whereas application of NF-κB inhibitor Bay 11-7082 (1 μM) abolished it, caused by OGD/R. By using chromatin-immunoprecipitation (ChIP) assay we demonstrated that NF-κB directly bound to the promoter of CKLF1 (at a binding site located at -249 bp to -239 bp of CKLF1 promoter region), and regulated the transcription of human CKLF1. Moreover, neuronal conditional medium collected after OGD/R injury or CKLF1-C27 (a peptide obtained from secreted CKLF1) induced the M1-type polarization of microglia, whereas the CKLF1-neutralizing antibody (αCKLF1) or NF-κB inhibitor Bay 11-7082 abolished the M1-type polarization of microglia. Specific knockout of neuronal CKLF1 in ischemic penumbra attenuated neuronal impairments and M1-type polarization of microglia caused by ischemic/reperfusion injury, evidenced by inhibited levels of M1 marker CD16/32 and increased expression of M2 marker CD206. Application of CKLF1-C27 (200 nM) promoted the phosphorylation of p38 and JNK in microglia, whereas specific depletion of neuronal CKLF1 in ischemic penumbra abolished ischemic/reperfusion-induced p38 and JNK phosphorylation. In summary, CKLF1 up-regulation in neurons regulated by NF-κB is one of the crucial mechanisms to promote M1-type polarization of microglia in ischemic penumbra.
Collapse
Affiliation(s)
- Xin Zhou
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Ya-ni Zhang
- grid.411866.c0000 0000 8848 7685Institute of Clinical Pharmacology & Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Fang-fang Li
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Zhao Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Li-yuan Cui
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Hong-yuan He
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China ,grid.33763.320000 0004 1761 2484Tianjin University of Tradition Chinese Medicine, Tianjin, 301617 China
| | - Xu Yan
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Wen-bin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Hong-shuo Sun
- grid.17063.330000 0001 2157 2938Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Zhong-ping Feng
- grid.17063.330000 0001 2157 2938Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Shi-feng Chu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China
| | - Nai-hong Chen
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 China ,grid.411866.c0000 0000 8848 7685Institute of Clinical Pharmacology & Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China ,grid.33763.320000 0004 1761 2484Tianjin University of Tradition Chinese Medicine, Tianjin, 301617 China ,Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| |
Collapse
|
19
|
Huang LJ, Wang YM, Gong LQ, Hu C, Gui Y, Zhang C, Tan X, Yu XK, Liao YL, Luo Y, Tang YQ, Dai YF, Deng Y, Wang D, Guo DL. N-Acetyldopamine Dimer Attenuates DSS-Induced Ulcerative Colitis by Suppressing NF-κB and MAPK Pathways. Front Pharmacol 2022; 13:842730. [PMID: 35462925 PMCID: PMC9030057 DOI: 10.3389/fphar.2022.842730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
Ulcerative Colitis (UC) is a major form of chronic inflammatory bowel disease of the colonic mucosa and exhibits progressive morbidity. There is still a substantial need of small molecules with greater efficacy and safety for UC treatment. Here, we report a N-acetyldopamine dimer (NADD) elucidated (2R,3S)-2-(3′,4′-dihydroxyphenyl)-3-acetylamino-7-(N-acetyl-2″-aminoethyl)-1,4-benzodioxane, which is derived from traditional Chinese medicine Isaria cicadae, exhibits significant therapeutic efficacy against dextran sulfate sodium (DSS)-induced UC. Functionally, NADD treatment effectively relieves UC symptoms, including weight loss, colon length shortening, colonic tissue damage and expression of pro-inflammatory factors in pre-clinical models. Mechanistically, NADD treatment significantly inhibits the expression of genes in inflammation related NF-κB and MAPK signaling pathways by transcriptome analysis and western blot, which indicates that NADD inhibits the inflammation in UC might through these two pathways. Overall, this study identifies an effective small molecule for UC therapy.
Collapse
Affiliation(s)
- Li-Jun Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Mei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei-Qiang Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Gui
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian-Kuo Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi-Le Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Qin Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi-Fei Dai
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yun Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Da-le Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Cai M, Lin W. The Function of NF-Kappa B During Epilepsy, a Potential Therapeutic Target. Front Neurosci 2022; 16:851394. [PMID: 35360161 PMCID: PMC8961383 DOI: 10.3389/fnins.2022.851394] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
The transcriptional regulator nuclear factor kappa B (NF-κB) modulates cellular biological activity by binding to promoter regions in the nucleus and transcribing various protein-coding genes. The NF-κB pathway plays a major role in the expressing genes related to inflammation, including chemokines, interleukins, and tumor necrosis factor. It also transcribes genes that can promote neuronal survival or apoptosis. Epilepsy is one of the most common brain disorders and it not only causes death worldwide but also affects the day-to-day life of affected individuals. While epilepsy has diverse treatment options, there remain patients who are not sensitive to the existing treatment methods. Recent studies have implicated the critical role of NF-κB in epilepsy. It is upregulated in neurons, glial cells, and endothelial cells, due to neuronal loss, glial cell proliferation, blood-brain barrier dysfunction, and hippocampal sclerosis through the glutamate and γ-aminobutyric acid imbalance, ion concentration changes, and other mechanisms. In this review, we summarize the functional changes caused by the upregulation of NF-κB in the central nervous system during different periods after seizures. This review is the first to deconvolute the complicated functions of NF-κB, and speculate that the regulation of NF-κB can be a safe and effective treatment strategy for epilepsy.
Collapse
|
21
|
6-Gingerol exerts a protective effect against hypoxic injury through the p38/Nrf2/HO-1 and p38/NF-κB pathway in H9c2 cells. J Nutr Biochem 2022; 104:108975. [PMID: 35245652 DOI: 10.1016/j.jnutbio.2022.108975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/02/2021] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Ginger, one of the most widely consumed condiment for various foods and beverages, has many pharmacological effects. 6-gingerol, a naturally occurring phenol, is one of the major pungent constituents of ginger. The purpose of this study was to characterize the effect of 6-gingerol on the p38/Nrf2/HO-1 and p38/NF-κB signaling pathway, as a possible means of combating hypoxia-related oxidative stress. H9c2 cells were chemically induced with CoCl2 to mimic hypoxia-associated cellular damage. Cardiomyocyte injury was assessed by lactate dehydrogenase and creatine kinase. Reactive oxygen species production was assessed by 2',7'-dichlorodihydrofluorescein diacetate. The antioxidative property of 6-gingerol was measured by estimating the activities of superoxide dismutase, catalase, glutathione and glutathione disulfide. Apoptosis was detected by flow cytometry after Annexin V-FITC-propidium iodide double staining. Western blotting was used to evaluate levels of p-p38, p38, cytoplasm p65, nuclear p65, total p65, nuclear Nrf2, total Nrf2, Keap1, HIF-1α, and HO-1. 6-gingerol was able to counter hypoxia-induced cardiomyocyte injury as evidenced by inhibiting the levels of oxidative stress indexes and increasing the percentage of apoptosis. Furthermore, 6-gingerol was able to down-regulate p-p38/p38, nuclear p65, total p65 and Keap1 expression induced by CoCl2 stimulation and increased cytoplasm p65, nuclear Nrf2, total Nrf2, HO-1, and HIF-1α expression. However, treatment with specific Nrf2 inhibitor blunted the activation of Nrf2 signaling and removed the protective effects of 6-gingerol. These experiments provide evidence that 6-gingerol exerts cytoprotective effects, which may be associated with the regulation of oxidative stress and apoptosis, potentially through activating the Nrf2 pathway and inhibiting the p38/NF-κB pathways.
Collapse
|
22
|
Cui J, Yuan Y, Wang J, Song N, Xie J. Desferrioxamine Ameliorates Lipopolysaccharide-Induced Lipocalin-2 Upregulation via Autophagy Activation in Primary Astrocytes. Mol Neurobiol 2022; 59:2052-2067. [PMID: 35040039 DOI: 10.1007/s12035-021-02687-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023]
Abstract
Lipocalin-2 (LCN2) is an important regulator of both neuroinflammation and iron homeostasis. Upregulated LCN2 was observed in reactive astrocytes in the Parkinson's disease (PD) models. In the present study, we reported iron chelator deferoxamine (DFO) abolished lipopolysaccharide (LPS)-induced LCN2 upregulation in primary astrocytes, although iron overload had no effects. The suppressive effects of DFO were consistent with autophagy inducer rapamycin or carfilzomib, blocked by autophagy inhibitor 3-methyladenine rather than chloroquine or bafilomycin A1, meanwhile, while were not dependent on proteasome system and NF-κB pathway. DFO was not able to ameliorate LCN2 upregulation in α-synuclein-treated astrocytes, because DFO failed to induce autophagy in these cells. We further demonstrated that DFO could not enhance autophagy lysosomal degradation, however promoted secretory autophagy in primary astrocytes with LPS insults. These data suggest that DFO could serve as an autophagy activator, capable of ameliorating the upregulation of LCN2 in astrocytes by acting on the formation of autophagosomes and secretory autophagy. This provides better understandings of DFO-mediated neuroprotection against neuroinflammation and provides new insights that autophagy activation could be beneficial approaches in PD.
Collapse
Affiliation(s)
- Juntao Cui
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Yu Yuan
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Jun Wang
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Ning Song
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
23
|
Czerwińska-Błaszczyk A, Pawlak E, Pawłowski T. The Significance of Toll-Like Receptors in the Neuroimmunologic Background of Alcohol Dependence. Front Psychiatry 2022; 12:797123. [PMID: 35095609 PMCID: PMC8791063 DOI: 10.3389/fpsyt.2021.797123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 01/02/2023] Open
Abstract
Toll-like receptors (TLR) are a group of protein belonging to the family of Pattern Recognition Receptors (PRR) which have the ability to distinguish between an organism's own antigens and foreign ones and to induce immunological response. TLR play a significant part in non-specific immunity but at the same time they are also a vital element linking non-specific response to the specific one. A growing number of data seems to indicate that the non-specific immunity mechanisms affect the development and sustenance of alcohol addiction. Alcohol damages the organism's cells not only directly but also through an increase inintestinal permeability which induces innate immune response of peripheral blood cells. The signaling pathway of Toll-like receptors located on the surface of brain immune cells intensifies the inflammatory reaction and, through modifying gene expression of proinflammatory factors, unnaturally supports it. This overly protracted "sterile inflammatory reaction" positively correlates with alcohol craving affecting also the functioning of the reward system structures and increasing the risk of relapse of alcoholism. Recurrent alcoholic binges sensitize the microglia and cause an escalation in inflammatory reaction which also leads to neurodegeneration. The induction of innate immunity signaling pathways exposes clinical symptoms of alcohol addiction such as increased impulsivity, loss of behavioral control, depressive-anxiety symptoms and cognitive dysfunctions. Traditional methods of treating alcohol addiction have tended to focus predominantly on reducing symptoms which-given the frequency of relapses-seems insufficient. The aim of the present paper is to discuss the role of toll-like receptors as elements of the immunity system which, together with the nervous system, plays a crucial part in the pathogenesis of alcohol addiction. We also wish to present pharmacotherapeutic perspectives targeted at the neuroimmunological mechanisms of alcohol addiction.
Collapse
Affiliation(s)
| | - Edyta Pawlak
- Laboratory of Immunopatology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Tomasz Pawłowski
- Division of Psychotherapy and Psychosomatic Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
24
|
Wang H, Mou H, Xu X, Liu C, Zhou G, Gao B. LncRNA KCNQ1OT1 (potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1) aggravates acute kidney injury by activating p38/NF-κB pathway via miR-212-3p/MAPK1 (mitogen-activated protein kinase 1) axis in sepsis. Bioengineered 2021; 12:11353-11368. [PMID: 34783627 PMCID: PMC8810185 DOI: 10.1080/21655979.2021.2005987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI), a common complication of sepsis, is characterized by a rapid loss of renal excretory function. A variety of etiologies and pathophysiological processes may contribute to AKI. Previously, mitogen-activated protein kinase 1 (MAPK1) was reported to regulate cellular processes in various sepsis-associated diseases. The current study aimed to further explore the biological function and regulatory mechanism of MAPK1 in sepsis-induced AKI. In our study, MAPK1 exhibited high expression in the serum of AKI patients. Functionally, knockdown of MAPK1 suppressed inflammatory response, cell apoptosis in response of lipopolysaccharide (LPS) induction in HK-2 cells. Moreover, MAPK1 deficiency alleviated renal inflammation, renal dysfunction, and renal injury in vivo. Mechanistically, MAPK1 could activate the downstream p38/NF-κB pathway. Moreover, long noncoding RNA potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) was identified to serve as a competing endogenous RNA for miR-212-3p to regulate MAPK1. Finally, rescue assays indicated that the inhibitory effect of KCNQ1OT1 knockdown on inflammatory response, cell apoptosis, and p38/NF-κB pathway was reversed by MAPK1 overexpression in HK-2 cells. In conclusion, KCNQ1OT1 aggravates acute kidney injury by activating p38/NF-κB pathway via miR-212-3p/MAPK1 axis in sepsis. Therefore, KCNQ1OT may serve as a potential biomarker for the prognosis and diagnosis of AKI patients.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Critical Care Medicine, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Hongbin Mou
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Xiaolan Xu
- Department of Critical Care Medicine, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Changhua Liu
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Gang Zhou
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Bo Gao
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| |
Collapse
|
25
|
Murphy CE, Walker AK, Weickert CS. Neuroinflammation in schizophrenia: the role of nuclear factor kappa B. Transl Psychiatry 2021; 11:528. [PMID: 34650030 PMCID: PMC8516884 DOI: 10.1038/s41398-021-01607-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, particularly in the dorsolateral prefrontal cortex, is well-established in a subset of people with schizophrenia, with significant increases in inflammatory markers including several cytokines. Yet the cause(s) of cortical inflammation in schizophrenia remains unknown. Clues as to potential microenvironmental triggers and/or intracellular deficits in immunoregulation may be gleaned from looking further upstream of effector immune molecules to transcription factors that control inflammatory gene expression. Here, we focus on the 'master immune regulator' nuclear factor kappa B (NF-κB) and review evidence in support of NF-κB dysregulation causing or contributing to neuroinflammation in patients. We discuss the utility of 'immune biotyping' as a tool to analyse immune-related transcripts and proteins in patient tissue, and the insights into cortical NF-κB in schizophrenia revealed by immune biotyping compared to studies treating patients as a single, homogenous group. Though the ubiquitous nature of NF-κB presents several hurdles for drug development, targeting this key immunoregulator with novel or repurposed therapeutics in schizophrenia is a relatively underexplored area that could aid in reducing symptoms of patients with active neuroinflammation.
Collapse
Affiliation(s)
- Caitlin E. Murphy
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia
| | - Adam K. Walker
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia ,grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales, Randwick, NSW 2031 Australia ,grid.1002.30000 0004 1936 7857Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia. .,School of Psychiatry, University of New South Wales, Randwick, NSW, 2031, Australia. .,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
26
|
|
27
|
Song C, Zhang Y, Cheng L, Shi M, Li X, Zhang L, Zhao H. Tea polyphenols ameliorates memory decline in aging model rats by inhibiting brain TLR4/NF-κB inflammatory signaling pathway caused by intestinal flora dysbiosis. Exp Gerontol 2021; 153:111476. [PMID: 34265410 DOI: 10.1016/j.exger.2021.111476] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
AIMS Tea is a rich source of pharmacologically active molecules that has been suggested to provide a variety of health benefits. However, its mechanism of action in aging-related intestinal flora dysbiosis mediated neuroinflammation is still unclear. This study aimed to explore whether tea polyphenols (TP) can improve memory by regulating intestinal flora mediated neuroinflammation in aging model rats. METHODS Ovariectomy (OVX) combined with D-galactose injection was used to establish aging rats related to menopause. The rats were divided into Sham control group, Aging model group, TP 75 mg/kg, 150 mg/kg, 300 mg/kg groups and VE group. After 12 weeks of intervention, the shuttle box test and Y maze test were used to check the memory of rats. The composition of intestinal flora was assessed by 16S rRNA sequencing technology. HE staining and ELISA were used to detect intestinal epithelial morphology and permeability, respectively. TLR4/NF-κB inflammation pathway related indicators were investigated by western blot, and the microglia activation in rat hippocampal tissue was checked by immunofluorescence. RESULTS In the shuttle box test and the Y maze test, compared with the Sham control group, the memory of Aging model rats was significantly declined. It was observed that the intestinal flora of Aging model rats was dysbiosis, the permeability of the intestinal epithelium was increased. Further experimental results showed that the expression of TLR4/NF-κB inflammatory pathway related proteins in the hippocampus were increased, and the excessive activation of microglia was observed. The beneficial effects of TP intervention have been found to prevent memory decline and significantly improve brain inflammation induced by intestinal flora dysbiosis, and TP 300 mg/kg showed a more obvious advantage than TP 75 mg/kg. TP 300 mg/kg can significantly improve the behavior of rats, improve the composition and diversity of the intestinal flora, and the shape and function of the intestinal epithelium. By reversing the increased expression levels of TLR4, IRAK, p-IκBα and nuclear NF-κB p65 proteins in the hippocampus of Aging model rats, the activation of microglia in the CA1, CA3 and Dentate gyrus (DG) sub-regions of the hippocampus can be inhibited. CONCLUSION TP inhibits the brain TLR4/NF-κB inflammatory signal pathway caused by the dysbiosis of intestinal flora, which may be one of the mechanisms to improve the memory decline in aging model rats.
Collapse
Affiliation(s)
- Chenmeng Song
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yusen Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Le Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Mengqian Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Xuemin Li
- Center for Disease Control and Prevention in Shanxi Province, Taiyuan, Shanxi 030012, PR China
| | - Luping Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Haifeng Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| |
Collapse
|
28
|
Mostafizar M, Cortes-Pérez C, Snow W, Djordjevic J, Adlimoghaddam A, Albensi BC. Challenges with Methods for Detecting and Studying the Transcription Factor Nuclear Factor Kappa B (NF-κB) in the Central Nervous System. Cells 2021; 10:1335. [PMID: 34071243 PMCID: PMC8228352 DOI: 10.3390/cells10061335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
The transcription factor nuclear factor kappa B (NF-κB) is highly expressed in almost all types of cells. NF-κB is involved in many complex biological processes, in particular in immunity. The activation of the NF-κB signaling pathways is also associated with cancer, diabetes, neurological disorders and even memory. Hence, NF-κB is a central factor for understanding not only fundamental biological presence but also pathogenesis, and has been the subject of intense study in these contexts. Under healthy physiological conditions, the NF-κB pathway promotes synapse growth and synaptic plasticity in neurons, while in glia, NF-κB signaling can promote pro-inflammatory responses to injury. In addition, NF-κB promotes the maintenance and maturation of B cells regulating gene expression in a majority of diverse signaling pathways. Given this, the protein plays a predominant role in activating the mammalian immune system, where NF-κB-regulated gene expression targets processes of inflammation and host defense. Thus, an understanding of the methodological issues around its detection for localization, quantification, and mechanistic insights should have a broad interest across the molecular neuroscience community. In this review, we summarize the available methods for the proper detection and analysis of NF-κB among various brain tissues, cell types, and subcellular compartments, using both qualitative and quantitative methods. We also summarize the flexibility and performance of these experimental methods for the detection of the protein, accurate quantification in different samples, and the experimental challenges in this regard, as well as suggestions to overcome common challenges.
Collapse
Affiliation(s)
- Marina Mostafizar
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Claudia Cortes-Pérez
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Wanda Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Jelena Djordjevic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Aida Adlimoghaddam
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Benedict C. Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
29
|
Valderhaug VD, Heiney K, Ramstad OH, Bråthen G, Kuan WL, Nichele S, Sandvig A, Sandvig I. Early functional changes associated with alpha-synuclein proteinopathy in engineered human neural networks. Am J Physiol Cell Physiol 2021; 320:C1141-C1152. [PMID: 33950697 DOI: 10.1152/ajpcell.00413.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A patterned spread of proteinopathy represents a common characteristic of many neurodegenerative diseases. In Parkinson's disease (PD), misfolded forms of α-synuclein proteins accumulate in hallmark pathological inclusions termed Lewy bodies and Lewy neurites. Such protein aggregates seem to affect selectively vulnerable neuronal populations in the substantia nigra and to propagate within interconnected neuronal networks. Research findings suggest that these proteinopathic inclusions are present at very early time points in disease development, even before clear behavioral symptoms of dysfunction arise. In this study, we investigate the early pathophysiology developing after induced formation of such PD-related α-synuclein inclusions in a physiologically relevant in vitro setup using engineered human neural networks. We monitor the neural network activity using multielectrode arrays (MEAs) for a period of 3 wk following proteinopathy induction to identify associated changes in network function, with a special emphasis on the measure of network criticality. Self-organized criticality represents the critical point between resilience against perturbation and adaptational flexibility, which appears to be a functional trait in self-organizing neural networks, both in vitro and in vivo. We show that although developing pathology at early onset is not clearly manifest in standard measurements of network function, it may be discerned by investigating differences in network criticality states.
Collapse
Affiliation(s)
- Vibeke D Valderhaug
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kristine Heiney
- Department of Computer Science, Faculty of Technology, Art and Design, Oslo Metropolitan University (OsloMet), Oslo, Norway
| | - Ola Huse Ramstad
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Geir Bråthen
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Wei-Li Kuan
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Stefano Nichele
- Department of Computer Science, Faculty of Technology, Art and Design, Oslo Metropolitan University (OsloMet), Oslo, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olav's Hospital, Trondheim, Norway.,Department of Clinical Neurosciences, Umeå University Hospital, Umeå, Sweden.,Department of Rehabilitation Medicine, Umeå University Hospital, Umeå, Sweden.,Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden.,Clinical Sciences, Umeå University, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
30
|
Lindsay A, Hickman D, Srinivasan M. A nuclear factor-kappa B inhibiting peptide suppresses innate immune receptors and gliosis in a transgenic mouse model of Alzheimer's disease. Biomed Pharmacother 2021; 138:111405. [PMID: 33756153 DOI: 10.1016/j.biopha.2021.111405] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
A disproportionate increase in activated nuclear factor-kappa B (NF-κB) has been shown to drive the Aβ deposition, neuroinflammation and neurodegeneration in Alzheimer's disease (AD). Hence, selective targeting of activated p65 represents an attractive therapeutic approach for AD. Glucocorticoid induced leucine zipper (GILZ) is a NF-κB interactant that binds and sequesters the activated p65 in the cytoplasm. The p65 binding domain of GILZ adopts a polyproline type II helical conformation, a motif that acts as an adaptable glove in the interface with the binding partner and constitutes an excellent template for drug design. Previously, peptide analogs of the p65 binding domain of GILZ, referred to as GA have been shown to suppress pathology in the lipopolysaccharide induced model of neuroinflammation. In this study, we investigated the CNS delivery of labeled GA administered intraperitoneally in adult mice for a period of upto 24 h. Further, we evaluated the suppressive potential of GA in 5xFAD mice, an aggressive model with five genetic mutations closely associated with human AD. Groups of 5xFAD mice administered GA or control peptide intraperitoneally on alternate days for six weeks were evaluated for Aβ deposition, microglia, inflammation and innate immune responses by immunohistochemistry and real time polymerase reaction. GA was observed in proximity with NeuN positive neurons suggesting that the compound crossed the blood brain barrier to reach the brain parenchyma. Further, GA treatment decreased Aβ load, reduced Iba1 + microglia and glial fibrillary acidic protein (GFAP)+ astrocytes, inhibited inflammatory cytokines and suppressed toll like receptor (TLR-2, TLR-4) expressions in 5xFAD mice.
Collapse
Affiliation(s)
- Alison Lindsay
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, United States
| | - Deborah Hickman
- Laboratory of Animal Care and Research, Indiana University School of Medicine, Indiana University-Purdue University Indianapolis, United States
| | - Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, United States; Provaidya LLC, Indianapolis, IN, United States.
| |
Collapse
|
31
|
Singh G, Segura BJ, Georgieff MK, Gisslen T. Fetal inflammation induces acute immune tolerance in the neonatal rat hippocampus. J Neuroinflammation 2021; 18:69. [PMID: 33706765 PMCID: PMC7953777 DOI: 10.1186/s12974-021-02119-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Infants born preterm due to chorioamnionitis are frequently affected by a fetal inflammatory response syndrome (FIRS) and then by subsequent postnatal infections. FIRS and postnatal systemic inflammatory events independently contribute to poor neurocognitive outcomes of preterm infants. Developmental integrity of the hippocampus is crucial for intact neurocognitive outcomes in preterms and hippocampally dependent behaviors are particularly vulnerable to preterm systemic inflammation. How FIRS modulates the hippocampal immune response to acute postnatal inflammatory events is not well understood. METHODS Prenatal LPS exposed (FIRS) and control neonatal rats received i.p. LPS or saline at postnatal day (P) 5. On P7, immune response was evaluated in the hippocampus of four treatment groups by measuring gene expression of inflammatory mediators and cytosolic and nuclear NFκB pathway proteins. Microglial activation was determined by CD11b+ and Iba1+ immunohistochemistry (IHC) and inflammatory gene expression of isolated microglia. Astrocyte reactivity was measured using Gfap+ IHC. RESULTS Postnatal LPS resulted in a robust hippocampal inflammatory response. In contrast, FIRS induced by prenatal LPS attenuated the response to postnatal LPS exposure, evidenced by decreased gene expression of inflammatory mediators, decreased nuclear NFκB p65 protein, and fewer activated CD11b+ and Iba1+ microglia. Isolated microglia demonstrated inflammatory gene upregulation to postnatal LPS without evidence of immune tolerance by prenatal LPS. CONCLUSION Prenatal LPS exposure induced immune tolerance to subsequent postnatal LPS exposure in the hippocampus. Microglia demonstrate a robust inflammatory response to postnatal LPS, but only a partial immune tolerance response.
Collapse
Affiliation(s)
- Garima Singh
- Division of Neonatology, Department of Pediatrics, University of Minnesota, East Building MB630, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA
| | - Bradley J Segura
- Division of Pediatric Surgery, Department of Surgery, University of Minnesota, East Building MB630, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota, East Building MB630, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA
| | - Tate Gisslen
- Division of Neonatology, Department of Pediatrics, University of Minnesota, East Building MB630, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA.
| |
Collapse
|
32
|
Zhang L, Chen X, Wu L, Li Y, Wang L, Zhao X, Zhao T, Zhang L, Yan Z, Wei G. Ameliorative effects of escin on neuropathic pain induced by chronic constriction injury of sciatic nerve. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113503. [PMID: 33091488 DOI: 10.1016/j.jep.2020.113503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Escin is a natural mixture of triterpene saponins extracted from the seeds of Aesculus wilsonii Rehd. And has been reported to possess the therapeutic effects against neuropathic pain (NP). However, the underlying mechanisms remain unclear. AIM OF THE STUDY The present study aimed to investigate the therapeutic effects and explore the underlying mechanisms of escin on rats of NP induced by chronic constriction injury (CCI) of sciatic nerve. MATERIALS AND METHODS Rats were treated with escin (7, 14, and 28 mg/kg, i. g.) daily from the third day after the surgery (day 0) for consecutive 14 days. Regular behavior and thermal threshold were measured on days 0, 3, 5, 7, 10 and 14. Investigations into mechanisms involved measurement of inflammatory factors and biochemical factors in dorsal root ganglion (DRG). Inflammatory pain responses and nerve injuries were induced by the CCI model. Tonic pain model and acute inflammatory model induced by formalin or carrageenan were established to evaluated the pharmacological effects of escin on acute inflammatory pain. Corresponding behaviors were monitored and relevant gene expression such as c-fos, mu opioid receptor (MOR) and KCNK1 were detected by qRT-PCR. Investigate the neuroprotective effects of escin on PC12 cell injury induced by lipopolysaccharide (LPS). Cell morphology was observed under inverted microscope and neuroprotective effect of escin on cell activity was assessed by MTT assay. RESULTS Escin could widen thermal threshold, downregulate the concentration of inflammatory factors like tumor necrosis factor (TNF)-α and interleukin (IL)-1β, suppress the gene expression of toll-like receptor 4 (TLR4), nuclear factor κB (NF-κB), decrease the level of glial fibrillary acidic protein (GFAP) and nerve growth factor (NGF) remarkably. In addition, escin significantly lowered the duration of licking, numbers of flinches and increase in paw edema, showing great therapeutic effects on inflammatory pain responses. Moreover, the activity of injured PC12 cells was significantly improved after escin administrated. CONCLUSION Escin exerted the ameliorative effects on NP induced by CCI which may be related to downregulating the release of pro-inflammatory cytokines, suppressing TLR-4/NF-κB signal pathway, thereafter decreasing the level of GFAP and NGF.
Collapse
Affiliation(s)
- Liudai Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Xiu Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Lanlan Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Yongbiao Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Liwen Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Xiaoqin Zhao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Tingting Zhao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Li Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Zhiyong Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Guihua Wei
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China.
| |
Collapse
|
33
|
Yang X, Li F, Liu Y, Li D, Li J. Study on the Correlation Between NF-κB and Central Fatigue. J Mol Neurosci 2021; 71:1975-1986. [PMID: 33586033 PMCID: PMC8500872 DOI: 10.1007/s12031-021-01803-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/26/2021] [Indexed: 12/25/2022]
Abstract
In recent years, the World Health Organization (WHO) has included fatigue as a major risk factor for human life and health. The incidence rate of fatigue is high. In Europe and America, nearly 1/3 of the population is suffering from fatigue. Due to the acceleration of modern people’s life rhythm and the increase of work pressure, more and more attention has been paid to central fatigue. The activation of NF-κB is related to central fatigue, which has been paid little attention by previous studies. At the same time, previous studies have mostly focused on the immune regulation function of NF-κB, while the NF-κB pathway plays an equally important role in regulating nerve function. NF-κB can participate in the occurrence and development of central fatigue by mediating immune inflammatory response, regulating central excitability and inhibitory transmitters, regulating synaptic plasticity and regulating central nervous system (CNS) functional genes. In addition to neuroprotective effects, NF-κB also has nerve damage effects, which is also closely related to the occurrence and development of central fatigue. In this review, we focus on the relationship between NF-κB pathway and central fatigue and further explore the biological mechanism of central fatigue. At the same time, the clinical application and potential of typical NF-κB inhibitors in the treatment of fatigue were analyzed to provide reference for the clinical treatment of central fatigue.
Collapse
Affiliation(s)
- Xingzhe Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Feng Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Yan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Danxi Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
34
|
TLR4 Signaling Selectively and Directly Promotes CGRP Release from Vagal Afferents in the Mouse. eNeuro 2021; 8:ENEURO.0254-20.2020. [PMID: 33318075 PMCID: PMC7877464 DOI: 10.1523/eneuro.0254-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
There has been a long-standing debate regarding the role of peripheral afferents in mediating rapid-onset anorexia among other responses elicited by peripheral inflammatory insults. Thus, the current study assessed the sufficiency of peripheral afferents expressing toll-like receptor 4 (TLR4) to the initiation of the anorexia caused by peripheral bacterial lipopolysaccharide (LPS). We generated a Tlr4 null (Tlr4LoxTB) mouse in which Tlr4 expression is globally disrupted by a loxP-flanked transcription blocking (TB) cassette. This novel mouse model allowed us to restore the endogenous TLR4 expression in specific cell types. Using Zp3-Cre and Nav1.8-Cre mice, we produced mice that express TLR4 in all cells (Tlr4LoxTB X Zp3-Cre) and in peripheral afferents (Tlr4LoxTB X Nav1.8-Cre), respectively. We validated the Tlr4LoxTB mice, which were phenotypically identical to previously reported global TLR4 knock-out mice. Contrary to our expectations, the administration of LPS did not cause rapid-onset anorexia in mice with Nav1.8-restricted TLR4. The later result prompted us to identify Tlr4-expressing vagal afferents using in situ hybridization (ISH). In vivo, we found that Tlr4 mRNA was primarily enriched in vagal Nav1.8 afferents located in the jugular ganglion that co-expressed calcitonin gene-related peptide (CGRP). In vitro, the application of LPS to cultured Nav1.8-restricted TLR4 afferents was sufficient to stimulate the release of CGRP. In summary, we demonstrated using a new mouse model that vagally-expressed TLR4 is selectively involved in stimulating the release of CGRP but not in causing anorexia.
Collapse
|
35
|
Xie H, Chen Y, Du K, Wu W, Feng X. Puerarin alleviates vincristine-induced neuropathic pain and neuroinflammation via inhibition of nuclear factor-κB and activation of the TGF-β/Smad pathway in rats. Int Immunopharmacol 2020; 89:107060. [PMID: 33049496 DOI: 10.1016/j.intimp.2020.107060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
Chemotherapy-induced neuropathic pain harms the quality of life patients. Vincristine is an often used chemotherapeutic drug that evokes neuralgia via inflammation. Puerarin (Pue) extracted from Puerariae Lobatae Radix has analgesic and anti-inflammatory effects; however, its possible effect and mechanism in vincristine (Vin)-induced neuropathic pain has not been investigated. The present research aimed to explore whether Pue could relieve chemotherapy-evoked neuropathic pain and the underlying mechanism actions. Rat neuropathic pain was established by intraperitoneal injection of vincristine. Pue was orally administered in two dose levels (25 or 50 mg/kg/d) for three weeks. The paw withdrawal latency and paw withdrawal threshold were performed to evaluate the pain behaviors. Inflammatory cytokines in the spinal cord and dorsal root ganglion were measured by ELISA kits. qRT-PCR, western blot, and immunofluorescence staining were employed to measure the level and expression feature of inflammatory cytokines. Our findings showed that Pue improved hyperalgesia and allodynia. Treatment with Pue restored the levels of tumor necrosis factor-α (TNF-α), and IL-1β and increased the levels of transforming growth factor-β (TGF-β), and interleukin-10 (IL-10). On the molecular level, treatment with Pue down-regulated the protein levels of IL-1β, and NF-κBp65 and up-regulated the protein levels of TGF-β, p-Smad2, and p-Smad3 (TGF-β/Smad) in the spinal cord and DRG. Immunofluorescence staining further demonstrated that Pue decreased the NF-κBp65 protein. Our findings imply that Pue relieved chemotherapy-induced neuropathic pain might be attributable to the suppression of inflammation cytokines. The anti-inflammation action of Pue might be associated with the activation of the TGF-β/Smad pathway, a novel mechanism exploring its prophylactic effect in vincristine-induced neuropathic pain.
Collapse
Affiliation(s)
- Hengtao Xie
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Yingying Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Kairong Du
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Wei Wu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Xiaobo Feng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| |
Collapse
|
36
|
Kou Y, Yu F, Yuan Y, Niu S, Han N, Zhang Y, Yin X, Xu H, Jiang B. Effects of NP-1 on proliferation, migration, and apoptosis of Schwann cell line RSC96 through the NF-κB signaling pathway. Am J Transl Res 2020; 12:4127-4140. [PMID: 32913493 PMCID: PMC7476162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Peripheral nerve injury is a common refractory disease in the clinic that often leads to dysfunction of movement and sensation. Different from other tissue injuries, peripheral nerve injury needs a longer time for regeneration. Therefore, effective drug therapy is needed to promote nerve regeneration in the treatment of peripheral nerve injury. Our preliminary studies have shown that continuous intramuscular injection of NP-1 promotes the regeneration of injured sciatic nerve in rats, but the mechanisms were still unknown. Schwann cells are very important cells in the formation of myelin sheath of peripheral nerves and participate in the repair and regeneration of peripheral nerve injury. To further investigate the effect of NP-1 on rat Schwann cells and the underlying mechanism, different concentrations of NP-1 were used to treat rat Schwann cell line RSC96. Light microscopy, CCK-8 assay, cell scratch assay, and special cell staining were performed to investigate RSC96 cell aging and apoptosis. mRNA and protein expression of NF-κB signaling pathway-related factors were determined using qPCR and immunohistochemistry respectively. Light microscopy, CCK-8 assay, cell scratch assay, and special cell staining showed NP-1 could improve the ability of proliferation, immigration of Schwann cells. QPCR and immunohistochemistry showed NP-1 influenced the expression of multiple factors associated with nerve regeneration which NF-κB signaling pathway played a key role. The results show that NP-1 promoted the proliferation and migration of RSC96 cells and inhibited cell aging and apoptosis possibly through the NF-κB signaling pathway. These findings provide a potential target for clinical treatment of peripheral neuropathy and experimental data support.
Collapse
Affiliation(s)
- Yuhui Kou
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Peking UniversityBeijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of EducationBeijing, China
| | - Fei Yu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen HospitalShenzhen, China
| | - Yusong Yuan
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Peking UniversityBeijing, China
- Diabetic Foot Treatment Center, Peking University People’s Hospital, Peking UniversityBeijing, China
| | - Suping Niu
- Office of Academic Research, Peking University People’s Hospital, Peking UniversityBeijing, China
| | - Na Han
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of EducationBeijing, China
- Office of Academic Research, Peking University People’s Hospital, Peking UniversityBeijing, China
| | - Yajun Zhang
- National Center for Trauma MedicineBeijing, China
| | - Xiaofeng Yin
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Peking UniversityBeijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of EducationBeijing, China
| | - Hailin Xu
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Peking UniversityBeijing, China
- Diabetic Foot Treatment Center, Peking University People’s Hospital, Peking UniversityBeijing, China
| | - Baoguo Jiang
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Peking UniversityBeijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of EducationBeijing, China
- National Center for Trauma MedicineBeijing, China
| |
Collapse
|
37
|
Lim JR, Lee HJ, Jung YH, Kim JS, Chae CW, Kim SY, Han HJ. Ethanol-activated CaMKII signaling induces neuronal apoptosis through Drp1-mediated excessive mitochondrial fission and JNK1-dependent NLRP3 inflammasome activation. Cell Commun Signal 2020; 18:123. [PMID: 32787872 PMCID: PMC7422600 DOI: 10.1186/s12964-020-00572-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/01/2020] [Indexed: 01/04/2023] Open
Abstract
Background Neurodegeneration is a representative phenotype of patients with chronic alcoholism. Ethanol-induced calcium overload causes NOD-like receptor protein 3 (NLRP3) inflammasome formation and an imbalance in mitochondrial dynamics, closely associated with the pathogenesis of neurodegeneration. However, how calcium regulates this process in neuronal cells is poorly understood. Therefore, the present study investigated the detailed mechanism of calcium-regulated mitochondrial dynamics and NLRP3 inflammasome formation in neuronal cells by ethanol. Methods In this study, we used the SK-N-MC human neuroblastoma cell line. To confirm the expression level of the mRNA and protein, real time quantitative PCR and western blot were performed. Co-immunoprecipitation and Immunofluorescence staining were conducted to confirm the complex formation or interaction of the proteins. Flow cytometry was used to analyze intracellular calcium, mitochondrial dysfunction and neuronal apoptosis. Results Ethanol increased cleaved caspase-3 levels and mitochondrial reactive oxygen species (ROS) generation associated with neuronal apoptosis. In addition, ethanol increased protein kinase A (PKA) activation and cAMP-response-element-binding protein (CREB) phosphorylation, which increased N-methyl-D-aspartate receptor (NMDAR) expression. Ethanol-increased NMDAR induced intracellular calcium overload and calmodulin-dependent protein kinase II (CaMKII) activation leading to phosphorylation of dynamin-related protein 1 (Drp1) and c-Jun N-terminal protein kinase 1 (JNK1). Drp1 phosphorylation promoted Drp1 translocation to the mitochondria, resulting in excessive mitochondrial fission, mitochondrial ROS accumulation, and loss of mitochondrial membrane potential, which was recovered by Drp1 inhibitor pretreatment. Ethanol-induced JNK1 phosphorylation activated the NLRP3 inflammasome that induced caspase-1 dependent mitophagy inhibition, thereby exacerbating ROS accumulation and causing cell death. Suppressing caspase-1 induced mitophagy and reversed the ethanol-induced apoptosis in neuronal cells. Conclusions Our results demonstrated that ethanol upregulated NMDAR-dependent CaMKII phosphorylation which is essential for Drp1-mediated excessive mitochondrial fission and the JNK1-induced NLRP3 inflammasome activation resulting in neuronal apoptosis. Video abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea.,Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seo Yihl Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
38
|
Murphy CE, Lawther AJ, Webster MJ, Asai M, Kondo Y, Matsumoto M, Walker AK, Weickert CS. Nuclear factor kappa B activation appears weaker in schizophrenia patients with high brain cytokines than in non-schizophrenic controls with high brain cytokines. J Neuroinflammation 2020; 17:215. [PMID: 32680547 PMCID: PMC7368759 DOI: 10.1186/s12974-020-01890-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background High inflammation status despite an absence of known infection characterizes a subpopulation of people with schizophrenia who suffer from more severe cognitive deficits, less cortical grey matter, and worse neuropathology. Transcripts encoding factors upstream of nuclear factor kappa B (NF-κB), a major transcriptional activator for the synthesis of pro-inflammatory cytokines, are increased in the frontal cortex in schizophrenia compared to controls. However, the extent to which these changes are disease-specific, restricted to those with schizophrenia and high-neuroinflammatory status, or caused by loss of a key NF-κB inhibitor (HIVEP2) found in schizophrenia brain, has not been tested. Methods Post-mortem prefrontal cortex samples were assessed in 141 human brains (69 controls and 72 schizophrenia) and 13 brains of wild-type mice and mice lacking HIVEP2 (6 wild-type, 7 knockout mice). Gene expression of pro-inflammatory cytokines and acute phase protein SERPINA3 was used to categorize high and low neuroinflammation biotype groups in human samples via cluster analysis. Expression of 18 canonical and non-canonical NF-κB pathway genes was assessed by qPCR in human and mouse tissue. Results In humans, we found non-canonical upstream activators of NF-κB were generally elevated in individuals with neuroinflammation regardless of diagnosis, supporting NF-κB activation in both controls and people with schizophrenia when cytokine mRNAs are high. However, high neuroinflammation schizophrenia patients had weaker (or absent) transcriptional increases of several canonical upstream activators of NF-κB as compared to the high neuroinflammation controls. HIVEP2 mRNA reduction was specific to patients with schizophrenia who also had high neuroinflammatory status, and we also found decreases in NF-κB transcripts typically induced by activated microglia in mice lacking HIVEP2. Conclusions Collectively, our results show that high cortical expression of pro-inflammatory cytokines and low cortical expression of HIVEP2 in a subset of people with schizophrenia is associated with a relatively weak NF-κB transcriptional signature compared to non-schizophrenic controls with high cytokine expression. We speculate that this comparatively milder NF-κB induction may reflect schizophrenia-specific suppression possibly related to HIVEP2 deficiency in the cortex.
Collapse
Affiliation(s)
- Caitlin E Murphy
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW, 2031, Australia.,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Adam J Lawther
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Maree J Webster
- Stanley Medical Research Institute, Kensington, Maryland, USA
| | - Makoto Asai
- Astellas Pharma Inc., Drug Discovery Research, Tsukuba, Japan
| | - Yuji Kondo
- Astellas Pharma Inc., Drug Discovery Research, Tsukuba, Japan
| | | | - Adam K Walker
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW, 2031, Australia.,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Drug Discovery Biology Theme, Monash University, Parkville, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW, 2031, Australia. .,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia. .,Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
39
|
Nakazato Y, Fujita Y, Nakazato M, Yamashita T. Neurons promote encephalitogenic CD4 + lymphocyte infiltration in experimental autoimmune encephalomyelitis. Sci Rep 2020; 10:7354. [PMID: 32355314 PMCID: PMC7192891 DOI: 10.1038/s41598-020-64363-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/15/2020] [Indexed: 11/09/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system characterized by neuroinflammation, leading to demyelination and axonal degeneration. Neuronal excitotoxity mediated by Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) results in neuronal damage in experimental autoimmune encephalitis (EAE), an animal model of MS. Here, we define a critical role of excitatory neurons in the pathogenesis of CD4+ lymphocyte accumulation in EAE. We silenced the activity of excitatory neurons in a mouse model of targeted EAE using inhibitory designer receptors exclusively activated by designer drugs (DREADD) under a CaMKIIα promoter. Neuronal silencing mitigated clinical disease scores in EAE, reduced the expression of c-fos, Tnfα, Ccl2, and Ccr2 mRNAs in targeted EAE lesions, and prevented the migration of CD4+ lymphocytes towards neurons. Ccl2 shRNA treatment of targeted EAE suppressed the migration of CD4+ lymphocytes and alleviated the motor deficits of EAE. Our findings indicate that neuronal activation in EAE promotes the migration of CCR2+ CD4+ lymphocytes and that neuronal silencing with an inhibitory DREADD alleviates clinical and molecular markers of disease. Neuronal CCL2 is thought to be involved in promoting lymphocytes migration.
Collapse
Affiliation(s)
- Yuki Nakazato
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Internal Medicine, Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masamitsu Nakazato
- Department of Internal Medicine, Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan. .,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan. .,Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan. .,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
40
|
Ye X, Tian W, Wang G, Zhang X, Zhou M, Zeng D, Liu X, Yao X, Zhang Y, Chen H. Phenolic Glycosides from the Roots of Ficus hirta Vahl. and Their Antineuroinflammatory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4196-4204. [PMID: 32167773 DOI: 10.1021/acs.jafc.9b07876] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ficus hirta Vahl. (Wuzhimaotao) is an edible functional food used for the soup cooking and health products. Seven undescribed phenolic glycosides (1-7), along with 20 analogues, were isolated from the roots of Ficus hirta. Their structures were determined by comprehensive spectroscopic methods (UV, IR, HRESIMS, and NMR), while the absolute configuration of 1 was established by comparison of the experimental and calculated ECD data. The antineuroinflammatory effects of all the compounds were examined by Western blot. Compounds 1 and 11 attenuated the phosphorylation of AKT, JNK, and ERK1/2. In addition, compound 11 inhibited the NF-κB p65 phosphorylation. Our results indicated that compounds 1 and 11 decreased the occurrence of neuroinflammation in BV2 microglia cells, which might be regulated by inhibiting the activity of proteins in NF-κB, MAPK (JNK and ERK1/2), or AKT signaling pathways. Thus, 1 and 11 might exhibit antineuroinflammatory activities and show promise in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiansheng Ye
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Wenjing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Guanghui Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, People's Republic of China
| | - Mi Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Dequan Zeng
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Xiangzhong Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Xinsheng Yao
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yunwu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, People's Republic of China
| | - Haifeng Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| |
Collapse
|
41
|
Leng J, Liu W, Li L, Wei FY, Tian M, Liu HM, Guo W. MicroRNA-429/Cxcl1 Axis Protective Against Oxygen Glucose Deprivation/Reoxygenation-Induced Injury in Brain Microvascular Endothelial Cells. Dose Response 2020; 18:1559325820913785. [PMID: 32284700 PMCID: PMC7139192 DOI: 10.1177/1559325820913785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 01/12/2023] Open
Abstract
Objective: The objective of the present work was to study the role of Cxcl1 in cerebral
ischemia–reperfusion (I/R) injury and to in-depth explore its pathogenesis. Methods: The expression of Cxcl1 based on the public data was analyzed. Then, we constructed an
oxygen glucose deprivation/reoxygenation (OGD/R) model in vitro using mice brain
microvascular endothelial cells (BMECs) to simulate cerebral I/R in vivo. Results: The results of quantitative real-time polymerase chain reaction assay uncovered that
Cxcl1 showed higher expression while miR-429 showed lower expression in BMECs damaged by
OGD/R, whereas overexpression of Cxcl1 or inhibition of miR-429 expression can
strengthen this effect. Hereafter, through dual luciferase reporter assay, we verified
that miR-429 directly targets Cxcl1 and negatively regulates Cxcl1 expression.
Furthermore, the results also revealed that overexpression of Cxcl1 can reverse the
miR-429-mediated effects. Conclusion: We concluded that miR-429 exerts protective effects against OGD/R-induce injury in
vitro through modulation of Cxcl1 and nuclear factor kinase B pathway, hoping provide a
new view on the pathogenesis of cerebral I/R injury and a feasible potential therapeutic
target.
Collapse
Affiliation(s)
- Jun Leng
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China.,Co-first authors and contributed equally to this work
| | - Wei Liu
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China.,Co-first authors and contributed equally to this work
| | - Li Li
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Fang Yue Wei
- Shandong University of Traditional Chinese Medicine Rehabilitation College Rehabilitation Medicine and Physiotherapy, Jinan, Shandong Province, People's Republic of China
| | - Meng Tian
- Competitive sports section 1 of Sports Science Research Center of Shandong Province, Jinan, Shandong Province, People's Republic of China
| | - Hui Min Liu
- Shandong University of Traditional Chinese Medicine Rehabilitation College Rehabilitation Medicine and Physiotherapy, Jinan, Shandong Province, People's Republic of China
| | - Wen Guo
- Shandong University of Traditional Chinese Medicine Rehabilitation College Rehabilitation Medicine and Physiotherapy, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
42
|
Lambrou GI, Hatziagapiou K, Vlahopoulos S. Inflammation and tissue homeostasis: the NF-κB system in physiology and malignant progression. Mol Biol Rep 2020; 47:4047-4063. [PMID: 32239468 DOI: 10.1007/s11033-020-05410-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Disruption of tissue function activates cellular stress which triggers a number of mechanisms that protect the tissue from further damage. These mechanisms involve a number of homeostatic modules, which are regulated at the level of gene expression by the transactivator NF-κB. This transcription factor shifts between activation and repression of discrete, cell-dependent gene expression clusters. Some of its target genes provide feedback to NF-κB itself, thereby strengthening the inflammatory response of the tissue and later terminating inflammation to facilitate restoration of tissue homeostasis. Disruption of key feedback modules for NF-κB in certain cell types facilitates the survival of clones with genomic aberrations, and protects them from being recognized and eliminated by the immune system, to enable thereby carcinogenesis.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece.
| |
Collapse
|
43
|
Ma N, Zhang J, Reiter RJ, Ma X. Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: A therapeutic target to reduce intestinal inflammation. Med Res Rev 2020; 40:606-632. [PMID: 31420885 DOI: 10.1002/med.21628] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Nowadays, melatonin, previously considered only as a pharmaceutical product for rhythm regulation and sleep aiding, has shown its potential as a co-adjuvant treatment in intestinal diseases, however, its mechanism is still not very clear. A firm connection between melatonin at a physiologically relevant concentration and the gut microbiota and inflammation has recently established. Herein, we summarize their crosstalk and focus on four novelties. First, how melatonin is synthesized and degraded in the gut and exerts potentially diverse phenotypic effects through its diverse metabolites. Second, how melatonin mediates the activation and proliferation of intestinal mucosal immune cells with paracrine and autocrine properties. By modulating T/B cells, mast cells, macrophages and dendritic cells, melatonin immunomodulatory involved in regulating T-cell differentiation, intervening T/B cell interaction and attenuating the production of pro-inflammatory factors, achieving its antioxidant action via specific receptors. Third, how melatonin exerts antimicrobial action and modulates microbial components, such as lipopolysaccharide, amyloid-β peptides via nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) or signal transducers and activators of transcription (STAT1) pathway to modulate intestinal immune function in immune-pineal axis. The last, how melatonin mediates the effect of intestinal bacterial activity signals on the body rhythm system through the NF-κB pathway and influences the mucosal epithelium oscillation via clock gene expression. These processes are achieved at mitochondrial and nuclear levels to control the host immune cell development. Considering unclear mechanisms and undiscovered actions of melatonin in gut-microbiome-immune axis, it's time to reveal them and provide new insight for the outlook of melatonin as a potential therapeutic target in the treatment and management of intestinal diseases.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Zhang
- Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Internal Medicine and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
44
|
Manangeeswaran M, Lewkowicz AP, Israely T, Ireland DDC, Verthelyi D. CpG Oligonucleotides Protect Mice From Alphavirus Encephalitis: Role of NK Cells, Interferons, and TNF. Front Immunol 2020; 11:237. [PMID: 32133008 PMCID: PMC7040238 DOI: 10.3389/fimmu.2020.00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/29/2020] [Indexed: 12/26/2022] Open
Abstract
Arboviruses including alphavirus are responsible for most emerging infectious diseases worldwide. Recent outbreaks of chikungunya virus serve as a stark reminder to their pathogenic potential. There are no vaccines or therapeutics currently available to contain alphavirus outbreaks. In this study we evaluated the effect of immunomodulatory CpG ODN on the clinical progression of neurotropic Sindbis virus infection. Neonatal C57Bl-6 mice challenged with Sindbis virus AR339 (25 PFU Subcutaneous) infect neurons in the CNS leading to the development of ataxia, seizures, paralysis, and death. We show that systemic administration of CpG ODN modulates the cytokine and chemokine gene expression levels in the CNS and ultimately protects neonatal mice from lethal neurotropic infection. The protection conferred by CpG ODN is controlled by innate immune response and T and B cells were dispensable. Further, protection required Type I, Type II interferons, and TNF as well as functional NK cells, but did not involve iNOS. This study confirms that administration of innate immune modulators can be used as a strategy to boost host innate immune responses and protect against neurotropic viruses reducing their pathogenic footprint.
Collapse
Affiliation(s)
- Mohanraj Manangeeswaran
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Aaron P Lewkowicz
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Tomer Israely
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Derek D C Ireland
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Daniela Verthelyi
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
45
|
Chu LW, Cheng KI, Chen JY, Cheng YC, Chang YC, Yeh JL, Hsu JH, Dai ZK, Wu BN. Loganin prevents chronic constriction injury-provoked neuropathic pain by reducing TNF-α/IL-1β-mediated NF-κB activation and Schwann cell demyelination. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153166. [PMID: 31955133 DOI: 10.1016/j.phymed.2019.153166] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/06/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Peripheral nerve injury can produce chronic and ultimately neuropathic pain. The chronic constriction injury (CCI) model has provided a deeper understanding of nociception and chronic pain. Loganin is a well-known herbal medicine with glucose-lowering action and neuroprotective activity. PURPOSE This study investigated the molecular mechanisms by which loganin reduced CCI-induced neuropathic pain. METHODS Sprague-Dawley rats were randomly divided into four groups: sham, sham+loganin, CCI and CCI+loganin. Loganin (1 or 5 mg/kg/day) was injected intraperitoneally once daily for 14 days, starting the day after CCI. For behavioral testing, mechanical and thermal responses were assessed before surgery and on d1, d3, d7 and d14 after surgery. Sciatic nerves (SNs) were collected to measure proinflammatory cytokines. Proximal and distal SNs were collected separately for Western blotting and immunofluorescence studies. RESULTS Thermal hyperalgesia and mechanical allodynia were reduced in the loganin-treated group as compared to the CCI group. Loganin (5 mg/kg/day) prevented CCI from inducing proinflammatory cytokines (TNF-α, IL-1β), inflammatory proteins (TNF-α, IL-1β, pNFκB, pIκB/IκB, iNOS) and receptor (TNFR1, IL-1R), adaptor protein (TRAF2) of TNF-α, and Schwann cell demyelination and axonal damage. Loganin also blocked IκB phosphorylation (p-IκB). Double immunofluorescent staining further demonstrated that pNFκB/pIκB protein was reduced by loganin in Schwann cells on d7 after CCI. In the distal stumps of injured SN, Schwann cell demyelination was correlated with pain behaviors in CCI rats. CONCLUSION Our findings indicate that loganin improves CCI-induced neuroinflammation and pain behavior by downregulating TNF-α/IL-1β-dependent NF-κB activation.
Collapse
Affiliation(s)
- Li-Wen Chu
- Department of Nursing, Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
| | - Kuang-I Cheng
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jun-Yih Chen
- Division of Neurosurgery, Fooyin University Hospital, Pingtung, Taiwan; School of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Yu-Chi Cheng
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chin Chang
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Division of Pediatric Cardiology and Pulmonology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Division of Pediatric Cardiology and Pulmonology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
46
|
Chen H, Lin W, Lin P, Zheng M, Lai Y, Chen M, Zhang Y, Chen J, Lin X, Lin L, Lan Q, Yuan Q, Chen R, Jiang X, Xiao Y, Liu N. IL-10 produces a dual effect on OGD-induced neuronal apoptosis of cultured cortical neurons via the NF-κB pathway. Aging (Albany NY) 2019; 11:10796-10813. [PMID: 31801113 PMCID: PMC6932931 DOI: 10.18632/aging.102411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
As a classic immunoregulatory cytokine, interleukin-10 (IL-10) can provide in vivo and in vitro neuroprotection respectively during cerebral ischemia and after the oxygen-glucose deprivation (OGD)-induced injury. However, its role in cortical neuronal survival at different post-ischemic phases remains unclear. The current study found that IL-10 had distinct effects on the neuronal apoptosis at different OGD stages: at an early stage after OGD, IL-10 promoted the OGD-induced neuronal apoptosis in the cultured primary cortical neurons by activating p65 subunit, which up-regulated Bax expression and down-regulated Bcl-xL expression; at a late OGD stage, however, it attenuated the OGD-induced neuronal apoptosis by activating c-Rel, which up-regulated Bcl-xL expression and down-regulated Bax expression. The early-stage pro-apoptosis and late-stage anti-apoptosis were both partly abolished by PDTC, an NF-κB inhibitor, and promoted by PMA, an NF-κB activator. The optimal anti-apoptotic effect appeared when the cultured neurons were treated with IL-10 at 9-24 h after OGD. Taken together, our findings suggest that IL-10 exerts a dual effect on the survival of the cultured neurons by activating the NF-κB pathway at different stages after OGD injury and that PMA treatment at a late stage can facilitate the IL-10-conferred neuroprotection against OGD-induced neuronal injury.
Collapse
Affiliation(s)
- Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Peiqiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Mouwei Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yongxing Lai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yixian Zhang
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Jianhao Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaohui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Longzai Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Quan Lan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.,Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qilin Yuan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ronghua Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xinhong Jiang
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yingchun Xiao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
47
|
Pisano S, Pozzi M, Catone G, Scrinzi G, Clementi E, Coppola G, Milone A, Bravaccio C, Santosh P, Masi G. Putative Mechanisms of Action and Clinical Use of Lithium in Children and Adolescents: A Critical Review. Curr Neuropharmacol 2019; 17:318-341. [PMID: 29256353 PMCID: PMC6482478 DOI: 10.2174/1570159x16666171219142120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/09/2017] [Accepted: 11/28/2017] [Indexed: 01/17/2023] Open
Abstract
Background: Lithium is a first-line treatment for bipolar disorder in adults, but its mechanism of action is still far from clear. Furthermore, evidences of its use in pediatric populations are sparse, not only for bipolar disorders, but also for other possible indications. Objectives: To provide a synthesis of published data on the possible mechanisms of action of lithium, as well as on its use in pediatric samples, including pharmacokinetics, efficacy, and safety data. Methods: Clinical trials in pediatric samples with at least one standardized measure of efficacy/effectiveness were included in this review. We considered: i) randomized and open label trials, ii) combination studies iii) augmentation studies iv) case series including at least 5 patients. Results: Different and non-alternative mechanisms of action can explain the clinical efficacy of lithium. Clinical studies in pediatric samples suggest that lithium is effective in managing manic symptoms/episodes of bipolar disorder, both in the acute phase and as maintenance strategy. Efficacy on depressive symptoms/phases of bipolar disorder is much less clear, while studies do not support its use in unipolar depression and severe mood dysregulation. Conversely, it may be effective on aggression in the context of conduct disorder. Other possible indications, with limited published evidence, are the acute attacks in Kleine-Levin syndrome, behavioral symptoms of X-fragile syndrome, and the management of clozapine- or chemotherapy- induced neutropenia. Generally, lithium resulted relatively safe. Conclusions: Lithium seems an effective and well-tolerated medication in pediatric bipolar disorder and aggression, while further evidences are needed for other clinical indications.
Collapse
Affiliation(s)
- Simone Pisano
- Clinic of Child and Adolescent Neuropsychiatry, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Gennaro Catone
- Dept. of Mental and Physical Health and Preventive Medicine, Child and Adolescent Psychiatry Division, Campania University- Luigi Vanvitelli, Italy
| | - Giulia Scrinzi
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Child Neuropsychiatry Unit, University of Verona, Verona 37126, Italy
| | - Emilio Clementi
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy.,Unit of Clinical Pharmacology, CNR Institute of Neuroscience, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, University of Milan, 20157 Milan, Italy
| | - Giangennaro Coppola
- Clinic of Child and Adolescent Neuropsychiatry, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Annarita Milone
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Pisa, Italy
| | - Carmela Bravaccio
- Department of Translational Medical Sciences, University Federico II of Naples, Italy
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), National and Specialist Child and Adolescent Mental Health Services, Maudsley Hospital, London, United States.,HealthTracker Ltd, Gillingham, United States
| | - Gabriele Masi
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Pisa, Italy
| |
Collapse
|
48
|
Jha NK, Jha SK, Kar R, Nand P, Swati K, Goswami VK. Nuclear factor-kappa β as a therapeutic target for Alzheimer's disease. J Neurochem 2019; 150:113-137. [PMID: 30802950 DOI: 10.1111/jnc.14687] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/16/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a typical progressive, chronic neurodegenerative disorder with worldwide prevalence. Its clinical manifestation involves the presence of extracellular plaques and intracellular neurofibrillary tangles (NFTs). NFTs occur in brain tissues as a result of both Aβ agglomeration and Tau phosphorylation. Although there is no known cure for AD, research into possible cures and treatment options continues using cell-cultures and model animals/organisms. The nuclear factor-kappa β (NF-κβ) plays an active role in the progression of AD. Impairment to this signaling module triggers undesirable phenotypic changes such as neuroinflammation, activation of microglia, oxidative stress related complications, and apoptotic cell death. These imbalances further lead to homeostatic abnormalities in the brain or in initial stages of AD essentially pushing normal neurons toward the degeneration process. Interestingly, the role of NF-κβ signaling associated receptor-interacting protein kinase is currently observed in apoptotic and necrotic cell death, and has been reported in brains. Conversely, the NF-κβ signaling pathway has also been reported to be involved in normal brain functioning. This pathway plays a crucial role in maintaining synaptic plasticity and balancing between learning and memory. Since any impairment in the pathways associated with NF-κβ signaling causes altered neuronal dynamics, neurotherapeutics using compounds including, antioxidants, bioflavonoids, and non-steroidal anti-inflammatory drugs against such abnormalities offer possibilities to rectify aberrant excitatory neuronal activity in AD. In this review, we have provided an extensive overview of the crucial role of NF-κβ signaling in normal brain homeostasis. We have also thoroughly outlined several established pathomechanisms associated with NF-κβ pathways in AD, along with their respective therapeutic approaches.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Rohan Kar
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Kumari Swati
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Vineet Kumar Goswami
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
49
|
Chen JY, Chu LW, Cheng KI, Hsieh SL, Juan YS, Wu BN. Valproate reduces neuroinflammation and neuronal death in a rat chronic constriction injury model. Sci Rep 2018; 8:16457. [PMID: 30405207 PMCID: PMC6220313 DOI: 10.1038/s41598-018-34915-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
Valproate (VPA) is a well-known drug for treating epilepsy and mania, but its action in neuropathic pain is unclear. We used a chronic constriction injury (CCI) model to explore whether VPA prevents neuropathic pain-mediated inflammation and neuronal death. Rats were treated with or without VPA. CCI + VPA rats were intraperitoneally injected with VPA (300 mg/kg/day) from postoperative day (POD) 1 to 14. We measured paw withdrawal latency (PWL) and paw withdrawal threshold (PWT) 1 day before surgery and 1, 3, 7, 14 days after CCI and harvested the sciatic nerves (SN), spinal cord (SC) and dorsal root ganglia (DRG) on POD 3, 7, and 14. PWL and PWT were reduced in CCI rats, but increased in CCI + VPA rats on POD 7 and POD 14. VPA lowered CCI-induced inflammatory proteins (pNFκB, iNOS and COX-2), pro-apoptotic proteins (pAKT/AKT and pGSK-3β/GSK-3β), proinflammatory cytokines (TNF-α and IL-1β) and nuclear pNFκB activation in the SN, DRG and SC in CCI rats. COX-2 and pGSK-3 proteins were decreased by VPA on immunofluorescence analysis. VPA attenuated CCI-induced thermal and mechanical pain behaviors in rats in correlation with anti-neuroinflammation action involving reduction of pNFκB/iNOS/COX-2 activation and inhibition of pAKT/pGSK-3β-mediated neuronal death from injury to peripheral nerves.
Collapse
Affiliation(s)
- Jun-Yih Chen
- Division of Neurosurgery, Fooyin University Hospital, Pingtung, Taiwan.,School of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Li-Wen Chu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
| | - Kuang-I Cheng
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Su-Ling Hsieh
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yung-Shun Juan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
50
|
Zonis S, Breunig JJ, Mamelak A, Wawrowsky K, Bresee C, Ginzburg N, Chesnokova V. Inflammation-induced Gro1 triggers senescence in neuronal progenitors: effects of estradiol. J Neuroinflammation 2018; 15:260. [PMID: 30201019 PMCID: PMC6131894 DOI: 10.1186/s12974-018-1298-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/29/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Inflammation has been proposed to contribute to the decline in adult hippocampal neurogenesis. Proinflammatory cytokines activate transcription of chemokine growth-regulated oncogene α (Gro1) in human and murine hippocampal neuronal progenitor cells (NPC). The goal of this study was to investigate the effects of Gro1 on hippocampal neurogenesis in the presence of inflammation. METHODS Human hippocampal NPC were transfected with lentivirus expressing Gro1, and murine NPC and hippocampal neuronal HT-22 cells were treated with Gro1 protein. A plasmid expressing mGro1 was electroporated in the hippocampus of newborn mice that were sacrificed 10 days later. Adult male and female mice were injected with lipopolysaccharide (LPS; 1 mg/kg, i.p in five daily injections) or normal saline. Adult male mice were implanted with pellets releasing 17-β estradiol (E2; 2.5 mg/pellet, 41.666 μg/day release) or placebo for 6 weeks and challenged with LPS or normal saline as above. In both experiments, mice were sacrificed 3 h after the last injection. Hippocampal markers of neurogenesis were assessed in vitro and in vivo by Western blot, real-time PCR, and immunohisto/cytochemistry. RESULTS Gro1 induced premature senescence in NPC and HT-22 cells, activating senescence-associated β-galactosidase and the cell cycle inhibitor p16 and suppressing neuroblast proliferation and expression of doublecortin (DCX) and neuron-specific class III beta-tubulin (Tuj-1), both neuroblast markers, while promoting proliferation of neural glial antigen 2 (Ng2)-positive oligodendrocytes. Gro1 overexpression in the hippocampus of newborn mice resulted in decreased neuroblast development, as evidenced by decreased DCX expression and increased expression of platelet-derived growth factor α receptor (PDGFαR), a marker of oligodendrocyte precursors. In adult mice, Gro1 was induced in response to LPS treatment in male but not in female hippocampus, with a subsequent decrease in neurogenesis and activation of oligodendrocyte progenitors. No changes in neurogenesis were observed in females. Treatment with E2 blunted LPS-induced Gro1 in the male hippocampus. CONCLUSIONS Inflammation-induced Gro1 triggers neuroblast senescence, thus suppressing new neuron development in the hippocampus. Sex-dependent differences in Gro1 response are attributed to estradiol, which blunts these changes, protecting the female hippocampus from the deleterious effects of inflammation-induced Gro1 on neurogenesis.
Collapse
Affiliation(s)
- Svetlana Zonis
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048 USA
| | - Joshua J. Breunig
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048 USA
| | - Adam Mamelak
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048 USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048 USA
| | - Kolja Wawrowsky
- Department of Biomedical Science, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048 USA
| | - Catherine Bresee
- Biostatistics and Bioinformatics Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048 USA
| | - Nadiya Ginzburg
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048 USA
| | - Vera Chesnokova
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048 USA
| |
Collapse
|