1
|
Kang DW, Choi SR, Shin H, Lee H, Park J, Lee M, Bae M, Kim HW. Modulation of Brain-derived Neurotrophic Factor Expression by Physical Exercise in Reserpine-induced Pain-depression Dyad in Mice. Exp Neurobiol 2024; 33:165-179. [PMID: 39266473 PMCID: PMC11411092 DOI: 10.5607/en24014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Pain accompanied by depressive symptoms is a common reason for seeking medical assistance, and many chronic pain patients experience comorbid depression. The brain-derived neurotrophic factor (BDNF) is a well-known neurotrophin expressed throughout the nervous system, playing a crucial role in neuronal growth and neuroplasticity. This study aimed to examine the effects of exercise on BDNF expression in the nervous system and reserpine (RSP)-induced pain-depression dyad. RSP (1 mg/kg) was subcutaneously administered once daily for three days in mice. The exercise was performed using a rota-rod tester for seven consecutive days following RSP administration. Pain responses were evaluated using von Frey filaments, and depression-like behaviors were assessed through forced swimming and open field tests. Immunofluorescence staining was performed to examine the changes in BDNF expression in the dorsal root ganglion (DRG), spinal cord, and hippocampus. Administration of RSP reduced mechanical paw withdrawal threshold, increased immobility time in the forced swimming test, and decreased movement in the open field test. The immunoreactivity of BDNF was increased in the DRG and spinal dorsal regions, and decreased in the hippocampus after RSP administration. Physical exercise significantly reduced the RSP-induced mechanical hypersensitivity and depression-like behaviors. In addition, exercise suppressed not only the increased expression of BDNF in the DRG and spinal dorsal regions but also the decreased expression of BDNF in the hippocampus induced by RSP administration. These findings suggest that repetitive exercise could serve as an effective and non-invasive treatment option for individuals experiencing both pain and depression by modulating BDNF expression.
Collapse
Affiliation(s)
- Dong-Wook Kang
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Sheu-Ran Choi
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| | - Hyunjin Shin
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Hyeryeong Lee
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Jaehong Park
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Miae Lee
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Miok Bae
- Preclinical Research Center, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Hyun-Woo Kim
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
2
|
Dong P, Dai W, Zhao T, Gong Y, Weng N, Lv S, Zhao Y, Du C, Ma Y, Zhang Z, He S, Zheng F, Sun P. Jingqianshu granules mitigates premenstrual depression by regulating orexin signaling. Front Pharmacol 2024; 15:1294122. [PMID: 38948463 PMCID: PMC11211579 DOI: 10.3389/fphar.2024.1294122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/15/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction: Premenstrual dysphoric disorder (PMDD), a severe form of premenstrual syndrome (PMS), is a serious health disorder that affects patient moods. It is caused by cyclic psychological symptoms and its pathogenesis is still unclear. Abnormalities in the basolateral amygdala (BLA) orexin system, which are important causes of the development of depressive mood, have not been reported in PMDD, so exploring its intrinsic mechanisms is meaningful for enriching the pathomechanisms of PMDD. Methods: High performance liquid chromatography was used for the determination of the active ingredients of Jingqianshu granules. Developing a rat model of premenstrual depression using the forced swimming test (FST). The experiment consisted of two parts. In Part 1, the rats were divided into the control group, the model group, the model + Jingqianshu group, and the model + fluoxetine group. The FST, open field test, and elevated plus maze test, were used to assess the behavior of the rats as well as to evaluate the effect of drug intervention. Immunofluorescence and RT-qPCR were used to detect the expression of orexin and its receptors OX1R and OX2R genes and proteins. The expression of Toll-like receptor 4, nuclear factor kappa-B, tumor necrosis factor-α, interleukin 6, and interleukin-1β in the BLA brain region was detected by Western-Blot. In part 2, the rats were injected intracerebrally with orexin-A. Observe the behavioral activities of rats in the control group, model group, and model+orexin-A group. Immunofluorescence was used to detect microglia in the BLA area of rats, and the expression levels of the above inflammatory factors were detected by Western-Blot. Results: The five components of Jingqianshu granules are: paeoniflorin, erulic acid, liquiritin, hesperidin, and paeonol. During the estrous cycle, rats exhibited depressive-like behavior during the non-receptive phase of the behavioral test, which disappeared during the receptive phase. Immunofluorescence and RT-qPCR showed reduced gene and protein expression of orexin, OX1R, and OX2R in the BLA region of rats in the model group.WB showed elevated levels of inflammatory factors. All returned to control levels after drug treatment. In part 2, injection of orexin-A into the BLA brain region of model rats resulted in reduced immunoreactivity of microglia and decreased expression levels of inflammatory factors. Discussion: Jianqianshu granules can achieve the purpose of treating premenstrual depression by regulating orexin-mediated inflammatory factors, which provides a new idea for further research on the pathogenesis of PMDD. However, the current study is still preliminary and the pathogenesis of PMDD is complex. Therefore, more in-depth exploration is needed.
Collapse
Affiliation(s)
- Ping Dong
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weibo Dai
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Tingting Zhao
- School of Foreign Language, Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Ning Weng
- Shandong Mental Health Center, Jinan, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifan Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunyu Du
- Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd., Qinhuangdao, China
| | - Yuexiang Ma
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Zhang
- College of Traditional Chinese Medicine Health, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuhua He
- Boai Hospitai of Zhngshan, Zhngshan, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Peng Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Hodes GE, Bangasser D, Sotiropoulos I, Kokras N, Dalla C. Sex Differences in Stress Response: Classical Mechanisms and Beyond. Curr Neuropharmacol 2024; 22:475-494. [PMID: 37855285 PMCID: PMC10845083 DOI: 10.2174/1570159x22666231005090134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 10/20/2023] Open
Abstract
Neuropsychiatric disorders, which are associated with stress hormone dysregulation, occur at different rates in men and women. Moreover, nowadays, preclinical and clinical evidence demonstrates that sex and gender can lead to differences in stress responses that predispose males and females to different expressions of similar pathologies. In this curated review, we focus on what is known about sex differences in classic mechanisms of stress response, such as glucocorticoid hormones and corticotrophin-releasing factor (CRF), which are components of the hypothalamicpituitary- adrenal (HPA) axis. Then, we present sex differences in neurotransmitter levels, such as serotonin, dopamine, glutamate and GABA, as well as indices of neurodegeneration, such as amyloid β and Tau. Gonadal hormone effects, such as estrogens and testosterone, are also discussed throughout the review. We also review in detail preclinical data investigating sex differences caused by recentlyrecognized regulators of stress and disease, such as the immune system, genetic and epigenetic mechanisms, as well neurosteroids. Finally, we discuss how understanding sex differences in stress responses, as well as in pharmacology, can be leveraged into novel, more efficacious therapeutics for all. Based on the supporting evidence, it is obvious that incorporating sex as a biological variable into preclinical research is imperative for the understanding and treatment of stress-related neuropsychiatric disorders, such as depression, anxiety and Alzheimer's disease.
Collapse
Affiliation(s)
| | - Debra Bangasser
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Ioannis Sotiropoulos
- Institute of Biosciences & Applications NCSR “Demokritos”, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Fricke HP, Hernandez LL. The Serotonergic System and Bone Metabolism During Pregnancy and Lactation and the Implications of SSRI Use on the Maternal-Offspring Dyad. J Mammary Gland Biol Neoplasia 2023; 28:7. [PMID: 37086330 PMCID: PMC10122632 DOI: 10.1007/s10911-023-09535-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
Lactation is a physiological adaptation of the class Mammalia and is a product of over 200 million years of evolution. During lactation, the mammary gland orchestrates bone metabolism via serotonin signaling in order to provide sufficient calcium for the offspring in milk. The role of serotonin in bone remodeling was first discovered over two decades ago, and the interplay between serotonin, lactation, and bone metabolism has been explored in the years following. It is estimated that postpartum depression affects 10-15% of the population, and selective serotonin reuptake inhibitors (SSRI) are often used as the first-line treatment. Studies conducted in humans, nonhuman primates, sheep, and rodents have provided evidence that there are consequences on both parent and offspring when serotonin signaling is disrupted during the peripartal period; however, the long-term consequences of disruption of serotonin signaling via SSRIs during the peripartal period on the maternal and offspring skeleton are not fully known. This review will focus on the relationship between the mammary gland, serotonin, and bone remodeling during the peripartal period and the skeletal consequences of the dysregulation of the serotonergic system in both human and animal studies.
Collapse
Affiliation(s)
- Hannah P Fricke
- Animal and Dairy Sciences Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura L Hernandez
- Animal and Dairy Sciences Department, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Kwami Edem Kukuia K, Boakye Burns F, Kofi Adutwum-Ofosu K, Appiah F, Kwabena Amponsah S, Begyinah R, Efua Koomson A, Yaw Takyi F, Amatey Tagoe T, Amoateng P. Increased BDNF and hippocampal dendritic spine density are associated with the rapid antidepressant-like effect of iron-citalopram and iron-imipramine combinations in mice. Neuroscience 2023; 519:90-106. [PMID: 36948482 DOI: 10.1016/j.neuroscience.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Iron supplementation previously demonstrated antidepressant-like effects in post-partum rats. The present study evaluates the possible synergistic antidepressant effect of sub-therapeutic dose of iron co-administered with citalopram or imipramine in female Institute of Cancer Research mice. Depression-like symptoms were induced in the forced swim (FST), tail suspension (TST), and open space swim (OSST) tests while open field test (OFT) was used to assess locomotor activity. Mice (n=8) received iron (0.8- 7.2 mg/kg), citalopram (3-30 mg/kg), imipramine (3-30 mg/kg), desferrioxamine (50 mg/kg) or saline in the single treatment phase of each model and subsequently a sub-therapeutic dose of iron co-administered with citalopram or imipramine. Assessment of serum BDNF and dendritic spine density was done using ELISA and Golgi staining techniques respectively. Iron, citalopram and imipramine, unlike desferrioxamine, reduced immobility score in the TST, FST and OSST without affecting locomotor activity, suggesting antidepressant-like effect. Sub-therapeutic dose of iron in combination with citalopram or imipramine further enhanced the antidepressant-like effect, producing a more rapid effect when compared to the iron, citalopram or imipramine alone. Iron, citalopram and imipramine or their combinations increased serum BDNF concentration, hippocampal neuronal count and dendritic spine densities. Our study provides experimental evidence that iron has antidepressant-like effect and sub-therapeutic dose of iron combined with citalopram or imipramine produces more rapid antidepressant-like effect. We further show that iron alone or its combination with citalopram or imipramine attenuates the neuronal loss associated with depressive conditions, increases dendritic spines density and BDNF levels. These finding suggest iron-induced neuronal plasticity in the mice brain.
Collapse
Affiliation(s)
- Kennedy Kwami Edem Kukuia
- Department of Medical Pharmacology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana.
| | - Frederick Boakye Burns
- Department of Pharmacology & Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, P.O Box LG 43, Legon, Accra, Ghana.
| | - Kevin Kofi Adutwum-Ofosu
- Department of Anatomy, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana.
| | - Frimpong Appiah
- Department of Community Health and Medicine, School of Food and Health Sciences, Anglican University College of Technology, Nkoranza, Ghana.
| | - Seth Kwabena Amponsah
- Department of Medical Pharmacology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana.
| | - Richard Begyinah
- Department of Pharmacology & Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, P.O Box LG 43, Legon, Accra, Ghana.
| | - Awo Efua Koomson
- Department of Medical Pharmacology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana.
| | - Ferka Yaw Takyi
- Department of Pharmacology & Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, P.O Box LG 43, Legon, Accra, Ghana.
| | - Thomas Amatey Tagoe
- Department of Physiology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana.
| | - Patrick Amoateng
- Department of Pharmacology & Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, P.O Box LG 43, Legon, Accra, Ghana.
| |
Collapse
|
6
|
Abstract
Depression and anxiety disorders carry a tremendous worldwide burden and emerge as a significant cause of disability among western societies. Both disorders are known to disproportionally affect women, as they are twice more likely to be diagnosed and moreover, they are also prone to suffer from female-specific mood disorders. Importantly, the prevalence of these affective disorders has notably risen after the COVID pandemic, especially in women. In this chapter, we describe factors that are possibly contributing to the expression of such sex differences in depression and anxiety. For this, we overview the effect of transcriptomic and genetic factors, the immune system, neuroendocrine aspects, and cognition. Furthermore, we also provide evidence of sex differences in antidepressant response and their causes. Finally, we emphasize the importance to consider sex as a biological variable in preclinical and clinical research, which may facilitate the discovery and development of new and more efficacious antidepressant and anxiolytic pharmacotherapies for both women and men.
Collapse
Affiliation(s)
- Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
7
|
Antihyperalgesic and Antiallodynic Effects of Amarisolide A and Salvia amarissima Ortega in Experimental Fibromyalgia-Type Pain. Metabolites 2022; 13:metabo13010059. [PMID: 36676984 PMCID: PMC9863681 DOI: 10.3390/metabo13010059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Salvia amarissima Ortega is an endemic species of Mexico used in folk medicine to alleviate pain and as a nervous tranquilizer. The S. amarissima extract and one of its abundant metabolites, identified and isolated through chromatographic techniques, were investigated to obtain scientific evidence of its potential effects to relieve nociplastic pain such as fibromyalgia. Then, the extract and amarisolide A (3-300 mg/kg, i.p.) were pharmacologically evaluated in reserpine-induced fibromyalgia-type chronic pain and in depressive-like behavior (as a common comorbidity) by using the forced swimming test in rats. The 5-HT1A serotonin receptor (selective antagonist WAY100635, 1 mg/kg, i.p.) was explored after the prediction of a chemical interaction using in silico analysis to look for a possible mechanism of action of amarisolide A. Both the extract and amarisolide A produced significant and dose-dependent antihyperalgesic and antiallodynic effects in rats, as well as significant antidepressive behavior without sedative effects when the antinociceptive dosages were used. The 5-HT1A serotonin receptor participation was predicted by the in silico descriptors and was corroborated in the presence of WAY100635. In conclusion, S. amarissima possesses antihyperalgesic, antiallodynic, and anti-depressive activities, partially due to the presence of amarisolide A, which involves the 5-HT1A serotonin receptor. This pharmacological evidence suggests that S. amarissima and amarisolide A are both potential alternatives to relieve pain-like fibromyalgia.
Collapse
|
8
|
Dai J, Kim H, You Z, McCabe MF, Zhang S, Wang S, Lim G, Chen L, Mao J. Role of 5-HT1A-mediated upregulation of brain indoleamine 2,3 dioxygenase 1 in the reduced antidepressant and antihyperalgesic effects of fluoxetine during maintenance treatment. Front Pharmacol 2022; 13:1084108. [PMID: 36588734 PMCID: PMC9800882 DOI: 10.3389/fphar.2022.1084108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The reduced antidepressant and antihyperalgesic effects of selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine during maintenance treatment has been reported, but little is known about the molecular mechanism of this phenomenon. In three comorbid pain and depression animal models (genetic predisposition, chronic social stress, arthritis), we showed that the fluoxetine's antidepressant and antihyperalgesic effects were reduced during the maintenance treatment. Fluoxetine exposure induced upregulation of the 5-hydroxytryptamine 1A (5-HT1A) auto-receptor and indoleamine 2,3 dioxygenase 1 (IDO1, a rate-limiting enzyme of tryptophan metabolism) in the brainstem dorsal raphe nucleus (DRN), which shifted the tryptophan metabolism away from the 5-HT biosynthesis. Mechanistically, IDO1 upregulation was downstream to fluoxetine-induced 5-HT1A receptor expression because 1) antagonism of the 5-HT1A receptor with WAY100635 or 5-HT1A receptor knockout blocked the IDO1 upregulation, and 2) inhibition of IDO1 activity did not block the 5-HT1A receptor upregulation following fluoxetine exposure. Importantly, inhibition of either the 5-HT1A receptor or IDO1 activity sustained the fluoxetine's antidepressant and antihyperalgesic effects, indicating that 5-HT1A-mediated IDO1 upregulation in the brainstem DRN contributed to the reduced antidepressant and antihyperalgesic effects of fluoxetine. These results suggest a new strategy to improving the therapeutic efficacy of SSRI during maintenance treatment.
Collapse
Affiliation(s)
- Jiajia Dai
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States,Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hyangin Kim
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States,*Correspondence: Jianren Mao, ; Hyangin Kim,
| | - Zerong You
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael F. McCabe
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shuzhuo Zhang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shiyu Wang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Grewo Lim
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lucy Chen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States,*Correspondence: Jianren Mao, ; Hyangin Kim,
| |
Collapse
|
9
|
Silote GP, Gatto MC, Eskelund A, Guimarães FS, Wegener G, Joca SRL. Strain-, Sex-, and Time-Dependent Antidepressant-like Effects of Cannabidiol. Pharmaceuticals (Basel) 2021; 14:1269. [PMID: 34959670 PMCID: PMC8709491 DOI: 10.3390/ph14121269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023] Open
Abstract
Cannabidiol (CBD) is a non-intoxicating compound extracted from Cannabis sativa, showing antidepressant-like effects in different rodent models. However, inconsistent results have been described depending on the species and the strain used to assess depressive-like behavior. Moreover, only a few studies investigated the effect of CBD in female rodents. Therefore, we aimed to (i) investigate the effects of CBD in two different strains of mice (Swiss and C57BL/6) and a rat model of depression based on selective breeding (Flinders Sensitive and Resistant Lines, FSL and FRL) subjected to tests predictive of antidepressant-like effects and (ii) investigate the influence of sex in the effects of CBD in both mice and rats. CBD induced an antidepressant-like effect in male Swiss but not in female Swiss or C57BL/6 mice in the tail suspension test (TST). In male FSL rats, CBD produced an antidepressant-like effect 1 h post injection. However, in female FSL, CBD induced a bimodal effect, increasing the immobility time at 1 h and decreasing it at 2 h. In conclusion, strain, sex, and administration time affect CBD's behavioral response to rodents exposed to tests predictive of antidepressant effects.
Collapse
Affiliation(s)
- Gabriela P. Silote
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto 14040-903, SP, Brazil; (G.P.S.); (M.C.G.)
- Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Michelle C. Gatto
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto 14040-903, SP, Brazil; (G.P.S.); (M.C.G.)
| | - Amanda Eskelund
- Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Francisco S. Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil;
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Gregers Wegener
- Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Sâmia R. L. Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto 14040-903, SP, Brazil; (G.P.S.); (M.C.G.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
10
|
Seiffe A, Ramirez MF, Barrios CD, Albarrán MM, Depino AM. Early estradiol exposure masculinizes disease-relevant behaviors in female mice. Eur J Neurosci 2021; 53:2483-2499. [PMID: 33497491 DOI: 10.1111/ejn.15130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 11/29/2022]
Abstract
Most psychiatric disorders show a sex bias in incidence, symptomatology, and/or response to treatment. Males are more susceptible to neurodevelopmental disorders including autism spectrum disorder and attention-deficit activity disorder, while women are more prone to major depressive disorder and anxiety disorders after puberty. A striking difference between males and females in humans and other mammals is that males undergo a process of brain masculinization due to the early exposure to gonadal hormones. In rodents, this developmental organization of the brain is essential for adult males to express the appropriate sexual behaviors in the presence of a receptive female. Our goal was to determine whether this process of brain masculinization influences behaviors relevant to psychiatric disorders. To this aim, we studied sex differences and the effect of neonatal 17β-estradiol benzoate treatment of female mice on different disease-relevant behaviors. Our analysis includes postnatal behavior, juvenile play, and adult tests for sociability, repetitive behaviors, anxiety, and depression. Our results show that the sex differences observed in exploration, repetitive behaviors, and depression-related behaviors are largely reduced when females are neonatally treated with 17β-estradiol benzoate. These results suggest a role of neonatal sex steroids in the development of disease-relevant behaviors and provide evidence supporting a role for perinatal exposure to estrogens and androgens on the development and manifestation of psychiatric disorders.
Collapse
Affiliation(s)
- Araceli Seiffe
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauro Federico Ramirez
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudio Darío Barrios
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Milagros Albarrán
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amaicha Mara Depino
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Franceschini A, Fattore L. Gender-specific approach in psychiatric diseases: Because sex matters. Eur J Pharmacol 2021; 896:173895. [PMID: 33508283 DOI: 10.1016/j.ejphar.2021.173895] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
In both animals and human beings, males and females differ in their genetic background and hormonally driven behaviour and show sex-related differences in brain activity and response to internal and external stimuli. Gender-specific medicine has been a neglected dimension of medicine for long time, and only in the last three decades it is receiving the due scientific and clinical attention. Research has recently begun to identify factors that could provide a neurobiological basis for gender-based differences in health and disease and to point to gonadal hormones as important determinants of male-female differences. Animal studies have been of great help in understanding factors contributing to sex-dependent differences and sex hormones action. Here we review and discuss evidence provided by clinical and animal studies in the last two decades showing gender (in humans) and sex (in animals) differences in selected psychiatric disorders, namely eating disorders (anorexia nervosa, bulimia nervosa, binge eating disorder), schizophrenia, mood disorders (anxiety, depression, obsessive-compulsive disorder) and neurodevelopmental disorders (autism spectrum disorders, attention-deficit/hyperactivity disorder).
Collapse
Affiliation(s)
- Anna Franceschini
- Addictive Behaviors Department, Local Health Authority, Trento, Italy
| | - Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council, Italy.
| |
Collapse
|
12
|
Xanthotoxin affects depression-related behavior and neurotransmitters content in a sex-dependent manner in mice. Behav Brain Res 2020; 399:112985. [PMID: 33144177 DOI: 10.1016/j.bbr.2020.112985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
The present study aimed to evaluate xanthotoxin's influence on male and female Swiss mice's depression-like behaviors and investigate the potential mechanism of this effect. Naturally derived furanocoumarin (the Apiaceae family), xanthotoxin, administered acutely (12.5 mg/kg), diminished the immobility level in the forced swim test only in males. The immobility level was lower in females than males, which may be associated with a higher serotonin level in the female prefrontal cortex. A dose-dependent increase of serotonin and noradrenaline was reported in the reverse-phase ion-pair liquid chromatography in the female prefrontal cortex but not in the hippocampus. We suggest that xanthotoxin may exert antidepressant properties and affect males and females differently. The increasing level of serotonin in the male and female prefrontal cortex may underlie this effect.
Collapse
|
13
|
Alvarez Silva A, Fernández-Guasti A. The combination of mirtazapine plus venlafaxine reduces immobility in the forced swim test and does not inhibit female sexual behavior. Pharmacol Biochem Behav 2019; 187:172817. [PMID: 31655085 DOI: 10.1016/j.pbb.2019.172817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Depression is a psychiatric disorder with higher incidence in women. Among the most common and less investigated adverse effects of antidepressants are the female sexual dysfunctions. Up to one third of the patients fail to respond to antidepressants; therefore, more treatment alternatives are necessary. The combination of mirtazapine plus venlafaxine, known as "California Rocket Fuel" has shown to be an option for treatment-resistant depression. However, there are no reports of the effects of this combination in animal models and its action on female sexual behavior is unknown. AIM To analyze the effect of mirtazapine and venlafaxine alone or combined -given at doses with actions on the forced swim test- on female rat sexual behavior. METHODS Mirtazapine (10, 20 or 40 mg/kg) and venlafaxine (15, 30 or 60 mg/kg) or their combinations (2.5/3.75, 5/7.5, 10/15 and 20/30 mg/kg mirtazapine and venlafaxine, respectively) were injected to sexually receptive female rats. We evaluated their effect on the forced swim test (FST). The doses that reduced immobility were tested on proceptivity and receptivity. RESULTS Mirtazapine (40 mg/kg) and venlafaxine (60 mg/kg), administered alone, or combined (mirtazapine, 5, 10 and 20 mg/kg plus venlafaxine, 7.5, 15 and 30 mg/kg) reduced immobility, but affected motor activity. However, the reduced locomotion after the lowest combination (5/7.5 mg/kg) was smaller. Mirtazapine at 40 mg/kg reduced proceptivity and receptivity, while 60 mg/kg venlafaxine only decreased proceptivity. The combination of 5/7.5 mg/kg mirtazapine and venlafaxine did not affect female sexual behavior. CONCLUSIONS Mirtazapine and venlafaxine exerted an effect in the FST, which was also evident when sub-effective doses of both antidepressants were combined. This combination also lacked adverse effects on female sexual behavior. The results suggest that "California Rocket Fuel" could be an effective antidepressant therapy with no adverse sexual effects in women.
Collapse
Affiliation(s)
- Adriana Alvarez Silva
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Alonso Fernández-Guasti
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México..
| |
Collapse
|
14
|
Domingues K, Lima FB, Linder AE, Melleu FF, Poli A, Spezia I, Suman PR, Theindl LC, Lino de Oliveira C. Sexually dimorphic responses of rats to fluoxetine in the forced swimming test are unrelated to the function of the serotonin transporter in the brain. Synapse 2019; 74:e22130. [PMID: 31449695 DOI: 10.1002/syn.22130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/04/2023]
Abstract
Due to the prevalence of depression in women, female rats may be a better models for antidepressant research than males. In male rats, fluoxetine inhibited the serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) which is reducing the immobility time in the repeated forced swimming test (rFST). The performance of female rats in this test is unknown. In this study, responses of male and female rats in the rFST under chronic treatment with fluoxetine and the function of SERT in their brains were examined. Wistar rats received oral fluoxetine (females: 0, 1, 2.5, or 5 mg kg-1 day-1 ; males: 0 or 2.5 mg kg-1 day-1 ; in sucrose 10%, 1.5 ml/rat) 1 hr before the test daily for 12 days over the course of the rFST. rFST consisted of a 15 min pretest followed by 5 min sessions of swimming at 1 (test), 7 (retest 1), and 14 (retest 2) days later. SERT functioning was assessed by ex vivo assays of the frontal cortex and hippocampus of rats. Fluoxetine reduced immobility time of males in the rFST while it failed to do so in females. In vitro treatment with fluoxetine inhibited the uptake of 5-HT of both sexes similarly, while in vivo chronic administration of fluoxetine failed to do so. In summary, rats responded to the chronic treatment with fluoxetine in a sexually dimorphic fashion during the rFST despite the functioning of SERT in their brains remaining equally unchanged. Hence, our data suggest that sexually dimorphic responses to fluoxetine in rFST may be unrelated to the function of SERT in rat brains.
Collapse
Affiliation(s)
- Karolina Domingues
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Fernanda Barbosa Lima
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Aurea Elizabeth Linder
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Fernando Falkenburger Melleu
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Anicleto Poli
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Inaê Spezia
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Patrick Remus Suman
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Laís Cristina Theindl
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Cilene Lino de Oliveira
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| |
Collapse
|
15
|
Ma L, Xu Y, Wang G, Li R. What do we know about sex differences in depression: A review of animal models and potential mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:48-56. [PMID: 30165122 DOI: 10.1016/j.pnpbp.2018.08.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022]
Abstract
Clinical studies have shown that women are more susceptible to depression than men. Sex differences in depression have been associated with social, cultural, as well as biological factors. In spite of extensive preclinical studies in animal models for depression that have been used for understanding the mechanisms of the disease as well as for new drug development, a substantive lack of attention on sex-specific phenotypes in depression might mask the effect of sex on the outcome. In this review article, we summarize findings on the influence of sex on behavior in the most commonly used animal models for depression. We also discuss the potential underlying mechanisms of such sex-dependent variation in the phenotype, particularly in the neuroendocrine system.
Collapse
Affiliation(s)
- Lei Ma
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yong Xu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
| | - Rena Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100012, China; Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL 34243, USA.
| |
Collapse
|
16
|
Eid RS, Gobinath AR, Galea LAM. Sex differences in depression: Insights from clinical and preclinical studies. Prog Neurobiol 2019; 176:86-102. [PMID: 30721749 DOI: 10.1016/j.pneurobio.2019.01.006] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Depression represents a global mental health concern, and disproportionally affects women as they are twice more likely to be diagnosed than men. In this review, we provide a summary of evidence to support the notion that differences in depression between men and women span multiple facets of the disease, including epidemiology, symptomology, treatment, and pathophysiology. Through a lens of biological sex, we overview depression-related transcriptional patterns, changes in neuroanatomy and neuroplasticity, and immune signatures. We acknowledge the unique physiological and behavioral demands of pregnancy and motherhood by devoting special attention to depression occurring in the peripartum period. Specifically, we discuss issues surrounding the presentation, time course, treatment, and neurobiology of peripartum depression. We write this review with the intention of highlighting the encouraging advancements in our understanding of sex differences in depression, while underscoring the gaps that remain. A more systematic consideration of biological sex as a variable in depression research will be critical in the discovery and development of pharmacotherapies that are efficacious for both men and women.
Collapse
Affiliation(s)
- Rand S Eid
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Aarthi R Gobinath
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
|
18
|
Rebolledo-Solleiro D, Fernández-Guasti A. Influence of sex and estrous cycle on blood glucose levels, body weight gain, and depressive-like behavior in streptozotocin-induced diabetic rats. Physiol Behav 2018; 194:560-567. [DOI: 10.1016/j.physbeh.2018.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/10/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022]
|
19
|
Male rats with same-sex preference show higher immobility in the forced swim test, but similar effects of fluoxetine and desipramine than males that prefer females. Pharmacol Biochem Behav 2018; 171:39-45. [PMID: 29807066 DOI: 10.1016/j.pbb.2018.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/13/2022]
Abstract
Sex preference in male rats is partly determined by the organizational action of estradiol. Thus, several paradigms have used aromatase inhibitors to manipulate sex preference. We recently showed that a subpopulation of male rats prenatally treated with letrozole (0.56 μg/kg, G10-G22), a non-steroidal third generation aromatase inhibitor, had same-sex preference, female sexual behavior (including lordosis and proceptivity) and penile erections when exposed to other males. These males, in addition, displayed high levels of experimental anxiety in the plus maze test and were insensitive to the anxiogenic-like acute effect of FLX (10 mg/kg). The two main purposes of the present work were: a) to study the behavioral profile of males displaying same-sex preference in the forced swim test (FST), and b) to analyze if the antidepressant-like effect of the subchronic treatment with FLX (10 mg/kg, 3 times) or desipramine (DMI, 10 mg/kg, 3 times) vary according to sex preference. Males treated prenatally with letrozole with same-sex preference showed more immobility and less active behaviors (swimming and climbing) in the FST than males with female preference. Subchronic treatment with FLX and DMI reduced immobility when compared to saline controls, while FLX increased swimming and DMI increased climbing behavior. Treatments were equally effective in males with preference for other males and those that preferred females. These results indicate that an association exists between prenatal letrozole treatment, same-sex preference and immobility in the FST.
Collapse
|
20
|
Hernandez-Leon A, Fernández-Guasti A, Martínez A, Pellicer F, González-Trujano ME. Sleep architecture is altered in the reserpine-induced fibromyalgia model in ovariectomized rats. Behav Brain Res 2018; 364:383-392. [PMID: 29326058 DOI: 10.1016/j.bbr.2018.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/11/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
Fibromyalgia (FM) is a musculoskeletal chronic pain syndrome with various concomitant symptoms like sleep disorders. FM patients are mainly women and menopause might play an important role in the altered processing of somatosensory information. Adverse effects and moderated efficacy of drugs promote treatment discontinuation by patients. Animal models of FM report pain and depression-like behaviors, but none of them have explored sleep disturbance as possible marker in the preclinic diagnostic. The aim of this study was to investigate alterations of the sleep architecture in the reserpine (RES)-induced FM model in ovarectomized (OVX) rats. The behavioral thresholds of nociceptive response in the experimental FM were analyzed in a first block using muscle pressure, tactile response and allodynia to cold stimulus. In a second block, the sleep-wake cycle was examined in a polysomnographic study. Groups (n = 8) consisted in: (a) no treatment, (b) RES vehicle, (c) RES alone, (d) RES + vehicle of fluoxetine (FLX, antidepressant reference drug), and (e) RES + FLX. Our results demonstrated that RES induced pain-related behavior (50-70%) in OVX rats and altered sleep architecture by the increase of total wake time (38%), diminution of the no-REM stage (SWS-I 33% and SWS-II 76%), and abolition of the REM sleep, effects that were partially reverted in the presence of FLX. In conclusion, our results support the face validity of the RES-induced pain-related behavior as FM model showing nociceptive behavioral responses associated to sleep alterations observed as symptoms in FM patients; thus, these evidences substantiate its usefulness to look for alternatives of treatment for FM symptoms.
Collapse
Affiliation(s)
- Alberto Hernandez-Leon
- Department of Research in Neurosciences, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, Col. Sn Lorenzo Huipulco, 14370, D. F. México, Mexico; Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV) of the National Polytechnic Institute, Calz. De los Tenorios No. 235, Col. Granjas Coapa, C.P. 14330, D. F. México, Mexico
| | - Alonso Fernández-Guasti
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV) of the National Polytechnic Institute, Calz. De los Tenorios No. 235, Col. Granjas Coapa, C.P. 14330, D. F. México, Mexico
| | - Adrián Martínez
- Department of Research in Neurosciences, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, Col. Sn Lorenzo Huipulco, 14370, D. F. México, Mexico
| | - Francisco Pellicer
- Department of Research in Neurosciences, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, Col. Sn Lorenzo Huipulco, 14370, D. F. México, Mexico
| | - María Eva González-Trujano
- Department of Research in Neurosciences, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, Col. Sn Lorenzo Huipulco, 14370, D. F. México, Mexico.
| |
Collapse
|
21
|
Ostadhadi S, Norouzi-Javidan A, Chamanara M, Akbarian R, Imran-Khan M, Ghasemi M, Dehpour AR. Involvement of NMDA receptors in the antidepressant-like effect of tramadol in the mouse forced swimming test. Brain Res Bull 2017; 134:136-141. [DOI: 10.1016/j.brainresbull.2017.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 01/16/2023]
|
22
|
Long-term effects of pre-pubertal fluoxetine on behaviour and monoaminergic stress response in stress-sensitive rats. Acta Neuropsychiatr 2017; 29:222-235. [PMID: 27819195 DOI: 10.1017/neu.2016.53] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Although prescription rates of antidepressants for children and adolescents have increased, concerns have been raised regarding effects on neurodevelopment and long-term outcome. Using a genetic animal model of depression, this study investigated the long-term effects of pre-pubertal administration of fluoxetine (FLX) on depressive-like behaviour in early adulthood, as well as on central monoaminergic response to an acute stressor. We postulated that pre-pubertal FLX will have lasting effects on animal behaviour and monoaminergic stress responses in early adulthood. METHODS Flinders sensitive line (FSL) rats received 10 mg/kg/day FLX subcutaneously from postnatal day 21 (PnD21) to PnD34 (pre-pubertal). Thereafter, following normal housing, rats were either subjected to locomotor testing and the forced swim test (FST) on PnD60 (early adulthood), or underwent surgery for microdialysis, followed on PnD60 by exposure to acute swim stress and measurement of stressor-induced changes in plasma corticosterone and pre-frontal cortical monoamine concentrations. RESULTS Pre-pubertal FLX did not induce a late emergent effect on immobility in FSL rats on PnD60, whereas locomotor activity was significantly decreased. Acute swim stress on PnD60 significantly increased plasma corticosterone levels, and increased pre-frontal cortical norepinephrine (NE) and 5-hydroxyindole-3-acetic acid (5-HIAA) concentrations. Pre-pubertal FLX significantly blunted the pre-frontal cortical NE and 5-HIAA response following swim stress on PnD60. Baseline dopamine levels were significantly enhanced by pre-pubertal FLX, but no further changes were induced by swim stress. CONCLUSION Pre-pubertal FLX did not have lasting antidepressant-like behavioural effects in genetically susceptible, stress-sensitive FSL rats. However, such treatment reduced locomotor activity, abrogated noradrenergic and serotonergic stressor responses and elevated dopaminergic baseline levels in adulthood.
Collapse
|
23
|
Behavioural outcomes of adult female offspring following maternal stress and perinatal fluoxetine exposure. Behav Brain Res 2017; 331:84-91. [PMID: 28511978 DOI: 10.1016/j.bbr.2017.05.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/29/2022]
Abstract
Depression, anxiety, and stress are common in pregnant women. One of the primary pharmacological treatments for anxiety and depression is the antidepressant fluoxetine (Flx). Maternal stress, depression, and Flx exposure are known to effect neurodevelopment of the offspring, however, their combined effects have been scarcely studied, especially in female offspring. The present study investigated the combined effects of maternal stress during pregnancy and perinatal exposure to Flx on the behaviour of female mice as adults. METHODS Mouse dams were exposed to either chronic unpredictable stress (embryonic (E) day 7 to E18), or FLX (E15- postnatal day 12), or a combination of stress and FLX or left untreated. At two months of age, the female offspring went through a comprehensive behavioural test battery. RESULTS Maternal stress led to increased activity and alterations of prepulse inhibition in the adult female offspring. Maternal treatment with Flx had a potentially beneficial effect on spatial memory. The combination of prenatal stress and perinatal Flx exposure did not interact in their effects. These results suggest that gestational Flx exposure may have a limited negative impact on female offspring.
Collapse
|
24
|
Head shaking in the forced swim test: A robust but unexplored sex difference. Pharmacol Biochem Behav 2017; 152:90-96. [DOI: 10.1016/j.pbb.2016.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 05/04/2016] [Accepted: 05/12/2016] [Indexed: 01/02/2023]
|
25
|
Fernández-Guasti A, Olivares-Nazario M, Reyes R, Martínez-Mota L. Sex and age differences in the antidepressant-like effect of fluoxetine in the forced swim test. Pharmacol Biochem Behav 2017; 152:81-89. [DOI: 10.1016/j.pbb.2016.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 12/27/2022]
|
26
|
Haj-Mirzaian A, Kordjazy N, Ostadhadi S, Amiri S, Haj-Mirzaian A, Dehpour A. Fluoxetine reverses the behavioral despair induced by neurogenic stress in mice: role of N-methyl-d-aspartate and opioid receptors. Can J Physiol Pharmacol 2016; 94:599-612. [DOI: 10.1139/cjpp-2015-0429] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Opioid and N-methyl-d-aspartate (NMDA) receptors mediate different effects of fluoxetine. We investigated whether opioid and NMDA receptors are involved in the protective effect of fluoxetine against the behavioral despair induced by acute physical stress in male mice. We used the forced swimming test (FST), tail suspension test (TST), and open-field test (OFT) for behavioral evaluation. We used fluoxetine, naltrexone (opioid receptor antagonist), MK-801 (NMDA receptor antagonist), morphine (opioid receptor agonist), and NMDA (NMDA receptor agonist). Acute foot-shock stress (FSS) significantly induced behavioral despair (depressive-like) and anxiety-like behaviors in tests. Fluoxetine (5 mg/kg) reversed the depressant-like effect of FSS, but it did not alter the locomotion and anxiety-like behavior in animals. Acute administration of subeffective doses of naltrexone (0.3 mg/kg) or MK-801 (0.01 mg/kg) potentiated the antidepressant-like effect of fluoxetine, while subeffective doses of morphine (1 mg/kg) and NMDA (75 mg/kg) abolished this effect of fluoxetine. Also, co-administration of subeffective doses of naltrexone (0.05 mg/kg) and MK-801 (0.003 mg/kg) with fluoxetine (1 mg/kg) induced a significant decrease in the immobility time in FST and TST. Our results showed that opioid and NMDA receptors (alone or in combination) are involved in the antidepressant-like effect of fluoxetine against physical stress.
Collapse
Affiliation(s)
- Arya Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Nastaran Kordjazy
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Sattar Ostadhadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Amiri
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - AhmadReza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| |
Collapse
|
27
|
Yuen EY, Wei J, Yan Z. Estrogen in prefrontal cortex blocks stress-induced cognitive impairments in female rats. J Steroid Biochem Mol Biol 2016; 160:221-6. [PMID: 26321384 PMCID: PMC4769981 DOI: 10.1016/j.jsbmb.2015.08.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 11/15/2022]
Abstract
Animal and human studies have found that males and females show distinct stress responses. Recent studies suggest the contribution of estrogen in the brain to this sexual dimorphism. Repeated stress has been found to impair cognitive behaviors via suppressing glutamatergic transmission and glutamate receptor surface expression in pyramidal neurons of prefrontal cortex (PFC) in male rats. On the contrary, female rats exposed to the same stress paradigms show normal synaptic function and PFC-mediated cognition. The level of aromatase, the enzyme for the biosynthesis of estrogen, is significantly higher in the PFC of females than males. The stress-induced glutamatergic deficits and memory impairment are unmasked by blocking estrogen receptors or aromatase in females, suggesting a protective role of estrogen against the detrimental effects of repeated stress.
Collapse
Affiliation(s)
- Eunice Y Yuen
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Jing Wei
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA.
| |
Collapse
|
28
|
Maternal immune activation epigenetically regulates hippocampal serotonin transporter levels. Neurobiol Stress 2016; 4:34-43. [PMID: 27981188 PMCID: PMC5146201 DOI: 10.1016/j.ynstr.2016.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/28/2016] [Accepted: 02/17/2016] [Indexed: 01/02/2023] Open
Abstract
Major depressive disorder (MDD) is one of the most debilitating psychiatric diseases, affecting a large percentage of the population worldwide. Currently, the underlying pathomechanisms remain incompletely understood, hampering the development of critically needed alternative therapeutic strategies, which further largely depends on the availability of suitable model systems. Here we used a mouse model of early life stress – a precipitating factor for the development of MDD – featuring infectious stress through maternal immune activation (MIA) by polyinosinic:polycytidilic acid (Poly(I:C)) to examine epigenetic modulations as potential molecular correlates of the alterations in brain structure, function and behavior. We found that in adult female MIA offspring anhedonic behavior was associated with modulations of the global histone acetylation profile in the hippocampus. Morevoer, specific changes at the promoter and in the expression of the serotonin transporter (SERT), critically involved in the etiology of MDD and pharmacological antidepressant treatment were detected. Furthermore, an accompanying reduction in hippocampal levels of histone deacetylase (HDAC) 1 was observed in MIA as compared to control offspring. Based on these results we propose a model in which the long-lasting impact of MIA on depression-like behavior and associated molecular and cellular aberrations in the offspring is brought about by the modulation of epigenetic processes and consequent enduring changes in gene expression. These data provide additional insights into the principles underlying the impact of early infectious stress on the development of MDD and may contribute to the development of new targets for antidepressant therapy.
Collapse
|
29
|
Evidence for the involvement of NMDA receptors in the antidepressant-like effect of nicotine in mouse forced swimming and tail suspension tests. Psychopharmacology (Berl) 2015; 232:3551-61. [PMID: 26173610 DOI: 10.1007/s00213-015-4004-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 06/28/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE The antidepressant action of acute nicotine administration in clinical and animal studies is well recognized. But the underlying mechanism for this effect has not been carefully discovered. OBJECTIVES We attempted to evaluate the possible role of N-Methyl-D-aspartate (NMDA) receptors in the antidepressant-like effect of nicotine. METHODS After the assessment of locomotor activity in the open-field test, forced swimming test (FST) and tail suspension test (TST) were used to evaluate the antidepressant-like effect of nicotine in mice. We performed intraperitoneal administration of nicotine at different doses and periods before the tests. To assess the possible involvement of NMDA receptors, non-effective doses of NMDA antagonists and an NMDA agonist were obtained and were administered simultaneously with the non-effective and effective doses of nicotine, respectively. RESULTS Nicotine (0.2 mg/kg, 30 min before FST/TST) significantly reduced the immobility time of mice similar to fluoxetine (20 mg/kg). Nicotine did not affect the locomotor behavior of mice in open-field test. Co-administration of non-effective doses of NMDA receptor antagonists, ketamine (1 or 0.3 mg/kg), MK-801 (0.05 or 0.005 mg/kg), and magnesium sulfate (10 or 5 mg/kg) with nicotine (0.1 or 0.03 mg/kg) had remarkable synergistic antidepressant effect in both FST and TST. Also, non-effective NMDA (75 or 30 mg/kg) reversed the anti-immobility effect of nicotine (0.2 mg/kg) on mouse FST and TST. CONCLUSIONS Our study has for the first time confirmed that the antidepressant-like effect of nicotine on mice is NMDA-mediated, and nicotine presumably exerts this effect by antagonizing the glutamatergic NMDA receptors.
Collapse
|
30
|
García-Cárdenas N, Olvera-Hernández S, Gómez-Quintanar BN, Fernández-Guasti A. Male rats with same sex preference show high experimental anxiety and lack of anxiogenic-like effect of fluoxetine in the plus maze test. Pharmacol Biochem Behav 2015; 135:128-35. [DOI: 10.1016/j.pbb.2015.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 01/04/2023]
|
31
|
Gobinath AR, Mahmoud R, Galea LAM. Influence of sex and stress exposure across the lifespan on endophenotypes of depression: focus on behavior, glucocorticoids, and hippocampus. Front Neurosci 2015; 8:420. [PMID: 25610363 PMCID: PMC4285110 DOI: 10.3389/fnins.2014.00420] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/02/2014] [Indexed: 12/18/2022] Open
Abstract
Sex differences exist in vulnerability, symptoms, and treatment of many neuropsychiatric disorders. In this review, we discuss both preclinical and clinical research that investigates how sex influences depression endophenotypes at the behavioral, neuroendocrine, and neural levels across the lifespan. Chronic exposure to stress is a risk factor for depression and we discuss how stress during the prenatal, postnatal, and adolescent periods differentially affects males and females depending on the method of stress and metric examined. Given that the integrity of the hippocampus is compromised in depression, we specifically focus on sex differences in how hippocampal plasticity is affected by stress and depression across the lifespan. In addition, we examine how female physiology predisposes depression in adulthood, specifically in postpartum and perimenopausal periods. Finally, we discuss the underrepresentation of women in both preclinical and clinical research and how this limits our understanding of sex differences in vulnerability, presentation, and treatment of depression.
Collapse
Affiliation(s)
- Aarthi R Gobinath
- Program in Neuroscience, Centre for Brain Health, University of British Columbia Vancouver, BC, Canada
| | - Rand Mahmoud
- Program in Neuroscience, Centre for Brain Health, University of British Columbia Vancouver, BC, Canada
| | - Liisa A M Galea
- Program in Neuroscience, Centre for Brain Health, University of British Columbia Vancouver, BC, Canada ; Department of Psychology, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|