1
|
Nagy EK, Overby PF, Leyrer-Jackson JM, Carfagno VF, Acuña AM, Olive MF. Methamphetamine and the Synthetic Cathinone 3,4-Methylenedioxypyrovalerone (MDPV) Produce Persistent Effects on Prefrontal and Striatal Microglial Morphology and Neuroimmune Signaling Following Repeated Binge-like Intake in Male and Female Rats. Brain Sci 2024; 14:435. [PMID: 38790414 PMCID: PMC11118022 DOI: 10.3390/brainsci14050435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Psychostimulants alter cellular morphology and activate neuroimmune signaling in a number of brain regions, yet few prior studies have investigated their persistence beyond acute abstinence or following high levels of voluntary drug intake. In this study, we examined the effects of the repeated binge-like self-administration (96 h/week for 3 weeks) of methamphetamine (METH) and 21 days of abstinence in female and male rats on changes in cell density, morphology, and cytokine levels in two addiction-related brain regions-the prefrontal cortex (PFC) and dorsal striatum (DStr). We also examined the effects of similar patterns of intake of the cocaine-like synthetic cathinone derivative 3,4-methylenedioxypyrovalerone (MDPV) or saline as a control. Robust levels of METH and MDPV intake (~500-1000 infusions per 96 h period) were observed in both sexes. We observed no changes in astrocyte or neuron density in either region, but decreases in dendritic spine densities were observed in PFC pyramidal and DStr medium spiny neurons. The microglial cell density was decreased in the PFC of METH self-administering animals, accompanied by evidence of microglial apoptosis. Changes in microglial morphology (e.g., decreased territorial volume and ramification and increased cell soma volume) were also observed, indicative of an inflammatory-like state. Multiplex analyses of PFC and DStr cytokine content revealed elevated levels of various interleukins and chemokines only in METH self-administering animals, with region- and sex-dependent effects. Our findings suggest that voluntary binge-like METH or MDPV intake induces similar cellular perturbations in the brain, but they are divergent neuroimmune responses that persist beyond the initial abstinence phase.
Collapse
Affiliation(s)
- Erin K. Nagy
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, AZ 85287, USA
| | - Paula F. Overby
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, AZ 85287, USA
| | - Jonna M. Leyrer-Jackson
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ 85012, USA
| | - Vincent F. Carfagno
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Amanda M. Acuña
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, AZ 85287, USA
- Interdisciplinary Graduate Program in Neuroscience, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - M. Foster Olive
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, AZ 85287, USA
- Interdisciplinary Graduate Program in Neuroscience, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
Hosseinzadeh S, Afshari S, Molaei S, Rezaei N, Dadkhah M. The role of genetics and gender specific differences in neurodegenerative disorders: Insights from molecular and immune landscape. J Neuroimmunol 2023; 384:578206. [PMID: 37813041 DOI: 10.1016/j.jneuroim.2023.578206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Neurodegenerative disorders (NDDs) are the most common neurological disorders with high prevalence and have significant socioeconomic implications. Understanding the underlying cellular and molecular mechanisms associated with the immune system can be effective in disease etiology, leading to more effective therapeutic approaches for both females and males. The central nervous system (CNS) actively participates in immune responses, both within and outside the CNS. Immune system activation is a common feature in NDDs. Gender-specific factors play a significant role in the prevalence, progression, and manifestation of NDDs. Neuroinflammation, in both inflammatory neurological and neurodegenerative conditions, is defined by the triggering of microglia and astrocyte cell activation. This results in the secretion of pro-inflammatory cytokines and chemokines. Numerous studies have documented the role of neuroinflammation in neurological diseases, highlighting the involvement of immune signaling pathways in disease development. Converging evidence support immune system involvement during neurodegeneration in NDDs. In this review, we summarize emerging evidence that reveals gender-dependent differences in immune responses related to NDDs. Also, we highlight sex differences in immune responses and discuss how these sex-specific influences can increase the risk of NDDs. Understanding the role of gender-specific factors can aid in developing targeted therapeutic strategies and improving patient outcomes. Ultimately, the better understanding of these mechanisms contributed to sex-dependent immune response in NDDs, can be critically usful in targeting of immune signaling cascades in such disorders. In this regard, sex-related immune responses in NDDs may be promising and effective targets in therapeutic strategies.
Collapse
Affiliation(s)
- Shahnaz Hosseinzadeh
- Department of Microbiology & Immunology, School of Medicine, Ardabil University of Medical Sciences, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Afshari
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Soheila Molaei
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran 1419733151, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
3
|
Kamalmaz N, Ben Bacha A, Alonazi M, Albasher G, Khayyat AIA, El-Ansary A. Unveiling sex-based differences in developing propionic acid-induced features in mice as a rodent model of ASD. PeerJ 2023; 11:e15488. [PMID: 37334116 PMCID: PMC10274690 DOI: 10.7717/peerj.15488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023] Open
Abstract
Background Males are more likely to develop autism as a neurodevelopmental disorder than females are, although the mechanisms underlying male vulnerability are not fully understood. Therefore, studying the role of autism etiologies considering sex differences in the propionic acid (PPA) rodent model of autism would build greater understanding of how females are protected from autism spectrum disorder, which may be used as a treatment strategy for males with autism. Objectives This study aimed to investigate the sex differences in oxidative stress, glutamate excitotoxicity, neuroinflammation, and gut microbiota impairment as etiological mechanisms for many neurological diseases, with specific reference to autism. Method Forty albino mice were divided into four groups of 10 animals each with two control and two treated groups of both sexes received only phosphate-buffered saline or a neurotoxic dose of PPA (250 mg/kg body weight) for 3 days, respectively. Biochemical markers of energy metabolism, oxidative stress, neuroinflammation, and excitotoxicity were measured in mouse brain homogenates, whereas the presence of pathogenic bacteria was assessed in mouse stool samples. Furthermore, the repetitive behavior, cognitive ability, and physical-neural coordination of the animals were examined. Results Collectively, selected variables related to oxidative stress, glutamate excitotoxicity, neuroinflammation, and gut bacteria were impaired concomitantly with altered behavior in PPA-induced rodent model, with males being more susceptible than females. Conclusion This study explains the role of sex in the higher vulnerability of males to develop autistic biochemical and behavioral features compared with females. Female sex hormones and the higher detoxification capacity and higher glycolytic flux in females serve as neuroprotective contributors in a rodent model of autism.
Collapse
Affiliation(s)
- Nasreen Kamalmaz
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Mona Alonazi
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Zoology Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Arwa Ishaq A. Khayyat
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Research Laboratory, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Hyer MM, Wegener AJ, Targett I, Dyer SK, Neigh GN. Chronic stress beginning in adolescence decreases spatial memory following an acute inflammatory challenge in adulthood. Behav Brain Res 2023; 442:114323. [PMID: 36731657 PMCID: PMC10870254 DOI: 10.1016/j.bbr.2023.114323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023]
Abstract
Prolonged stress beginning in adolescence can contribute to the dysregulation of the neuroendocrine system in adulthood. As the neuroendocrine and neuroimmune systems participate in bi-directional regulatory control, adolescent stress can prime the neuroimmune system to future inflammatory insults. Previous work from our group demonstrates that stress exaggerates the hippocampal response to inflammation, which can lead to deficits in learning and memory. In the current study, we sought to interrogate the interaction between an acute peripheral challenge of lipopolysaccharide (LPS) in male and female Wistar rats with a history of stress beginning in adolescence (CAS). Males from the CAS group were more vulnerable to the peripheral effects of LPS compared to non-stressed males including porphyrin staining and ruffled fur. In contrast, LPS generated similar peripheral effects in females regardless of adolescent stress history. Learning and memory were differentially impacted by LPS as a function of stress history and effects manifested differently when stratified by sex. Males with a history of adolescent stress exhibited deficits in initial learning. Females from the CAS group performed similar to controls during acquisition but exhibited a slight impairment during reversal learning. Males and females with a history of stress displayed memory impairment during the probe assessments as compared to their same-sex control group. We conclude that while stress beginning in adolescence enhanced the vulnerability of learning and memory to an inflammatory challenge, the phenotype of this effect manifested differently in males and females. These data demonstrate a sustained impact of adolescent stress on the neuroimmune system which is sufficient to influence cognitive performance in both sexes.
Collapse
Affiliation(s)
- M M Hyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - A J Wegener
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - I Targett
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - S K Dyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - G N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
5
|
Abstract
Depression and anxiety disorders carry a tremendous worldwide burden and emerge as a significant cause of disability among western societies. Both disorders are known to disproportionally affect women, as they are twice more likely to be diagnosed and moreover, they are also prone to suffer from female-specific mood disorders. Importantly, the prevalence of these affective disorders has notably risen after the COVID pandemic, especially in women. In this chapter, we describe factors that are possibly contributing to the expression of such sex differences in depression and anxiety. For this, we overview the effect of transcriptomic and genetic factors, the immune system, neuroendocrine aspects, and cognition. Furthermore, we also provide evidence of sex differences in antidepressant response and their causes. Finally, we emphasize the importance to consider sex as a biological variable in preclinical and clinical research, which may facilitate the discovery and development of new and more efficacious antidepressant and anxiolytic pharmacotherapies for both women and men.
Collapse
Affiliation(s)
- Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
6
|
Borgstedt L, Bratke S, Blobner M, Pötzl C, Ulm B, Jungwirth B, Schmid S. Isoflurane has no effect on cognitive or behavioral performance in a mouse model of early-stage Alzheimer’s disease. Front Neurosci 2022; 16:1033729. [DOI: 10.3389/fnins.2022.1033729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPatients with Alzheimer’s disease show a sex-dependent decline of cognitive and behavioral performance. It is controversially discussed whether general anesthesia itself can aggravate or even cause this neurocognitive decline. Therefore, we investigated the effect of general anesthesia on neurocognitive and behavioral function and amyloidopathy in a mouse model of early-stage Alzheimer’s disease with respect to sex.MethodsAfter governmental approval 10 months old Tg2576 mice and wild type (total 85 mice) either underwent general anesthesia with 1.0 minimal alveolar concentration of isoflurane for 2 h or were not exposed to isoflurane (controls). Following cognitive and behavioral testing using the modified hole board test (mHBT), brains were investigated regarding amyloidopathy, inflammation, and apoptosis. Data were analyzed using repeated measure analysis of variance (ANOVA) and univariate analysis of variance (UNIANOVA).ResultsTg2576 mice showed a decline in memory function (p < 0.001), less anxiety (p = 0.022 and p = 0.024), increased locomotor activity (p = 0.025), and impaired fine motor skills (p < 0.001). Amyloid precursor protein (p < 0.001), soluble amyloid-beta (p < 0.001) and insoluble amyloid deposits (p < 0.001) were increased in Tg2576 animals. Neither sex nor exposure to isoflurane had an effect on cognitive or behavioral testing or expression of amyloid-related biomarkers.Discussion and conclusionWe found that 10 months old Tg2576 showed typical signs of early-stage Alzheimer’s disease and corresponding histopathological alterations. Relevant sex-specific differences or an effect of isoflurane anesthesia could not be detected at this early stage of the disease.
Collapse
|
7
|
Chronic social instability stress down-regulates IL-10 and up-regulates CX3CR1 in tumor-bearing and non-tumor-bearing female mice. Behav Brain Res 2022; 435:114063. [PMID: 35988637 DOI: 10.1016/j.bbr.2022.114063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022]
Abstract
Extensive literature has reported a link between stress and tumor progression, and between both of these factors and mental health. Despite the higher incidence of affective disorders in females and the neurochemical differences according to sex, female populations have been understudied. The aim of this study was therefore to analyze the effect of stress on tumor development in female OF1 mice. For this purpose, subjects were inoculated with B16F10 melanoma cells and exposed to the Chronic Social Instability Stress (CSIS) model. Behavioral, neurochemical and neuroendocrine parameters were analyzed. Female mice exposed to CSIS exhibited reduced body weight and increased arousal, but there was no evidence of depressive behavior or anxiety. Exposure to CSIS did not affect either corticosterone levels or tumor development, although it did provoke an imbalance in cerebral inflammatory cytokines, decreasing IL-10 expression (IL-6/IL-10 and TNF-α/IL-10); chemokines, increasing CX3CR1 expression (CX3CL1/CX3CR1); and glucocorticoid receptors, decreasing GR expression (MR/GR). In contrast, tumor development did not alter body weight and, although it did alter behavior, it did so to a much lesser extent. Tumor inoculation did not affect corticosterone levels, but increased the MR/GR ratio in the hippocampus and provoked an imbalance in cerebral inflammatory cytokines and chemokines, although differently from stress. These results underscore the need for experimental approaches that allow us to take sex differences into account when exploring this issue, since these results appear to indicate that the female response to stress is mediated by mechanisms different from those often proposed in relation to male mice.
Collapse
|
8
|
Abuaish S, Al-Otaibi NM, Aabed K, Abujamel TS, Alzahrani SA, Alotaibi SM, Bhat RS, Arzoo S, El-Ansary A. The role of sex-differentiated variations in stress hormones, antioxidants, and neuroimmune responses in relation to social interaction impairment in a rodent model of autism. Metab Brain Dis 2021; 36:1369-1379. [PMID: 33864573 DOI: 10.1007/s11011-021-00732-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/05/2021] [Indexed: 01/30/2023]
Abstract
Males are more likely to develop autism as a neurodevelopmental disorder than females, but the mechanisms underlying male susceptibility are not fully understood. In this paper, we used a well-characterized propionic acid (PPA) rodent model of autism to study sex differences in stress hormones, antioxidants' status, and the neuroimmune response that may contribute to the preponderance of autism in males. Sprague Dawley rats of both sexes were divided into a saline-treated group as controls and PPA-treated groups, receiving 250 mg/kg of PPA per day for three days. Animals' social behavior was examined using the three-chamber social test. Hormones (ACTH, corticosterone, melatonin, and oxytocin), oxidative stress biomarkers (glutathione, glutathione-S-transferase, and ascorbic acid), and cytokines (IL-6, IL-1α, IL-10, and IFNγ) were measured in the brain tissue of all the animals. The results showed a sex dimorphic social response to PPA treatment, where males were more susceptible to the PPA treatment and exhibited a significant reduction in social behavior with no effects observed in females. Also, sex differences were observed in the levels of hormones, antioxidants, and cytokines. Female rats showed significantly higher corticosterone and lower oxytocin, antioxidants, and cytokine levels than males. The PPA treatment later modulated these baseline differences. Our study indicates that the behavioral manifestation of autism in PPA-treated males and not females could be linked to neural biochemical differences between the sexes at baseline, which might play a protective role in females. Our results can contribute to early intervention strategies and treatments used to control autism, an increasingly prevalent disorder.
Collapse
Affiliation(s)
- Sameera Abuaish
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdurahman University, Riyadh, Saudi Arabia
| | - Norah M Al-Otaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Kawther Aabed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Turki S Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Saleha Ahmad Alzahrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sohailah Masoud Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaista Arzoo
- Department of Food Science and Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, P O Box 22452, Riyadh, 11495, Saudi Arabia.
| |
Collapse
|
9
|
Bekhbat M, Mukhara D, Dozmorov MG, Stansfield JC, Benusa SD, Hyer MM, Rowson SA, Kelly SD, Qin Z, Dupree JL, Tharp GK, Tansey MG, Neigh GN. Adolescent stress sensitizes the adult neuroimmune transcriptome and leads to sex-specific microglial and behavioral phenotypes. Neuropsychopharmacology 2021; 46:949-958. [PMID: 33558677 PMCID: PMC8115118 DOI: 10.1038/s41386-021-00970-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
Abstract
Adolescent exposure to chronic stress, a risk factor for mood disorders in adulthood, sensitizes the neuroinflammatory response to a subsequent immune challenge. We previously showed that chronic adolescent stress (CAS) in rats led to distinct patterns of neuroimmune priming in adult male and female rats. However, sex differences in the neuroimmune consequences of CAS and their underlying mechanisms are not fully understood. Here we hypothesized that biological sex would dictate differential induction of inflammation-related transcriptomic pathways and immune cell involvement (microglia activation and leukocyte presence) in the hippocampus of male and female rats with a history of CAS. Adolescent rats underwent CAS (six restraint and six social defeat episodes during postnatal days 38-49), and behavioral assessments were conducted in adolescence and adulthood. Neuroimmune measures were obtained following vehicle or a systemic lipopolysaccharide (LPS) challenge in adulthood. CAS led to increased time in the corners of the open field in adolescence. In males, CAS also increased social avoidance. As adults, CAS rats displayed an exaggerated enrichment of the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway and chemokine induction following LPS challenge, and increased number of perivascular CD45+ cells in the hippocampus. However, CAS females, but not males, showed exaggerated glucocorticoid receptor (GR) pathway enrichment and increased microglial complexity. These results provide further insight to the mechanisms by which peripheral immune events may influence neuroimmune responses differentially among males and females and further demonstrate the importance of adolescent stress in shaping adult responses.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Deepika Mukhara
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Mikhail G. Dozmorov
- grid.417264.20000 0001 2194 2791Center for Clinical and Translational Research, Virginia Commonwealth University Medical Center, Richmond, VA 23298 USA
| | - John C. Stansfield
- grid.417264.20000 0001 2194 2791Center for Clinical and Translational Research, Virginia Commonwealth University Medical Center, Richmond, VA 23298 USA
| | - Savannah D. Benusa
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Molly M. Hyer
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Sydney A. Rowson
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Sean D. Kelly
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Zhaohui Qin
- grid.189967.80000 0001 0941 6502Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Jeffrey L. Dupree
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Gregory K. Tharp
- grid.189967.80000 0001 0941 6502Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322 USA
| | - Malú G. Tansey
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Gretchen N. Neigh
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA ,grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA ,grid.189967.80000 0001 0941 6502Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30322 USA
| |
Collapse
|
10
|
Chronic adolescent stress causes sustained impairment of cognitive flexibility and hippocampal synaptic strength in female rats. Neurobiol Stress 2021; 14:100303. [PMID: 33614865 PMCID: PMC7876631 DOI: 10.1016/j.ynstr.2021.100303] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/13/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022] Open
Abstract
Females that experience chronic stress during development, particularly adolescence, are the most vulnerable group to stress-induced disease. While considerable attention has been devoted to stress-induced manifestation of anxiety, depression, and PTSD, evidence indicates that a history of chronic stress is also a risk factor for cognitive decline and dementia - with females again in a higher risk group. This interplay between sex and stress history indicates specific mechanisms drive neural dysfunction across the lifespan. The presence of sex and stress steroid receptors in the hippocampus provides a point of influence for these variables to drive changes in cognitive function. Here, we used a rodent model of chronic adolescent stress (CAS) to determine the extent to which CAS modifies glutamatergic signaling resulting in cognitive dysfunction. Male and female Wistar rats born in-house remained non-stressed (NS), unmanipulated aside from standard cage cleaning, or were exposed to either physical restraint (60 min) or social defeat (CAS) each day (6 trials each), along with social isolation, throughout the adolescent period (PND 35-47). Cognition was assessed in adult (PND 80-130) male and female rats (n = 10-12) using the Barnes Maze task and the Attention Set-Shift task. Whole hippocampi were extracted from a second cohort of male and female rats (NS and CAS; n = 9-10) and processed for RNA sequencing. Brain tissue from the first cohort (n = 6) was processed for density of glutamatergic synaptic markers (GluA1, NMDA1a, and synaptophysin) or whole-cell patch clamping (n = 4) to determine glutamatergic activity in the hippocampus. Females with a history of chronic stress had shorter latencies to locate the goal box than NS controls during acquisition learning but showed an increased latency to locate the new goal box during reversal learning. This reversal deficit persisted across domains as females with a history of stress required more trials to reach criterion during the reversal phases of the Attention Set-Shift task compared to controls. Ovariectomy resulted in greater performance variability overall during reversal learning with CAS females showing worse performance. Males showed no effects of CAS history on learning or memory performance. Bioinformatic prediction using gene ontology categorization indicated that in females, postsynaptic membrane gene clusters, specifically genes related to glutamatergic synapse remodeling, were enriched with a history of stress. Structural analysis indicated that CAS did not alter glutamate receptor density in females. However, functionally, CAS females had a decreased AMPA/NMDA-dependent current ratio compared to controls indicating a weakening in synaptic strength in the hippocampus. Males showed only a slight change in density of NMDA1a labeling in the CA3 region with a history of stress. The data observed here suggest that females are at risk for impaired cognitive flexibility following a history of adolescent stress, possibly driven by changes in glutamatergic signaling.
Collapse
|
11
|
Gildawie KR, Ryll LM, Hexter JC, Peterzell S, Valentine AA, Brenhouse HC. A two-hit adversity model in developing rats reveals sex-specific impacts on prefrontal cortex structure and behavior. Dev Cogn Neurosci 2021; 48:100924. [PMID: 33515957 PMCID: PMC7847967 DOI: 10.1016/j.dcn.2021.100924] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Adversity early in life substantially impacts prefrontal cortex (PFC) development and vulnerability to later-life psychopathology. Importantly, repeated adverse experiences throughout childhood increase the risk for PFC-mediated behavioral deficits more commonly in women. Evidence from animal models points to effects of adversity on later-life neural and behavioral dysfunction; however, few studies have investigated the neurobiological underpinnings of sex-specific, long-term consequences of multiple developmental stressors. We modeled early life adversity in rats via maternal separation (postnatal day (P)2-20) and juvenile social isolation (P21-35). In adulthood, anxiety-like behavior was assessed in the elevated zero maze and the presence and structural integrity of PFC perineuronal nets (PNNs) enwrapping parvalbumin (PV)-expressing interneurons was quantified. PNNs are extracellular matrix structures formed during critical periods in postnatal development that play a key role in the plasticity of PV cells. We observed a female-specific effect of adversity on hyperactivity and risk-assessment behavior. Moreover, females – but not males – exposed to multiple hits of adversity demonstrated a reduction in PFC PV cells in adulthood. We also observed a sex-specific, potentiated reduction in PV + PNN structural integrity. These findings suggest a sex-specific impact of repeated adversity on neurostructural development and implicate PNNs as a contributor to associated behavioral dysfunction.
Collapse
Affiliation(s)
| | - Lilly M Ryll
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Jessica C Hexter
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Shayna Peterzell
- Department of Psychology, Northeastern University, Boston, MA, USA
| | | | | |
Collapse
|
12
|
Gagne C, Piot A, Brake WG. Depression, Estrogens, and Neuroinflammation: A Preclinical Review of Ketamine Treatment for Mood Disorders in Women. Front Psychiatry 2021; 12:797577. [PMID: 35115970 PMCID: PMC8804176 DOI: 10.3389/fpsyt.2021.797577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Ketamine has been shown to acutely and rapidly ameliorate depression symptoms and suicidality. Given that women suffer from major depression at twice the rate of men, it is important to understand how ketamine works in the female brain. This review explores three themes. First, it examines our current understanding of the etiology of depression in women. Second, it examines preclinical research on ketamine's antidepressant effects at a neurobiological level as well as how ovarian hormones present a unique challenge in interpreting these findings. Lastly, the neuroinflammatory hypothesis of depression is highlighted to help better understand how ovarian hormones might interact with ketamine in the female brain.
Collapse
Affiliation(s)
- Collin Gagne
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| | - Alexandre Piot
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| | - Wayne G Brake
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| |
Collapse
|
13
|
Gildawie KR, Orso R, Peterzell S, Thompson V, Brenhouse HC. Sex differences in prefrontal cortex microglia morphology: Impact of a two-hit model of adversity throughout development. Neurosci Lett 2020; 738:135381. [PMID: 32927000 PMCID: PMC7584734 DOI: 10.1016/j.neulet.2020.135381] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Neuroimmune mechanisms play critical roles in brain development and can be impacted by early life adversity. Microglia are the resident immune cells in the brain, with both sex-specific and region-specific developmental profiles. Since early life adversity is associated with several neuropsychiatric disorders with developmental pathogeneses, here we investigated the degree to which maternal separation (MS) impacted microglia over development. Microglia are dynamic cells that alter their morphology in accordance with their functions and in response to stressors. While males and females reportedly display different microglial morphology in several brain regions over development and following immune and psychological challenges, little is known about such differences in the prefrontal cortex (PFC), which regulates several early life adversity-attributable disorders. Additionally, little is known about the potential for early life adversity to prime microglia for later immune challenges. In the current study, male and female rats were exposed to MS followed by lipopolysaccharide administration in juvenility or adolescence. The prelimbic and infralimbic PFC were then separately analyzed for microglial density and morphology. Typically developing males expressed smaller soma and less arborization than females in juvenility, but larger soma than females in adolescence. MS led to fewer microglia in the infralimbic PFC of adolescent males. Both MS and lipopolysaccharide administration affected morphological characteristics in juvenile males and females, with MS exposure leading to a greater increase in soma size following lipopolysaccharide. Interestingly, effects of MS and lipopolysaccharide were not observed in adolescence, while notable sex differences in PFC microglial morphology were apparent. Taken together, these findings provide insight into how PFC microglia may differentially respond to challenges over development in males and females.
Collapse
Affiliation(s)
| | - Rodrigo Orso
- Psychology Department, Northeastern University, Boston, MA, USA; Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
14
|
Sanchez-Alavez M, Nguyen W, Mori S, Wills DN, Otero D, Aguirre CA, Singh M, Ehlers CL, Conti B. Time Course of Blood and Brain Cytokine/Chemokine Levels Following Adolescent Alcohol Exposure and Withdrawal in Rats. Alcohol Clin Exp Res 2019; 43:2547-2558. [PMID: 31589333 PMCID: PMC6904424 DOI: 10.1111/acer.14209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 10/01/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Adolescence is a critical period for neural development, and alcohol exposure during adolescence can lead to an elevated risk for health consequences as well as alcohol use disorders. Clinical and experimental data suggest that chronic alcohol exposure may produce immunomodulatory effects that can lead to the activation of pro-inflammatory cytokine pathways as well as microglial markers. The present study evaluated, in brain and blood, the effects of adolescent alcohol exposure and withdrawal on microglia and on the most representative pro- and anti-inflammatory cytokines and major chemokines that can contribute to the establishing of a neuroinflammatory environment. METHODS Wistar rats (males, n = 96) were exposed to ethanol (EtOH) vapors, or air control, for 5 weeks over adolescence (PD22-PD58). Brains and blood samples were collected at 3 time points: (i) after 35 days of vapor/air exposure (PD58); (ii) after 1 day of withdrawal (PD59), and (iii) 28 days after withdrawal (PD86). The ionized calcium-binding adapter molecule 1 (Iba-1) was used to index microglial activation, and cytokine/chemokine responses were analyzed using magnetic bead panels. RESULTS After 35 days of adolescent vapor exposure, a significant increase in Iba-1 immunoreactivity was seen in amygdala, frontal cortex, hippocampus, and substantia nigra. However, Iba-1 density returned to control levels at both 1 day and 28 days of withdrawal except in the hippocampus where Iba-1 density was significantly lower than controls. In serum, adolescent EtOH exposure induced a reduction in IL-13 and an increase in fractalkine at day 35. After 1 day of withdrawal, IL-18 was reduced, and IP-10 was elevated, whereas both IP-10 and IL-10 were elevated at 28 days following withdrawal. In the frontal cortex, adolescent EtOH exposure induced an increase in IL-1β at day 35, and 28 days of withdrawal, and IL-10 was increased after 28 days of withdrawal. CONCLUSION These data demonstrate that EtOH exposure during adolescence produces significant microglial activation; however, inflammatory markers seen in the blood appear to differ from those observed in the brain.
Collapse
Affiliation(s)
| | - William Nguyen
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Simone Mori
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Derek N Wills
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Dennis Otero
- Infectious and Inflammatory Disease Center and National Cancer Institute (NCI)-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Research Institute, La Jolla, California
| | - Carlos A Aguirre
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Mona Singh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Bruno Conti
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
15
|
Toro CA, Zhang L, Cao J, Cai D. Sex differences in Alzheimer's disease: Understanding the molecular impact. Brain Res 2019; 1719:194-207. [PMID: 31129153 DOI: 10.1016/j.brainres.2019.05.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/10/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that presents with cognitive impairment and behavioral disturbance. Approximately 5.5 million people in the United States live with AD, most of whom are over the age of 65 with two-thirds being woman. There have been major advancements over the last decade or so in the understanding of AD neuropathological changes and genetic involvement. However, studies of sex impact in AD have not been adequately integrated into the investigation of disease development and progression. It becomes indispensable to acknowledge in both basic science and clinical research studies the importance of understanding sex-specific differences in AD pathophysiology and pathogenesis, which could guide future effort in the discovery of novel targets for AD. Here, we review the latest and most relevant literature on this topic, highlighting the importance of understanding sex dimorphism from a molecular perspective and its association to clinical trial design and development in AD research field.
Collapse
Affiliation(s)
- Carlos A Toro
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Larry Zhang
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Jiqing Cao
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Dongming Cai
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Neurology Section, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
16
|
Johnson JD, Barnard DF, Kulp AC, Mehta DM. Neuroendocrine Regulation of Brain Cytokines After Psychological Stress. J Endocr Soc 2019; 3:1302-1320. [PMID: 31259292 PMCID: PMC6595533 DOI: 10.1210/js.2019-00053] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence that stress-induced brain cytokines are important in the etiology of depression and anxiety. Here, we review how the neuroendocrine responses to psychological stressors affect the immediate and long-term regulation of inflammatory cytokines within the brain and highlight how the regulation changes across time with repeated stress exposure. In doing so, we report on the percentage of studies in the literature that observed increases in either IL-1β, TNF-α, or IL-6 within the hypothalamus, hippocampus, or prefrontal cortex after either acute or chronic stress exposure. The key takeaway is that catecholamines and glucocorticoids play critical roles in the regulation of brain cytokines after psychological stress exposure. Central catecholamines stimulate the release of IL-1β from microglia, which is a key factor in the further activation of microglia and recruitment of monocytes into the brain. Meanwhile, the acute elevation of glucocorticoids inhibits the production of brain cytokines via two mechanisms: the suppression of noradrenergic locus coeruleus neurons and inhibition of the NFκB signaling pathway. However, glucocorticoids and peripheral catecholamines facilitate inflammatory responses to future stimuli by stimulating monocytes to leave the bone marrow, downregulating inhibitory receptors on microglia, and priming inflammatory responses mediated by peripheral monocytes or macrophages. The activation of microglia and the elevation of peripheral glucocorticoid and catecholamine levels are both necessary during times of stress exposure for the development of psychopathologies.
Collapse
Affiliation(s)
- John D Johnson
- Kent State University, Biological Sciences Department, School of Biomedical Sciences, Kent, Ohio
| | - David F Barnard
- Kent State University, Biological Sciences Department, School of Biomedical Sciences, Kent, Ohio
| | - Adam C Kulp
- Kent State University, Biological Sciences Department, School of Biomedical Sciences, Kent, Ohio
| | - Devanshi M Mehta
- Kent State University, Biological Sciences Department, School of Biomedical Sciences, Kent, Ohio
| |
Collapse
|
17
|
Sanchez-Alavez M, Nguyen W, Mori S, Wills DN, Otero D, Ehlers CL, Conti B. Time course of microglia activation and brain and blood cytokine/chemokine levels following chronic ethanol exposure and protracted withdrawal in rats. Alcohol 2019; 76:37-45. [PMID: 30554034 DOI: 10.1016/j.alcohol.2018.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/30/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
Abstract
Alcohol produces complex effects on the immune system. Moderate alcohol use (1-2 drinks per day) has been shown to produce anti-inflammatory responses in human blood monocytes, whereas, the post mortem brains of severe alcoholics show increased immune gene expression and activated microglial markers. The present study was conducted to evaluate the time course of alcohol effects during exposure and after withdrawal, and to determine the relationship between microglial and cytokine responses in brain and blood. Forty-eight adult, male Wistar rats were exposed to chronic ethanol vapors, or air control, for 5 weeks. Following ethanol/air exposure blood and brains were collected at three time points: 1) while intoxicated, following 35 days of air/vapor exposure; 2) following 24 h of withdrawal from exposure, and 3) 28 days after withdrawal. One hemisphere of the brain was flash-frozen for cytokine analysis, and the other was fixed for immunohistochemical analysis. The ionized calcium-binding adapter molecule 1 (Iba-1) was used to evaluate microglia activation at the three time points, and rat cytokine/chemokine Magnetic Bead Panels (Millipore) were used to analyze frontal cortex tissue lysate and serum. Ethanol induced a significant increase in Iba-1 that peaked at day 35, remained significant after 1 day of withdrawal, and was elevated at day 28 in frontal cortex, amygdala, and substantia nigra. Ethanol exposure was associated with a transient reduction of the serum level of the major pro- and anti-inflammatory cytokines and chemokines and a transient increase of effectors of sterile inflammation. Little or no changes in these molecules were seen in the frontal cortex except for HMG1 and fractalkine that were reduced and elevated, respectively, at day 28 following withdrawal. These data show that ethanol exposure produces robust microglial activation; however, measures of inflammation in the blood differ from those in the brain over a protracted time course.
Collapse
Affiliation(s)
- Manuel Sanchez-Alavez
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - William Nguyen
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Simone Mori
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Derek N Wills
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Dennis Otero
- Infectious and Inflammatory Disease Center and National Cancer Institute (NCI)-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Research Institute, La Jolla, CA 92037, United States
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| | - Bruno Conti
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States; Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States; Dorris Neuroscience Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| |
Collapse
|
18
|
Eid RS, Gobinath AR, Galea LAM. Sex differences in depression: Insights from clinical and preclinical studies. Prog Neurobiol 2019; 176:86-102. [PMID: 30721749 DOI: 10.1016/j.pneurobio.2019.01.006] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Depression represents a global mental health concern, and disproportionally affects women as they are twice more likely to be diagnosed than men. In this review, we provide a summary of evidence to support the notion that differences in depression between men and women span multiple facets of the disease, including epidemiology, symptomology, treatment, and pathophysiology. Through a lens of biological sex, we overview depression-related transcriptional patterns, changes in neuroanatomy and neuroplasticity, and immune signatures. We acknowledge the unique physiological and behavioral demands of pregnancy and motherhood by devoting special attention to depression occurring in the peripartum period. Specifically, we discuss issues surrounding the presentation, time course, treatment, and neurobiology of peripartum depression. We write this review with the intention of highlighting the encouraging advancements in our understanding of sex differences in depression, while underscoring the gaps that remain. A more systematic consideration of biological sex as a variable in depression research will be critical in the discovery and development of pharmacotherapies that are efficacious for both men and women.
Collapse
Affiliation(s)
- Rand S Eid
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Aarthi R Gobinath
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
19
|
Bekhbat M, Howell PA, Rowson SA, Kelly SD, Tansey MG, Neigh GN. Chronic adolescent stress sex-specifically alters central and peripheral neuro-immune reactivity in rats. Brain Behav Immun 2019; 76:248-257. [PMID: 30550932 PMCID: PMC6886374 DOI: 10.1016/j.bbi.2018.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/09/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Adversity during development is a reliable predictor of psychiatric disorders such as depression and anxiety which are increasingly recognized to have an immune component. We have previously demonstrated that chronic adolescent stress (CAS) in rats leads to depressive-like behavior in adulthood along with long-lasting changes to the hypothalamic-pituitary-adrenal axis and pro-inflammatory cytokine induction in the hippocampus. However, the mechanisms by which CAS promotes hippocampal inflammation are not yet defined. Here we tested the hypothesis that a history of CAS exaggerates induction of the pro-inflammatory NFκB pathway in the adult rat hippocampus without compromising the peripheral immune response. We also assessed potential sex differences because it is unclear whether females, who are twice as likely to suffer from mood disorders as males, are disproportionally affected by stress-primed inflammation. Male and female adolescent rats underwent a CAS paradigm or received no stress. Six weeks following the last stressor, all rats received a single systemic injection of either lipopolysaccharide or vehicle to unmask possible immune-priming effects of CAS. An NFκB signaling PCR array demonstrated that CAS exaggerated the expression of NFκB-related genes in the hippocampus of both males and females. Interestingly, targeted qPCR demonstrated that CAS potentiated the induction of hippocampal IL1B and REL mRNA in female rats only, suggesting that some immune effects of CAS are indeed sex-specific. In contrast to the hippocampal findings, indices of peripheral inflammation such as NFκB activity in the spleen, plasma IL-1β, IL-6, TNF-α, and corticosterone were not impacted by CAS in female rats. Despite showing no pro-inflammatory changes to hippocampal mRNA, male CAS rats displayed lower plasma corticosterone response to LPS at 2 h after injection followed by an exaggerated plasma IL-1β response at 4 h. This potentially blunted corticosterone response coupled with excessive innate immune signaling in the periphery is consistent with possible glucocorticoid resistance in males. In contrast, the effects of CAS manifested as excessive hippocampal immune reactivity in females. We conclude that while a history of exposure to chronic adolescent stress enhances adult immune reactivity in both males and females, the mechanism and manifestation of such alterations are sex-specific.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Emory University Graduate Division of Biological Sciences Neuroscience Graduate Program
| | - Paul A. Howell
- Virginia Commonwealth University, Department of Anatomy & Neurobiology
| | - Sydney A. Rowson
- Emory University Graduate Division of Biological Sciences Molecular and Systems Pharmacology Graduate Studies Program
| | | | | | - Gretchen N. Neigh
- Virginia Commonwealth University, Department of Anatomy & Neurobiology,Corresponding Author: Gretchen N. Neigh, PhD, Virginia Commonwealth University, 1101 East Marshall Street, PO Box 980709, Richmond, VA 23298, V: 804-628-5152, F: 804-828-9477,
| |
Collapse
|
20
|
Frank MG, Fonken LK, Watkins LR, Maier SF. Microglia: Neuroimmune-sensors of stress. Semin Cell Dev Biol 2019; 94:176-185. [PMID: 30638704 DOI: 10.1016/j.semcdb.2019.01.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Exposure to stressors disrupts homeostasis and results in the release of stress hormones including glucocorticoids, epinepherine and norepinepherine. Interestingly, stress also has profound affects on microglia, which are tissue-resident macrophages in the brain parenchyma. Microglia express a diverse array of receptors, which also allows them to respond to stress hormones derived from peripheral as well as central sources. Here, we review studies of how exposure to acute and chronic stressors alters the immunophenotype and function of microglia. Further, we examine a causal for stress hormones in these effects of stress on microglia. We propose that microglia serve as immunosensors of the stress response, which puts them in the unique position to sense and respond rapidly to alterations in homeostasis and integrate the neural response to threats.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
21
|
Schmid S, Rammes G, Blobner M, Kellermann K, Bratke S, Fendl D, Kaichuan Z, Schneider G, Jungwirth B. Cognitive decline in Tg2576 mice shows sex-specific differences and correlates with cerebral amyloid-beta. Behav Brain Res 2018; 359:408-417. [PMID: 30458163 DOI: 10.1016/j.bbr.2018.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022]
Abstract
Patients suffering from Alzheimer's disease show a sex-dependent decline of cognitive function. The aim of this investigation was to show these differences in an animal model for Alzheimer's disease and to determine whether this effect is correlated to amyloid-beta-induced pathophysiological changes. Therefore, we assessed cognitive performance with the modified hole-board test in female and male Tg2576 and wild type mice at the age of 6, 8, 10, 12, 14, and 16 months and correlated these findings to the total amount of soluble amyloid-beta and insoluble amyloid deposits in the brain. Tg2576 mice perform worse than wild types. Female Tg2576 mice develop an accentuated cognitive impairment (wrong choice total) beginning at the age of 12 months compared to their male littermates. Alterations in the mice's behaviour do not show interference with these deficits. Cognitive impairment is correlated to the amount of soluble amyloid-beta and insoluble amyloid deposits in the brain in a sex-dependent manner.
Collapse
Affiliation(s)
- Sebastian Schmid
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Gerhard Rammes
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Manfred Blobner
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Kristine Kellermann
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Sebastian Bratke
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Diana Fendl
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Zhu Kaichuan
- German Center for Neurodegenerative Diseases, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Gerhard Schneider
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Bettina Jungwirth
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
22
|
Bekhbat M, Neigh GN. Stress-induced neuroimmune priming in males and females: Comparable but not identical. Brain Behav Immun 2018; 73:149-150. [PMID: 29753849 PMCID: PMC6490675 DOI: 10.1016/j.bbi.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 10/16/2022] Open
Affiliation(s)
- Mandakh Bekhbat
- Neuroscience Graduate Studies Program, Emory University, Atlanta, GA
| | - Gretchen N. Neigh
- Neuroscience Graduate Studies Program, Emory University, Atlanta, GA,Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA,Corresponding Author: Gretchen N. Neigh, PhD, Virginia Commonwealth University, 1101 East Marshall Street, PO Box 980709, Richmond, VA 23298, Voice: 804-628-5152,
| |
Collapse
|
23
|
Bell MR, Dryden A, Will R, Gore AC. Sex differences in effects of gestational polychlorinated biphenyl exposure on hypothalamic neuroimmune and neuromodulator systems in neonatal rats. Toxicol Appl Pharmacol 2018; 353:55-66. [PMID: 29879404 PMCID: PMC7846971 DOI: 10.1016/j.taap.2018.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/15/2018] [Accepted: 06/01/2018] [Indexed: 01/05/2023]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous in the environment and exposure to them is associated with immune, endocrine and neural dysfunction. Effects of PCBs on inflammation and immunity are best described in spleen and blood, with fewer studies on neural tissues. This is an important gap in knowledge, as molecules typically associated with neuroinflammation also serve neuromodulatory roles and interact with hormones in normal brain development. The current study used Sprague-Dawley rats to assess whether gestational PCB exposure altered hypothalamic gene expression and serum cytokine concentration in neonatal animals given an immune challenge. Dams were fed wafers containing a mixture of PCBs at an environmentally relevant dose and composition (20 μg/kg, 1:1:1 Aroclor 1242:1248:1254) or oil vehicle control throughout their pregnancy. One day old male and female offspring were treated with an inflammatory challenge (lipopolysaccharide, LPS, 50 μg/kg, sc) or saline vehicle control approximately 3.5 h prior to tissue collection. Across both basal and activated inflammatory states, PCB exposure caused greater expression of a subset of inflammatory genes in the hypothalamus and lower expression of genes involved in dopamine, serotonin, and opioid systems compared to oil controls. PCB exposure also altered reactions to inflammatory challenge: it reversed the normal decrease in Esr2 hypothalamic expression and induced an abnormal increase in IL-1b and IL-6 serum concentration in response to LPS. Many of these effects were sex specific. Given the potential long-term consequences of neuroimmune disruption, our findings demonstrate the need for further research.
Collapse
Affiliation(s)
- Margaret R Bell
- Department of Biological Sciences and Department of Health Sciences, DePaul University, Chicago, IL 60614, United States.
| | - Ariel Dryden
- Franklin College, Franklin, IN 46131, United States.
| | - Ryan Will
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
24
|
Rainville JR, Tsyglakova M, Hodes GE. Deciphering sex differences in the immune system and depression. Front Neuroendocrinol 2018; 50:67-90. [PMID: 29288680 DOI: 10.1016/j.yfrne.2017.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
Certain mood disorders and autoimmune diseases are predominately female diseases but we do not know why. Here, we explore the relationship between depression and the immune system from a sex-based perspective. This review characterizes sex differences in the immune system in health and disease. We explore the contribution of gonadal and stress hormones to immune function at the cellular and molecular level in the brain and body. We propose hormonal and genetic sex specific immune mechanisms that may contribute to the etiology of mood disorders.
Collapse
Affiliation(s)
- Jennifer R Rainville
- Department of Neuroscience, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24060, USA
| | - Mariya Tsyglakova
- Department of Neuroscience, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24060, USA; Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, 1 Riverside Circle, Roanoke, VA 24016, USA
| | - Georgia E Hodes
- Department of Neuroscience, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24060, USA.
| |
Collapse
|
25
|
Bekhbat M, Neigh GN. Sex differences in the neuro-immune consequences of stress: Focus on depression and anxiety. Brain Behav Immun 2018; 67:1-12. [PMID: 28216088 PMCID: PMC5559342 DOI: 10.1016/j.bbi.2017.02.006] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 12/17/2022] Open
Abstract
Women appear to be more vulnerable to the depressogenic effects of inflammation than men. Chronic stress, one of the most pertinent risk factors of depression and anxiety, is known to induce behavioral and affective-like deficits via neuroimmune alterations including activation of the brain's immune cells, pro-inflammatory cytokine expression, and subsequent changes in neurotransmission and synaptic plasticity within stress-related neural circuitry. Despite well-established sexual dimorphisms in the stress response, immunity, and prevalence of stress-linked psychiatric illnesses, much of current research investigating the neuroimmune impact of stress remains exclusively focused on male subjects. We summarize and evaluate here the available data regarding sex differences in the neuro-immune consequences of stress, and some of the physiological factors contributing to these differences. Furthermore, we discuss the extent to which sex differences in stress-related neuroinflammation can account for the overall female bias in stress-linked psychiatric disorders including major depressive disorder and anxiety disorders. The currently available evidence from rodent studies does not unequivocally support the peripheral inflammatory changes seen in women following stress. Replication of many recent findings in stress-related neuroinflammation in female subjects is necessary in order to build a framework in which we can assess the extent to which sex differences in stress-related inflammation contribute to the overall female bias in stress-related affective disorders.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
| | - Gretchen N Neigh
- Department of Physiology, Emory University, Atlanta, GA 30322, USA; Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
26
|
Labaka A, Gómez-Lázaro E, Vegas O, Pérez-Tejada J, Arregi A, Garmendia L. Reduced hippocampal IL-10 expression, altered monoaminergic activity and anxiety and depressive-like behavior in female mice subjected to chronic social instability stress. Behav Brain Res 2017; 335:8-18. [DOI: 10.1016/j.bbr.2017.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/10/2017] [Accepted: 08/01/2017] [Indexed: 12/25/2022]
|
27
|
Tronson NC, Collette KM. (Putative) sex differences in neuroimmune modulation of memory. J Neurosci Res 2017; 95:472-486. [PMID: 27870428 PMCID: PMC5120654 DOI: 10.1002/jnr.23921] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022]
Abstract
The neuroimmune system is significantly sexually dimorphic, with sex differences evident in the number and activation states of microglia, in the activation of astrocytes, and in cytokine release and function. Neuroimmune cells and signaling are now recognized as critical for many neural functions throughout the life span, including synaptic plasticity and memory function. Here we address the question of how cytokines, astrocytes, and microglia contribute to memory, and specifically how neuroimmune modulation of memory differentially affects males and females. Understanding sex differences in both normal memory processes and dysregulation of memory in psychiatric and neurological disorders is critical for developing treatment and preventive strategies for memory disorders that are effective for both men and women. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Katie M Collette
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
Cheng Y, Pardo M, Armini RDS, Martinez A, Mouhsine H, Zagury JF, Jope RS, Beurel E. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior. Brain Behav Immun 2016; 53:207-222. [PMID: 26772151 PMCID: PMC4783243 DOI: 10.1016/j.bbi.2015.12.012] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022] Open
Abstract
Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6-12h after stress. A 24h prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine and chemokine increases, with most reaching peak levels after 1-3h, often without altering the maximal levels. Toll-like receptor 4 (TLR4) was involved in this response because most stress-induced hippocampal cytokines and chemokines were attenuated in TLR4 knockout mice. Stress activated glycogen synthase kinase-3 (GSK3) in wild-type mouse hippocampus, but not in TLR4 knockout mice. Administration of the antidepressant fluoxetine or the GSK3 inhibitor TDZD-8 reduced the stress-induced increases of most hippocampal cytokines and chemokines. Stress increased hippocampal levels of the danger-associated molecular pattern (DAMP) protein high mobility group box 1 (HMGB1), activated the inflammatory transcription factor NF-κB, and the NLRP3 inflammasome. Knockdown of HMGB1 blocked the acceleration of cytokine and chemokine increases in the hippocampus caused by two successive stresses. Fluoxetine treatment blocked stress-induced up-regulation of HMGB1 and subsequent NF-κB activation, whereas TDZD-8 administration attenuated NF-κB activation downstream of HMGB1. To test if stress-induced cytokines and chemokines contribute to depression-like behavior, the learned helplessness model was assessed. Antagonism of TNFα modestly reduced susceptibility to learned helplessness induction, whereas TLR4 knockout mice were resistant to learned helplessness. Thus, stress-induces a broad inflammatory response in mouse hippocampus that involves TLR4, GSK3, and downstream inflammatory signaling, and these stress responses contribute to susceptibility to depression-like behavior in mice.
Collapse
Affiliation(s)
- Yuyan Cheng
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Marta Pardo
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Rubia de Souza Armini
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Ana Martinez
- Centro de Investigaciones Biologicas-CSIC, 28040 Madrid, Spain
| | - Hadley Mouhsine
- Laboratoire Génomique, Bioinformatique et Applications, EA4627, Conservatoire National des Arts et Métiers, 75003 Paris, France
| | - Jean-Francois Zagury
- Laboratoire Génomique, Bioinformatique et Applications, EA4627, Conservatoire National des Arts et Métiers, 75003 Paris, France
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| | - Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
29
|
Bollinger JL, Bergeon Burns CM, Wellman CL. Differential effects of stress on microglial cell activation in male and female medial prefrontal cortex. Brain Behav Immun 2016; 52:88-97. [PMID: 26441134 PMCID: PMC4909118 DOI: 10.1016/j.bbi.2015.10.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 09/25/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022] Open
Abstract
Susceptibility to stress-linked psychological disorders, including post-traumatic stress disorder and depression, differs between men and women. Dysfunction of medial prefrontal cortex (mPFC) has been implicated in many of these disorders. Chronic stress affects mPFC in a sex-dependent manner, differentially remodeling dendritic morphology and disrupting prefrontally mediated behaviors in males and females. Chronic restraint stress induces microglial activation, reflected in altered microglial morphology and immune factor expression, in mPFC in male rats. Unstressed females exhibit increased microglial ramification in several brain regions compared to males, suggesting both heightened basal activation and a potential for sex-dependent effects of stress on microglial activation. Therefore, we assessed microglial density and ramification in the prelimbic region of mPFC, and immune-associated genes in dorsal mPFC in male and female rats following acute or chronic restraint stress. Control rats were left unstressed. On the final day of restraint, brains were collected for either qPCR or visualization of microglia using Iba-1 immunohistochemistry. Microglia in mPFC were classified as ramified, primed, reactive, or amoeboid, and counted stereologically. Expression of microglia-associated genes (MHCII, CD40, IL6, CX3CL1, and CX3CR1) was also assessed using qPCR. Unstressed females showed a greater proportion of primed to ramified microglia relative to males, alongside heightened CX3CL1-CX3CR1 expression. Acute and chronic restraint stress reduced the proportion of primed to ramified microglia and microglial CD40 expression in females, but did not significantly alter microglial activation in males. This sex difference in microglial activation could contribute to the differential effects of stress on mPFC structure and function in males versus females.
Collapse
Affiliation(s)
- Justin L Bollinger
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, United States
| | - Christine M Bergeon Burns
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, United States
| | - Cara L Wellman
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|
30
|
Audet MC, McQuaid RJ, Merali Z, Anisman H. Cytokine variations and mood disorders: influence of social stressors and social support. Front Neurosci 2014; 8:416. [PMID: 25565946 PMCID: PMC4267188 DOI: 10.3389/fnins.2014.00416] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/25/2014] [Indexed: 01/12/2023] Open
Abstract
Stressful events have been implicated in the evolution of mood disorders. In addition to brain neurotransmitters and growth factors, the view has been offered that these disorders might be provoked by the activation of the inflammatory immune system as well as by de novo changes of inflammatory cytokines within the brain. The present review describes the impact of social stressors in animals and in humans on behavioral changes reminiscent of depressive states as well as on cytokine functioning. Social stressors increase pro-inflammatory cytokines in circulation as well as in brain regions that have been associated with depression, varying with the animal's social status and/or behavioral methods used to contend with social challenges. Likewise, in humans, social stressors that favor the development of depression are accompanied by elevated circulating cytokine levels and conversely, conditions that limit the cytokine elevations correlated with symptom attenuation or reversal. The implications of these findings are discussed in relation to the potentially powerful effects of social support, social identity, and connectedness in maintaining well-being and in diminishing symptoms of depression.
Collapse
Affiliation(s)
- Marie-Claude Audet
- Institute of Mental Health Research Ottawa, ON, Canada ; Department of Neuroscience, Carleton University Ottawa, ON, Canada
| | - Robyn J McQuaid
- Department of Neuroscience, Carleton University Ottawa, ON, Canada
| | - Zul Merali
- Institute of Mental Health Research Ottawa, ON, Canada
| | - Hymie Anisman
- Department of Neuroscience, Carleton University Ottawa, ON, Canada
| |
Collapse
|