1
|
Sahu P, Verma HK, Bhaskar LVKS. Alcohol and alcoholism associated neurological disorders: Current updates in a global perspective and recent recommendations. World J Exp Med 2025; 15:100402. [DOI: 10.5493/wjem.v15.i1.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
Alcohol use disorder (AUD) is a medical condition that impairs a person's ability to stop or manage their drinking in the face of negative social, occupational, or health consequences. AUD is defined by the National Institute on Alcohol Abuse and Alcoholism as a "severe problem". The central nervous system is the primary target of alcohol's adverse effects. It is crucial to identify various neurological disorders associated with AUD, including alcohol withdrawal syndrome, Wernicke-Korsakoff syndrome, Marchiafava-Bignami disease, dementia, and neuropathy. To gain a better understanding of the neurological environment of alcoholism and to shed light on the role of various neurotransmitters in the phenomenon of alcoholism. A comprehensive search of online databases, including PubMed, EMBASE, Web of Science, and Google Scholar, was conducted to identify relevant articles. Several neurotransmitters (dopamine, gamma-aminobutyric acid, serotonin, and glutamate) have been linked to alcoholism due to a brain imbalance. Alcoholism appears to be a complex genetic disorder, with variations in many genes influencing risk. Some of these genes have been identified, including two alcohol metabolism genes, alcohol dehydrogenase 1B gene and aldehyde dehydrogenase 2 gene, which have the most potent known effects on the risk of alcoholism. Neuronal degeneration and demyelination in people with AUD may be caused by neuronal damage, nutrient deficiencies, and blood brain barrier dysfunction; however, the underlying mechanism is unknown. This review will provide a detailed overview of the neurobiology of alcohol addiction, followed by recent studies published in the genetics of alcohol addiction, molecular mechanism and detailed information on the various acute and chronic neurological manifestations of alcoholism for the Future research.
Collapse
Affiliation(s)
- Prashanti Sahu
- Department of Zoology, GGU Bilaspur, Bilaspur 495009, Chhattīsgarh, India
| | - Henu Kumar Verma
- Department of Lung Health and Immunity, Helmholtz Zentrum Munich, Munich 85764, Bayren, Germany
| | - LVKS Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495001, Chhattīsgarh, India
| |
Collapse
|
2
|
Terauchi A, Johnson-Venkatesh EM, Umemori H. Establishing functionally segregated dopaminergic circuits. Trends Neurosci 2025:S0166-2236(24)00246-7. [PMID: 39863490 DOI: 10.1016/j.tins.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/04/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
Despite accounting for only ~0.001% of all neurons in the human brain, midbrain dopaminergic neurons control numerous behaviors and are associated with many neuropsychiatric disorders that affect our physical and mental health. Dopaminergic neurons form various anatomically and functionally segregated pathways. Having such defined dopaminergic pathways is key to controlling varied sets of brain functions; therefore, segregated dopaminergic pathways must be properly and uniquely formed during development. How are these segregated pathways established? The three key developmental stages that dopaminergic neurons go through are cell migration, axon guidance, and synapse formation. In each stage, dopaminergic neurons and their processes receive unique molecular cues to guide the formation of specific dopaminergic pathways. Here, we outline the molecular mechanisms underlying the establishment of segregated dopaminergic pathways during each developmental stage in the mouse brain, focusing on the formation of the three major dopaminergic pathways: the nigrostriatal, mesolimbic, and mesocortical pathways. We propose that multiple stage-specific molecular gradients cooperate to establish functionally segregated dopaminergic circuits.
Collapse
Affiliation(s)
- Akiko Terauchi
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erin M Johnson-Venkatesh
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Boyle N, Betts S, Lu H. Monoaminergic Modulation of Learning and Cognitive Function in the Prefrontal Cortex. Brain Sci 2024; 14:902. [PMID: 39335398 PMCID: PMC11429557 DOI: 10.3390/brainsci14090902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Extensive research has shed light on the cellular and functional underpinnings of higher cognition as influenced by the prefrontal cortex. Neurotransmitters act as key regulatory molecules within the PFC to assist with synchronizing cognitive state and arousal levels. The monoamine family of neurotransmitters, including dopamine, serotonin, and norepinephrine, play multifaceted roles in the cognitive processes behind learning and memory. The present review explores the organization and signaling patterns of monoamines within the PFC, as well as elucidates the numerous roles played by monoamines in learning and higher cognitive function.
Collapse
Affiliation(s)
| | | | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (N.B.); (S.B.)
| |
Collapse
|
4
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
5
|
Lee RS, Sagiv Y, Engelhard B, Witten IB, Daw ND. A feature-specific prediction error model explains dopaminergic heterogeneity. Nat Neurosci 2024; 27:1574-1586. [PMID: 38961229 DOI: 10.1038/s41593-024-01689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
The hypothesis that midbrain dopamine (DA) neurons broadcast a reward prediction error (RPE) is among the great successes of computational neuroscience. However, recent results contradict a core aspect of this theory: specifically that the neurons convey a scalar, homogeneous signal. While the predominant family of extensions to the RPE model replicates the classic model in multiple parallel circuits, we argue that these models are ill suited to explain reports of heterogeneity in task variable encoding across DA neurons. Instead, we introduce a complementary 'feature-specific RPE' model, positing that individual ventral tegmental area DA neurons report RPEs for different aspects of an animal's moment-to-moment situation. Further, we show how our framework can be extended to explain patterns of heterogeneity in action responses reported among substantia nigra pars compacta DA neurons. This theory reconciles new observations of DA heterogeneity with classic ideas about RPE coding while also providing a new perspective of how the brain performs reinforcement learning in high-dimensional environments.
Collapse
Affiliation(s)
- Rachel S Lee
- Princeton Neuroscience Institute, Princeton, NJ, USA
| | - Yotam Sagiv
- Princeton Neuroscience Institute, Princeton, NJ, USA
| | - Ben Engelhard
- Princeton Neuroscience Institute, Princeton, NJ, USA
| | | | - Nathaniel D Daw
- Princeton Neuroscience Institute, Princeton, NJ, USA.
- Department of Psychology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
6
|
Hamilton AR, Vishwanath A, Weintraub NC, Cowen SL, Heien ML. Dopamine Release Dynamics in the Nucleus Accumbens Are Modulated by the Timing of Electrical Stimulation Pulses When Applied to the Medial Forebrain Bundle and Medial Prefrontal Cortex. ACS Chem Neurosci 2024; 15:2643-2653. [PMID: 38958080 DOI: 10.1021/acschemneuro.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Electrical brain stimulation has been used in vivo and in vitro to investigate neural circuitry. Historically, stimulation parameters such as amplitude, frequency, and pulse width were varied to investigate their effects on neurotransmitter release and behavior. These experiments have traditionally employed fixed-frequency stimulation patterns, but it has previously been found that neurons are more precisely tuned to variable input. Introducing variability into the interpulse interval of stimulation pulses will inform on how dopaminergic release can be modulated by variability in pulse timing. Here, dopaminergic release in rats is monitored in the nucleus accumbens (NAc), a key dopaminergic center which plays a role in learning and motivation, by fast-scan cyclic voltammetry. Dopaminergic release in the NAc could also be modulated by stimulation region due to differences in connectivity. We targeted two regions for stimulation─the medial forebrain bundle (MFB) and the medial prefrontal cortex (mPFC)─due to their involvement in reward processing and projections to the NAc. Our goal is to investigate how variable interpulse interval stimulation patterns delivered to these regions affect the time course of dopamine release in the NAc. We found that stimulating the MFB with these variable stimulation patterns saw a highly responsive, frequency-driven dopaminergic response. In contrast, variable stimulation patterns applied to the mPFC were not as sensitive to the variable frequency changes. This work will help inform on how stimulation patterns can be tuned specifically to the stimulation region to improve the efficiency of electrical stimulation and control dopamine release.
Collapse
Affiliation(s)
- Andrea R Hamilton
- Department of Chemistry & Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Abhilasha Vishwanath
- Department of Psychology, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Nathan C Weintraub
- Department of Chemistry & Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Stephen L Cowen
- Department of Psychology, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - M Leandro Heien
- Department of Chemistry & Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
Choi K, Choe Y, Park H. Reinforcement Learning May Demystify the Limited Human Motor Learning Efficacy Due to Visual-Proprioceptive Mismatch. Int J Neural Syst 2024; 34:2450037. [PMID: 38655914 DOI: 10.1142/s0129065724500370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Vision and proprioception have fundamental sensory mismatches in delivering locational information, and such mismatches are critical factors limiting the efficacy of motor learning. However, it is still not clear how and to what extent this mismatch limits motor learning outcomes. To further the understanding of the effect of sensory mismatch on motor learning outcomes, a reinforcement learning algorithm and the simplified biomechanical elbow joint model were employed to mimic the motor learning process in a computational environment. By applying a reinforcement learning algorithm to the motor learning of elbow joint flexion task, simulation results successfully explained how visual-proprioceptive mismatch limits motor learning outcomes in terms of motor control accuracy and task completion speed. The larger the perceived angular offset between the two sensory modalities, the lower the motor control accuracy. Also, the more similar the peak reward amplitude of the two sensory modalities, the lower the motor control accuracy. In addition, simulation results suggest that insufficient exploration rate limits task completion speed, and excessive exploration rate limits motor control accuracy. Such a speed-accuracy trade-off shows that a moderate exploration rate could serve as another important factor in motor learning.
Collapse
Affiliation(s)
- Kyungrak Choi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yoonsuck Choe
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Hangue Park
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
8
|
Kelley AM, Del Valle EJ, Zaman S, Karkhanis AN. Adolescent ethanol exposure promotes mechanical allodynia and alters dopamine transmission in the nucleus accumbens shell. Pain 2024; 165:e55-e64. [PMID: 37962155 PMCID: PMC11090756 DOI: 10.1097/j.pain.0000000000003097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/03/2023] [Indexed: 11/15/2023]
Abstract
ABSTRACT Excessive alcohol consumption in adolescence can disrupt neural development and may augment pain perception. Recent studies have shown that the nucleus accumbens (NAc) shell is involved in mediating pain sensitivity after peripheral inflammation in rodent models of chronic pain and alcohol use disorder. Interestingly, there have been very few studies examining the impact of chronic ethanol exposure during adolescence on pain sensitivity in adulthood. Therefore, in this project, we investigated the impact of adolescent chronic intermittent ethanol (aCIE) exposure on mechanical allodynia. Furthermore, given the involvement of the NAc shell in pain processing and chronic ethanol-mediated changes, we measured changes in accumbal dopamine kinetics during protracted withdrawal. We found that both male and female aCIE rats show mechanical allodynia during withdrawal. Furthermore, male and female aCIE rats show greater evoked tonic dopamine release, maximal rate of dopamine reuptake, and dopamine affinity to the dopamine transporter in the NAc shell compared with controls. With phasic stimulation, aCIE rats also showed greater dopamine release compared with AIR-exposed rats. Inhibition of dopamine transmission targeted in the NAc shell reversed the aCIE-associated facilitation of mechanical allodynia in both sexes. These data suggest that aCIE exposure exacerbates pain sensitivity during withdrawal in an accumbal dopamine-dependent manner.
Collapse
Affiliation(s)
- Abigail M Kelley
- Department of Psychology, Developmental Exposure to Alcohol Research Center, Binghamton University-SUNY, Binghamton, NY, United States
| | | | | | | |
Collapse
|
9
|
Bezerra TO, Roque AC, Salum C. A Computational Model for the Simulation of Prepulse Inhibition and Its Modulation by Cortical and Subcortical Units. Brain Sci 2024; 14:502. [PMID: 38790479 PMCID: PMC11118907 DOI: 10.3390/brainsci14050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
The sensorimotor gating is a nervous system function that modulates the acoustic startle response (ASR). Prepulse inhibition (PPI) phenomenon is an operational measure of sensorimotor gating, defined as the reduction of ASR when a high intensity sound (pulse) is preceded in milliseconds by a weaker stimulus (prepulse). Brainstem nuclei are associated with the mediation of ASR and PPI, whereas cortical and subcortical regions are associated with their modulation. However, it is still unclear how the modulatory units can influence PPI. In the present work, we developed a computational model of a neural circuit involved in the mediation (brainstem units) and modulation (cortical and subcortical units) of ASR and PPI. The activities of all units were modeled by the leaky-integrator formalism for neural population. The model reproduces basic features of PPI observed in experiments, such as the effects of changes in interstimulus interval, prepulse intensity, and habituation of ASR. The simulation of GABAergic and dopaminergic drugs impaired PPI by their effects over subcortical units activity. The results show that subcortical units constitute a central hub for PPI modulation. The presented computational model offers a valuable tool to investigate the neurobiology associated with disorder-related impairments in PPI.
Collapse
Affiliation(s)
- Thiago Ohno Bezerra
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil
| | - Antonio C. Roque
- Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Cristiane Salum
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil
- Interdisciplinary Applied Neuroscience Unit, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil
| |
Collapse
|
10
|
Izowit G, Walczak M, Drwięga G, Solecki W, Błasiak T. Brain state-dependent responses of midbrain dopaminergic neurons to footshock under urethane anaesthesia. Eur J Neurosci 2024; 59:1536-1557. [PMID: 38233998 DOI: 10.1111/ejn.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
For a long time, it has been assumed that dopaminergic (DA) neurons in both the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc) uniformly respond to rewarding and aversive stimuli by either increasing or decreasing their activity, respectively. This response was believed to signal information about the perceived stimuli's values. The identification of VTA&SNc DA neurons that are excited by both rewarding and aversive stimuli has led to the categorisation of VTA&SNc DA neurons into two subpopulations: one signalling the value and the other signalling the salience of the stimuli. It has been shown that the general state of the brain can modulate the electrical activity of VTA&SNc DA neurons, but it remains unknown whether this factor may also influence responses to aversive stimuli, such as a footshock (FS). To address this question, we have recorded the responses of VTA&SNc DA neurons to FSs across cortical activation and slow wave activity brain states in urethane-anaesthetised rats. Adding to the knowledge of aversion signalling by midbrain DA neurons, we report that significant proportion of VTA&SNc DA neurons can change their responses to an aversive stimulus in a brain state-dependent manner. The majority of these neurons decreased their activity in response to FS during cortical activation but switched to increasing it during slow wave activity. It can be hypothesised that this subpopulation of DA neurons may be involved in the 'dual signalling' of both the value and the salience of the stimuli, depending on the general state of the brain.
Collapse
Affiliation(s)
- Gabriela Izowit
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Cracow, Poland
| | - Magdalena Walczak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| | - Gniewosz Drwięga
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Cracow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Cracow, Poland
| | - Tomasz Błasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| |
Collapse
|
11
|
Prescott TJ, Montes González FM, Gurney K, Humphries MD, Redgrave P. Simulated Dopamine Modulation of a Neurorobotic Model of the Basal Ganglia. Biomimetics (Basel) 2024; 9:139. [PMID: 38534824 DOI: 10.3390/biomimetics9030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
The vertebrate basal ganglia play an important role in action selection-the resolution of conflicts between alternative motor programs. The effective operation of basal ganglia circuitry is also known to rely on appropriate levels of the neurotransmitter dopamine. We investigated reducing or increasing the tonic level of simulated dopamine in a prior model of the basal ganglia integrated into a robot control architecture engaged in a foraging task inspired by animal behaviour. The main findings were that progressive reductions in the levels of simulated dopamine caused slowed behaviour and, at low levels, an inability to initiate movement. These states were partially relieved by increased salience levels (stronger sensory/motivational input). Conversely, increased simulated dopamine caused distortion of the robot's motor acts through partially expressed motor activity relating to losing actions. This could also lead to an increased frequency of behaviour switching. Levels of simulated dopamine that were either significantly lower or higher than baseline could cause a loss of behavioural integration, sometimes leaving the robot in a 'behavioral trap'. That some analogous traits are observed in animals and humans affected by dopamine dysregulation suggests that robotic models could prove useful in understanding the role of dopamine neurotransmission in basal ganglia function and dysfunction.
Collapse
Affiliation(s)
- Tony J Prescott
- Department of Computer Science, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Kevin Gurney
- Department of Psychology, University of Sheffield, Sheffield S10 2TN, UK
| | - Mark D Humphries
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Peter Redgrave
- Department of Psychology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
12
|
Li L, Rana AN, Li EM, Feng J, Li Y, Bruchas MR. Activity-dependent constraints on catecholamine signaling. Cell Rep 2023; 42:113566. [PMID: 38100349 PMCID: PMC11090260 DOI: 10.1016/j.celrep.2023.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/24/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Catecholamine signaling is thought to modulate cognition in an inverted-U relationship, but the mechanisms are unclear. We measured norepinephrine and dopamine release, postsynaptic calcium responses, and interactions between tonic and phasic firing modes under various stimuli and conditions. High tonic activity in vivo depleted catecholamine stores, desensitized postsynaptic responses, and decreased phasic transmission. Together, these findings provide a more complete understanding of the inverted-U relationship, offering insights into psychiatric disorders and neurodegenerative diseases with impaired catecholamine signaling.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | - Akshay N Rana
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Esther M Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Psychology, University of Washington, Seattle, WA 98105, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Michael R Bruchas
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
13
|
Willmore L, Minerva AR, Engelhard B, Murugan M, McMannon B, Oak N, Thiberge SY, Peña CJ, Witten IB. Overlapping representations of food and social stimuli in mouse VTA dopamine neurons. Neuron 2023; 111:3541-3553.e8. [PMID: 37657441 PMCID: PMC11672631 DOI: 10.1016/j.neuron.2023.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/17/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Dopamine neurons of the ventral tegmental area (VTADA) respond to food and social stimuli and contribute to both forms of motivation. However, it is unclear whether the same or different VTADA neurons encode these different stimuli. To address this question, we performed two-photon calcium imaging in mice presented with food and conspecifics and found statistically significant overlap in the populations responsive to both stimuli. Both hunger and opposite-sex social experience further increased the proportion of neurons that respond to both stimuli, implying that increasing motivation for one stimulus increases overlap. In addition, single-nucleus RNA sequencing revealed significant co-expression of feeding- and social-hormone-related genes in individual VTADA neurons. Taken together, our functional and transcriptional data suggest overlapping VTADA populations underlie food and social motivation.
Collapse
Affiliation(s)
- Lindsay Willmore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Adelaide R Minerva
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Ben Engelhard
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Faculty of Medicine, Technion, Haifa 3525433, Israel.
| | - Malavika Murugan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Brenna McMannon
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Nirja Oak
- Faculty of Medicine, Technion, Haifa 3525433, Israel
| | - Stephan Y Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Catherine J Peña
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
14
|
Bell D, Waldron VJ, Brown PL. Quantitative and qualitative sex difference in habenula-induced inhibition of midbrain dopamine neurons in the rat. Front Behav Neurosci 2023; 17:1289407. [PMID: 38025387 PMCID: PMC10679542 DOI: 10.3389/fnbeh.2023.1289407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Clinically relevant sex differences have been noted in a number of affective, behavioral, cognitive, and neurological health disorders. Midbrain dopamine neurons are implicated in several of these same disorders and consequently are under investigation for their potential role in the manifestation of these sex differences. The lateral habenula exerts significant inhibitory control over dopamine neuronal firing, yet little is known about sex differences in this particular neurocircuit. Methods We performed in vivo, single unit, extracellular recordings of dopamine neurons in female and male anesthetized rats in response to single pulse stimulation of the lateral habenula. In addition, we assessed baseline firing properties of lateral habenula neurons and, by immunochemical means, assessed the distribution of estrogen receptor alpha cells in the lateral habenula. Results Habenula-induced inhibition of dopamine neuronal firing is reduced in female rats relative to male rats. In addition, male rats had a higher prevalence of rebound excitation. Furthermore, the firing pattern of lateral habenula neurons was less variable in female rats, and female rats had a higher density of estrogen receptor alpha positive cells in the lateral habenula. Discussion We found that the dopamine neuronal response to habenular stimulation is both qualitatively and quantitatively different in female and male rats. These novel findings together with reports in the contemporary literature lead us to posit that the sex difference in dopamine inhibition seen here relate to differential firing properties of lateral habenula neurons resulting from the presence of sex hormones. Further work is needed to test this hypothesis, which may have implications for understanding the etiology of several mental health disorders including depression, schizophrenia, and addiction.
Collapse
Affiliation(s)
| | | | - P. Leon Brown
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Hong Y, Weng Y, Wu Q, Qi LY, Fan LJ. Conjugated Polyelectrolyte Containing a High Density of Pendant Phenylboronic Acid Groups for Dopamine Detection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37931325 DOI: 10.1021/acsami.3c10513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A fluorescent sensing system based on a conjugated polyelectrolyte was constructed to detect dopamine (DA) in complex samples. The conjugated polymer PFPE-PBA with poly[fluorenyl-alt-p-phenyleneethynylene] (PFPE) as the backbone and carrying four pendant phenylboronic acid (PBA) groups in each repeat unit was synthesized. PFPE-PBA was found to have good solubility in polar solvents. After optimization, glycine-NaOH at pH 10 was selected as the buffer, and the solvent composition of the system was set to methanol/water (9/1 by volume). Titration experiments showed that DA could effectively quench the fluorescence of the polymer solution with a response time within 60 s and a limit of detection of 23 nM. Polyols, cations, and other possible interfering substances do not significantly affect the fluorescence of the polymer, thereby allowing for the highly selective detection of DA. Furthermore, quantitative determination of DA in spiked serum and artificial urine samples was successfully demonstrated, with recoveries ranging from 96.7 to 104%. Preliminary mechanism studies suggest that the pedant PBAs capture DA via reaction with the catechol group, and the fluorescence quenching is most likely due to the photoinduced electron transfer between the aromatic part of DA and the conjugated backbone. This study provides a general strategy for the future design of conjugated polyelectrolyte-based sensing systems.
Collapse
Affiliation(s)
- Ying Hong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Yuchen Weng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Qin Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Lu-Yue Qi
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P.R. China
| | - Li-Juan Fan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
16
|
Di Raddo ME, Milenkovic M, Sivasubramanian M, Hasbi A, Bergman J, Withey S, Madras BK, George SR. Δ9-Tetrahydrocannabinol does not upregulate an aversive dopamine receptor mechanism in adolescent brain unlike in adults. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100107. [PMID: 38020805 PMCID: PMC10663137 DOI: 10.1016/j.crneur.2023.100107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/05/2023] [Accepted: 08/18/2023] [Indexed: 12/01/2023] Open
Abstract
Earlier age of cannabis usage poses higher risk of Cannabis Use Disorder and adverse consequences, such as addiction, anxiety, dysphoria, psychosis, largely attributed to its principal psychoactive component, Δ9-tetrahydrocannabinol (THC) and altered dopaminergic function. As dopamine D1-D2 receptor heteromer activation causes anxiety and anhedonia, this signaling complex was postulated to contribute to THC-induced affective symptoms. To investigate this, we administered THC repeatedly to adolescent monkeys and adolescent or adult rats. Drug-naïve adolescent rat had lower striatal densities of D1-D2 heteromer compared to adult rat. Repeated administration of THC to adolescent rat or adolescent monkey did not alter D1-D2 heteromer expression in nucleus accumbens or dorsal striatum but upregulated it in adult rat. Behaviourally, THC-treated adult, but not adolescent rat manifested anxiety and anhedonia-like behaviour, with elevated composite negative emotionality scores that correlated with striatal D1-D2 density. THC modified downstream markers of D1-D2 activation in adult, but not adolescent striatum. THC administered with cannabidiol did not alter D1-D2 expression. In adult rat, co-administration of CB1 receptor (CB1R) inverse agonist with THC attenuated D1-D2 upregulation, implicating cannabinoids in the regulation of striatal D1-D2 heteromer expression. THC exposure revealed an adaptable age-specific, anxiogenic, anti-reward mechanism operant in adult striatum but deficient in adolescent rat and monkey striatum that may confer increased sensitivity to THC reward in adolescence while limiting its negative effects, thus promoting continued use and increasing vulnerability to long-term adverse cannabis effects.
Collapse
Affiliation(s)
- Marie-Eve Di Raddo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada M5S 1A8
| | - Marija Milenkovic
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada M5S 1A8
| | | | - Ahmed Hasbi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada M5S 1A8
| | - Jack Bergman
- McLean Hospital, Belmont MA & Department of Psychiatry, Harvard Medical School, Boston, MA, 02478, United States
| | - Sarah Withey
- McLean Hospital, Belmont MA & Department of Psychiatry, Harvard Medical School, Boston, MA, 02478, United States
| | - Bertha K. Madras
- McLean Hospital, Belmont MA & Department of Psychiatry, Harvard Medical School, Boston, MA, 02478, United States
| | - Susan R. George
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada M5S 1A8
- Department of Medicine, University of Toronto, Toronto, Canada M5S 1A8
| |
Collapse
|
17
|
Yun S, Soler I, Tran FH, Haas HA, Shi R, Bancroft GL, Suarez M, de Santis CR, Reynolds RP, Eisch AJ. Behavioral pattern separation and cognitive flexibility are enhanced in a mouse model of increased lateral entorhinal cortex-dentate gyrus circuit activity. Front Behav Neurosci 2023; 17:1151877. [PMID: 37324519 PMCID: PMC10267474 DOI: 10.3389/fnbeh.2023.1151877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
Behavioral pattern separation and cognitive flexibility are essential cognitive abilities that are disrupted in many brain disorders. A better understanding of the neural circuitry involved in these abilities will open paths to treatment. In humans and mice, discrimination and adaptation rely on the integrity of the hippocampal dentate gyrus (DG) which receives glutamatergic input from the entorhinal cortex (EC), including the lateral EC (LEC). An inducible increase of EC-DG circuit activity improves simple hippocampal-dependent associative learning and increases DG neurogenesis. Here, we asked if the activity of LEC fan cells that directly project to the DG (LEC → DG neurons) regulates the relatively more complex hippocampal-dependent abilities of behavioral pattern separation or cognitive flexibility. C57BL/6J male mice received bilateral LEC infusions of a virus expressing shRNA TRIP8b, an auxiliary protein of an HCN channel or a control virus (SCR shRNA). Prior work shows that 4 weeks post-surgery, TRIP8b mice have more DG neurogenesis and greater activity of LEC → DG neurons compared to SCR shRNA mice. Here, 4 weeks post-surgery, the mice underwent testing for behavioral pattern separation and reversal learning (touchscreen-based location discrimination reversal [LDR]) and innate fear of open spaces (elevated plus maze [EPM]) followed by quantification of new DG neurons (doublecortin-immunoreactive cells [DCX+] cells). There was no effect of treatment (SCR shRNA vs. TRIP8b) on performance during general touchscreen training, LDR training, or the 1st days of LDR testing. However, in the last days of LDR testing, the TRIP8b shRNA mice had improved pattern separation (reached the first reversal more quickly and had more accurate discrimination) compared to the SCR shRNA mice, specifically when the load on pattern separation was high (lit squares close together or "small separation"). The TRIP8b shRNA mice were also more cognitively flexible (achieved more reversals) compared to the SCR shRNA mice in the last days of LDR testing. Supporting a specific influence on cognitive behavior, the SCR shRNA and TRIP8b shRNA mice did not differ in total distance traveled or in time spent in the closed arms of the EPM. Supporting an inducible increase in LEC-DG activity, DG neurogenesis was increased. These data indicate that the TRIP8b shRNA mice had better pattern separation and reversal learning and more neurogenesis compared to the SCR shRNA mice. This study advances fundamental and translational neuroscience knowledge relevant to two cognitive functions critical for adaptation and survival-behavioral pattern separation and cognitive flexibility-and suggests that the activity of LEC → DG neurons merits exploration as a therapeutic target to normalize dysfunctional DG behavioral output.
Collapse
Affiliation(s)
- Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ivan Soler
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- University of Pennsylvania, Philadelphia, PA, United States
| | - Fionya H. Tran
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Harley A. Haas
- University of Pennsylvania, Philadelphia, PA, United States
| | - Raymon Shi
- University of Pennsylvania, Philadelphia, PA, United States
| | | | - Maiko Suarez
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Christopher R. de Santis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ryan P. Reynolds
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amelia J. Eisch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
18
|
Willmore L, Minerva AR, Engelhard B, Murugan M, McMannon B, Oak N, Thiberge SY, Peña CJ, Witten IB. Overlapping representations of food and social stimuli in VTA dopamine neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541104. [PMID: 37293057 PMCID: PMC10245666 DOI: 10.1101/2023.05.17.541104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dopamine neurons of the ventral tegmental area (VTA DA ) respond to food and social stimuli and contribute to both forms of motivation. However, it is unclear if the same or different VTA DA neurons encode these different stimuli. To address this question, we performed 2-photon calcium imaging in mice presented with food and conspecifics, and found statistically significant overlap in the populations responsive to both stimuli. Both hunger and opposite-sex social experience further increased the proportion of neurons that respond to both stimuli, implying that modifying motivation for one stimulus affects responses to both stimuli. In addition, single-nucleus RNA sequencing revealed significant co-expression of feeding- and social-hormone related genes in individual VTA DA neurons. Taken together, our functional and transcriptional data suggest overlapping VTA DA populations underlie food and social motivation.
Collapse
Affiliation(s)
- Lindsay Willmore
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Adelaide R. Minerva
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Ben Engelhard
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
- Department of Medicine, Technion, Haifa, 3525433, Israel
| | - Malavika Murugan
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Brenna McMannon
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Nirja Oak
- Department of Medicine, Technion, Haifa, 3525433, Israel
| | - Stephan Y. Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Catherine J. Peña
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Ilana B. Witten
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| |
Collapse
|
19
|
Li L, Rana A, Li EM, Feng J, Li Y, Bruchas MR. Activity-dependent constraints on catecholamine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534970. [PMID: 37034631 PMCID: PMC10081217 DOI: 10.1101/2023.03.30.534970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Catecholamine signaling is thought to modulate cognition in an inverted-U relationship, but the mechanisms are unclear. We measured norepinephrine and dopamine release, postsynaptic calcium responses, and interactions between tonic and phasic firing modes under various stimuli and conditions. High tonic activity in vivo depleted catecholamine stores, desensitized postsynaptic responses, and decreased phasic transmission. Together this provides a clearer understanding of the inverted-U relationship, offering insights into psychiatric disorders and neurodegenerative diseases with impaired catecholamine signaling.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Hospital, Seattle WA 98145, USA
| | - Akshay Rana
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Equal contribution
| | - Esther M. Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle WA 98105, USA
- Equal contribution
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Michael R. Bruchas
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Pharmacology, University of Washington, Seattle WA 98195, USA
| |
Collapse
|
20
|
Behavioral encoding across timescales by region-specific dopamine dynamics. Proc Natl Acad Sci U S A 2023; 120:e2215230120. [PMID: 36749722 PMCID: PMC9963838 DOI: 10.1073/pnas.2215230120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The dorsal (DS) and ventral striatum (VS) receive dopaminergic projections that control motor functions and reward-related behavior. It remains poorly understood how dopamine release dynamics across different temporal scales in these regions are coupled to behavioral outcomes. Here, we employ the dopamine sensor dLight1.3b together with multiregion fiber photometry and machine learning-based analysis to decode dopamine dynamics across the striatum during self-paced exploratory behavior in mice. Our data show a striking coordination of rapidly fluctuating signal in the DS, carrying information across dopamine levels, with a slower signal in the VS, consisting mainly of slow-paced transients. Importantly, these release dynamics correlated with discrete behavioral motifs, such as turns, running, and grooming on a subsecond-to-minute time scale. Disruption of dopamine dynamics with cocaine caused randomization of action selection sequencing and disturbance of DS-VS coordination. The data suggest that distinct dopamine dynamics of DS and VS jointly encode behavioral sequences during unconstrained activity with DS modulating the stringing together of actions and VS the signal to initiate and sustain the selected action.
Collapse
|
21
|
Yun S, Soler I, Tran F, Haas HA, Shi R, Bancroft GL, Suarez M, de Santis CR, Reynolds RP, Eisch AJ. Behavioral pattern separation and cognitive flexibility are enhanced in a mouse model of increased lateral entorhinal cortex-dentate gyrus circuit activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525756. [PMID: 36747871 PMCID: PMC9900985 DOI: 10.1101/2023.01.26.525756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Behavioral pattern separation and cognitive flexibility are essential cognitive abilities which are disrupted in many brain disorders. Better understanding of the neural circuitry involved in these abilities will open paths to treatment. In humans and mice, discrimination and adaptation rely on integrity of the hippocampal dentate gyrus (DG) which both receive glutamatergic input from the entorhinal cortex (EC), including the lateral EC (LEC). Inducible increase of EC-DG circuit activity improves simple hippocampal-dependent associative learning and increases DG neurogenesis. Here we asked if the activity of LEC fan cells that directly project to the DG (LEC➔DG neurons) regulates behavioral pattern separation or cognitive flexibility. C57BL6/J male mice received bilateral LEC infusions of a virus expressing shRNA TRIP8b, an auxiliary protein of an HCN channel or a control virus (SCR shRNA); this approach increases the activity of LEC➔DG neurons. Four weeks later, mice underwent testing for behavioral pattern separation and reversal learning (touchscreen-based Location Discrimination Reversal [LDR] task) and innate fear of open spaces (elevated plus maze [EPM]) followed by counting of new DG neurons (doublecortin-immunoreactive cells [DCX+] cells). TRIP8b and SCR shRNA mice performed similarly in general touchscreen training and LDR training. However, in late LDR testing, TRIP8b shRNA mice reached the first reversal more quickly and had more accurate discrimination vs. SCR shRNA mice, specifically when pattern separation was challenging (lit squares close together or "small separation"). Also, TRIP8b shRNA mice achieved more reversals in late LDR testing vs. SCR shRNA mice. Supporting a specific influence on cognitive behavior, SCR shRNA and TRIP8b shRNA mice did not differ in total distance traveled or in time spent in the closed arms of the EPM. Supporting an inducible increase in LEC-DG activity, DG neurogenesis was increased. These data indicate TRIP8b shRNA mice had better pattern separation and reversal learning and more neurogenesis vs. SCR shRNA mice. This work advances fundamental and translational neuroscience knowledge relevant to two cognitive functions critical for adaptation and survival - behavioral pattern separation and cognitive flexibility - and suggests the activity of LEC➔DG neurons merits exploration as a therapeutic target to normalize dysfunctional DG behavioral output.
Collapse
|
22
|
Asarch AM, Kruse LC, Schindler AG, Phillips PEM, Clark JJ. Sexually dimorphic development of the mesolimbic dopamine system is associated with nuanced sensitivity to adolescent alcohol use. Front Behav Neurosci 2023; 17:1124979. [PMID: 36910128 PMCID: PMC9992416 DOI: 10.3389/fnbeh.2023.1124979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Alcohol use remains a major public health concern and is especially prevalent during adolescence. Adolescent alcohol use has been linked to several behavioral abnormalities in later life, including increased risk taking and impulsivity. Accordingly, when modeled in animals, male rats that had moderate alcohol consumption during adolescence exhibit multiple effects in adulthood, including increased risk taking, altered incentive learning, and greater release of dopamine in the mesolimbic pathway. It has been proposed that alcohol arrests neural development, "locking in" adolescent physiological, and consequent behavioral, phenotypes. Here we examined the feasibility that the elevated dopamine levels following adolescent alcohol exposure are a "locked in" phenotype by testing mesolimbic dopamine release across adolescent development. We found that in male rats, dopamine release peaks in late adolescence, returning to lower levels in adulthood, consistent with the notion that high dopamine levels in adolescence-alcohol-exposed adults were due to arrested development. Surprisingly, dopamine release in females was stable across the tested developmental window. This result raised a quandary that arrested dopamine levels would not differ from normal development in females and, therefore, may not contribute to pathological behavior. However, the aforementioned findings related to risk-based decision-making have only been performed in male subjects. When we tested females that had undergone adolescent alcohol use, we found that neither risk attitude during probabilistic decision-making nor mesolimbic dopamine release was altered. These findings suggest that different developmental profiles of the mesolimbic dopamine system across sexes result in dimorphic susceptibility to alcohol-induced cognitive and motivational anomalies exposure.
Collapse
Affiliation(s)
- Ari M Asarch
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Lauren C Kruse
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Abigail G Schindler
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,VA Puget Sound Health Care System, Seattle, WA, United States
| | - Paul E M Phillips
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Jeremy J Clark
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| |
Collapse
|
23
|
Rantataro S, Ferrer Pascual L, Laurila T. Ascorbic acid does not necessarily interfere with the electrochemical detection of dopamine. Sci Rep 2022; 12:20225. [PMID: 36418489 PMCID: PMC9684410 DOI: 10.1038/s41598-022-24580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
It is widely stated that ascorbic acid (AA) interferes with the electrochemical detection of neurotransmitters, especially dopamine, because of their overlapping oxidation potentials on typical electrode materials. As the concentration of AA is several orders of magnitude higher than the concentration of neurotransmitters, detection of neurotransmitters is difficult in the presence of AA and requires either highly stable AA concentration or highly selective neurotransmitter sensors. In contrast to the common opinion, we show that AA does not always interfere electrochemical detection of neurotransmitters. The decay of AA is rapid in cell culture medium, having a half-time of 2.1 hours, according to which the concentration decreases by 93% in 8 hours and by 99.75% in 18 hours. Thus, AA is eventually no longer detected by electrodes and the concentration of neurotransmitters can be effectively monitored. To validate this claim, we used unmodified single-wall carbon nanotube electrode to measure dopamine at physiologically relevant concentration range (25-1000 nM) from human midbrain organoid medium with highly linear response. Finally, AA is known to affect dopamine oxidation current through regeneration of dopamine, which complicates precise detection of small amounts of dopamine. By designing experiments as described here, this complication can be completely eliminated.
Collapse
Affiliation(s)
- Samuel Rantataro
- grid.5373.20000000108389418Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
| | - Laura Ferrer Pascual
- grid.5373.20000000108389418Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
| | - Tomi Laurila
- grid.5373.20000000108389418Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland ,grid.5373.20000000108389418Department of Chemistry and Materials Science, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
24
|
Peters KZ, Naneix F. The role of dopamine and endocannabinoid systems in prefrontal cortex development: Adolescence as a critical period. Front Neural Circuits 2022; 16:939235. [PMID: 36389180 PMCID: PMC9663658 DOI: 10.3389/fncir.2022.939235] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/14/2022] [Indexed: 01/07/2023] Open
Abstract
The prefrontal cortex plays a central role in the control of complex cognitive processes including action control and decision making. It also shows a specific pattern of delayed maturation related to unique behavioral changes during adolescence and allows the development of adult cognitive processes. The adolescent brain is extremely plastic and critically vulnerable to external insults. Related to this vulnerability, adolescence is also associated with the emergence of numerous neuropsychiatric disorders involving alterations of prefrontal functions. Within prefrontal microcircuits, the dopamine and the endocannabinoid systems have widespread effects on adolescent-specific ontogenetic processes. In this review, we highlight recent advances in our understanding of the maturation of the dopamine system and the endocannabinoid system in the prefrontal cortex during adolescence. We discuss how they interact with GABA and glutamate neurons to modulate prefrontal circuits and how they can be altered by different environmental events leading to long-term neurobiological and behavioral changes at adulthood. Finally, we aim to identify several future research directions to help highlight gaps in our current knowledge on the maturation of these microcircuits.
Collapse
Affiliation(s)
- Kate Zara Peters
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Fabien Naneix
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom,*Correspondence: Fabien Naneix
| |
Collapse
|
25
|
Ma L, Day-Cooney J, Benavides OJ, Muniak MA, Qin M, Ding JB, Mao T, Zhong H. Locomotion activates PKA through dopamine and adenosine in striatal neurons. Nature 2022; 611:762-768. [PMID: 36352228 PMCID: PMC10752255 DOI: 10.1038/s41586-022-05407-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/03/2022] [Indexed: 11/10/2022]
Abstract
The canonical model of striatal function predicts that animal locomotion is associated with the opposing regulation of protein kinase A (PKA) in direct and indirect pathway striatal spiny projection neurons (SPNs) by dopamine1-7. However, the precise dynamics of PKA in dorsolateral SPNs during locomotion remain to be determined. It is also unclear whether other neuromodulators are involved. Here we show that PKA activity in both types of SPNs is essential for normal locomotion. Using two-photon fluorescence lifetime imaging8-10 of a PKA sensor10 through gradient index lenses, we measured PKA activity within individual SPNs of the mouse dorsolateral striatum during locomotion. Consistent with the canonical view, dopamine activated PKA activity in direct pathway SPNs during locomotion through the dopamine D1 receptor. However, indirect pathway SPNs exhibited a greater increase in PKA activity, which was largely abolished through the blockade of adenosine A2A receptors. In agreement with these results, fibre photometry measurements of an adenosine sensor11 revealed an acute increase in extracellular adenosine during locomotion. Functionally, antagonism of dopamine or adenosine receptors resulted in distinct changes in SPN PKA activity, neuronal activity and locomotion. Together, our results suggest that acute adenosine accumulation interplays with dopamine release to orchestrate PKA activity in SPNs and proper striatal function during animal locomotion.
Collapse
Affiliation(s)
- Lei Ma
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Julian Day-Cooney
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Omar Jáidar Benavides
- Department of Neurosurgery and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael A Muniak
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Maozhen Qin
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jun B Ding
- Department of Neurosurgery and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
26
|
Véronneau-Veilleux F, Robaey P, Ursino M, Nekka F. A mechanistic model of ADHD as resulting from dopamine phasic/tonic imbalance during reinforcement learning. Front Comput Neurosci 2022; 16:849323. [PMID: 35923915 PMCID: PMC9342605 DOI: 10.3389/fncom.2022.849323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder in children. Although the involvement of dopamine in this disorder seems to be established, the nature of dopaminergic dysfunction remains controversial. The purpose of this study was to test whether the key response characteristics of ADHD could be simulated by a mechanistic model that combines a decrease in tonic dopaminergic activity with an increase in phasic responses in cortical-striatal loops during learning reinforcement. To this end, we combined a dynamic model of dopamine with a neurocomputational model of the basal ganglia with multiple action channels. We also included a dynamic model of tonic and phasic dopamine release and control, and a learning procedure driven by tonic and phasic dopamine levels. In the model, the dopamine imbalance is the result of impaired presynaptic regulation of dopamine at the terminal level. Using this model, virtual individuals from a dopamine imbalance group and a control group were trained to associate four stimuli with four actions with fully informative reinforcement feedback. In a second phase, they were tested without feedback. Subjects in the dopamine imbalance group showed poorer performance with more variable reaction times due to the presence of fast and very slow responses, difficulty in choosing between stimuli even when they were of high intensity, and greater sensitivity to noise. Learning history was also significantly more variable in the dopamine imbalance group, explaining 75% of the variability in reaction time using quadratic regression. The response profile of the virtual subjects varied as a function of the learning history variability index to produce increasingly severe impairment, beginning with an increase in response variability alone, then accumulating a decrease in performance and finally a learning deficit. Although ADHD is certainly a heterogeneous disorder, these results suggest that typical features of ADHD can be explained by a phasic/tonic imbalance in dopaminergic activity alone.
Collapse
Affiliation(s)
- Florence Véronneau-Veilleux
- Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Florence Véronneau-Veilleux
| | - Philippe Robaey
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Mauro Ursino
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi,” University of Bologna, Bologna, Italy
| | - Fahima Nekka
- Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
- Centre de Recherches Mathématiques, Université de Montréal, Montreal, QC, Canada
- Centre for Applied Mathematics in Bioscience and Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
27
|
Joshi A, Schott M, la Fleur SE, Barrot M. Role of the striatal dopamine, GABA and opioid systems in mediating feeding and fat intake. Neurosci Biobehav Rev 2022; 139:104726. [PMID: 35691472 DOI: 10.1016/j.neubiorev.2022.104726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/08/2021] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Food intake, which is a highly reinforcing behavior, provides nutrients required for survival in all animals. However, when fat and sugar consumption goes beyond the daily needs, it can favor obesity. The prevalence and severity of this health problem has been increasing with time. Besides covering nutrient and energy needs, food and in particular its highly palatable components, such as fats, also induce feelings of joy and pleasure. Experimental evidence supports a role of the striatal complex and of the mesolimbic dopamine system in both feeding and food-related reward processing, with the nucleus accumbens as a key target for reward or reinforcing-associated signaling during food intake behavior. In this review, we provide insights concerning the impact of feeding, including fat intake, on different types of receptors and neurotransmitters present in the striatal complex. Reciprocally, we also cover the evidence for a modulation of palatable food intake by different neurochemical systems in the striatal complex and in particular the nucleus accumbens, with a focus on dopamine, GABA and the opioid system.
Collapse
Affiliation(s)
- Anil Joshi
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Marion Schott
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Susanne Eva la Fleur
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
28
|
Bhimani RV, Yates R, Bass CE, Park J. Distinct limbic dopamine regulation across olfactory-tubercle subregions through integration of in vivo fast-scan cyclic voltammetry and optogenetics. J Neurochem 2022; 161:53-68. [PMID: 35061915 PMCID: PMC8930533 DOI: 10.1111/jnc.15577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
The olfactory tubercle (OT), an important component of the ventral striatum and limbic system, is involved in multi-sensory integration of reward-related information in the brain. However, its functional roles are often overshadowed by the neighboring nucleus accumbens. Increasing evidence has highlighted that dense dopamine (DA) innervation of the OT from the ventral tegmental area (VTA) is implicated in encoding reward, natural reinforcers, and motivated behaviors. Recent studies have further suggested that OT subregions may have distinct roles in these processes due to their heterogeneous DA transmission. Currently, very little is known about regulation (release and clearance) of extracellular DA across OT subregions due to its limited anatomical accessibility and proximity to other DA-rich brain regions, making it difficult to isolate VTA-DA signaling in the OT with conventional methods. Herein, we characterized heterogeneous VTA-DA regulation in the medial (m) and lateral (l) OT in "wild-type," urethane-anesthetized rats by integrating in vivo fast-scan cyclic voltammetry with cell-type specific optogenetics to stimulate VTA-DA neurons. Channelrhodopsin-2 was selectively expressed in the VTA-DA neurons of wild-type rats and optical stimulating parameters were optimized to determine VTA-DA transmission across the OT. Our anatomical, neurochemical, and pharmacological results show that VTA-DA regulation in the mOT is less dependent on DA transporters and has greater DA transmission than the lOT. These findings establish the OT as a unique, compartmentalized structure and will aid in future behavioral characterization of the roles of VTA-DA signaling in the OT subregions in reward, drug addiction, and encoding behavioral outputs necessary for survival.
Collapse
Affiliation(s)
- Rohan V. Bhimani
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Ryan Yates
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Caroline E. Bass
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Jinwoo Park
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| |
Collapse
|
29
|
Leach AC, Pitts EG, Siciliano CA, Ferris MJ. α7 nicotinic acetylcholine receptor modulation of accumbal dopamine release covaries with novelty seeking. Eur J Neurosci 2022; 55:1162-1173. [PMID: 35141983 PMCID: PMC9586210 DOI: 10.1111/ejn.15620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
Abstract
Heightened novelty-seeking phenotypes are associated with a range of behavioural traits including susceptibility to drug use. These relationships are recapitulated in preclinical models, where rats that exhibit increased exploratory activity in novel environments (high responders-HR) acquire self-administration of psychostimulants more rapidly compared to rats that display low novelty exploration (low responders-LR). Dopamine release dynamics in the nucleus accumbens (NAc) covaries with response to novelty, and differences in dopaminergic signalling are thought to be a major underlying driver of the link between novelty seeking and drug use vulnerability. Accumbal dopamine release is controlled by local microcircuits including modulation through glutamatergic and nicotinic acetylcholine receptor (nAChR) systems, but whether these mechanisms contribute to disparate dopamine signalling across novelty phenotypes is unclear. Here, we used ex vivo voltammetry in the NAc of rats to determine if α7 nAChRs contribute to differential dopamine dynamics associated with individual differences in novelty exploration. We found that blockade of α7 nAChRs attenuates tonic dopamine release evoked by low-frequency stimulations across phenotypes but that phasic release is decreased in LRs while HRs are unaffected. These stimulation frequency- and phenotype-dependent effects result in a decreased dynamic range of release exclusively in LRs. Furthermore, we found that differential α7 modulation of dopamine release in LRs is dependent on AMPA but not NMDA receptors. These results help to form an understanding of the local NAc microcircuitry and provide a potential mechanism for covariance of dopamine dynamics and sensitivity to the reinforcing effects of drugs of abuse.
Collapse
Affiliation(s)
- Amy C. Leach
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Elizabeth G. Pitts
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Cody A. Siciliano
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN
| | - Mark J. Ferris
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
30
|
Deehan GA. The enduring behavioral and neurobiological effects of a flavor cue paired with alcohol drinking during adolescence on the incentive properties of the flavor cue in adulthood in female alcohol-preferring (P) rats. Drug Alcohol Depend 2022; 232:109289. [PMID: 35051698 DOI: 10.1016/j.drugalcdep.2022.109289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alcohol use disorders (AUDs) affect 15 million people nationwide, 4% of which are adolescents (ages 12-17) and adolescents who binge drink significantly increase their likelihood of suffering from an AUD in adulthood. Research shows that cues (i.e. flavors) paired with alcohol (EtOH) produce significant cue-induced alcohol craving and contribute to relapse in adolescent and adult populations. However, there is a lack of research focused on how cues that accompany EtOH drinking during adolescence, affect EtOH craving later in life. The current study sought to examine the sex- and developmental-dependent effects of adolescent exposure to flavor cues associated with EtOH on operant-lick behavior and cue-induced dopamine (DA) levels within the nucleus accumbens shell (AcbSh; reward structure) in adulthood. METHODS Adolescent alcohol-preferring (P) rats were randomly assigned to one of 4 groups and received 24 hr. access to three bottles on their home cage: Paired: 0.1% blueberry flavor extract (BB) + 15% v/v EtOH and 2 water bottles; Unpaired: 0.1% BB, 15% v/v EtOH, and water; 15% EtOH alone, and 2 water bottles; BB alone and 2 water bottles. Home cage fluid consumption was measured for 2-weeks. On the third week bottles were removed and all animals underwent 9 days of operant training using an operant sipper paradigm. This consisted of two sipper spouts connected to the computer by a lickometer, which registered tongue contacts with the sipper tube (Paired: BB+EtOH or water; Unpaired BB or EtOH; EtOH alone: EtOH or water; BB alone: BB or water). When the fixed ratio (FR) requirement for number of licks/tongue contacts was met, a liquid delivery solenoid dispensed 0.05 ml of fluid into the sipper tube. Following the final operant session all rats remained in their home-cage for approximately 40 days until adulthood at which point they were returned to the operant chambers and tested for appetitive and consummatory behavior in response to the flavor cue (all rats: BB or water; NO EtOH). Two weeks after the final operant session all rats underwent microdialysis testing to examine cue-induced DA levels in the AcbSh. RESULTS Data indicated that animals in the paired group exhibited a significantly greater level of licking at the BB sipper and a significantly greater level of DA release in response to the flavor cue compared to the other groups. CONCLUSIONS Overall, the data suggest that cues paired with EtOH during adolescence may produce persistent changes to the behavioral and neurobiological mechanisms that contribute to an increased risk of developing an AUD later in life.
Collapse
Affiliation(s)
- Gerald A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, Tennessee, USA.
| |
Collapse
|
31
|
Allichon MC, Ortiz V, Pousinha P, Andrianarivelo A, Petitbon A, Heck N, Trifilieff P, Barik J, Vanhoutte P. Cell-Type-Specific Adaptions in Striatal Medium-Sized Spiny Neurons and Their Roles in Behavioral Responses to Drugs of Abuse. Front Synaptic Neurosci 2022; 13:799274. [PMID: 34970134 PMCID: PMC8712310 DOI: 10.3389/fnsyn.2021.799274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
Drug addiction is defined as a compulsive pattern of drug-seeking- and taking- behavior, with recurrent episodes of abstinence and relapse, and a loss of control despite negative consequences. Addictive drugs promote reinforcement by increasing dopamine in the mesocorticolimbic system, which alters excitatory glutamate transmission within the reward circuitry, thereby hijacking reward processing. Within the reward circuitry, the striatum is a key target structure of drugs of abuse since it is at the crossroad of converging glutamate inputs from limbic, thalamic and cortical regions, encoding components of drug-associated stimuli and environment, and dopamine that mediates reward prediction error and incentive values. These signals are integrated by medium-sized spiny neurons (MSN), which receive glutamate and dopamine axons converging onto their dendritic spines. MSN primarily form two mostly distinct populations based on the expression of either DA-D1 (D1R) or DA-D2 (D2R) receptors. While a classical view is that the two MSN populations act in parallel, playing antagonistic functional roles, the picture seems much more complex. Herein, we review recent studies, based on the use of cell-type-specific manipulations, demonstrating that dopamine differentially modulates dendritic spine density and synapse formation, as well as glutamate transmission, at specific inputs projecting onto D1R-MSN and D2R-MSN to shape persistent pathological behavioral in response to drugs of abuse. We also discuss the identification of distinct molecular events underlying the detrimental interplay between dopamine and glutamate signaling in D1R-MSN and D2R-MSN and highlight the relevance of such cell-type-specific molecular studies for the development of innovative strategies with potential therapeutic value for addiction. Because drug addiction is highly prevalent in patients with other psychiatric disorders when compared to the general population, we last discuss the hypothesis that shared cellular and molecular adaptations within common circuits could explain the co-occurrence of addiction and depression. We will therefore conclude this review by examining how the nucleus accumbens (NAc) could constitute a key interface between addiction and depression.
Collapse
Affiliation(s)
- Marie-Charlotte Allichon
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | - Vanesa Ortiz
- Université Côte d'Azur, Nice, France.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
| | - Paula Pousinha
- Université Côte d'Azur, Nice, France.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
| | - Andry Andrianarivelo
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | - Anna Petitbon
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Nicolas Heck
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | - Pierre Trifilieff
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Jacques Barik
- Université Côte d'Azur, Nice, France.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
| | - Peter Vanhoutte
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| |
Collapse
|
32
|
Miczek KA, DiLeo A, Newman EL, Akdilek N, Covington HE. Neurobiological Bases of Alcohol Consumption After Social Stress. Curr Top Behav Neurosci 2022; 54:245-281. [PMID: 34964935 PMCID: PMC9698769 DOI: 10.1007/7854_2021_273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The urge to seek and consume excessive alcohol is intensified by prior experiences with social stress, and this cascade can be modeled under systematically controlled laboratory conditions in rodents and non-human primates. Adaptive coping with intermittent episodes of social defeat stress often transitions to maladaptive responses to traumatic continuous stress, and alcohol consumption may become part of coping responses. At the circuit level, the neural pathways subserving stress coping intersect with those for alcohol consumption. Increasingly discrete regions and connections within the prefrontal cortex, the ventral and dorsal striatum, thalamic and hypothalamic nuclei, tegmental areas as well as brain stem structures begin to be identified as critical for reacting to and coping with social stress while seeking and consuming alcohol. Several candidate molecules that modulate signals within these neural connections have been targeted in order to reduce excessive drinking and relapse. In spite of some early clinical failures, neuropeptides such as CRF, opioids, or oxytocin continue to be examined for their role in attenuating stress-escalated drinking. Recent work has focused on neural sites of action for peptides and steroids, most likely in neuroinflammatory processes as a result of interactive effects of episodic social stress and excessive alcohol seeking and drinking.
Collapse
Affiliation(s)
- Klaus A. Miczek
- Department of Psychology, Tufts University, Medford, MA, USA,Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Alyssa DiLeo
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Emily L. Newman
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Naz Akdilek
- Department of Psychology, Tufts University, Medford, MA, USA
| | | |
Collapse
|
33
|
Estave PM, Spodnick MB, Karkhanis AN. KOR Control over Addiction Processing: An Exploration of the Mesolimbic Dopamine Pathway. Handb Exp Pharmacol 2022; 271:351-377. [PMID: 33301050 PMCID: PMC8192597 DOI: 10.1007/164_2020_421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug addiction is a complex, persistent, and chronically relapsing neurological disorder exacerbated by acute and chronic stress. It is well known that the dynorphin/kappa opioid receptor (KOR) system regulates stress perception and responsivity, while the mesolimbic dopamine system plays a role in reward and reinforcement associated with alcohol and substance use disorders. Interestingly, the dopamine and dynorphin/KOR systems are highly integrated in mesolimbic areas, with KOR activation leading to inhibition of dopamine release, further altering the perception of reinforcing and aversive stimuli. Chronic or repeated exposure to stress or drugs potentiates KOR function ultimately contributing to a hypodopaminergic state. This hypodopaminergic state is one of the hallmarks of hyperkatifeia, defined as the hypersensitivity to emotional distress that is exacerbated during drug withdrawal and abstinence. The relationship between stress and drug addiction is bidirectional; repeated/chronic stress promotes pro-addictive behaviors, and repeated cycles of drug exposure and withdrawal, across various drug classes, produces stress. Neuroadaptations driven by this bidirectional relationship ultimately influence the perception of the reinforcing value of rewarding stimuli. In this chapter, we address the involvement of the dopamine and dynorphin/KOR systems and their interactions in shaping reinforcement value processing after drug and stress exposure, as well as a combinatorial impact of both drugs and stress.
Collapse
Affiliation(s)
- Paige M Estave
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mary B Spodnick
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, Binghamton, NY, USA
| | - Anushree N Karkhanis
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, Binghamton, NY, USA.
| |
Collapse
|
34
|
Carmichael K, Sullivan B, Lopez E, Sun L, Cai H. Diverse midbrain dopaminergic neuron subtypes and implications for complex clinical symptoms of Parkinson's disease. AGEING AND NEURODEGENERATIVE DISEASES 2021; 1. [PMID: 34532720 PMCID: PMC8442626 DOI: 10.20517/and.2021.07] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease (PD), the most common degenerative movement disorder, is clinically manifested with various motor and non-motor symptoms. Degeneration of midbrain substantia nigra pas compacta (SNc) dopaminergic neurons (DANs) is generally attributed to the motor syndrome. The underlying neuronal mechanisms of non-motor syndrome are largely unexplored. Besides SNc, midbrain ventral tegmental area (VTA) DANs also produce and release dopamine and modulate movement, reward, motivation, and memory. Degeneration of VTA DANs also occurs in postmortem brains of PD patients, implying an involvement of VTA DANs in PD-associated non-motor symptoms. However, it remains to be established that there is a distinct segregation of different SNc and VTA DAN subtypes in regulating different motor and non-motor functions, and that different DAN subpopulations are differentially affected by normal ageing or PD. Traditionally, the distinction among different DAN subtypes was mainly based on the location of cell bodies and axon terminals. With the recent advance of single cell RNA sequencing technology, DANs can be readily classified based on unique gene expression profiles. A combination of specific anatomic and molecular markers shows great promise to facilitate the identification of DAN subpopulations corresponding to different behavior modules under normal and disease conditions. In this review, we first summarize the recent progress in characterizing genetically, anatomically, and functionally diverse midbrain DAN subtypes. Then, we provide perspectives on how the preclinical research on the connectivity and functionality of DAN subpopulations improves our current understanding of cell-type and circuit specific mechanisms of the disease, which could be critically informative for designing new mechanistic treatments.
Collapse
Affiliation(s)
- Kathleen Carmichael
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.,The Graduate Partnership Program of NIH and Brown University, National Institutes of Health, Bethesda, MD 20892, USA
| | - Breanna Sullivan
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elena Lopez
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lixin Sun
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Hauser SR, Rodd ZA, Deehan GA, Liang T, Rahman S, Bell RL. Effects of adolescent substance use disorders on central cholinergic function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:175-221. [PMID: 34696873 DOI: 10.1016/bs.irn.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adolescence is a transitional period between childhood and adulthood, in which the individual undergoes significant cognitive, behavioral, physical, emotional, and social developmental changes. During this period, adolescents engage in experimentation and risky behaviors such as licit and illicit drug use. Adolescents' high vulnerability to abuse drugs and natural reinforcers leads to greater risk for developing substance use disorders (SUDs) during adulthood. Accumulating evidence indicates that the use and abuse of licit and illicit drugs during adolescence and emerging adulthood can disrupt the cholinergic system and its processes. This review will focus on the effects of peri-adolescent nicotine and/or alcohol use, or exposure, on the cholinergic system during adulthood from preclinical and clinical studies. This review further explores potential cholinergic agents and pharmacological manipulations to counteract peri-adolescent nicotine and/or alcohol abuse.
Collapse
Affiliation(s)
- S R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Z A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - G A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - T Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
36
|
Macedo-Lima M, Remage-Healey L. Dopamine Modulation of Motor and Sensory Cortical Plasticity among Vertebrates. Integr Comp Biol 2021; 61:316-336. [PMID: 33822047 PMCID: PMC8600016 DOI: 10.1093/icb/icab019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Goal-directed learning is a key contributor to evolutionary fitness in animals. The neural mechanisms that mediate learning often involve the neuromodulator dopamine. In higher order cortical regions, most of what is known about dopamine's role is derived from brain regions involved in motivation and decision-making, while significantly less is known about dopamine's potential role in motor and/or sensory brain regions to guide performance. Research on rodents and primates represents over 95% of publications in the field, while little beyond basic anatomy is known in other vertebrate groups. This significantly limits our general understanding of how dopamine signaling systems have evolved as organisms adapt to their environments. This review takes a pan-vertebrate view of the literature on the role of dopamine in motor/sensory cortical regions, highlighting, when available, research on non-mammalian vertebrates. We provide a broad perspective on dopamine function and emphasize that dopamine-induced plasticity mechanisms are widespread across all cortical systems and associated with motor and sensory adaptations. The available evidence illustrates that there is a strong anatomical basis-dopamine fibers and receptor distributions-to hypothesize that pallial dopamine effects are widespread among vertebrates. Continued research progress in non-mammalian species will be crucial to further our understanding of how the dopamine system evolved to shape the diverse array of brain structures and behaviors among the vertebrate lineage.
Collapse
Affiliation(s)
- Matheus Macedo-Lima
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
- CAPES Foundation, Ministry of Education of Brazil, 70040-031 Brasília, Brazil
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
37
|
Stress Controllability Modulates Basal Activity of Dopamine Neurons in the Substantia Nigra Compacta. eNeuro 2021; 8:ENEURO.0044-21.2021. [PMID: 34035070 PMCID: PMC8211467 DOI: 10.1523/eneuro.0044-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/26/2021] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
Prolonged stress induces neural maladaptations in the mesolimbic dopamine (DA) system and produces emotional and behavioral disorders. However, the effects of stress on activity of DA neurons are diverse and complex that hinge on the type, duration, intensity, and controllability of stressors. Here, controlling the duration, intensity, and type of the stressors to be identical, we observed the effects of stressor controllability on the activity of substantia nigra pars compacta (SNc) DA neurons in mice. We found that both lack and loss of control (LOC) over shock enhance the basal activity and intrinsic excitability of SNc DA neurons via modulation of Ih current, but not via corticosterone serum level. Moreover, LOC over shock produces more significant enhancement in the basal activity of SNc DA neurons than that produced by shock per se, and therefore attenuates the response to natural reward. This attenuation can be reversed by control over shock. These results indicate that although chronic stress per se tends to enhance the basal activity of SNc DA neurons, LOC over the stressor is able to induce a larger enhancement in the basal activity of SNc DA neurons and produce more severe behavioral deficits. However, control over stress ameliorates the deleterious effects of stress, highlighting the role of stress controllability.
Collapse
|
38
|
Co-administration of nalbuphine attenuates the morphine-induced anxiety and dopaminergic alterations in morphine-withdrawn rats. Psychopharmacology (Berl) 2021; 238:1193-1211. [PMID: 33655408 DOI: 10.1007/s00213-021-05765-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The classical effects of exogenous opioids, such as morphine, are predominantly mediated through μ-opioid receptors. The chronic use of morphine induces anxiety-like behavior causing functional changes in the mesolimbic dopaminergic system. The mixed μ/κ-agonist, nalbuphine, used either as an analgesic or as an adjuvant with morphine, produces different and opposite effects. However, whether nalbuphine can be used to antagonize morphine-induced anxiety and dopaminergic alterations is not fully known. OBJECTIVE This study aimed to compare acute and chronic effects of nalbuphine on morphine-induced anxiety and dopaminergic alterations in rats. METHODS Male adult Wistar albino rats were made opioid-dependent by administering increasing doses of morphine (5-25 mg/kg; i.p.; b.i.d.). Withdrawal was induced by naloxone (1 mg/kg, i.p.), 4 h after the last morphine injection. Anxiety-like behavior was measured using Activity Monitor (Coulbourn Instruments, Inc. USA). Thereafter, the animals were sacrificed and the brain dissected out and the level of cAMP and the transcriptional and translational expression of TH was measured. Nalbuphine was co-administered with morphine, acutely and chronically, at various doses (0.1, 0.3, 1.0, 3.0 mg/kg, i.p.). RESULTS Morphine-dependent rats showed a significant higher anxiety and cAMP levels and a significant decrease in the expression of TH. Co-administration of chronic doses of nalbuphine attenuates the higher anxiety, cAMP levels, and upregulates the TH expressions; however, the acute nalbuphine treatment does not attenuate the morphine-induced side effects. CONCLUSION Therefore, nalbuphine might have an important role in attenuating the anxiety and the effects of the dopaminergic pathway and may have potential in the treatment of opioid addiction.
Collapse
|
39
|
Contesse T, Broussot L, Fofo H, Vanhoutte P, Fernandez SP, Barik J. Dopamine and glutamate receptors control social stress-induced striatal ERK1/2 activation. Neuropharmacology 2021; 190:108534. [PMID: 33781778 DOI: 10.1016/j.neuropharm.2021.108534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 11/27/2022]
Abstract
Stress has been acknowledged as one of the main risk factors for the onset of psychiatric disorders. Social stress is the most common type of stressor encountered in our daily lives. Uncovering the molecular determinants of the effect of stress on the brain would help understanding the complex maladaptations that contribute to pathological stress-related mental states. We examined molecular changes in the reward system following social defeat stress in mice, as increasing evidence implicates this system in sensing stressful stimuli. Following acute or chronic social defeat stress, the activation (i.e. phosphorylation) of extracellular signal-regulated kinases ERK1 and ERK2 (pERK1/2), markers of synaptic plasticity, was monitored in sub-regions of the reward system. We employed pharmacological antagonists and inhibitory DREADD to dissect the sequence of events controlling pERK1/2 dynamics. The nucleus accumbens (NAc) showed marked increases in pERK1/2 following both acute and chronic social stress compared to the dorsal striatum. Increases in pERK1/2 required dopamine D1 receptors and GluN2B-containing NMDA receptors. Paraventricular thalamic glutamatergic inputs to the NAc are required for social stress-induced pERK1/2. The molecular adaptations identified here could contribute to the long-lasting impact of stress on the brain and may be targeted to counteract stress-related psychopathologies.
Collapse
Affiliation(s)
- Thomas Contesse
- Université Côte d'Azur, Nice, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS UMR7275, Valbonne, France
| | - Loïc Broussot
- Université Côte d'Azur, Nice, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS UMR7275, Valbonne, France
| | - Hugo Fofo
- Université Côte d'Azur, Nice, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS UMR7275, Valbonne, France
| | - Peter Vanhoutte
- CNRS, UMR 8246, Neuroscience Paris Seine, F, 75005, Paris, France; INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, F, 75005, Paris, France; Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, F, 75005, Paris, France
| | - Sebastian P Fernandez
- Université Côte d'Azur, Nice, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS UMR7275, Valbonne, France.
| | - Jacques Barik
- Université Côte d'Azur, Nice, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS UMR7275, Valbonne, France.
| |
Collapse
|
40
|
Doyon WM, Ostroumov A, Ontiveros T, Gonzales RA, Dani JA. Ethanol produces multiple electrophysiological effects on ventral tegmental area neurons in freely moving rats. Addict Biol 2021; 26:e12899. [PMID: 32255261 DOI: 10.1111/adb.12899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 02/04/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Although alcohol (i.e., ethanol) is a major drug of abuse, the acute functional effects of ethanol on the reward circuitry are not well defined in vivo. In freely moving rats, we examined the effect of intravenous ethanol administration on neuronal unit activity in the posterior ventral tegmental area (VTA), a central component of the mesolimbic reward system. VTA units were classified as putative dopamine (DA) neurons, fast-firing GABA neurons, and unidentified neurons based on a combination of electrophysiological properties and DA D2 receptor pharmacological responses. A gradual infusion of ethanol significantly altered the firing rate of DA neurons in a concentration-dependent manner. The majority of DA neurons were stimulated by ethanol and showed enhanced burst firing activity, but a minority was inhibited. Ethanol also increased the proportion of DA neurons that exhibited pacemaker-like firing patterns. In contrast, ethanol mediated a variety of effects in GABA and other unidentified neurons that were distinct from DA neurons, including a nonlinear increase in firing rate, delayed inhibition, and more biphasic activity. These results provide evidence of discrete electrophysiological effects of ethanol on DA neurons compared with other VTA cell types, suggesting a complex role of the VTA in alcohol-induced responses in freely moving animals.
Collapse
Affiliation(s)
- William M. Doyon
- Department of Neuroscience, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| | - Alexey Ostroumov
- Department of Neuroscience, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| | - Tiahna Ontiveros
- Department of Pharmacology and Toxicology University of Texas Austin Texas USA
| | - Rueben A. Gonzales
- Department of Pharmacology and Toxicology University of Texas Austin Texas USA
| | - John A. Dani
- Department of Neuroscience, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
41
|
Mannal N, Kleiner K, Fauler M, Dougalis A, Poetschke C, Liss B. Multi-Electrode Array Analysis Identifies Complex Dopamine Responses and Glucose Sensing Properties of Substantia Nigra Neurons in Mouse Brain Slices. Front Synaptic Neurosci 2021; 13:635050. [PMID: 33716704 PMCID: PMC7952765 DOI: 10.3389/fnsyn.2021.635050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Dopaminergic (DA) midbrain neurons within the substantia nigra (SN) display an autonomous pacemaker activity that is crucial for dopamine release and voluntary movement control. Their progressive degeneration is a hallmark of Parkinson's disease. Their metabolically demanding activity-mode affects Ca2+ homeostasis, elevates metabolic stress, and renders SN DA neurons particularly vulnerable to degenerative stressors. Accordingly, their activity is regulated by complex mechanisms, notably by dopamine itself, via inhibitory D2-autoreceptors and the neuroprotective neuronal Ca2+ sensor NCS-1. Analyzing regulation of SN DA neuron activity-pattern is complicated by their high vulnerability. We studied this activity and its control by dopamine, NCS-1, and glucose with extracellular multi-electrode array (MEA) recordings from midbrain slices of juvenile and adult mice. Our tailored MEA- and spike sorting-protocols allowed high throughput and long recording times. According to individual dopamine-responses, we identified two distinct SN cell-types, in similar frequency: dopamine-inhibited and dopamine-excited neurons. Dopamine-excited neurons were either silent in the absence of dopamine, or they displayed pacemaker-activities, similar to that of dopamine-inhibited neurons. Inhibition of pacemaker-activity by dopamine is typical for SN DA neurons, and it can undergo prominent desensitization. We show for adult mice, that the number of SN DA neurons with desensitized dopamine-inhibition was increased (~60–100%) by a knockout of NCS-1, or by prevention of NCS-1 binding to D2-autoreceptors, while time-course and degrees of desensitization were not altered. The number of neurons with desensitized D2-responses was also higher (~65%) at high glucose-levels (25 mM), compared to lower glucose (2.5 mM), while again desensitization-kinetics were unaltered. However, spontaneous firing-rates were significantly higher at high glucose-levels (~20%). Moreover, transient glucose-deprivation (1 mM) induced a fast and fully-reversible pacemaker frequency reduction. To directly address and quantify glucose-sensing properties of SN DA neurons, we continuously monitored their electrical activity, while altering extracellular glucose concentrations stepwise from 0.5 mM up to 25 mM. SN DA neurons were excited by glucose, with EC50 values ranging from 0.35 to 2.3 mM. In conclusion, we identified a novel, common subtype of dopamine-excited SN neurons, and a complex, joint regulation of dopamine-inhibited neurons by dopamine and glucose, within the range of physiological brain glucose-levels.
Collapse
Affiliation(s)
- Nadja Mannal
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | | | - Michael Fauler
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | | | | | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, Ulm, Germany.,Linacre and New College, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Lin R, Liang J, Luo M. The Raphe Dopamine System: Roles in Salience Encoding, Memory Expression, and Addiction. Trends Neurosci 2021; 44:366-377. [PMID: 33568331 DOI: 10.1016/j.tins.2021.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Dopamine (DA) neurons of the dorsal raphe nucleus (DRN) were traditionally viewed as an extension of the ventral tegmental area (VTA) DA population. While the VTA DA population is known to play important roles in reward processing, emerging evidence now supports the view that DRN DA neurons are a specialized midbrain DA subsystem that performs distinct functions in parallel to the VTA DA population. Recent studies have shed new light on the roles of DRN DA neurons in encoding incentive salience and in regulating memory expression and arousal. Here, we review recent findings using mouse models about the physiology and behavioral functions of DRN DA neurons, highlight the engagement of DRN DA neurons and their upstream circuits in opioid addiction, and discuss emerging lines of investigation that reveal multifaceted heterogeneity among DRN DA neurons.
Collapse
Affiliation(s)
- Rui Lin
- National Institute of Biological Sciences (NIBS), Beijing 102206, China.
| | - Jingwen Liang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
43
|
Muddapu VR, Chakravarthy VS. Influence of energy deficiency on the subcellular processes of Substantia Nigra Pars Compacta cell for understanding Parkinsonian neurodegeneration. Sci Rep 2021; 11:1754. [PMID: 33462293 PMCID: PMC7814067 DOI: 10.1038/s41598-021-81185-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/23/2020] [Indexed: 01/29/2023] Open
Abstract
Parkinson's disease (PD) is the second most prominent neurodegenerative disease around the world. Although it is known that PD is caused by the loss of dopaminergic cells in substantia nigra pars compacta (SNc), the decisive cause of this inexorable cell loss is not clearly elucidated. We hypothesize that "Energy deficiency at a sub-cellular/cellular/systems level can be a common underlying cause for SNc cell loss in PD." Here, we propose a comprehensive computational model of SNc cell, which helps us to understand the pathophysiology of neurodegeneration at the subcellular level in PD. The aim of the study is to see how deficits in the supply of energy substrates (glucose and oxygen) lead to a deficit in adenosine triphosphate (ATP). The study also aims to show that deficits in ATP are the common factor underlying the molecular-level pathological changes, including alpha-synuclein aggregation, reactive oxygen species formation, calcium elevation, and dopamine dysfunction. The model suggests that hypoglycemia plays a more crucial role in leading to ATP deficits than hypoxia. We believe that the proposed model provides an integrated modeling framework to understand the neurodegenerative processes underlying PD.
Collapse
Affiliation(s)
- Vignayanandam Ravindernath Muddapu
- grid.417969.40000 0001 2315 1926Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Sardar Patel Road, Chennai, 600036 Tamil Nadu India
| | - V. Srinivasa Chakravarthy
- grid.417969.40000 0001 2315 1926Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Sardar Patel Road, Chennai, 600036 Tamil Nadu India
| |
Collapse
|
44
|
Naneix F, Peters KZ, Young AMJ, McCutcheon JE. Age-dependent effects of protein restriction on dopamine release. Neuropsychopharmacology 2021; 46:394-403. [PMID: 32737419 PMCID: PMC7852901 DOI: 10.1038/s41386-020-0783-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023]
Abstract
Despite the essential role of protein intake for health and development, very little is known about the impact of protein restriction on neurobiological functions, especially at different stages of the lifespan. The dopamine system is a central actor in the integration of food-related processes and is influenced by physiological state and food-related signals. Moreover, it is highly sensitive to dietary effects during early life periods such as adolescence due to its late maturation. In the present study, we investigated the impact of protein restriction either during adolescence or adulthood on the function of the mesolimbic (nucleus accumbens) and nigrostriatal (dorsal striatum) dopamine pathways using fast-scan cyclic voltammetry in rat brain slices. In the nucleus accumbens, protein restriction in adults increased dopamine release in response to low and high frequency trains of stimulation (1-20 Hz). By contrast, protein restriction during adolescence decreased nucleus accumbens dopamine release. In the dorsal striatum, protein restriction at adulthood has no impact on dopamine release but the same diet during adolescence induced a frequency-dependent increase in stimulated dopamine release. Taken together, our results highlight the sensitivity of the different dopamine pathways to the effect of protein restriction, as well as their vulnerability to deleterious diet effects at different life stages.
Collapse
Affiliation(s)
- Fabien Naneix
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK.
- The Rowett Institute, University of Aberdeen, Aberdeen, UK.
| | - Kate Z Peters
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew M J Young
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK
| | - James E McCutcheon
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
45
|
Gordon-Fennell A, Gordon-Fennell L, Desaivre S, Marinelli M. The Lateral Preoptic Area and Its Projection to the VTA Regulate VTA Activity and Drive Complex Reward Behaviors. Front Syst Neurosci 2020; 14:581830. [PMID: 33224029 PMCID: PMC7669548 DOI: 10.3389/fnsys.2020.581830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/27/2020] [Indexed: 11/22/2022] Open
Abstract
The ventral tegmental area (VTA) underlies motivation and reinforcement of natural rewards. The lateral preoptic area (LPO) is an anterior hypothalamic brain region that sends direct projections to the VTA and to other brain structures known to regulate VTA activity. Here, we investigated the functional connection between the LPO and subpopulations of VTA neurons and explored the reinforcing and valence qualities of the LPO in rats. We found that the LPO and the LPO→VTA pathway inhibit the activity of VTA GABA neurons and have mixed effects on VTA dopamine neurons. Furthermore, we found that the LPO supports operant responding but drives avoidance, and we explored the apparent discrepancy between these two results. Finally, using fiber photometry, we show that the LPO signals aversive events but not rewarding events. Together, our findings demonstrate that the LPO modulates the activity of the VTA and drives motivated behavior and represents an overlooked modulator of reinforcement.
Collapse
Affiliation(s)
- Adam Gordon-Fennell
- Department of Neuroscience, College of Natural Sciences, University of Texas at Austin, Austin, TX, United States
| | - Lydia Gordon-Fennell
- Department of Neuroscience, College of Natural Sciences, University of Texas at Austin, Austin, TX, United States
| | - Stève Desaivre
- Department of Neuroscience, College of Natural Sciences, University of Texas at Austin, Austin, TX, United States
| | - Michela Marinelli
- Department of Neuroscience, College of Natural Sciences, University of Texas at Austin, Austin, TX, United States.,Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States.,Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX, United States.,Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
46
|
Zhang X, Zhou J, Gu Z, Zhang H, Gong Q, Luo K. Advances in nanomedicines for diagnosis of central nervous system disorders. Biomaterials 2020; 269:120492. [PMID: 33153757 DOI: 10.1016/j.biomaterials.2020.120492] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
In spite of a great improvement in medical health services and an increase in lifespan, we have witnessed a skyrocket increase in the incidence of central nervous system (CNS) disorders including brain tumors, neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease), ischemic stroke, and epilepsy, which have seriously undermined the quality of life and substantially increased economic and societal burdens. Development of diagnostic methods for CNS disorders is still in the early stage, and the clinical outcomes suggest these methods are not ready for the challenges associated with diagnosis of CNS disorders, such as early detection, specific binding, sharp contrast, and continuous monitoring of therapeutic interventions. Another challenge is to overcome various barrier structures during delivery of diagnostic agents, especially the blood-brain barrier (BBB). Fortunately, utilization of nanomaterials has been pursued as a potential and promising strategy to address these challenges. This review will discuss anatomical and functional structures of BBB and transport mechanisms of nanomaterials across the BBB, and special emphases will be placed on the state-of-the-art advances in the development of nanomedicines from a variety of nanomaterials for diagnosis of CNS disorders. Meanwhile, current challenges and future perspectives in this field are also highlighted.
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
47
|
Chemogenetic Manipulation of Dopamine Neurons Dictates Cocaine Potency at Distal Dopamine Transporters. J Neurosci 2020; 40:8767-8779. [PMID: 33046544 DOI: 10.1523/jneurosci.0894-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022] Open
Abstract
The reinforcing efficacy of cocaine is largely determined by its capacity to inhibit the dopamine transporter (DAT), and emerging evidence suggests that differences in cocaine potency are linked to several symptoms of cocaine use disorder. Despite this evidence, the neural processes that govern cocaine potency in vivo remain unclear. In male rats, we used chemogenetics with intra-VTA microinfusions of the agonist clozapine-n-oxide to bidirectionally modulate dopamine neurons. Using ex vivo fast scan cyclic voltammetry, pharmacological probes of the DAT, biochemical assessments of DAT membrane availability and phosphorylation, and cocaine self-administration, we tested the effects of chemogenetic manipulations on cocaine potency at distal DATs in the nucleus accumbens as well as the behavioral economics of cocaine self-administration. We discovered that chemogenetic manipulation of dopamine neurons produced rapid, bidirectional modulation of cocaine potency at DATs in the nucleus accumbens. We then provided evidence that changes in cocaine potency are associated with alterations in DAT affinity for cocaine and demonstrated that this change in affinity coincides with DAT conformation biases and changes in DAT phosphorylation state. Finally, we showed that chemogenetic manipulation of dopamine neurons alters cocaine consumption in a manner consistent with changes in cocaine potency at distal DATs. Based on the spatial and temporal constraints inherent to our experimental design, we posit that changes in cocaine potency are driven by alterations in dopamine neuron activity. When considered together, these observations provide a novel mechanism through which GPCRs regulate cocaine's pharmacological and behavioral effects.SIGNIFICANCE STATEMENT Differences in the pharmacological effects of cocaine are believed to influence the development and progression of cocaine use disorder. However, the biological and physiological processes that determine sensitivity to cocaine remain unclear. In this work, we use a combination of chemogenetics, fast scan cyclic voltammetry, pharmacology, biochemistry, and cocaine self-administration with economic demand analysis to demonstrate a novel mechanism by which cocaine potency is determined in vivo These studies identify a novel process by which the pharmacodynamics of cocaine are derived in vivo, and thus this work has widespread implications for understanding the mechanisms that regulate cocaine consumption across stages of addiction.
Collapse
|
48
|
Di Miceli M, Husson Z, Ruel P, Layé S, Cota D, Fioramonti X, Bosch-Bouju C, Gronier B. In silico Hierarchical Clustering of Neuronal Populations in the Rat Ventral Tegmental Area Based on Extracellular Electrophysiological Properties. Front Neural Circuits 2020; 14:51. [PMID: 32903825 PMCID: PMC7438989 DOI: 10.3389/fncir.2020.00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
The ventral tegmental area (VTA) is a heterogeneous brain region, containing different neuronal populations. During in vivo recordings, electrophysiological characteristics are classically used to distinguish the different populations. However, the VTA is also considered as a region harboring neurons with heterogeneous properties. In the present study, we aimed to classify VTA neurons using in silico approaches, in an attempt to determine if homogeneous populations could be extracted. Thus, we recorded 291 VTA neurons during in vivo extracellular recordings in anesthetized rats. Initially, 22 neurons with high firing rates (>10 Hz) and short-lasting action potentials (AP) were considered as a separate subpopulation, in light of previous studies. To segregate the remaining 269 neurons, presumably dopaminergic (DA), we performed in silico analyses, using a combination of different electrophysiological parameters. These parameters included: (1) firing rate; (2) firing rate coefficient of variation (CV); (3) percentage of spikes in a burst; (4) AP duration; (5) Δt1 duration (i.e., time from initiation of depolarization until end of repolarization); and (6) presence of a notched AP waveform. Unsupervised hierarchical clustering revealed two neuronal populations that differed in their bursting activities. The largest population presented low bursting activities (<17.5% of total spikes in burst), while the remaining neurons presented higher bursting activities (>17.5%). Within non-high-firing neurons, a large heterogeneity was noted concerning AP characteristics. In conclusion, this analysis based on conventional electrophysiological criteria clustered two subpopulations of putative DA VTA neurons that are distinguishable by their firing patterns (firing rates and bursting activities) but not their AP properties.
Collapse
Affiliation(s)
- Mathieu Di Miceli
- Pharmacology and Neuroscience Research Group, Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom.,Laboratoire NutriNeuro, UMR INRAE 1286, Université de Bordeaux, Bordeaux, France
| | - Zoé Husson
- Laboratoire NutriNeuro, UMR INRAE 1286, Université de Bordeaux, Bordeaux, France.,INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, University of Bordeaux, Bordeaux, France.,IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Ruel
- Département de Mathématiques, Lycée Joffre, Académie de Montpellier, Montpellier, France
| | - Sophie Layé
- Laboratoire NutriNeuro, UMR INRAE 1286, Université de Bordeaux, Bordeaux, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, University of Bordeaux, Bordeaux, France
| | - Xavier Fioramonti
- Laboratoire NutriNeuro, UMR INRAE 1286, Université de Bordeaux, Bordeaux, France
| | | | - Benjamin Gronier
- Pharmacology and Neuroscience Research Group, Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
49
|
Dopaminergic Signaling in the Nucleus Accumbens Modulates Stress-Coping Strategies during Inescapable Stress. J Neurosci 2020; 40:7241-7254. [PMID: 32847967 DOI: 10.1523/jneurosci.0444-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 01/11/2023] Open
Abstract
Maladaptation to stress is a critical risk factor in stress-related disorders, such as major depression and post-traumatic stress disorder (PTSD). Dopamine signaling in the nucleus accumbens (NAc) has been shown to modulate behavior by reinforcing learning and evading aversive stimuli, which are important for the survival of animals under environmental challenges such as stress. However, the mechanisms through which dopaminergic transmission responds to stressful events and subsequently regulates its downstream neuronal activity during stress remain unknown. To investigate how dopamine signaling modulates stress-coping behavior, we measured the subsecond fluctuation of extracellular dopamine concentration and pH using fast scanning cyclic voltammetry (FSCV) in the NAc, a postsynaptic target of midbrain dopaminergic neurons, in male mice engaged in a tail suspension test (TST). The results revealed a transient decrease in dopamine concentration and an increase in pH levels when the animals changed behaviors, from being immobile to struggling. Interestingly, optogenetic inhibition of dopamine release in NAc, potentiated the struggling behavior in animals under the TST. We then addressed the causal relationship of such a dopaminergic transmission with behavioral alterations by knocking out both the dopamine receptors, i.e., D1 and D2, in the NAc using viral vector-mediated genome editing. Behavioral analyses revealed that male D1 knock-out mice showed significantly more struggling bouts and longer struggling durations during the TST, while male D2 knock-out mice did not. Our results therefore indicate that D1 dopaminergic signaling in the NAc plays a pivotal role in the modulation of stress-coping behaviors in animals under tail suspension stress.SIGNIFICANCE STATEMENT The tail suspension test (TST) has been widely used as a despair-based behavioral assessment to screen the antidepressant so long. Despite its prevalence in the animal studies, the neural substrate underlying the changes of behavior during the test remains unclear. This study provides an evidence for a role of dopaminergic transmission in the modulation of stress-coping behavior during the TST, a despair test widely used to screen the antidepressants in rodents. Taking into consideration the fact that the dopamine metabolism is upregulated by almost all antidepressants, a part of which acts directly on the dopaminergic transmission, current results would uncover the molecular mechanism through which the dopaminergic signaling mediates antidepressant effect with facilitation of the recovery from the despair-like behavior in the TST.
Collapse
|
50
|
Vena AA, Zandy SL, Cofresí RU, Gonzales RA. Behavioral, neurobiological, and neurochemical mechanisms of ethanol self-administration: A translational review. Pharmacol Ther 2020; 212:107573. [PMID: 32437827 PMCID: PMC7580704 DOI: 10.1016/j.pharmthera.2020.107573] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder has multiple characteristics including excessive ethanol consumption, impaired control over drinking behaviors, craving and withdrawal symptoms, compulsive seeking behaviors, and is considered a chronic condition. Relapse is common. Determining the neurobiological targets of ethanol and the adaptations induced by chronic ethanol exposure is critical to understanding the clinical manifestation of alcohol use disorders, the mechanisms underlying the various features of the disorder, and for informing medication development. In the present review, we discuss ethanol's interactions with a variety of neurotransmitter systems, summarizing findings from preclinical and translational studies to highlight recent progress in the field. We then describe animal models of ethanol self-administration, emphasizing the value, limitations, and validity of commonly used models. Lastly, we summarize the behavioral changes induced by chronic ethanol self-administration, with an emphasis on cue-elicited behavior, the role of ethanol-related memories, and the emergence of habitual ethanol seeking behavior.
Collapse
Affiliation(s)
- Ashley A Vena
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, United States of America
| | | | - Roberto U Cofresí
- Psychological Sciences, University of Missouri, United States of America
| | - Rueben A Gonzales
- Division of Pharmacology and Toxicology, College of Pharmacy and Institute for Neuroscience, The University of Texas at Austin, United States of America.
| |
Collapse
|