1
|
Mahadevan A, Yazdanpanah O, Patel V, Benjamin DJ, Kalebasty AR. Ophthalmologic toxicities of antineoplastic agents in genitourinary cancers: Mechanisms, management, and clinical implications. Curr Probl Cancer 2025; 54:101171. [PMID: 39708456 DOI: 10.1016/j.currproblcancer.2024.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
Genitourinary cancers affect over 480,000 patients in the United States annually. While promising therapeutic modalities continue to emerge, notably immune checkpoint inhibitors, molecular targeted therapies, antibody-drug conjugates, and radioligand therapies, these treatments are associated with a spectrum of adverse side-effects, including ophthalmologic toxicities. In this review, we cover the most commonly used antineoplastic agents for the kidneys, bladder, urinary tracts, prostate, testis, and penis, detailing mechanism, indication, and recent trials supporting their use. For each category of antineoplastic therapy, we describe the epidemiology, management, and clinical presentation, of common ophthalmologic toxicities stemming from these agents. This review serves to augment awareness and recognition of possible ophthalmologic manifestations resulting from the use of antineoplastic agents in genitourinary malignancy. Early identification of these side effects can hasten ophthalmology referral and ultimately improve visual outcomes in patients experiencing medication-induced ocular toxicities.
Collapse
Affiliation(s)
- Aditya Mahadevan
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Omid Yazdanpanah
- Division of Hematology/Oncology, University of California Irvine Health, Orange, CA, USA.
| | - Vivek Patel
- Department of Ophthalmology, University of California Irvine Health, Orange, CA, USA.
| | | | | |
Collapse
|
2
|
Kanemaru E, Ichinose F. Essential role of sulfide oxidation in brain health and neurological disorders. Pharmacol Ther 2025; 266:108787. [PMID: 39719173 DOI: 10.1016/j.pharmthera.2024.108787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/21/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Hydrogen sulfide (H2S) is an environmental hazard well known for its neurotoxicity. In mammalian cells, H2S is predominantly generated by transsulfuration pathway enzymes. In addition, H2S produced by gut microbiome significantly contributes to the total sulfide burden in the body. Although low levels of H2S is believed to exert various physiological functions such as neurotransmission and vasomotor control, elevated levels of H2S inhibit the activity of cytochrome c oxidase (i.e., mitochondrial complex IV), thereby impairing oxidative phosphorylation. To protect the electron transport chain from respiratory poisoning by H2S, the compound is actively oxidized to form persulfides and polysulfides by a mitochondrial resident sulfide oxidation pathway. The reaction, catalyzed by sulfide:quinone oxidoreductase (SQOR), is the initial and critical step in sulfide oxidation. The persulfide species are subsequently oxidized to sulfite, thiosulfate, and sulfate by persulfide dioxygenase (ETHE1 or SDO), thiosulfate sulfurtransferase (TST), and sulfite oxidase (SUOX). While SQOR is abundantly expressed in the colon, liver, lung, and skeletal muscle, its expression is notably low in the brains of most mammals. Consequently, the brain's limited capacity to oxidize H2S renders it particularly sensitive to the deleterious effects of H2S accumulation. Impaired sulfide oxidation can lead to fatal encephalopathy, and the overproduction of H2S has been implicated in the developmental delays observed in Down syndrome. Our recent findings indicate that the brain's limited capacity to oxidize sulfide exacerbates its sensitivity to oxygen deprivation. The beneficial effects of sulfide oxidation are likely to be mediated not only by the detoxification of H2S but also by the formation of persulfide, which exerts cytoprotective effects through multiple mechanisms. Therefore, pharmacological agents designed to scavenge H2S and/or enhance persulfide levels may offer therapeutic potential against neurological disorders characterized by impaired or insufficient sulfide oxidation or excessive H2S production.
Collapse
Affiliation(s)
- Eiki Kanemaru
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Abd Elaleem WS, Ghaiad HR, Abd Elmawla MA, Shaheen AA. Attenuation of p38 MAPK/NF-κB/TRPV1/CGRP is involved in the antinociceptive effect of hesperidin methyl chalcone and taxifolin in paclitaxel-induced peripheral neuropathy. Biofactors 2025; 51:e2125. [PMID: 39353740 DOI: 10.1002/biof.2125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Paclitaxel (PTX)-induced peripheral neuropathy (PIPN) is a disabling side effect of PTX, which adversely affects the life quality of cancer patients. Flavonoids such as hesperidin methyl chalcone (HMC) and taxifolin (TAX) can alleviate neuropathic pain via their anti-inflammatory, antioxidant, neuroprotective, and antinociceptive properties. The current study aimed to assess the efficacy of HMC and TAX in preventing PIPN individually or in combination. Pretreatment with HMC and TAX mitigated PTX-induced mechanical allodynia and hyperalgesia, cold allodynia, and thermal hyperalgesia as well as restore the normal histological architecture. Remarkably, neuropathic pain was relieved by suppression of nerve growth factor (NGF), p38 mitogen-activated protein kinase (p38 MAPK), and transient receptor potential vanilloid type-1 (TRPV1), which ultimately lead to reduced calcitonin gene-related peptide (CGRP). Furthermore, both HMC or TAX enhanced nuclear factor erythroid 2-related factor 2 (Nrf2), leading to elevated glutathione (GSH) and total antioxidant capacity (TAC) along with lowered malondialdehyde (MDA), which in turn, downregulated nuclear factor kappa B P65 (NF-κB P65) and its phosphorylated form and eventually reduced tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) then lowered the apoptotic indices. Promisingly, the combination of both agents was superior to each drug alone through targeting more diverse signaling pathways and achieving synergistic and comprehensive therapeutic effects. In conclusion, pretreatment with HMC and TAX separately or in combination alleviated PIPN via modulating NGF/p38 MAPK/NF-κB P65/TRPV1/CGRP pathway.
Collapse
Affiliation(s)
- Wafaa S Abd Elaleem
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba R Ghaiad
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mai A Abd Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amira A Shaheen
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Kawashiri T, Mori K, Ishida H, Ueda M, Yao K, Nagahama F, Mine K, Mori Y, Koura Y, Fujita S, Shimazoe T, Kobayashi D. Paclitaxel-induced peripheral neuropathy in male rats attenuated by calmangafodipir, a superoxide dismutase mimetic. J Pharmacol Sci 2025; 157:8-11. [PMID: 39706645 DOI: 10.1016/j.jphs.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024] Open
Abstract
Paclitaxel induces peripheral neuropathy, which is considered a dose-limiting factor. However, appropriate prophylactic agents are currently unavailable. We investigated the prophylactic effects of calmangafodipir, a superoxide dismutase mimetic, on paclitaxel-induced peripheral neuropathy using a male rat model. Repeated administration of paclitaxel (6 mg/kg, intraperitoneal, once weekly for 4 weeks) resulted in mechanical allodynia in the von Frey test and axonal degeneration in the sciatic nerve. Conversely, calmangafodipir (1-10 mg/kg, intravenous, thrice weekly for 4 weeks) prevented mechanical allodynia and axonal degeneration induced by paclitaxel. These results suggest that calmangafodipir may inhibit paclitaxel-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Takehiro Kawashiri
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Kohei Mori
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Haruna Ishida
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mami Ueda
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kozo Yao
- Product Development Division, Solasia Pharma K.K., Tokyo, 105-0011, Japan
| | - Fumiko Nagahama
- Product Development Division, Solasia Pharma K.K., Tokyo, 105-0011, Japan
| | - Keisuke Mine
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yusuke Mori
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yusuke Koura
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shunsuke Fujita
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takao Shimazoe
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daisuke Kobayashi
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
5
|
Xavier JR, Sanjay BS, Gupta D, Mehta S, Chauhan OP. Bioactive compounds of foods: Phytochemicals and peptides. FOOD AND HUMANITY 2024; 3:100354. [DOI: 10.1016/j.foohum.2024.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Crugeiras J, Calls A, Contreras E, Alemany M, Navarro X, Yuste VJ, Casanovas O, Udina E, Bruna J. Oxygen matters: Unraveling the role of oxygen in the neuronal response to cisplatin. J Peripher Nerv Syst 2024; 29:528-536. [PMID: 39329299 PMCID: PMC11625991 DOI: 10.1111/jns.12659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND AIMS Cell culture is a fundamental experimental tool for understanding cell physiology. However, translating these findings to in vivo settings has proven challenging. Replicating donor tissue conditions, including oxygen levels, is crucial for achieving meaningful results. Nevertheless, oxygen culture conditions are often overlooked, particularly in the context of chemotherapy-induced neurotoxicity. METHODS In this study, we investigated the role of oxygen levels in primary neuronal cultures by comparing neuronal performance under cisplatin exposure (1 μg/mL) in supraphysiological normoxia (representing atmospheric conditions in a standard incubator; 18.5% O2) and physioxia (representing physiologic oxygen conditions in nervous tissue; 5% O2). Experiments were also conducted to assess survival, neurite development, senescence marker expression, and proinflammatory cytokine secretion. RESULTS Under control conditions, both oxygen concentration conditions exhibited similar behaviors. However, after cisplatin administration, sensory neurons cultured under supraphysiological normoxic conditions show higher mortality, exhibit an evolutionarily proinflammatory cytokine profile over time, and activate apoptotic-regulated neuron death markers. In contrast, under physiological conditions, neurons treated with cisplatin exhibited senescence marker expression and an attenuated inflammatory secretome. INTERPRETATION These results underscore the critical role of oxygen in neuronal culture, particularly in studying compounds where neuronal damage is mechanistically linked to oxidative stress. Even at identical doses of evaluated neurotoxic drugs, distinct cellular phenotypic fates can emerge, impacting translatability to the in vivo setting.
Collapse
Affiliation(s)
- Jose Crugeiras
- Department of Cell Biology, Physiology, and ImmunologyInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Aina Calls
- Department of Cell Biology, Physiology, and ImmunologyInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Estefanía Contreras
- Department of Cell Biology, Physiology, and ImmunologyInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Montse Alemany
- Unit of Neuro‐Oncology, Hospital Universitari de BellvitgeBellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
| | - Xavier Navarro
- Department of Cell Biology, Physiology, and ImmunologyInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Victor J. Yuste
- Department of BiochemistryInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
| | - Oriol Casanovas
- Tumor Angiogenesis Group, ProCURE ProgramCatalan Institute of Oncology, OncoBell Program, IDIBELLBarcelonaSpain
| | - Esther Udina
- Department of Cell Biology, Physiology, and ImmunologyInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Jordi Bruna
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
- Unit of Neuro‐Oncology, Hospital Universitari de BellvitgeBellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
| |
Collapse
|
7
|
Khalilzadeh M, Ghasemi M, Faghir-Ghanesefat H, Ghafouri Esfahani M, Dehpour AR, Shafaroodi H. Aprepitant mitigates paclitaxel-induced neuropathic pain in rats via suppressing inflammatory pathways in dorsal root ganglia. Drug Chem Toxicol 2024:1-10. [PMID: 39538987 DOI: 10.1080/01480545.2024.2425992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/10/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Neuropathic pain is the crucial dose-limiting side effect of paclitaxel in chemotherapy patients that negatively impacts the quality of life and survival. Currently, no effective treatment option is available. Aprepitant, a well-established chemotherapy antiemetic performing neurokinin-1 receptor antagonism, shows analgesic effects in some pain models. We studied aprepitant analgesic effects on the paclitaxel-induced neuropathic pain model in rats besides inflammatory markers assessment. Rats intraperitoneally received paclitaxel, reaching the cumulative paclitaxel dose of 8 mg/kg. Aprepitant was orally administered every alternate day between days 2 and 14, with a prescribed dosage of 10 or 20 mg/kg. The evaluation of mechanical allodynia and cold hyperalgesia involved the measurement of paw withdrawal threshold and acetone test score on days 0, 7, and 14. On day 14, paw licking latency was measured using a hot plate test before scarification and tissue collection for interleukin 1β, tumor necrosis factor α, and nuclear factor kappa B (NF-kB) evaluation. Paclitaxel induced neuropathy as indicated by a lowered hind paw withdrawal threshold in the Von Frey test, a higher score in the acetone test, and shortened hot plate latency. Aprepitant effectively alleviated cold and thermal hyperalgesia as well as mechanical allodynia. Moreover, aprepitant administration significantly reversed paclitaxel-mediated elevation of proinflammatory cytokines levels in dorsal root ganglia. In addition, aprepitant application suppressed the protein expression of NF-kB in the dorsal root ganglia of paclitaxel-treated rats, as revealed by western blot analysis. Aprepitant treatment ameliorates neuropathy induced by paclitaxel, which is associated with decreasing proinflammatory cytokines and NF-kB expression.
Collapse
Affiliation(s)
- Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ghasemi
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Ahmad Reza Dehpour
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Ramos AD, Liang YY, Surova O, Bacanu S, Gerault MA, Mandal T, Ceder S, Langebäck A, Österroos A, Ward GA, Bergh J, Wiman KG, Lehmann S, Prabhu N, Lööf S, Nordlund P. Proteome-wide CETSA reveals diverse apoptosis-inducing mechanisms converging on an initial apoptosis effector stage at the nuclear periphery. Cell Rep 2024; 43:114784. [PMID: 39365699 DOI: 10.1016/j.celrep.2024.114784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/24/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024] Open
Abstract
Cellular phenotypes of apoptosis, as well as the activation of apoptosis caspase cascades, are well described. However, sequences and locations of early biochemical effector events after apoptosis initiation are still only partly understood. Here, we use integrated modulation of protein interaction states-cellular thermal shift assay (IMPRINTS-CETSA) to dissect the cellular biochemistry of early stages of apoptosis at the systems level. Using 5 families of cancer drugs and a new CETSA-based method to monitor the cleavage of caspase targets, we discover the initial biochemistry of the effector stage of apoptosis for all the studied drugs being focused on the peripheral nuclear region rather than the cytosol. Despite very different candidate apoptosis-inducing mechanisms of the drug families, as revealed by the CETSA data, they converge into related biochemical modulations in the peripheral nuclear region. This implies a higher control of the localization of the caspase cascades than previously anticipated and highlights the nuclear periphery as a critical vulnerability for cancer therapies.
Collapse
Affiliation(s)
| | - Ying Yu Liang
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Olga Surova
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Smaranda Bacanu
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marc-Antoine Gerault
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Tamoghna Mandal
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sophia Ceder
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Anette Langebäck
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Albin Österroos
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - George A Ward
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, UK
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Klas G Wiman
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sören Lehmann
- Department of Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden; Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Nayana Prabhu
- Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Sara Lööf
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Pär Nordlund
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore.
| |
Collapse
|
9
|
Bhilare KD, Dobariya P, Hanak F, Rothwell PE, More SS. Current understanding of the link between angiotensin-converting enzyme and pain perception. Drug Discov Today 2024; 29:104089. [PMID: 38977123 PMCID: PMC11368640 DOI: 10.1016/j.drudis.2024.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
The renin-angiotensin system (RAS) is known to affect diverse physiological processes that affect the functioning of many key organs. Angiotensin-converting enzyme (ACE) modulates a variety of bioactive peptides associated with pain. ACE inhibitors (ACEis) have found applications in the treatment of cardiovascular, kidney, neurological and metabolic disorders. However, ACEis also tend to display undesirable effects, resulting in increased pain sensitization and mechanical allodynia. In this review, we provide comprehensive discussion of preclinical and clinical studies involving the evaluation of various clinically approved ACEis. With the emerging knowledge of additional factors involved in RAS signaling and the indistinct pharmacological role of ACE substrates in pain, extensive studies are still required to elucidate the mechanistic role of ACE in pain perception.
Collapse
Affiliation(s)
- Kiran D Bhilare
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Prakashkumar Dobariya
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Filip Hanak
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Patrick E Rothwell
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Swati S More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
10
|
Liu Z, Liu S, Zhao Y, Wang Q. Biological Mediators and Partial Regulatory Mechanisms on Neuropathic Pain Associated With Chemotherapeutic Agents. Physiol Res 2024; 73:333-341. [PMID: 39027951 PMCID: PMC11299781 DOI: 10.33549/physiolres.935162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 07/27/2024] Open
Abstract
One of the most common issues caused by antineoplastic agents is chemotherapy-induced peripheral neuropathy (CIPN). In patients, CIPN is a sensory neuropathy accompanied by various motor and autonomic changes. With a high prevalence of cancer patients, CIPN is becoming a major problem for both cancer patients and for their health care providers. Nonetheless, there are lacking effective interventions preventing CIPN and treating the CIPN symptoms. A number of studies have demonstrated the cellular and molecular signaling pathways leading to CIPN using experimental models and the beneficial effects of some interventions on the CIPN symptoms related to those potential mechanisms. This review will summarize results obtained from recent human and animal studies, which include the abnormalities in mechanical and temperature sensory responses following chemotherapy such as representative bortezomib, oxaliplatin and paclitaxel. The underlying mechanisms of CIPN at cellular and molecular levels will be also discussed for additional in-depth studies needed to be better explored. Overall, this paper reviews the basic picture of CIPN and the signaling mechanisms of the most common antineoplastic agents in the peripheral and central nerve systems. A better understanding of the risk factors and fundamental mechanisms of CIPN is needed to develop effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Z Liu
- Tumor Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| | | | | | | |
Collapse
|
11
|
Martínez-Martel I, Bai X, Kordikowski R, Leite-Panissi CRA, Pol O. The Combination of Molecular Hydrogen and Heme Oxygenase 1 Effectively Inhibits Neuropathy Caused by Paclitaxel in Mice. Antioxidants (Basel) 2024; 13:856. [PMID: 39061924 PMCID: PMC11274132 DOI: 10.3390/antiox13070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Chemotherapy-provoked peripheral neuropathy and its associated affective disorders are important adverse effects in cancer patients, and its treatment is not completely resolved. A recent study reveals a positive interaction between molecular hydrogen (H2) and a heme oxygenase (HO-1) enzyme inducer, cobalt protoporphyrin IX (CoPP), in the inhibition of neuropathic pain provoked by nerve injury. Nevertheless, the efficacy of CoPP co-administered with hydrogen-rich water (HRW) on the allodynia and emotional disorders related to paclitaxel (PTX) administration has not yet been assessed. Using male C57BL/6 mice injected with PTX, we examined the effects of the co-administration of low doses of CoPP and HRW on mechanical and thermal allodynia and anxiodepressive-like behaviors triggered by PTX. Moreover, the impact of this combined treatment on the oxidative stress and inflammation caused by PTX in the amygdala (AMG) and dorsal root ganglia (DRG) were studied. Our results indicated that the antiallodynic actions of the co-administration of CoPP plus HRW are more rapid and higher than those given by each of them when independently administered. This combination inhibited anxiodepressive-like behaviors, the up-regulation of the inflammasome NLRP3 and 4-hydroxynonenal, as well as the high mRNA levels of some inflammatory mediators. This combination also increased the expression of NRF2, HO-1, superoxide dismutase 1, glutathione S-transferase mu 1, and/or the glutamate-cysteine ligase modifier subunit and decreased the protein levels of BACH1 in the DRG and/or AMG. Thus, it shows a positive interaction among HO-1 and H2 systems in controlling PTX-induced neuropathy by modulating inflammation and activating the antioxidant system. This study recommends the co-administration of CoPP plus HRW as an effective treatment for PTX-provoked neuropathy and its linked emotive deficits.
Collapse
Affiliation(s)
- Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Rebecca Kordikowski
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Christie R. A. Leite-Panissi
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
12
|
Tai HY, Lin LY, Huang TW, Gautama MSN. Efficacy of cryotherapy in the prevention of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Support Care Cancer 2024; 32:482. [PMID: 38955817 DOI: 10.1007/s00520-024-08680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE The study investigates cryotherapy's efficacy in mitigating Chemotherapy-induced peripheral neuropathy (CIPN), an adverse effect of chemotherapy that often leads to dosage reduction or treatment discontinuation. METHOD The study was registered with PROSPERO (CRD42023428936). A literature search was conducted using the PubMed, Embase, and Cochrane Library databases. Randomized and nonrandomized controlled trials that investigated the effects of cryotherapy on CIPN were included for systematic review and meta-analysis. The primary outcome for prevention was the incidence of CIPN. RESULTS We identified 17 trials involving 2,851 patients. In total, 11 trials compared the incidence of CIPN between cryotherapy and control groups. Significant differences in the incidence of CIPN at the midpoint and end of chemotherapy were observed, with risk ratios (RRs) of 0.23 (95% confidence interval [CI] = 0.13 to 0.43) and 0.54 (95% CI = 0.33 to 0.88), respectively. Cryotherapy also significantly reduced the incidence of sensory CIPN, with an RR of 0.67 (95% CI = 0.49 to 0.92). Additionally, cryotherapy demonstrated a significant reduction in the incidence of CIPN in patients with gynecological cancers (RR = 0.24, 95% CI = 0.14 to 0.41). Significantly favorable global quality of life scores following chemotherapy (standardized mean difference = 1.43; 95% CI = 0.50 to 2.36) and relieved neuropathic symptoms were found with cryotherapy. CONCLUSIONS Cryotherapy demonstrates a pronounced preventive effect against the development of CIPN, providing substantial symptomatic relief and quality of life improvements for patients undergoing chemotherapy. The administration of cryotherapy through the use of frozen gloves and socks, or continuous-flow cooling systems, optimally initiated 15 min prior to and concluded 15 min following chemotherapy, is recommended for achieving maximum therapeutic efficacy.
Collapse
Affiliation(s)
- Hsiu-Yu Tai
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lee-Yuan Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Wei Huang
- Research Center in Nursing Clinical Practice, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Nursing, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- School of Nursing, College of Nursing, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist, Taipei, 11031, Taiwan.
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan.
| | | |
Collapse
|
13
|
de Kock M, Chetty S, Sherif Isa A, Qulu-Appiah L. An investigation on the role of oxytocin in chronic neuropathic pain in a Wistar rat model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100152. [PMID: 39071531 PMCID: PMC11278948 DOI: 10.1016/j.ynpai.2024.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 07/30/2024]
Abstract
Introduction Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect with ineffective preventative and curative treatment. Currently, only Duloxetine has been recommended as effective treatment for CIPN, which has shown individual-dependent, short-term analgesic effects, with limiting adverse effects and poor bioavailability. The neuropeptide, oxytocin, may offer significant analgesic and anxiolytic potential, as it exerts central and peripheral attenuating effects on nociception. However, it is unknown whether the intervention administered in a model of CIPN is an effective therapeutic alternative or adjuvant. Materials and Methods The intervention was divided into two phases. Phase 1 aimed to induce CIPN in adult Wistar rats using the chemotherapeutic agent Paclitaxel. Mechanical (electronic von Frey filament) and thermal (acetone evaporation test and Hargreaves test) hypersensitivity testing were used to evaluate changes due to the neuropathic induction. Phase 2 consisted of a 14-day intervention period with saline (o.g.), duloextine (o.g.), or oxytocin (i.n.) administered as treatment. Following the intervention, anxiety-like behaviour was assessed using the elevated plus maze (EPM) and light-dark box protocols. Analysis of peripheral plasma corticosterone, peripheral plasma oxytocin, and hypothalamic oxytocin concentrations were assessed using ELISA assays. Results The findings showed that we were able to successfully establish a model of chemotherapy-induced peripheral neuropathy during Phase 1, determined by the increase in mechanical and thermal nociceptive responses following Paclitaxel administration. Furthermore, the animals treated with oxytocin displayed a significant improvement in mechanical sensitivity over the intervention phase, indicative of an improvement in nociceptive sensitivity in the presence of neuropathic pain. Animals that received Paclitaxel and treated with oxytocin also displayed significantly greater explorative behaviour during the EPM, indicative of a reduced presence of anxiety-like behaviour. Conclusion Our results support the hypothesis that intranasally administered oxytocin may augment the analgesic and anxiolytic effects of duloxetine in a chemotherapy induced peripheral neuropathy model in a Wistar rat. Future studies should consider administering the treatments in combination to observe the potential synergistic effects.
Collapse
Affiliation(s)
- Michaela de Kock
- Division of Medical Physiology, Faculty of Medicine and Health Science, Stellenbosch University, South Africa
| | - Sean Chetty
- Anaesthesiology and Critical Care, Faculty of Medicine and Health Science, Stellenbosch University, South Africa
| | - Ahmed Sherif Isa
- Department of Human Physiology, Ahmadu Bello University, Nigeria
| | - Lihle Qulu-Appiah
- Division of Medical Physiology, Faculty of Medicine and Health Science, Stellenbosch University, South Africa
| |
Collapse
|
14
|
Tykhonovych K, Kryvoruchko T, Nikitina N, Berehovyi S, Neporada K. CORRECTION OF PATHOLOGICAL CHANGES IN SALIVARY GLANDS OF ANIMALS WITH PACLITAXEL-INDUCED NEUROPATHY. Exp Oncol 2024; 46:38-44. [PMID: 38852054 DOI: 10.15407/exp-oncology.2024.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Paclitaxel is a highly effective chemotherapeutic agent used to treat breast, ovarian, and other cancers. At the same time, paclitaxel causes peripheral neuropathy as a side effect in 45%-70% of patients. AIM The aim of the study was to investigate the effect of paclitaxel-induced peripheral neuropathy on the development of pathological changes in the salivary glands of animals and to explore the possibility of correction of the identified changes with vitamin B/ATP complex. MATERIALS AND METHODS To simulate toxic neuropathy, animals were injected i/p with paclitaxel 2 mg/kg for 4 days. In order to correct the identified changes, rats were injected i/m with vitamin B/ATP complex (1 mg/ kg) for 9 days. In the homogenate of the submandibular salivary glands, α-amylase activity, total proteolytic activity, total antitryptic activity, the content of medium mass molecules, thiobarbituric acid reactive substances (TBARS), oxidatively modified proteins, and catalase activity were determined. RESULTS A significant increase in the content of oxidatively modified proteins, medium mass molecules, and the content of TBARS and significant decrease in the activity of catalase and amylase were determined in the salivary glands of animals with toxic neuropathy compared to these parameters in intact animals. Administration of vitamin B/ATP complex for 9 days against the background of paclitaxel-induced neuropathy led to normalization of antitryptic activity and amylase activity, a significant decrease in the content of oxidatively modified proteins, medium mass molecules, and TBARS along with a significant increase in catalase activity in the salivary glands of animals compared to the untreated rats with neuropathy. CONCLUSION Paclitaxel-induced neuropathy caused the development of pathological changes in the salivary glands of rats, which was evidenced by a carbonyl- oxidative stress and impaired protein synthetic function. The correction with vitamin B/ATP complex restored the protein-synthetic function and the proteinase-inhibitor balance, suppressed the oxidative stress and normalized free radical processes in the salivary glands of rats.
Collapse
Affiliation(s)
| | | | - N Nikitina
- Educational and Scientific Centre «Institute of Biology and Medicine», Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - S Berehovyi
- Educational and Scientific Centre «Institute of Biology and Medicine», Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - K Neporada
- Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|
15
|
Wang Z, Xia Q, Wan W, Wang M, Zhang Z, Deng J, Jing B, Sun J, Lyu H, Jin H, Yan J, Shen D, Ge Y. Chemical sensors detect and resolve proteome aggregation in peripheral neuropathy cell model induced by chemotherapeutic agents. Bioorg Chem 2024; 148:107491. [PMID: 38788365 DOI: 10.1016/j.bioorg.2024.107491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
As a consequence of somatosensory nervous system injury or disease, neuropathic pain is commonly associated with chemotherapies, known as chemotherapy-induced peripheral neuropathy (CIPN). However, the mechanisms underlying CIPN-induced proteome aggregation in neuronal cells remain elusive due to limited detection tools. Herein, we present series sensors for fluorescence imaging (AggStain) and proteomics analysis (AggLink) to visualize and capture aggregated proteome in CIPN neuronal cell model. The environment-sensitive AggStain imaging sensor selectively binds and detects protein aggregation with 12.3 fold fluorescence enhancement. Further, the covalent AggLink proteomic sensor captures cellular aggregated proteins and profiles their composition via LC-MS/MS analysis. This integrative sensor platform reveals the presence of proteome aggregation in CIPN cell model and highlights its potential for broader applications in assessing proteome stability under various cellular stress conditions.
Collapse
Affiliation(s)
- Zhiming Wang
- The Second Hospital of Dalian Medical University, Dalian 116023, China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiuxuan Xia
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Wan
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mengdie Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenduo Zhang
- The Second Hospital of Dalian Medical University, Dalian 116023, China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jintai Deng
- The Second Hospital of Dalian Medical University, Dalian 116023, China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Biao Jing
- The Second Hospital of Dalian Medical University, Dalian 116023, China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jialu Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haochen Lyu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hao Jin
- The Second Hospital of Dalian Medical University, Dalian 116023, China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing Yan
- The Second Hospital of Dalian Medical University, Dalian 116023, China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Di Shen
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yusong Ge
- The Second Hospital of Dalian Medical University, Dalian 116023, China.
| |
Collapse
|
16
|
Shen CL, Wang R, Santos JM, Elmassry MM, Stephens E, Kim N, Neugebauer V. Ginger alleviates mechanical hypersensitivity and anxio-depressive behavior in rats with diabetic neuropathy through beneficial actions on gut microbiome composition, mitochondria, and neuroimmune cells of colon and spinal cord. Nutr Res 2024; 124:73-84. [PMID: 38402829 PMCID: PMC11466295 DOI: 10.1016/j.nutres.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
The relationship among gut microbiota, mitochondrial dysfunction/neuroinflammation, and diabetic neuropathic pain (DNP) has received increased attention. Ginger has antidiabetic and analgesic effects because of its anti-inflammatory property. We examined the effects of gingerols-enriched ginger (GEG) supplementation on pain-associated behaviors, gut microbiome composition, and mitochondrial function and neuroinflammation of colon and spinal cord in DNP rats. Thirty-three male rats were randomly divided into 3 groups: control group, DNP group (high-fat diet plus single dose of streptozotocin at 35 mg/kg body weight, and GEG group (DNP+GEG at 0.75% in the diet for 8 weeks). Von Frey and open field tests were used to assess pain sensitivity and anxio-depressive behaviors, respectively. Colon and spinal cord were collected for gene expression analysis. 16S rRNA gene sequencing was done from cecal samples and microbiome data analysis was performed using QIIME 2. GEG supplementation mitigated mechanical hypersensitivity and anxio-depressive behavior in DNP animals. GEG supplementation suppressed the dynamin-related protein 1 protein expression (colon) and gene expression (spinal cord), astrocytic marker GFAP gene expression (colon and spinal cord), and tumor necrosis factor-α gene expression (colon, P < .05; spinal cord, P = .0974) in DNP rats. GEG supplementation increased microglia/macrophage marker CD11b gene expression in colon and spinal cord of DNP rats. GEG treatment increased abundance of Acinetobacter, Azospirillum, Colidextribacter, and Fournierella but decreased abundance of Muribaculum intestinale in cecal feces of rats. This study demonstrates that GEG supplementation decreased pain, anxio-depression, and neuroimmune cells, and improved the composition of gut microbiomes and mitochondrial function in rats with diabetic neuropathy.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Julianna Maria Santos
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Moamen M Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Emily Stephens
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nicole Kim
- Department of Biology, Texas Tech University, Lubbock, TX, USA
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
17
|
Nguyen V, Taine EG, Meng D, Cui T, Tan W. Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients 2024; 16:924. [PMID: 38612964 PMCID: PMC11013850 DOI: 10.3390/nu16070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Chlorogenic acid (CGA) is a type of polyphenol compound found in rich concentrations in many plants such as green coffee beans. As an active natural substance, CGA exerts diverse therapeutic effects in response to a variety of pathological challenges, particularly conditions associated with chronic metabolic diseases and age-related disorders. It shows multidimensional functions, including neuroprotection for neurodegenerative disorders and diabetic peripheral neuropathy, anti-inflammation, anti-oxidation, anti-pathogens, mitigation of cardiovascular disorders, skin diseases, diabetes mellitus, liver and kidney injuries, and anti-tumor activities. Mechanistically, its integrative functions act through the modulation of anti-inflammation/oxidation and metabolic homeostasis. It can thwart inflammatory constituents at multiple levels such as curtailing NF-kB pathways to neutralize primitive inflammatory factors, hindering inflammatory propagation, and alleviating inflammation-related tissue injury. It concurrently raises pivotal antioxidants by activating the Nrf2 pathway, thus scavenging excessive cellular free radicals. It elevates AMPK pathways for the maintenance and restoration of metabolic homeostasis of glucose and lipids. Additionally, CGA shows functions of neuromodulation by targeting neuroreceptors and ion channels. In this review, we systematically recapitulate CGA's pharmacological activities, medicinal properties, and mechanistic actions as a potential therapeutic agent. Further studies for defining its specific targeting molecules, improving its bioavailability, and validating its clinical efficacy are required to corroborate the therapeutic effects of CGA.
Collapse
Affiliation(s)
- Vi Nguyen
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | | | - Dehao Meng
- Applied Physics Program, California State University San Marcos, San Marcos, CA 92096, USA
| | - Taixing Cui
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
18
|
Luo F, Wan D, Liu J, Chen D, Yuan M, Zhang C, Liu Q. Efficacy of the traditional Chinese medicine, Buyang Huanwu Decoction, at preventing taxane-induced peripheral neuropathy in breast cancer patients: A prospective, randomized, controlled study. Medicine (Baltimore) 2024; 103:e37338. [PMID: 38428887 PMCID: PMC10906625 DOI: 10.1097/md.0000000000037338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Buyang Huanwu Decoction (BYHWD) is a traditional Chinese prescription, originally derived from Yi Lin Gai Cuo during the Qing Dynasty. This study aimed to evaluate the efficacy and safety of BYHWD in the prevention of taxane-induced peripheral neuropathy (TIPN) in patients with breast cancer. METHODS This single-center, statistician-blinded, parallel-group, simple randomized, no-treatment controlled study was conducted at the China-Japan Friendship Hospital in Beijing. Sixty breast cancer patients scheduled to receive nab-paclitaxel-based chemotherapy were randomly assigned to either the BYHWD group (N = 30) or the control group (N = 30) using simple randomization procedures. The data analysts were unaware of the treatment allocation. The primary efficacy endpoints were the incidence and severity of TIPN in the 2 groups, assessed using the Common Terminology Criteria for Adverse Events (CTCAE) and Patients' Neurotoxicity Questionnaire (PNQ). The secondary efficacy endpoint was the score of Functional Assessment of Cancer Therapy-Breast for both groups. The primary safety endpoints were routine blood test results and liver and renal functions. Both groups were subjected to 4 chemotherapy cycles. Efficacy and safety analyses were conducted on an intention-to-treat basis. RESULTS The incidence of TIPN in the BYHWD group was 50.0%, which was lower than the 80.0% incidence in the control group (β = -1.881 [95%CI -3.274, -.488]; P = .008, adjusted). The probability of TIPN in the BYHWD group was 15.2% of that in the control group, representing a significant reduction in incidence (odds ratio = .152, [95%CI .038, 0.614]; P = .008, adjusted). The CTCAE and PNQ grades of the BYHWD group were 1.527 and 1.495 points lower than those of the control group at the same cycle, respectively (CTCAE: β = -1.527 [95%CI -2.522, -.533]; P = .003, adjusted; PNQ: β = -1.495 [95%CI -2.501, -.489]; P = .004, adjusted, respectively). After treatment, the Functional Assessment of Cancer Therapy-Breast scores in the BYHWD group were significantly better than those in the control group (P = .003), especially in the physiological, functional, and additional concerns domains. CONCLUSION Buyang Huanwu decoction (BYHWD) can effectively prevent TIPN and improve the quality of life in patients with breast cancer.
Collapse
Affiliation(s)
- Fan Luo
- Beijing University of Chinese Medicine, Beijing, China
| | - Donggui Wan
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Jun Liu
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Dongmei Chen
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Mengqi Yuan
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Qing Liu
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
19
|
Altarifi AA, Sawali K, Alzoubi KH, Saleh T, Abu Al-Rub M, Khabour O. Effect of vitamin E on doxorubicin and paclitaxel-induced memory impairments in male rats. Cancer Chemother Pharmacol 2024; 93:215-224. [PMID: 37926754 DOI: 10.1007/s00280-023-04602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE In addition to peripheral neuronal dysfunction, conventional chemotherapy can be associated with other neurological treatment-limiting adverse effects, including cognitive dysfunction, memory impairment, and anxiety, which are referred to as "chemobrain". This study aimed to investigate the effects of doxorubicin (DOX) and paclitaxel (PAC) on learning and memory in rats using radial arm water maze (RAWM) and investigated a potential beneficial effect of vitamin E (Vit. E). METHODS Adult male rats were injected with four doses of 2 mg/kg/week DOX, or 2 mg/kg PAC every other day intraperitoneally. Vit. E was co-administered with these drugs in other groups to study its antioxidative effects. Using the RAWM, each rat was assessed for learning and memory performance through two sets of six trials separated by a 5-min rest period evaluating both short- and long-term effects on memory. RESULTS There was no deficit in learning or long-term memory in both drug groups compared to control. However, rats in both drug groups made significantly more errors in all short-term memory trials. This effect was mitigated when Vit. E was co-administered with either drug. Moreover, PAC (but not DOX) induced hippocampal lipid peroxidation by increasing the levels of standard biomarker thiobarbituric acid reactive substances (TBARS). Interestingly, Vit. E prevented PAC-induced hippocampal oxidative stress. Furthermore, both DOX and PAC were correlated with reduction in Brain-Derived Neurotrophic Factor (BDNF) expression levels in the hippocampus, which was overcome by the co-administration of Vit. E. CONCLUSION There is a potential role of Vit. E in alleviating short-term memory impairment in rats exposed to chemotherapy, possibly by reducing hippocampal oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- Ahmad A Altarifi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Kareem Sawali
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Malik Abu Al-Rub
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Omar Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
20
|
Willemen HLDM, Santos Ribeiro PS, Broeks M, Meijer N, Versteeg S, Tiggeler A, de Boer TP, Małecki JM, Falnes PØ, Jans J, Eijkelkamp N. Inflammation-induced mitochondrial and metabolic disturbances in sensory neurons control the switch from acute to chronic pain. Cell Rep Med 2023; 4:101265. [PMID: 37944527 PMCID: PMC10694662 DOI: 10.1016/j.xcrm.2023.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/24/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Pain often persists in patients with an inflammatory disease, even when inflammation has subsided. The molecular mechanisms leading to this failure in pain resolution and the transition to chronic pain are poorly understood. Mitochondrial dysfunction in sensory neurons links to chronic pain, but its role in resolution of inflammatory pain is unclear. Transient inflammation causes neuronal plasticity, called hyperalgesic priming, which impairs resolution of pain induced by a subsequent inflammatory stimulus. We identify that hyperalgesic priming in mice increases the expression of a mitochondrial protein (ATPSc-KMT) and causes mitochondrial and metabolic disturbances in sensory neurons. Inhibition of mitochondrial respiration, knockdown of ATPSCKMT expression, or supplementation of the affected metabolite is sufficient to restore resolution of inflammatory pain and prevents chronic pain development. Thus, inflammation-induced mitochondrial-dependent disturbances in sensory neurons predispose to a failure in resolution of inflammatory pain and development of chronic pain.
Collapse
Affiliation(s)
- Hanneke L D M Willemen
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Patrícia Silva Santos Ribeiro
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Melissa Broeks
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Nils Meijer
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Annefien Tiggeler
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Teun P de Boer
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 Utrecht, the Netherlands
| | - Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; CRES-O - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; CRES-O - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Judith Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands.
| |
Collapse
|
21
|
Kume M, Ahmad A, DeFea KA, Vagner J, Dussor G, Boitano S, Price TJ. Protease-Activated Receptor 2 (PAR2) Expressed in Sensory Neurons Contributes to Signs of Pain and Neuropathy in Paclitaxel Treated Mice. THE JOURNAL OF PAIN 2023; 24:1980-1993. [PMID: 37315729 PMCID: PMC10615692 DOI: 10.1016/j.jpain.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common, dose-limiting side effect of cancer therapy. Protease-activated receptor 2 (PAR2) is implicated in a variety of pathologies, including CIPN. In this study, we demonstrate the role of PAR2 expressed in sensory neurons in a paclitaxel (PTX)-induced model of CIPN in mice. PAR2 knockout/wildtype (WT) mice and mice with PAR2 ablated in sensory neurons were treated with PTX administered via intraperitoneal injection. In vivo behavioral studies were done in mice using von Frey filaments and the Mouse Grimace Scale. We then examined immunohistochemical staining of dorsal root ganglion (DRG) and hind paw skin samples from CIPN mice to measure satellite cell gliosis and intra-epidermal nerve fiber (IENF) density. The pharmacological reversal of CIPN pain was tested with the PAR2 antagonist C781. Mechanical allodynia caused by PTX treatment was alleviated in PAR2 knockout mice of both sexes. In the PAR2 sensory neuronal conditional knockout (cKO) mice, both mechanical allodynia and facial grimacing were attenuated in mice of both sexes. In the DRG of the PTX-treated PAR2 cKO mice, satellite glial cell activation was reduced compared to control mice. IENF density analysis of the skin showed that the PTX-treated control mice had a reduction in nerve fiber density while the PAR2 cKO mice had a comparable skin innervation as the vehicle-treated animals. Similar results were seen with satellite cell gliosis in the DRG, where gliosis induced by PTX was absent in PAR cKO mice. Finally, C781 was able to transiently reverse established PTX-evoked mechanical allodynia. PERSPECTIVE: Our work demonstrates that PAR2 expressed in sensory neurons plays a key role in PTX-induced mechanical allodynia, spontaneous pain, and signs of neuropathy, suggesting PAR2 as a possible therapeutic target in multiple aspects of PTX CIPN.
Collapse
Affiliation(s)
- Moeno Kume
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | - Ayesha Ahmad
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | | | | | - Gregory Dussor
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | - Scott Boitano
- University of Arizona Bio5 Research Institute
- University of Arizona Heath Sciences, Asthma and Airway Disease Research Center
- University of Arizona Heath Sciences, Department of Physiology
| | - Theodore J. Price
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| |
Collapse
|
22
|
Ladeira C, Araújo R, Ramalhete L, Teixeira H, Calado CRC. Blood molecular profile to predict genotoxicity from exposure to antineoplastic drugs. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503681. [PMID: 37770138 DOI: 10.1016/j.mrgentox.2023.503681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 10/03/2023]
Abstract
Genotoxicity is an important information that should be included in human biomonitoring programmes. However, the usually applied cytogenetic assays are laborious and time-consuming, reason why it is critical to develop rapid and economic new methods. The aim of this study was to evaluate if the molecular profile of frozen whole blood, acquired by Fourier Transform Infrared (FTIR) spectroscopy, allows to assess genotoxicity in occupational exposure to antineoplastic drugs, as obtained by the cytokinesis-block micronucleus assay. For that purpose, 92 samples of peripheral blood were studied: 46 samples from hospital professionals occupationally exposed to antineoplastic drugs and 46 samples from workers in academia without exposure (controls). It was first evaluated the metabolome from frozen whole blood by methanol precipitation of macromolecules as haemoglobin, followed by centrifugation. The metabolome molecular profile resulted in 3 ratios of spectral bands, significantly different between the exposed and non-exposed group (p < 0.01) and a spectral principal component-linear discriminant analysis (PCA-LDA) model enabling to predict genotoxicity from exposure with 73 % accuracy. After optimization of the dilution degree and solution used, it was possible to obtain a higher number of significant ratios of spectral bands, i.e., 10 ratios significantly different (p < 0.001), highlighting the high sensitivity and specificity of the method. Indeed, the PCA-LDA model, based on the molecular profile of whole blood, enabled to predict genotoxicity from the exposure with an accuracy, sensitivity, and specificity of 92 %, 93 % and 91 %, respectively. All these parameters were achieved based on 1 μL of frozen whole blood, in a high-throughput mode, i.e., based on the simultaneous analysis of 92 samples, in a simple and economic mode. In summary, it can be conclude that this method presents a very promising potential for high-dimension screening of exposure to genotoxic substances.
Collapse
Affiliation(s)
- Carina Ladeira
- H&TRC - Health & Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Instituto Politécnico de Lisboa, Avenida D. João II, lote 4.69.01, Parque das Nações, 1990-096 Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisbon, Portugal; Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Portugal.
| | - Rúben Araújo
- Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Portugal; ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emidio Navarro 1, 1959‑007 Lisboa, Portugal; NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Luís Ramalhete
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emidio Navarro 1, 1959‑007 Lisboa, Portugal; Blood and Transplantation Center of Lisbon, Instituto Português do Sangue e da Transplantação, Alameda das Linhas de Torres, n◦ 117, 1769-001 Lisbon, Portugal; NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Hélder Teixeira
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emidio Navarro 1, 1959‑007 Lisboa, Portugal
| | - Cecília R C Calado
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emidio Navarro 1, 1959‑007 Lisboa, Portugal; CIMOSM - Centro de Investigação em Modelação e Otimização de Sistemas Multifuncionais, ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emidio Navarro 1, 1959‑007 Lisboa, Portugal
| |
Collapse
|
23
|
Basu P, Maier C, Averitt DL, Basu A. NLR family pyrin domain containing 3 (NLRP3) inflammasomes and peripheral neuropathic pain - Emphasis on microRNAs (miRNAs) as important regulators. Eur J Pharmacol 2023; 955:175901. [PMID: 37451423 DOI: 10.1016/j.ejphar.2023.175901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Neuropathic pain is caused by the lesion or disease of the somatosensory system and can be initiated and/or maintained by both central and peripheral mechanisms. Nerve injury leads to neuronal damage and apoptosis associated with the release of an array of pathogen- or damage-associated molecular patterns to activate inflammasomes. The activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome contributes to neuropathic pain and may represent a novel target for pain therapeutic development. In the current review, we provide an up-to-date summary of the recent findings on the involvement of NLRP3 inflammasome in modulating neuropathic pain development and maintenance, focusing on peripheral neuropathic conditions. Here we provide a detailed review of the mechanisms whereby NLRP3 inflammasomes contribute to neuropathic pain via (1) neuroinflammation, (2) apoptosis, (3) pyroptosis, (4) proinflammatory cytokine release, (5) mitochondrial dysfunction, and (6) oxidative stress. We then present the current research literature reporting on the antinociceptive effects of several natural products and pharmacological interventions that target activation, expression, and/or regulation of NLRP3 inflammasome. Furthermore, we emphasize the effects of microRNAs as another regulator of NLRP3 inflammasome. In conclusion, we summarize the possible caveats and future perspectives that might provide successful therapeutic approaches against NLRP3 inflammasome for treating or preventing neuropathic pain conditions.
Collapse
Affiliation(s)
- Paramita Basu
- Pittsburgh Center for Pain Research, The Pittsburgh Project to End Opioid Misuse, Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Camelia Maier
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX, 76204-5799, USA.
| | - Dayna L Averitt
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX, 76204-5799, USA.
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV, 89154, USA.
| |
Collapse
|
24
|
Zhai M, Hu H, Zheng Y, Wu B, Sun W. PGC1α: an emerging therapeutic target for chemotherapy-induced peripheral neuropathy. Ther Adv Neurol Disord 2023; 16:17562864231163361. [PMID: 36993941 PMCID: PMC10041632 DOI: 10.1177/17562864231163361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/25/2023] [Indexed: 03/29/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN)-mediated paresthesias are a common complication in cancer patients undergoing chemotherapy. There are currently no treatments available to prevent or reverse CIPN. Therefore, new therapeutic targets are urgently needed to develop more effective analgesics. However, the pathogenesis of CIPN remains unclear, and the prevention and treatment strategies of CIPN are still unresolved issues in medicine. More and more studies have demonstrated that mitochondrial dysfunction has become a major factor in promoting the development and maintenance of CIPN, and peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC1α) plays a significant role in maintaining the mitochondrial function, protecting peripheral nerves, and alleviating CIPN. In this review, we highlight the core role of PGC1α in regulating oxidative stress and maintaining normal mitochondrial function and summarize recent advances in its therapeutic effects and mechanisms in CIPN and other forms of peripheral neuropathy. Emerging studies suggest that PGC1α activation may positively impact CIPN mitigation by modulating oxidative stress, mitochondrial dysfunction, and inflammation. Therefore, novel therapeutic strategies targeting PGC1α could be a potential therapeutic target in CIPN.
Collapse
Affiliation(s)
- Mingzhu Zhai
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
- Yantian Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Haibei Hu
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Yi Zheng
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Benqing Wu
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen 518016, China
| | | |
Collapse
|
25
|
Zhou L, Yang H, Wang J, Liu Y, Xu Y, Xu H, Feng Y, Ge W. The Therapeutic Potential of Antioxidants in Chemotherapy-Induced Peripheral Neuropathy: Evidence from Preclinical and Clinical Studies. Neurotherapeutics 2023; 20:339-358. [PMID: 36735180 PMCID: PMC10121987 DOI: 10.1007/s13311-023-01346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
As cancer therapies advance and patient survival improves, there has been growing concern about the long-term adverse effects that patients may experience following treatment, and concerns have been raised about such persistent, progressive, and often irreversible adverse effects. Chemotherapy is a potentially life-extending treatment, and chemotherapy-induced peripheral neuropathy (CIPN) is one of its most common long-term toxicities. At present, strategies for the prevention and treatment of CIPN are still an open problem faced by medicine, and there has been a large amount of previous evidence that oxidative damage is involved in the process of CIPN. In this review, we focus on the lines of defense involving antioxidants that exert the effect of inhibiting CIPN. We also provide an update on the targets and clinical prospects of different antioxidants (melatonin, N-acetylcysteine, vitamins, α-lipoic acid, mineral elements, phytochemicals, nutritional antioxidants, cytoprotectants and synthetic compounds) in the treatment of CIPN with the help of preclinical and clinical studies, emphasizing the great potential of antioxidants as adjuvant strategies to mitigate CIPN.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Hui Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Jing Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yunxing Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yinqiu Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Hang Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yong Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, #42 Baizi Ting Road, Nanjing, 210009, Jiangsu, China.
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
26
|
Sankaranarayanan I, Tavares-Ferreira D, Mwirigi JM, Mejia GL, Burton MD, Price TJ. Inducible co-stimulatory molecule (ICOS) alleviates paclitaxel-induced neuropathic pain via an IL-10-mediated mechanism in female mice. J Neuroinflammation 2023; 20:32. [PMID: 36774519 PMCID: PMC9922469 DOI: 10.1186/s12974-023-02719-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a primary dose-limiting side effect caused by antineoplastic agents, such as paclitaxel. A primary symptom of this neuropathy is pain. Currently, there are no effective treatments for CIPN, which can lead to long-term morbidity in cancer patients and survivors. Neuro-immune interactions occur in CIPN pain and have been implicated both in the development and progression of pain in CIPN and the resolution of pain in CIPN. We investigated the potential role of inducible co-stimulatory molecule (ICOS) in the resolution of CIPN pain-like behaviors in mice. ICOS is an immune checkpoint molecule that is expressed on the surface of activated T cells and promotes proliferation and differentiation of T cells. We found that intrathecal administration of ICOS agonist antibody (ICOSaa) alleviates mechanical hypersensitivity caused by paclitaxel and facilitates the resolution of mechanical hypersensitivity in female mice. Administration of ICOSaa reduced astrogliosis in the spinal cord and satellite cell gliosis in the DRG of mice previously treated with paclitaxel. Mechanistically, ICOSaa intrathecal treatment promoted mechanical hypersensitivity resolution by increasing interleukin 10 (IL-10) expression in the dorsal root ganglion. In line with these observations, blocking IL-10 receptor (IL-10R) activity occluded the effects of ICOSaa treatment on mechanical hypersensitivity in female mice. Suggesting a broader activity in neuropathic pain, ICOSaa also partially resolved mechanical hypersensitivity in the spared nerve injury (SNI) model. Our findings support a model wherein ICOSaa administration induces IL-10 expression to facilitate neuropathic pain relief in female mice. ICOSaa treatment is in clinical development for solid tumors and given our observation of T cells in the human DRG, ICOSaa therapy could be developed for combination chemotherapy-CIPN clinical trials.
Collapse
Affiliation(s)
- Ishwarya Sankaranarayanan
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Diana Tavares-Ferreira
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Juliet M. Mwirigi
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Galo L. Mejia
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Michael D. Burton
- grid.267323.10000 0001 2151 7939Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX USA
| | - Theodore J. Price
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| |
Collapse
|
27
|
Chai Y, Zhao F, Ye P, Ma F, Wang J, Zhang P, Li Q, Wang J, Wang W, Li Q, Xu B. A Prospective, Randomized, Placebo-Controlled Study Assessing the Efficacy of Chinese Herbal Medicine (Huangqi Guizhi Wuwu Decoction) in the Treatment of Albumin-Bound Paclitaxel-Induced Peripheral Neuropathy. J Clin Med 2023; 12:jcm12020505. [PMID: 36675434 PMCID: PMC9863646 DOI: 10.3390/jcm12020505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Objective: This study aimed to evaluate the efficacy and safety of Huangqi Guizhi Wuwu decoction (HGWD), which is composed of five crude drugs (Astragali Radix, Cinnamomi Ramulus, Paeoniae Radix Alba, Zingiberis Rhizoma Recens, and Jujubae Fructus), in the treatment of albumin-bound paclitaxel (nab-PTX)-induced peripheral neuropathy (PN) in Chinese patients with breast cancer (BC). Methods: This trial was conducted at the National Cancer Center in China from January 2020 to June 2022. The eligible participants were assigned randomly in a 1:1 ratio to an HGWD group or a control group. The outcome measure was EORTC QLQ-CIPN20 questionnaire. Results: 92 patients diagnosed with BC were enrolled and randomized to either HGWD group (n = 46) or control group (n = 46). There were no significant differences in baseline characteristics between the two groups (p > 0.05). A statistical analysis of the sensory and motor functions of the EORTC QLQ-CIPN20 scores showed that patients in the HGWD group reported a larger decrease in CIPN sensory scores than those in the control group (p < 0.001). The EORTC QLQ-CIPN20 autonomic scores showed no statistical significance between the two groups (p > 0.05). Conclusions: HGWD packs could significantly improve patients’ nab-PTX-induced PN, increase the tolerance for nab-PTX-containing chemotherapy, and further improve the quality of life of patients with BC.
Collapse
Affiliation(s)
- Yue Chai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fang Zhao
- Nursing Department of the Cancer Hospital, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Peizhi Ye
- Chinese Medicine Department of the Cancer Hospital, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiayu Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Pin Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qing Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiani Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wenna Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (Q.L.); (B.X.)
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (Q.L.); (B.X.)
| |
Collapse
|
28
|
Krejbich P, Birringer M. The Self-Administered Use of Complementary and Alternative Medicine (CAM) Supplements and Antioxidants in Cancer Therapy and the Critical Role of Nrf-2-A Systematic Review. Antioxidants (Basel) 2022; 11:2149. [PMID: 36358521 PMCID: PMC9686580 DOI: 10.3390/antiox11112149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Complementary and alternative medicine (CAM) supplements are widely used by cancer patients. Dietary supplements, vitamins and minerals, herbal remedies, and antioxidants are especially popular. In a systematic literature review, 37 studies, each including more than 1000 participants, on CAM, dietary supplement, and vitamin use among cancer patients were identified. Accordingly, cancer patients use antioxidants such as vitamin C (from 2.6% (United Kingdom) to 41.6% (United States)) and vitamin E (from 2.9% (China) to 48% (United States)). Dietary supplements and vitamins are taken for different reasons, but often during conventional cancer treatment involving chemotherapy or radiotherapy and in a self-decided manner without seeking medical advice from healthcare professionals. Drug-drug interactions with dietary supplements or vitamins involving multiple signaling pathways are well described. Since most of the anticancer drugs generate reactive oxygen species (ROS), an adaptive stress response of healthy and malignant cells, mainly driven by the Nrf-2-Keap I network, can be observed. On the one hand, healthy cells should be protected from ROS-overproducing chemotherapy and radiotherapy; on the other hand, ROS production in cancer cells is a "desirable side effect" during anticancer drug treatment. We here describe the paradoxical use of antioxidants and supplements during cancer therapy, possible interactions with anticancer drugs, and the involvement of the Nrf-2 transcription factor.
Collapse
Affiliation(s)
- Paula Krejbich
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
- Wissenschaftliches Zentrum für Ernährung, Lebensmittel und Nachhaltige Versorgungssysteme (ELVe), Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
- Public Health Zentrum Fulda, Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
| | - Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
- Wissenschaftliches Zentrum für Ernährung, Lebensmittel und Nachhaltige Versorgungssysteme (ELVe), Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
- Public Health Zentrum Fulda, Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
| |
Collapse
|
29
|
Ezaka M, Marutani E, Miyazaki Y, Kanemaru E, Selig MK, Boerboom SL, Ostrom KF, Stemmer-Rachamimov A, Bloch DB, Brenner GJ, Ohshima E, Ichinose F. Oral Administration of Glutathione Trisulfide Increases Reactive Sulfur Levels in Dorsal Root Ganglion and Ameliorates Paclitaxel-Induced Peripheral Neuropathy in Mice. Antioxidants (Basel) 2022; 11:2122. [PMID: 36358494 PMCID: PMC9686764 DOI: 10.3390/antiox11112122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
Peripheral neuropathy is a dose-limiting side effect of chemotherapy with paclitaxel. Paclitaxel-induced peripheral neuropathy (PIPN) is typically characterized by a predominantly sensory neuropathy presenting with allodynia, hyperalgesia and spontaneous pain. Oxidative mitochondrial damage in peripheral sensory neurons is implicated in the pathogenesis of PIPN. Reactive sulfur species, including persulfides (RSSH) and polysulfides (RSnH), are strong nucleophilic and electrophilic compounds that exert antioxidant effects and protect mitochondria. Here, we examined the potential neuroprotective effects of glutathione trisulfide (GSSSG) in a mouse model of PIPN. Intraperitoneal administration of paclitaxel at 4 mg/kg/day for 4 days induced mechanical allodynia and thermal hyperalgesia in mice. Oral administration of GSSSG at 50 mg/kg/day for 28 days ameliorated mechanical allodynia, but not thermal hyperalgesia. Two hours after oral administration, 34S-labeled GSSSG was detected in lumber dorsal root ganglia (DRG) and in the lumber spinal cord. In mice treated with paclitaxel, GSSSG upregulated expression of genes encoding antioxidant proteins in lumber DRG, prevented loss of unmyelinated axons and inhibited degeneration of mitochondria in the sciatic nerve. In cultured primary neurons from cortex and DRG, GSSSG mitigated paclitaxel-induced superoxide production, loss of axonal mitochondria, and axonal degeneration. These results indicate that oral administration of GSSSG mitigates PIPN by preventing axonal degeneration and mitochondria damage in peripheral sensory nerves. The findings suggest that administration of GSSSG may be an approach to the treatment or prevention of PIPN and other peripheral neuropathies.
Collapse
Affiliation(s)
- Mariko Ezaka
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eizo Marutani
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yusuke Miyazaki
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eiki Kanemaru
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Martin K. Selig
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sophie L. Boerboom
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katrina F. Ostrom
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Donald B. Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gary J. Brenner
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Etsuo Ohshima
- Corporate Strategy Department, Kyowa Hakko Bio Co., Ltd., Tokyo 164-0001, Japan
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
30
|
Gur C, Kandemir FM, Caglayan C, Satıcı E. Chemopreventive effects of hesperidin against paclitaxel-induced hepatotoxicity and nephrotoxicity via amendment of Nrf2/HO-1 and caspase-3/Bax/Bcl-2 signaling pathways. Chem Biol Interact 2022; 365:110073. [PMID: 35921949 DOI: 10.1016/j.cbi.2022.110073] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/04/2022] [Accepted: 07/23/2022] [Indexed: 12/14/2022]
Abstract
Paclitaxel (PTX) is a widely used chemotherapeutic drug particularly effective against lung, breast, and ovarian cancer, though its usefulness is limited due to its multi-organ toxicity. The mechanisms underlying PTX toxicity are currently not yet known and there are no approved treatments for its control or prevention. This study aimed to investigate whether hesperidin (HSP) had a protective effect on paclitaxel-induced hepatotoxicity and nephrotoxicity from biochemical, and molecular perspectives. The rats were administered PTX 2 mg/kg, b.w. intraperitoneally for the first 5 consecutive days, then 100 or 200 mg/kg b.w. HSP orally for 10 consecutive days. Our results demonstrated that HSP decreased the PTX induced lipid peroxidation, improved the serum hepatic and renal functions (by decreasing the levels of AST, ALT, ALP, urea, and creatinine), and restored the liver and kidney antioxidant armory (SOD, CAT, GPx, and GSH). HSP also significantly reduced mRNA expression levels of NF-κB, TNF-α, IL-1β, IL-6, MAPK 14, Caspase-3, Bax, LC3A, LC3B, MMP2, and MMP9 whereas caused an increase in levels of Nrf2, HO-1, and Bcl-2 in the kidney and liver of PTX-induced rats. In addition, caspase-3, Bax, and Bcl-2 protein levels were examined by Western blot analysis, and it was determined that HSP decreased caspase-3 and Bax protein levels, but increased Bcl-2 protein levels. The findings of the study suggest that HSP has chemopreventive potential against PTX-induced hepatorenal toxicity plausibly through the attenuation of oxidative stress, inflammation, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cuneyt Caglayan
- Department of Medical Biochemistry, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik, Turkey.
| | - Emine Satıcı
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
31
|
Oo TT, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Emerging roles of toll-like receptor 4 in chemotherapy-induced neurotoxicity. Neurotoxicology 2022; 93:112-127. [PMID: 36152729 DOI: 10.1016/j.neuro.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Chemotherapy-induced neurotoxicity is one of the most prevalent side effects in cancer patients and survivors. Cognitive decline and peripheral neuropathy are the most common chemotherapy-induced neurotoxic symptoms. These symptoms lead not only to the limiting of the dose of chemotherapy given to cancer patients, but also have an impact on the quality of life of cancer survivors. Although the exact mechanisms involved in chemotherapy-induced neurotoxicity are still unclear, neuroinflammation is widely regarded as being one of the major causes involved in chemotherapy-induced neurotoxicity. It is known that Toll-like receptor 4 (TLR4) plays a critical role in the inflammatory process, and it has been recently reported that it is associated with chemotherapy-induced neurotoxicity. In this review, we summarize and discuss all available evidence regarding the activation of the TLR4 signaling pathway in various models of chemotherapy-induced neurotoxicity. This review also emphasizes the evidence pertinent to TLR4 inhibition on chemotherapy-induced neurotoxicity in rodent studies. Understanding the role of the TLR4 signaling pathway behind chemotherapy-induced neurotoxicity is crucial for improving treatments and ensuring the long-term survival of cancer patients.
Collapse
Affiliation(s)
- Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
32
|
Eid SA, Savelieff MG, Eid AA, Feldman EL. Nox, Nox, Are You There? The Role of NADPH Oxidases in the Peripheral Nervous System. Antioxid Redox Signal 2022; 37:613-630. [PMID: 34861780 PMCID: PMC9634986 DOI: 10.1089/ars.2021.0135] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023]
Abstract
Significance: Reactive oxygen species (ROS) contribute to multiple aspects of peripheral nervous system (PNS) biology ranging from physiological processes (e.g., axonal outgrowth and regeneration) to pathophysiology (e.g., nerve degeneration). Although ROS are derived from multiple sources, NADPH oxidase (Nox) family members are dedicated to ROS generation. Noxs are expressed in the PNS, and their overexpression is associated with detrimental effects on nerve function and contributes, at least in part, to peripheral neuropathies. Recent Advances: Of the seven members, studies mostly focused on Nox1, Nox2, and Nox4, which are expressed in the PNS in a cell-specific manner. We have also recently identified human Nox5 in sural nerve biopsies. When maintained at homeostatic levels, Noxs regulate several aspects of peripheral nerve health, most notably neurite outgrowth and axonal regeneration following nerve lesion. While Nox2 and Nox4 dysregulation is a major source of oxidative stress in PNS disorders, including neuropathic pain and diabetic peripheral neuropathy, recent evidence also implicates Nox1 and Nox5. Critical Issues: Although there is compelling evidence for a direct role of Noxs on nerve function, little is known about their subcellular localization, intercellular regulation, and interaction. These, together with redox signaling, are considered crucial components of nerve redox status. In addition, the lack of isoform-specific inhibitors limits conclusions about the physiological role of Noxs in the PNS and their therapeutic potential in peripheral neuropathies. Future Directions: Future research using isoform-specific genetic and pharmacological approaches are therefore needed to better understand the significance of Nox enzymes in PNS (patho) physiology. Antioxid. Redox Signal. 37, 613-630.
Collapse
Affiliation(s)
- Stéphanie A. Eid
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Masha G. Savelieff
- Department of Neurology, NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Eva L. Feldman
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Brenneman DE, Kinney WA, McDonnell ME, Zhao P, Abood ME, Ward SJ. Anti-Inflammatory Properties of KLS-13019: a Novel GPR55 Antagonist for Dorsal Root Ganglion and Hippocampal Cultures. J Mol Neurosci 2022; 72:1859-1874. [PMID: 35779192 PMCID: PMC9398971 DOI: 10.1007/s12031-022-02038-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/04/2022] [Indexed: 11/28/2022]
Abstract
KLS-13019, a novel devised cannabinoid-like compound, was explored for anti-inflammatory actions in dorsal root ganglion cultures relevant to chemotherapy-induced peripheral neuropathy (CIPN). Time course studies with 3 µM paclitaxel indicated > 1.9-fold increases in immunoreactive (IR) area for cell body GPR55 after 30 min as determined by high content imaging. To test for reversibility of paclitaxel-induced increases in GPR55, cultures were treated for 8 h with paclitaxel alone and then a dose response to KLS-13019 added for another 16 h. This "reversal" paradigm indicated established increases in cell body GPR55 IR areas were decreased back to control levels. Because GPR55 had previously reported inflammatory actions, IL-1β and NLRP3 (inflammasome-3 marker) were also measured in the "reversal" paradigm. Significant increases in all inflammatory markers were produced after 8 h of paclitaxel treatment alone that were reversed to control levels with KLS-13019 treatment. Accompanying studies using alamar blue indicated that decreased cellular viability produced by paclitaxel treatment was reverted back to control levels by KLS-13019. Similar studies conducted with lysophosphatidylinositol (GPR55 agonist) in DRG or hippocampal cultures demonstrated significant increases in neuritic GPR55, NLRP3 and IL-1β areas that were reversed to control levels with KLS-13019 treatment. Studies with a human GPR55-β-arrestin assay in Discover X cells indicated that KLS-13019 was an antagonist without agonist activity. These studies indicated that KLS-13019 has anti-inflammatory properties mediated through GPR55 antagonist actions. Together with previous studies, KLS-13019 is a potent neuroprotective, anti-inflammatory cannabinoid with therapeutic potential for high efficacy treatment of neuropathic pain.
Collapse
Affiliation(s)
- Douglas E Brenneman
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| | - William A Kinney
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Mark E McDonnell
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Pingei Zhao
- Center for Substance Abuse Research, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Mary E Abood
- Center for Substance Abuse Research, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
34
|
Cristiano C, Avagliano C, Cuozzo M, Liguori FM, Calignano A, Russo R. The Beneficial Effects of Ultramicronized Palmitoylethanolamide in the Management of Neuropathic Pain and Associated Mood Disorders Induced by Paclitaxel in Mice. Biomolecules 2022; 12:biom12081155. [PMID: 36009049 PMCID: PMC9406031 DOI: 10.3390/biom12081155] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common complication of antineoplastic drugs, particularly paclitaxel (PTX). It can affect the quality of patients’ lives and increase the risk of developing mood disorders. Although several drugs are recommended, they yielded inconclusive results in clinical trials. The aim of the present work is to investigate whether the palmitoylethanolamide (PEA) would reduce PTX-induced CIPN and associated mood disorders. Moreover, the role PPAR-α and the endocannabinoid system will also be investigated. CIPN was induced by intraperitoneally injection of PTX (8 mg/kg) every other day for a week. PEA, 30 mg/kg, was orally administrated in a bioavailable form (i.e., ultramicronized PEA, um-PEA) one hour after the last PTX injection, for 7 days. In the antagonism experiments, AM281 (1 mg/kg) and GW6471 (2 mg/kg) were administrated 30 min before um-PEA. Our results demonstrated that um-PEA reduced the development of hypersensitivity with the effect being associated with the reduction in spinal and hippocampal pro-inflammatory cytokines, as well as antidepressive and anxiolytic effects. Moreover, the PPAR-α and CB1 receptor antagonists blocked the behavioral and antinociceptive effects of um-PEA. Our findings suggest that um-PEA is a promising adjunct in CIPN and associated mood disorders through the activation of PPAR-α, which influences the endocannabinoid system.
Collapse
|
35
|
7-Chloro-4-(Phenylselanyl) Quinoline Is a Novel Multitarget Therapy to Combat Peripheral Neuropathy and Comorbidities Induced by Paclitaxel in Mice. Mol Neurobiol 2022; 59:6567-6589. [DOI: 10.1007/s12035-022-02991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
36
|
Gupta P, Makkar TK, Goel L, Pahuja M. Role of inflammation and oxidative stress in chemotherapy-induced neurotoxicity. Immunol Res 2022; 70:725-741. [PMID: 35859244 DOI: 10.1007/s12026-022-09307-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
Chemotherapeutic agents may adversely affect the nervous system, including the neural precursor cells as well as the white matter. Although the mechanisms are not completely understood, several hypotheses connecting inflammation and oxidative stress with neurotoxicity are now emerging. The proposed mechanisms differ depending on the class of drug. For example, toxicity due to cisplatin occurs due to activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which alters hippocampal long-term potentiation. Free radical injury is also involved in the cisplatin-mediated neurotoxicity as dysregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) has been seen which protects against the free radical injury by regulating glutathione S-transferases and hemeoxygenase-1 (HO-1). Thus, correcting the imbalance between NF-κB and Nrf2/HO-1 pathways may alleviate cisplatin-induced neurotoxicity. With newer agents like bortezomib, peripheral neuropathy occurs due to up-regulation of TNF-α and IL-6 in the sensory neurons. Superoxide dismutase dysregulation is also involved in bortezomib-induced neuropathy. This article reviews the available literature on inflammation and oxidative stress in neurotoxicity caused by various classes of chemotherapeutic agents. It covers the conventional medicines like platinum compounds, vinca alkaloids, and methotrexate, as well as the newer therapeutic agents like immunomodulators and immune checkpoint inhibitors. A better understanding of the pathophysiology will lead to further advancement in strategies for management of chemotherapy-induced neurotoxicity.
Collapse
Affiliation(s)
- Pooja Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India. .,Coordinator, AIIMS Adverse Drug Reaction Monitoring Centre, Pharmacovigilance Program of India, New Delhi, India.
| | - Tavneet Kaur Makkar
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Lavisha Goel
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Monika Pahuja
- Division of Basic Medical Sciences, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
37
|
Zhu H, Zhou W, Wan Y, Lu J, Ge K, Jia C. Light-activatable multifunctional paclitaxel nanoprodrug for synergistic chemo-photodynamic therapy in liver cancer. Biofactors 2022; 48:918-925. [PMID: 35254679 DOI: 10.1002/biof.1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022]
Abstract
Paclitaxel (Ptx) is widely utilized to treat liver cancer, and the treatment benefit of reactive oxygen species (ROS)-responsive Ptx nanoprodrug is investigated in this study. The one-step nano-precipitation method was utilized to self-assembly DSPE-PEG2000 -thioketal linker (TK)-Ptx with pyropheophorbide acid nanoparticles (PPa NPs) to form PPa/Ptx NPs. Dynamic light scattering and transmission electron microscopy were used for characterization, and 2'-7'dichlorofluorescin diacetate staining was utilized for intracellular ROS detection. HepG2 cells viability and tumor growth rate of HepG2 bearing mice were assayed. Hematoxylin and eosin staining, proliferating cell nuclear antigen detection, and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay were utilized for histology assessment. PPa/Ptx NPs incubation with light irradiation showed superior cytotoxicity to HepG2 cells with increased intracellular ROS production than PPa/Ptx NPs incubation without light irradiation or PPa NPs incubation with light irradiation. At the same time, PPa/Ptx NPs with light irradiation could significantly decrease the tumor growth in vivo as indicated by diminished tumor volume with the largest necrotic area, the highest rate of apoptotic cells, and the least proliferating cells. PPa/Ptx NPs show synergistic chemo-photodynamic characteristics, which could be considered as a promising treatment option for liver cancer.
Collapse
Affiliation(s)
- Hanzhang Zhu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Weijiang Zhou
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Yafeng Wan
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Jun Lu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Ke Ge
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Changku Jia
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| |
Collapse
|
38
|
Inhibitors of Mitochondrial Human Carbonic Anhydrases VA and VB as a Therapeutic Strategy against Paclitaxel-Induced Neuropathic Pain in Mice. Int J Mol Sci 2022; 23:ijms23116229. [PMID: 35682907 PMCID: PMC9181376 DOI: 10.3390/ijms23116229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathy development is a major dose-limiting side effect of anticancer treatments that significantly reduces patient's quality of life. The inadequate pharmacological approaches for neuropathic pain management warrant the identification of novel therapeutic targets. Mitochondrial dysfunctions that lead to reactive oxygen species (ROS) increase, cytosolic Ca2+ imbalance, and lactate acidosis are implicated in neuropathic pain pathogenesis. It has been observed that in these deregulations, a pivotal role is played by the mitochondrial carbonic anhydrases (CA) VA and VB isoforms. Hence, preclinical studies should be conducted to assess the efficacy of two novel selenides bearing benzenesulfonamide moieties, named 5b and 5d, and able to inhibit CA VA and VB against paclitaxel-induced neurotoxicity in mice. Acute treatment with 5b and 5d (30-100 mg/kg, per os - p.o.) determined a dose-dependent and long-lasting anti-hyperalgesic effect in the Cold plate test. Further, repeated daily treatment for 15 days with 100 mg/kg of both compounds (starting the first day of paclitaxel injection) significantly prevented neuropathic pain development without the onset of tolerance to the anti-hyperalgesic effect. In both experiments, acetazolamide (AAZ, 100 mg/kg, p.o.) used as the reference drug was partially active. Moreover, ex vivo analysis demonstrated the efficacy of 5b and 5d repeated treatments in reducing the maladaptive plasticity that occurs to glia cells in the lumbar portion of the spinal cord and in improving mitochondrial functions in the brain and spinal cord that were strongly impaired by paclitaxel-repeated treatment. In this regard, 5b and 5d ameliorated the metabolic activity, as observed by the increase in citrate synthase activity, and preserved an optimal mitochondrial membrane potential (ΔΨ) value, which appeared depolarized in brains from paclitaxel-treated animals. In conclusion, 5b and 5d have therapeutic and protective effects against paclitaxel-induced neuropathy without tolerance development. Moreover, 5b and 5d reduced glial cell activation and mitochondrial dysfunction in the central nervous system, being a promising candidate for the management of neuropathic pain and neurotoxicity evoked by chemotherapeutic drugs.
Collapse
|
39
|
Park SE, Neupane C, Noh C, Sharma R, Shin HJ, Pham TL, Lee GS, Park KD, Lee CJ, Kang DW, Lee SY, Kim HW, Park JB. Antiallodynic effects of KDS2010, a novel MAO-B inhibitor, via ROS-GABA inhibitory transmission in a paclitaxel-induced tactile hypersensitivity model. Mol Brain 2022; 15:41. [PMID: 35526002 PMCID: PMC9078011 DOI: 10.1186/s13041-022-00924-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
Monoamine oxidase (MAO) inhibitors have been investigated for the treatment of neuropathic pain. Here, we assessed the antiallodynic effects of a novel MAO-B inhibitor, KDS2010, on paclitaxel (PTX)-induced mechanical hypersensitivity. Oral administration of KDS2010 effectively relieved PTX-induced mechanical hypersensitivity in a dose-dependent manner. KDS2010 (25 mg/Kg) significantly prevented and suppressed PTX-induced pain responses with minimal effects on the body weight, motor activity, and working memory. KDS2010 significantly reduced reactive astrocytosis and reactive oxygen species (ROS) level in the L4–L6 spinal cord of PTX-treated mice. Furthermore, KDS2010 reversed the attenuation of GABAergic spontaneous inhibitory postsynaptic current (sIPSC) frequency in spinal dorsal horn neurons, although it failed to restore the reduced tonic GABAA inhibition nor the increased GABA transporter 1 (GAT1) expression in PTX-treated mice. In addition, bath application of a reactive oxygen species (ROS) scavenger (PBN) restored the sIPSC frequency in PTX-treated mice but not in control and PTX + KDS2010-treated mice. These results indicated that the antiallodynic effect of KDS2010 is not due to a MAO-B-dependent GABA production. Finally, PBN alone also exerted a similar analgesic effect as KDS2010, but a co-treatment of PBN with KDS2010 showed no additive effect, suggesting that inhibition of MAO-B-dependent ROS production is responsible for the analgesic effect by KDS2010 on PTX-induced allodynia. Overall, KDS2010 attenuated PTX-induced pain behaviors by restoring the altered ROS level and GABAergic inhibitory signaling in the spinal cord, suggesting that KDS2010 is a promising therapeutic strategy for chemotherapy-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Su Eun Park
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea
| | - Chiranjivi Neupane
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Chan Noh
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, 35015, South Korea
| | - Ramesh Sharma
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Hyun Jin Shin
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea
| | - Thuy Linh Pham
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea
| | - Gyu-Seung Lee
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Dong-Gu Health Promotion Center 301-01, 30 Bogeunso Avenue, Samseung-Dong, Dong-gu, Daejeon, South Korea
| | - Ki Duk Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Korea
| | - Dong-Wook Kang
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Hyun-Woo Kim
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea
| | - Jin Bong Park
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea. .,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea. .,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
40
|
Msheik Z, El Massry M, Rovini A, Billet F, Desmoulière A. The macrophage: a key player in the pathophysiology of peripheral neuropathies. J Neuroinflammation 2022; 19:97. [PMID: 35429971 PMCID: PMC9013246 DOI: 10.1186/s12974-022-02454-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/29/2022] [Indexed: 12/22/2022] Open
Abstract
Macrophages are present in all mammalian tissues and coexist with various cell types in order to respond to different environmental cues. However, the role of these cells has been underestimated in the context of peripheral nerve damage. More importantly, macrophages display divergent characteristics, associated with their origin, and in response to the modulatory effects of their microenvironment. Interestingly, the advent of new techniques such as fate mapping and single-cell transcriptomics and their synergistic use has helped characterize in detail the origin and fate of tissue-resident macrophages in the peripheral nervous system (PNS). Furthermore, these techniques have allowed a better understanding of their functions from simple homeostatic supervisors to chief regulators in peripheral neuropathies. In this review, we summarize the latest knowledge about macrophage ontogeny, function and tissue identity, with a particular focus on PNS-associated cells, as well as their interaction with reactive oxygen species under physiological and pathological conditions. We then revisit the process of Wallerian degeneration, describing the events accompanying axon degeneration, Schwann cell activation and most importantly, macrophage recruitment to the site of injury. Finally, we review these processes in light of internal and external insults to peripheral nerves leading to peripheral neuropathies, the involvement of macrophages and the potential benefit of the targeting of specific macrophages for the alleviation of functional defects in the PNS.
Collapse
|
41
|
Bouchenaki H, Bernard A, Bessaguet F, Frachet S, Richard L, Sturtz F, Magy L, Bourthoumieu S, Demiot C, Danigo A. Neuroprotective Effect of Ramipril Is Mediated by AT2 in a Mouse MODEL of Paclitaxel-Induced Peripheral Neuropathy. Pharmaceutics 2022; 14:pharmaceutics14040848. [PMID: 35456682 PMCID: PMC9030366 DOI: 10.3390/pharmaceutics14040848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Paclitaxel (PTX)-induced peripheral neuropathy (PIPN) induces numerous symptoms affecting patient quality of life, leading to decreased doses or even to cessation of anticancer therapy. Previous studies have reported that a widely used drug, ramipril, improves neuroprotection in several rodent models of peripheral neuropathy. The protective role of the angiotensin II type 2 receptor (AT2) in the central and peripheral nervous systems is well-established. Here, we evaluate the effects of ramipril in the prevention of PIPN and the involvement of AT2 in this effect. Paclitaxel was administered in wild type or AT2-deficient mice on alternate days for 8 days, at a cumulative dose of 8 mg/kg (2 mg/kg per injection). Ramipril, PD123319 (an AT2 antagonist), or a combination of both were administered one day before PTX administration, and daily for the next twenty days. PTX-administered mice developed mechanical allodynia and showed a loss of sensory nerve fibers. Ramipril prevented the functional and morphological alterations in PTX mice. The preventive effect of ramipril against tactile allodynia was completely absent in AT2-deficient mice and was counteracted by PD123319 administration in wild type mice. Our work highlights the potential of ramipril as a novel preventive treatment for PIPN, and points to the involvement of AT2 in the neuroprotective role of ramipril in PIPN.
Collapse
Affiliation(s)
- Hichem Bouchenaki
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| | - Amandine Bernard
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| | - Flavien Bessaguet
- INSERM 1083 CNRS UMR 6015 Mitovasc Laboratory, CarMe Team, University of Angers, 49045 Angers, France;
| | - Simon Frachet
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87000 Limoges, France
| | - Laurence Richard
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87000 Limoges, France
| | - Franck Sturtz
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Biochemistry and Molecular Genetics, University Hospital of Limoges, 87000 Limoges, France
| | - Laurent Magy
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87000 Limoges, France
| | - Sylvie Bourthoumieu
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Cytogenetic, Medical Genetic and Reproduction Biology, University Hospital of Limoges, 87000 Limoges, France
| | - Claire Demiot
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Correspondence: ; Tel.: +33-5554-35915
| | - Aurore Danigo
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| |
Collapse
|
42
|
The PINK1 Activator Niclosamide Mitigates Mitochondrial Dysfunction and Thermal Hypersensitivity in a Paclitaxel-Induced Drosophila Model of Peripheral Neuropathy. Biomedicines 2022; 10:biomedicines10040863. [PMID: 35453613 PMCID: PMC9025238 DOI: 10.3390/biomedicines10040863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Paclitaxel is a widely used anticancer drug that induces dose-limiting peripheral neuropathy. Mitochondrial dysfunction has been implicated in paclitaxel-induced neuronal damage and in the onset of peripheral neuropathy. We have previously shown that the expression of PINK1, a key mediator of mitochondrial quality control, ameliorated the paclitaxel-induced thermal hyperalgesia phenotype and restored mitochondrial homeostasis in Drosophila larvae. In this study, we show that the small-molecule PINK1 activator niclosamide exhibits therapeutic potential for paclitaxel-induced peripheral neuropathy. Specifically, niclosamide cotreatment significantly ameliorated the paclitaxel-induced thermal hyperalgesia phenotype in Drosophila larvae in a PINK1-dependent manner. Paclitaxel-induced alteration of the dendrite structure of class IV dendritic arborization (C4da) neurons was not reduced upon niclosamide treatment. In contrast, paclitaxel treatment-induced increases in both mitochondrial ROS and aberrant mitophagy levels in C4da neurons were significantly suppressed by niclosamide. In addition, niclosamide suppressed paclitaxel-induced mitochondrial dysfunction in human SH-SY5Y cells in a PINK1-dependent manner. These results suggest that niclosamide alleviates thermal hyperalgesia by attenuating paclitaxel-induced mitochondrial dysfunction. Taken together, our results suggest that niclosamide is a potential candidate for the treatment of paclitaxel-induced peripheral neuropathy with low toxicity in neurons and that targeting mitochondrial dysfunction is a promising strategy for the treatment of chemotherapy-induced peripheral neuropathy.
Collapse
|
43
|
de Clauser L, Kappert C, Sondermann JR, Gomez-Varela D, Flatters SJL, Schmidt M. Proteome and Network Analysis Provides Novel Insights Into Developing and Established Chemotherapy-Induced Peripheral Neuropathy. Front Pharmacol 2022; 13:818690. [PMID: 35250568 PMCID: PMC8895144 DOI: 10.3389/fphar.2022.818690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/12/2022] [Indexed: 01/09/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side-effect of cancer therapies. So far, the development of CIPN cannot be prevented, neither can established CIPN be reverted, often leading to the cessation of necessary chemotherapy. Thus, there is an urgent need to explore the mechanistic basis of CIPN to facilitate its treatment. Here we used an integrated approach of quantitative proteome profiling and network analysis in a clinically relevant rat model of paclitaxel-induced peripheral neuropathy. We analysed lumbar rat DRG at two critical time points: (1) day 7, right after cessation of paclitaxel treatment, but prior to neuropathy development (pre-CIPN); (2) 4 weeks after paclitaxel initiation, when neuropathy has developed (peak-CIPN). In this way we identified a differential protein signature, which shows how changes in the proteome correlate with the development and maintenance of CIPN, respectively. Extensive biological pathway and network analysis reveals that, at pre-CIPN, regulated proteins are prominently implicated in mitochondrial (dys)function, immune signalling, neuronal damage/regeneration, and neuronal transcription. Orthogonal validation in an independent rat cohort confirmed the increase of β-catenin (CTNNB1) at pre-CIPN. More importantly, detailed analysis of protein networks associated with β-catenin highlights translationally relevant and potentially druggable targets. Overall, this study demonstrates the enormous value of combining animal behaviour with proteome and network analysis to provide unprecedented insights into the molecular basis of CIPN. In line with emerging approaches of network medicine our results highlight new avenues for developing improved therapeutic options aimed at preventing and treating CIPN.
Collapse
Affiliation(s)
- Larissa de Clauser
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
- *Correspondence: Larissa de Clauser, ; Manuela Schmidt,
| | - Christin Kappert
- Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Julia R. Sondermann
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - David Gomez-Varela
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Sarah J. L. Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Manuela Schmidt
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- *Correspondence: Larissa de Clauser, ; Manuela Schmidt,
| |
Collapse
|
44
|
Squillace S, Salvemini D. Nitroxidative stress in pain and opioid-induced adverse effects: therapeutic opportunities. Pain 2022; 163:205-213. [PMID: 34145168 DOI: 10.1097/j.pain.0000000000002347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
45
|
Trecarichi A, Duggett NA, Granat L, Lo S, Malik AN, Zuliani-Álvarez L, Flatters SJL. Preclinical evidence for mitochondrial DNA as a potential blood biomarker for chemotherapy-induced peripheral neuropathy. PLoS One 2022; 17:e0262544. [PMID: 35015774 PMCID: PMC8752024 DOI: 10.1371/journal.pone.0262544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/28/2021] [Indexed: 01/14/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious dose-limiting side effect of several first-line chemotherapeutic agents including paclitaxel, oxaliplatin and bortezomib, for which no predictive marker is currently available. We have previously shown that mitochondrial dysfunction is associated with the development and maintenance of CIPN. The aim of this study was to evaluate the potential use of mitochondrial DNA (mtDNA) levels and complex I enzyme activity as blood biomarkers for CIPN. Real-time qPCR was used to measure mtDNA levels in whole blood collected from chemotherapy- and vehicle-treated rats at three key time-points of pain-like behaviour: prior to pain development, at the peak of mechanical hypersensitivity and at resolution of pain-like behaviour. Systemic oxaliplatin significantly increased mtDNA levels in whole blood prior to pain development. Furthermore, paclitaxel- and bortezomib-treated animals displayed significantly higher levels of mtDNA at the peak of mechanical hypersensitivity. Mitochondrial complex I activity in whole blood was assessed with an ELISA-based Complex I Enzyme Activity Dipstick Assay. Complex I activity was not altered by any of the three chemotherapeutic agents, either prior to or during pain-like behaviour. These data demonstrate that blood levels of mtDNA are altered after systemic administration of chemotherapy. Oxaliplatin, in particular, is associated with higher mtDNA levels before animals show any pain-like behaviour, thus suggesting a potential role for circulating mtDNA levels as non-invasive predictive biomarker for CIPN.
Collapse
Affiliation(s)
- Annalisa Trecarichi
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Natalie A. Duggett
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Lucy Granat
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Samantha Lo
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Afshan N. Malik
- Department of Diabetes, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Lorena Zuliani-Álvarez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sarah J. L. Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
46
|
Silva NR, Gomes FIF, Lopes AHP, Cortez IL, Dos Santos JC, Silva CEA, Mechoulam R, Gomes FV, Cunha TM, Guimarães FS. The Cannabidiol Analog PECS-101 Prevents Chemotherapy-Induced Neuropathic Pain via PPARγ Receptors. Neurotherapeutics 2022; 19:434-449. [PMID: 34904193 PMCID: PMC9130439 DOI: 10.1007/s13311-021-01164-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 01/03/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the main dose-limiting adverse effect of chemotherapy drugs such as paclitaxel (PTX). PTX causes marked molecular and cellular damage, mainly in the peripheral nervous system, including sensory neurons in the dorsal root ganglia (DRG). Several studies have shown the therapeutic potential of cannabinoids, including cannabidiol (CBD), the major non-psychotomimetic compound found in the Cannabis plant, to treat peripheral neuropathies. Here, we investigated the efficacy of PECS-101 (former HUF-101), a CBD fluorinated analog, on PTX-induced neuropathic pain in mice. PECS-101, administered after the end of treatment with PTX, did not reverse mechanical allodynia. However, PECS-101 (1 mg/kg) administered along with PTX treatment caused a long-lasting relief of the mechanical and cold allodynia. These effects were blocked by a PPARγ, but not CB1 and CB2 receptor antagonists. Notably, the effects of PECS-101 on the relief of PTX-induced mechanical and cold allodynia were not found in macrophage-specific PPARγ-deficient mice. PECS-101 also decreased PTX-induced increase in Tnf, Il6, and Aif1 (Iba-1) gene expression in the DRGs and the loss of intra-epidermal nerve fibers. PECS-101 did not alter motor coordination, produce tolerance, or show abuse potential. In addition, PECS-101 did not interfere with the chemotherapeutic effects of PTX. Thus, PECS-101, a new fluorinated CBD analog, could represent a novel therapeutic alternative to prevent mechanical and cold allodynia induced by PTX potentially through the activation of PPARγ in macrophages.
Collapse
Affiliation(s)
- Nicole Rodrigues Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| | | | | | - Isadora Lopes Cortez
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Conceição Elidianne Aníbal Silva
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Raphael Mechoulam
- Department of Medicinal Chemistry and Natural Products, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Felipe Villela Gomes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Francisco Silveira Guimarães
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
- National Institute of Science and Translational Medicine, Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| |
Collapse
|
47
|
Chua KC, El-Haj N, Priotti J, Kroetz DL. Mechanistic insights into the pathogenesis of microtubule-targeting agent-induced peripheral neuropathy from pharmacogenetic and functional studies. Basic Clin Pharmacol Toxicol 2022; 130 Suppl 1:60-74. [PMID: 34481421 PMCID: PMC8716520 DOI: 10.1111/bcpt.13654] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting toxicity that affects 30%-40% of patients undergoing cancer treatment. Although multiple mechanisms of chemotherapy-induced neurotoxicity have been described in preclinical models, these have not been translated into widely effective strategies for the prevention or treatment of CIPN. Predictive biomarkers to inform therapeutic approaches are also lacking. Recent studies have examined genetic risk factors associated with CIPN susceptibility. This review provides an overview of the clinical and pathologic features of CIPN and summarizes efforts to identify target pathways through genetic and functional studies. Structurally and mechanistically diverse chemotherapeutics are associated with CIPN; however, the current review is focused on microtubule-targeting agents since these are the focus of most pharmacogenetic association and functional studies of CIPN. Genome-wide pharmacogenetic association studies are useful tools to identify not only causative genes and genetic variants but also genetic networks implicated in drug response or toxicity and have been increasingly applied to investigations of CIPN. Induced pluripotent stem cell-derived models of human sensory neurons are especially useful to understand the mechanistic significance of genomic findings. Combined genetic and functional genomic efforts to understand CIPN hold great promise for developing therapeutic approaches for its prevention and treatment.
Collapse
Affiliation(s)
- Katherina C. Chua
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA 94143-2911,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Nura El-Haj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Josefina Priotti
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143-2911
| |
Collapse
|
48
|
Tmem160 contributes to the establishment of discrete nerve injury-induced pain behaviors in male mice. Cell Rep 2021; 37:110152. [PMID: 34936870 DOI: 10.1016/j.celrep.2021.110152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/01/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
Chronic pain is a prevalent medical problem, and its molecular basis remains poorly understood. Here, we demonstrate the significance of the transmembrane protein (Tmem) 160 for nerve injury-induced neuropathic pain. An extensive behavioral assessment suggests a pain modality- and entity-specific phenotype in male Tmem160 global knockout (KO) mice: delayed establishment of tactile hypersensitivity and alterations in self-grooming after nerve injury. In contrast, Tmem160 seems to be dispensable for other nerve injury-induced pain modalities, such as non-evoked and movement-evoked pain, and for other pain entities. Mechanistically, we show that global KO males exhibit dampened neuroimmune signaling and diminished TRPA1-mediated activity in cultured dorsal root ganglia. Neither these changes nor altered pain-related behaviors are observed in global KO female and male peripheral sensory neuron-specific KO mice. Our findings reveal Tmem160 as a sexually dimorphic factor contributing to the establishment, but not maintenance, of discrete nerve injury-induced pain behaviors in male mice.
Collapse
|
49
|
Semis HS, Kandemir FM, Kaynar O, Dogan T, Arikan SM. The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats. Life Sci 2021; 287:120104. [PMID: 34743946 DOI: 10.1016/j.lfs.2021.120104] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 01/15/2023]
Abstract
Paclitaxel (PTX), which is widely used in the treatment of solid tumors, leads to dose limitation because it causes peripheral neuropathy. This study was conducted to evaluate the potential effects of hesperidin (HES), which has various biological and pharmacological properties, against PTX-induced sciatic nerve damage. For this purpose, Sprague Dawley rats were given PTX 2 mg/kg/b.w for 5 days, then 100 or 200 mg/kg/b.w HES for 10 days, and behavioral tests were conducted at the end of the experiment. The data obtained show that PTX-induced MDA, NF-κB, IL-1β, TNF-α, COX-2, nNOS, JAK2, STAT3, and GFAP levels decreased with HES administration. Moreover, it was observed that SOD, CAT, and GPx activities inhibited by PTX increased with HES administration. It was determined that PTX caused apoptosis in the sciatic nerve by increasing Caspase-3 and Bax levels and suppressing Bcl-2 levels. HES, on the other hand, showed an anti-apoptotic effect, increasing Bcl-2 levels and decreasing Caspase-3 and Bax levels. Also, it was observed that PTX could cause endoplasmic reticulum stress (ERS) by increasing PERK, IRE1, ATF-6, GRP78 and CHOP mRNA transcript levels, while HES could alleviate ERS by suppressing them. The results indicate that neuropathic pain associated with PTX-induced peripheral neuropathy can be alleviated by HES administration and that it is a promising compound for cancer patients. In addition, it is thought that the results of the present study contain information that will shed light for researchers regarding further studies to be conducted with HES.
Collapse
Affiliation(s)
- Halil Sezgin Semis
- Department of Orthopedics and Traumatology, Private Buhara Hospital, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Ozgur Kaynar
- Department of Biochemistry, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Tuba Dogan
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefik Murat Arikan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
50
|
Vermeer CJC, Hiensch AE, Cleenewerk L, May AM, Eijkelkamp N. Neuro-immune interactions in paclitaxel-induced peripheral neuropathy. Acta Oncol 2021; 60:1369-1382. [PMID: 34313190 DOI: 10.1080/0284186x.2021.1954241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Paclitaxel is a taxane-based chemotherapeutic agent used as a treatment in breast cancer. There is no effective prevention or treatment strategy for the most common side effect of peripheral neuropathy. In this manuscript, we reviewed the molecular mechanisms that contribute to paclitaxel-induced peripheral neuropathy (PIPN) with an emphasis on immune-related processes. METHODS A systematic search of the literature was conducted in PubMed, EMBASE and Cochrane Library. The SYRCLE's risk of bias tool was used to assess internal validity. RESULTS 156 studies conducted with rodent models were included. The risk of bias was high due to unclear methodology. Paclitaxel induces changes in myelinated axons, mitochondrial dysfunction, and mechanical hypersensitivity by affecting ion channels expression and function and facilitating spinal transmission. Paclitaxel-induced inflammatory responses are important contributors to PIPN. CONCLUSION Immune-related processes are an important mechanism contributing to PIPN. Studies in humans that validate these mechanistic data are highly needed to facilitate the development of therapeutic strategies.
Collapse
Affiliation(s)
- Cornelia J. C. Vermeer
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anouk E. Hiensch
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laurence Cleenewerk
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anne M. May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|