1
|
Bale R, Doshi G. Deciphering the role of siRNA in anxiety and depression. Eur J Pharmacol 2024; 981:176868. [PMID: 39128805 DOI: 10.1016/j.ejphar.2024.176868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Anxiety and depression are central nervous system illnesses that are among the most prevalent medical concerns of the twenty-first century. Patients with this condition and their families bear psychological, financial, and societal hardship. There are currently restrictions when utilizing the conventional course of treatment. RNA interference is expected to become an essential approach in anxiety and depression due to its potent and targeted gene silencing. Silencing of genes by post-transcriptional modification is the mechanism of action of small interfering RNA (siRNA). The suppression of genes linked to disease is typically accomplished by siRNA molecules in an efficient and targeted manner. Unfavourable immune responses, off-target effects, naked siRNA instability, nuclease vulnerability, and the requirement to create an appropriate delivery method are some of the challenges facing the clinical application of siRNA. This review focuses on the use of siRNA in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India.
| |
Collapse
|
2
|
De Jager JE, Boesjes R, Roelandt GHJ, Koliaki I, Sommer IEC, Schoevers RA, Nuninga JO. Shared effects of electroconvulsive shocks and ketamine on neuroplasticity: A systematic review of animal models of depression. Neurosci Biobehav Rev 2024; 164:105796. [PMID: 38981574 DOI: 10.1016/j.neubiorev.2024.105796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Electroconvulsive shocks (ECS) and ketamine are antidepressant treatments with a relatively fast onset of therapeutic effects compared to conventional medication and psychotherapy. While the exact neurobiological mechanisms underlying the antidepressant response of ECS and ketamine are unknown, both interventions are associated with neuroplasticity. Restoration of neuroplasticity may be a shared mechanism underlying the antidepressant efficacy of these interventions. In this systematic review, literature of animal models of depression is summarized to examine the possible role of neuroplasticity in ECS and ketamine on a molecular, neuronal, synaptic and functional level, and specifically to what extent these mechanisms are shared between both interventions. The results highlight that hippocampal neurogenesis and brain-derived neurotrophic factor (BDNF) levels are consistently increased after ECS and ketamine. Moreover, both interventions positively affect glutamatergic neurotransmission, astrocyte and neuronal morphology, synaptic density, vasculature and functional plasticity. However, a small number of studies investigated these processes after ECS. Understanding the shared fundamental mechanisms of fast-acting antidepressants can contribute to the development of novel therapeutic approaches for patients with severe depression.
Collapse
Affiliation(s)
- Jesca E De Jager
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands.
| | - Rutger Boesjes
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Gijs H J Roelandt
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Ilektra Koliaki
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands
| | - Robert A Schoevers
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Jasper O Nuninga
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands; University Medical Centre Utrecht, Department of Psychiatry, the Netherlands
| |
Collapse
|
3
|
Yamagishi A, Ikekubo Y, Mishina M, Ikeda K, Ide S. Loss of the sustained antidepressant-like effect of (2R,6R)-hydroxynorketamine in NMDA receptor GluN2D subunit knockout mice. J Pharmacol Sci 2024; 154:203-208. [PMID: 38395521 DOI: 10.1016/j.jphs.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, has attracted attention for its acute and sustained antidepressant effects in patients with depression. Hydroxynorketamine (HNK), a metabolite of ketamine, exerts antidepressant effects without exerting ketamine's side effects and has attracted much attention in recent years. However, the detailed pharmacological mechanism of action of HNK remains unclear. We previously showed that the GluN2D NMDA receptor subunit is important for sustained antidepressant-like effects of (R)-ketamine. Therefore, we investigated whether the GluN2D subunit is involved in antidepressant-like effects of (2R,6R)-HNK and (2S,6S)-HNK. Treatment with (2R,6R)-HNK but not (2S,6S)-HNK exerted acute and sustained antidepressant-like effects in the tail-suspension test in wildtype mice. Interestingly, sustained antidepressant-like effects of (2R,6R)-HNK were abolished in GluN2D-knockout mice, whereas acute antidepressant-like effects were maintained in GluN2D-knockout mice. When expression levels of GluN2A and GluN2B subunits were evaluated, a decrease in GluN2B protein expression in the nucleus accumbens was found in stressed wildtype mice but not in stressed GluN2D-knockout mice. These results suggest that the GluN2D subunit and possibly the GluN2B subunit are involved in the sustained antidepressant-like effect of (2R,6R)-HNK.
Collapse
Affiliation(s)
- Aimi Yamagishi
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, Japan; Molecular and Cellular Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuiko Ikekubo
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, Japan
| | - Masayoshi Mishina
- Brain Science Laboratory, The Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, Japan; Molecular and Cellular Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Soichiro Ide
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, Japan.
| |
Collapse
|
4
|
Zhornitsky S, Oliva HNP, Jayne LA, Allsop ASA, Kaye AP, Potenza MN, Angarita GA. Changes in synaptic markers after administration of ketamine or psychedelics: a systematic scoping review. Front Psychiatry 2023; 14:1197890. [PMID: 37435405 PMCID: PMC10331617 DOI: 10.3389/fpsyt.2023.1197890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Background Ketamine and psychedelics have abuse liability. They can also induce "transformative experiences" where individuals experience enhanced states of awareness. This enhanced awareness can lead to changes in preexisting behavioral patterns which could be beneficial in the treatment of substance use disorders (SUDs). Preclinical and clinical studies suggest that ketamine and psychedelics may alter markers associated with synaptic density, and that these changes may underlie effects such as sensitization, conditioned place preference, drug self-administration, and verbal memory performance. In this scoping review, we examined studies that measured synaptic markers in animals and humans after exposure to ketamine and/or psychedelics. Methods A systematic search was conducted following PRISMA guidelines, through PubMed, EBSCO, Scopus, and Web of Science, based on a published protocol (Open Science Framework, DOI: 10.17605/OSF.IO/43FQ9). Both in vivo and in vitro studies were included. Studies on the following synaptic markers were included: dendritic structural changes, PSD-95, synapsin-1, synaptophysin-1, synaptotagmin-1, and SV2A. Results Eighty-four studies were included in the final analyses. Seventy-one studies examined synaptic markers following ketamine treatment, nine examined psychedelics, and four examined both. Psychedelics included psilocybin/psilocin, lysergic acid diethylamide, N,N-dimethyltryptamine, 2,5-dimethoxy-4-iodoamphetamine, and ibogaine/noribogaine. Mixed findings regarding synaptic changes in the hippocampus and prefrontal cortex (PFC) have been reported when ketamine was administered in a single dose under basal conditions. Similar mixed findings were seen under basal conditions in studies that used repeated administration of ketamine. However, studies that examined animals during stressful conditions found that a single dose of ketamine counteracted stress-related reductions in synaptic markers in the hippocampus and PFC. Repeated administration of ketamine also counteracted stress effects in the hippocampus. Psychedelics generally increased synaptic markers, but results were more consistently positive for certain agents. Conclusion Ketamine and psychedelics can increase synaptic markers under certain conditions. Heterogeneous findings may relate to methodological differences, agents administered (or different formulations of the same agent), sex, and type of markers. Future studies could address seemingly mixed results by using meta-analytical approaches or study designs that more fully consider individual differences.
Collapse
Affiliation(s)
- Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Henrique N. P. Oliva
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Laura A. Jayne
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Aza S. A. Allsop
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Alfred P. Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Connecticut Mental Health Center, New Haven, CT, United States
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, United States
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Connecticut Mental Health Center, New Haven, CT, United States
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University, New Haven, CT, United States
- Connecticut Council on Problem Gambling, Hartford, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| | - Gustavo A. Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| |
Collapse
|
5
|
Zaytseva A, Bouckova E, Wiles MJ, Wustrau MH, Schmidt IG, Mendez-Vazquez H, Khatri L, Kim S. Ketamine's rapid antidepressant effects are mediated by Ca 2+-permeable AMPA receptors. eLife 2023; 12:e86022. [PMID: 37358072 PMCID: PMC10319435 DOI: 10.7554/elife.86022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023] Open
Abstract
Ketamine is shown to enhance excitatory synaptic drive in multiple brain areas, which is presumed to underlie its rapid antidepressant effects. Moreover, ketamine's therapeutic actions are likely mediated by enhancing neuronal Ca2+ signaling. However, ketamine is a noncompetitive NMDA receptor (NMDAR) antagonist that reduces excitatory synaptic transmission and postsynaptic Ca2+ signaling. Thus, it is a puzzling question how ketamine enhances glutamatergic and Ca2+ activity in neurons to induce rapid antidepressant effects while blocking NMDARs in the hippocampus. Here, we find that ketamine treatment in cultured mouse hippocampal neurons significantly reduces Ca2+ and calcineurin activity to elevate AMPA receptor (AMPAR) subunit GluA1 phosphorylation. This phosphorylation ultimately leads to the expression of Ca2+-Permeable, GluA2-lacking, and GluA1-containing AMPARs (CP-AMPARs). The ketamine-induced expression of CP-AMPARs enhances glutamatergic activity and glutamate receptor plasticity in cultured hippocampal neurons. Moreover, when a sub-anesthetic dose of ketamine is given to mice, it increases synaptic GluA1 levels, but not GluA2, and GluA1 phosphorylation in the hippocampus within 1 hr after treatment. These changes are likely mediated by ketamine-induced reduction of calcineurin activity in the hippocampus. Using the open field and tail suspension tests, we demonstrate that a low dose of ketamine rapidly reduces anxiety-like and depression-like behaviors in both male and female mice. However, when in vivo treatment of a CP-AMPAR antagonist abolishes the ketamine's effects on animals' behaviors. We thus discover that ketamine at the low dose promotes the expression of CP-AMPARs via reduction of calcineurin activity, which in turn enhances synaptic strength to induce rapid antidepressant actions.
Collapse
Affiliation(s)
- Anastasiya Zaytseva
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - Evelina Bouckova
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - McKennon J Wiles
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - Madison H Wustrau
- Department of Biomedical Sciences, Colorado State University,Fort CollinsUnited States
| | - Isabella G Schmidt
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | | | - Latika Khatri
- Department of Cell Biology, New York University Grossman School of MedicineNew YorkUnited States
| | - Seonil Kim
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
- Department of Biomedical Sciences, Colorado State University,Fort CollinsUnited States
| |
Collapse
|
6
|
Sancho-Balsells A, Borràs-Pernas S, Brito V, Alberch J, Girault JA, Giralt A. Cognitive and Emotional Symptoms Induced by Chronic Stress Are Regulated by EGR1 in a Subpopulation of Hippocampal Pyramidal Neurons. Int J Mol Sci 2023; 24:ijms24043833. [PMID: 36835243 PMCID: PMC9962724 DOI: 10.3390/ijms24043833] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Chronic stress is a core risk factor for developing a myriad of neurological disorders, including major depression. The chronicity of such stress can lead to adaptive responses or, on the contrary, to psychological maladaptation. The hippocampus is one of the most affected brain regions displaying functional changes in chronic stress. Egr1, a transcription factor involved in synaptic plasticity, is a key molecule regulating hippocampal function, but its role in stress-induced sequels has been poorly addressed. Emotional and cognitive symptoms were induced in mice by using the chronic unpredictable mild stress (CUMS) protocol. We used inducible double-mutant Egr1-CreERT2 x R26RCE mice to map the formation of Egr1-dependent activated cells. Results show that short- (2 days) or long-term (28 days) stress protocols in mice induce activation or deactivation, respectively, of hippocampal CA1 neural ensembles in an Egr1-activity-dependent fashion, together with an associated dendritic spine pathology. In-depth characterization of these neural ensembles revealed a deep-to-superficial switch in terms of Egr1-dependent activation of CA1 pyramidal neurons. To specifically manipulate deep and superficial pyramidal neurons of the hippocampus, we then used Chrna7-Cre (to express Cre in deep neurons) and Calb1-Cre mice (to express Cre in superficial neurons). We found that specific manipulation of superficial but not deep pyramidal neurons of the CA1 resulted in the amelioration of depressive-like behaviors and the restoration of cognitive impairments induced by chronic stress. In summary, Egr1 might be a core molecule driving the activation/deactivation of hippocampal neuronal subpopulations underlying stress-induced alterations involving emotional and cognitive sequels.
Collapse
Affiliation(s)
- Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain
| | - Sara Borràs-Pernas
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain
| | - Verónica Brito
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, 75005 Paris, France
- Science and Engineering Faculty, Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-934037980
| |
Collapse
|
7
|
Kou Y, Li Z, Yang T, Shen X, Wang X, Li H, Zhou K, Li L, Xia Z, Zheng X, Zhao Y. Therapeutic potential of plant iridoids in depression: a review. PHARMACEUTICAL BIOLOGY 2022; 60:2167-2181. [PMID: 36300881 PMCID: PMC9621214 DOI: 10.1080/13880209.2022.2136206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/23/2022] [Accepted: 09/25/2022] [Indexed: 05/29/2023]
Abstract
CONTEXT Depression is a mental disorder characterized by low mood, reduced interest, impaired cognitive function, and vegetative symptoms such as sleep disturbances or poor appetite. Iridoids are the active constituents in several Chinese classical antidepressant formulae such as Yueju Pill, Zhi-Zi-Hou-Po Decoction, Zhi-Zi-Chi Decoction, and Baihe Dihuang Decoction. Parallel to their wide usages, iridoids are considered potential lead compounds for the treatment of neurological diseases. OBJECTIVE The review summarizes the therapeutic potential and molecular mechanisms of iridoids in the prevention or treatment of depression and contributes to identifying research gaps in iridoids as potential antidepressant medication. METHODS The following key phrases were sought in PubMed, Google Scholar, Web of Science, and China National Knowledge Internet (CNKI) without time limitation to search all relevant articles with in vivo or in vitro experimental studies as comprehensively as possible: ('iridoid' or 'seciridoid' or 'depression'). This review extracted the experimental data on the therapeutic potential and molecular mechanism of plant-derived iridoids for depression. RESULTS Plant iridoids (i.e., catalpol, geniposide, loganin), and secoiridoids (i.e., morroniside, gentiopicroside, oleuropein, swertiamarin), all showed significant improvement effects on depression. DISCUSSION AND CONCLUSIONS Iridoids exert antidepressant effects by elevating monoamine neurotransmitters, reducing pro-inflammatory factors, inhibiting hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, increasing brain-derived neurotrophic factor (BDNF) and its receptors, and elevating intestinal microbial abundance. Further detailed studies on the pharmacokinetics, bioavailability, and key molecular targets of iridoids are also required in future research, ultimately to provide improvements to current antidepressant medications.
Collapse
Affiliation(s)
- Yaoyao Kou
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Zhihao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, PR China
| | - Tong Yang
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Xue Shen
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Xin Wang
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Haopeng Li
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Kun Zhou
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Luyao Li
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Zhaodi Xia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, PR China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, PR China
| | - Ye Zhao
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| |
Collapse
|
8
|
Transcriptomic Studies of Antidepressant Action in Rodent Models of Depression: A First Meta-Analysis. Int J Mol Sci 2022; 23:ijms232113543. [DOI: 10.3390/ijms232113543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Antidepressants (ADs) are, for now, the best everyday treatment we have for moderate to severe major depressive episodes (MDEs). ADs are among the most prescribed drugs in the Western Hemisphere; however, the trial-and-error prescription strategy and side-effects leave a lot to be desired. More than 60% of patients suffering from major depression fail to respond to the first AD they are prescribed. For those who respond, full response is only observed after several weeks of treatment. In addition, there are no biomarkers that could help with therapeutic decisions; meanwhile, this is already true in cancer and other fields of medicine. For years, many investigators have been working to decipher the underlying mechanisms of AD response. Here, we provide the first systematic review of animal models. We thoroughly searched all the studies involving rodents, profiling transcriptomic alterations consecutive to AD treatment in naïve animals or in animals subjected to stress-induced models of depression. We have been confronted by an important heterogeneity regarding the drugs and the experimental settings. Thus, we perform a meta-analysis of the AD signature of fluoxetine (FLX) in the hippocampus, the most studied target. Among genes and pathways consistently modulated across species, we identify both old players of AD action and novel transcriptional biomarker candidates that warrant further investigation. We discuss the most prominent transcripts (immediate early genes and activity-dependent synaptic plasticity pathways). We also stress the need for systematic studies of AD action in animal models that span across sex, peripheral and central tissues, and pharmacological classes.
Collapse
|
9
|
Xue D, Zhang Y, Song Z, Jie X, Jia R, Zhu A. Integrated meta-analysis, data mining, and animal experiments to investigate the efficacy and potential pharmacological mechanism of a TCM tonic prescription, Jianpi Tongmai formula, in depression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154344. [PMID: 35932605 DOI: 10.1016/j.phymed.2022.154344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Depression is a common psychiatric disorder and has become a growing public health issue. Traditional Chinese medicine (TCM) tonic prescriptions have been clinically proven to be an effective treatment for depression. PURPOSE This study aimed to identify the core prescription to improve depression among the numerous TCM tonic prescriptions. METHODS AND RESULTS First, we used meta-analysis to clarify the efficacy and safety of tonic prescriptions in depression among 37 studies and identified 16 effective tonic prescriptions. Second, we conducted data mining to analyze the tonic prescriptions and identified important nourishing herbs. Third, based on the data mining results, we constructed a Delphi experiment to investigate the effects of these important nourishing herbs in depression. Combining the results of Delphi expert questionnaires and weight analysis, a core TCM tonic prescription, Jianpi Tongmai formula (JPTMF) for the treatment of depression, was constructed and was composed of invigorating Spleen qi herbs. Fourth, we verified that JPTMF can improve chronic unpredictable mild stress (CUMS) induced depression-like behaviors in mice. Fifth, we predicted that the mechanism of JPTMF in the treatment of depression was mainly associated with chemical synaptic transmission and neuroinflammation through network pharmacology and determined preliminary confirmation through animal experiments. CONCLUSION This study was undertaken to evaluate the efficacy of TCM tonic prescriptions on depression and construct a core TCM tonic prescription, JPTMF, through a progressive analysis. Network pharmacology and animal experiments verified the reliability of JPTMF. The proposal of JPTMF is of innovative significance, and may provide far-reaching implications for improving depression by using nourishing herbs. Furthermore, the integrated methods applied in this study provide an innovative paradigm for the standardization and scientific basis of TCM research.
Collapse
Affiliation(s)
- Dan Xue
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Yuhui Zhang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Zhujin Song
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Xiao Jie
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Ruiting Jia
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Aisong Zhu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China; Zhejiang Engineering Research Center for "Preventive Treatment" Smart Health of Traditional Chinese Medicine, Hangzhou 310053, China.
| |
Collapse
|
10
|
Fan XX, Sun WY, Li Y, Tang Q, Li LN, Yu X, Wang SY, Fan AR, Xu XQ, Chang HS. Honokiol improves depression-like behaviors in rats by HIF-1α- VEGF signaling pathway activation. Front Pharmacol 2022; 13:968124. [PMID: 36091747 PMCID: PMC9453876 DOI: 10.3389/fphar.2022.968124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that the pathogenesis of depression is closely linked to impairments in neuronal synaptic plasticity. Honokiol, a biologically active substance extracted from Magnolia Officinalis, has been proven to exert significant antidepressant effects. However, the specific mechanism of action remains unclear. In this study, PC12 cells and chronic unpredictable mild stress (CUMS) model rats were used to explore the antidepressant effects and potential mechanisms of honokiol in vitro and in rats. In vitro experiment, a cell viability detection kit was used to screen the concentration and time of honokiol administration. PC12 cells were administered with hypoxia-inducible factor-1α (HIF-1α) blocker, 2-methoxyestradiol (2-ME), and vascular endothelial growth factor receptor 2 (VEGFR-2) blocker, SU5416, to detect the expression of HIF-1α, VEGF, synaptic protein 1 (SYN 1), and postsynaptic density protein 95 (PSD 95) by western blotting. In effect, we investigated whether the synaptic plasticity action of honokiol was dependent on the HIF-1α-VEGF pathway. In vivo, behavioral tests were used to evaluate the reproducibility of the CUMS depression model and depression-like behaviors. Molecular biology techniques were used to examine mRNA and protein expression of the HIF-1α-VEGF signaling pathway and synaptic plasticity-related regulators. Additionally, molecular docking techniques were used to study the interaction between honokiol and target proteins, and predict their binding patterns and affinities. Experimental results showed that honokiol significantly reversed CUMS-induced depression-like behaviors. Mechanically, honokiol exerted a significant antidepressant effect by enhancing synaptic plasticity. At the molecular level, honokiol can activate the HIF-1α-VEGF signaling pathway in vitro and in vivo, as well as promote the protein expression levels of SYN 1 and PSD 95. Taken together, the results do not only provide an experimental basis for honokiol in the clinical treatment of depression but also suggest that the HIF-1α-VEGF pathway may be a potential target for the treatment of depression.
Collapse
Affiliation(s)
- Xiao-Xu Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wen-Yan Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Na Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ang-Ran Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Qing Xu
- Experiment Center, Encephalopathy Department, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
- *Correspondence: Hong-Sheng Chang, ; Xiang-Qing Xu,
| | - Hong-Sheng Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Hong-Sheng Chang, ; Xiang-Qing Xu,
| |
Collapse
|
11
|
Sarkar T, Patro N, Patro IK. Perinatal exposure to synergistic multiple stressors lead to cellular and behavioral deficits mimicking Schizophrenia like pathology. Biol Open 2022; 11:274201. [PMID: 35107124 PMCID: PMC8918990 DOI: 10.1242/bio.058870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
Protein malnourishment and immune stress are potent perinatal stressors, encountered by children born under poor socioeconomic conditions. Thus, it is necessary to investigate how such stressors synergistically contribute towards developing neurological disorders in affected individuals. Pups from Wistar females, maintained on normal (high-protein, HP:20%) and low-protein (LP:8%) diets were used. Single and combined exposures of Poly I:C (viral mimetic: 5 mg/kg body weight) and Lipopolysaccharide (LPS; bacterial endotoxin: 0.3 mg/kg body weight) were injected to both HP and LP pups at postnatal days (PND) 3 and 9 respectively, creating eight groups: HP (control); HP+Poly I:C; HP+LPS; HP+Poly I:C+LPS; LP; LP+Poly I:C; LP+LPS; LP+Poly I:C+LPS (multi-hit). The effects of stressors on hippocampal cytoarchitecture and behavioral abilities were studied at PND 180. LP animals were found to be more vulnerable to immune stressors than HP animals and symptoms like neuronal damage, spine loss, downregulation of Egr 1 and Arc proteins, gliosis and behavioral deficits were maximum in the multi-hit group. Thus, from these findings it is outlined that cellular and behavioral changes that occur following multi-hit exposure may predispose individuals to developing Schizophrenia-like pathologies during adulthood. Summary: This study reports that exposure to perinatal multi-hit stress (protein malnourishment and immune stress) causes changes in the hippocampal cells alongside behavioral deficits which are also observed in Schizophrenic condition.
Collapse
Affiliation(s)
- Tiyasha Sarkar
- School of Studies in Neuroscience, Jiwaji University, Gwalior-474011, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior-474011, India
| | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior-474011, India
| |
Collapse
|
12
|
Kang MJY, Hawken E, Vazquez GH. The Mechanisms Behind Rapid Antidepressant Effects of Ketamine: A Systematic Review With a Focus on Molecular Neuroplasticity. Front Psychiatry 2022; 13:860882. [PMID: 35546951 PMCID: PMC9082546 DOI: 10.3389/fpsyt.2022.860882] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
The mechanism of action underlying ketamine's rapid antidepressant effects in patients with depression, both suffering from major depressive disorder (MDD) and bipolar disorder (BD), including treatment resistant depression (TRD), remains unclear. Of the many speculated routes that ketamine may act through, restoring deficits in neuroplasticity may be the most parsimonious mechanism in both human patients and preclinical models of depression. Here, we conducted a literature search using PubMed for any reports of ketamine inducing neuroplasticity relevant to depression, to identify cellular and molecular events, relevant to neuroplasticity, immediately observed with rapid mood improvements in humans or antidepressant-like effects in animals. After screening reports using our inclusion/exclusion criteria, 139 publications with data from cell cultures, animal models, and patients with BD or MDD were included (registered on PROSPERO, ID: CRD42019123346). We found accumulating evidence to support that ketamine induces an increase in molecules involved in modulating neuroplasticity, and that these changes are paired with rapid antidepressant effects. Molecules or complexes of high interest include glutamate, AMPA receptors (AMPAR), mTOR, BDNF/TrkB, VGF, eEF2K, p70S6K, GSK-3, IGF2, Erk, and microRNAs. In summary, these studies suggest a robust relationship between improvements in mood, and ketamine-induced increases in molecular neuroplasticity, particularly regarding intracellular signaling molecules.
Collapse
Affiliation(s)
- Melody J Y Kang
- Center of Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Emily Hawken
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada
| | - Gustavo Hector Vazquez
- Center of Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada.,Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada
| |
Collapse
|
13
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
14
|
Lu C, Liu X, Li J, Huang Y, Huang X, Dai G, Wu L. Merazin Hydrate Produces Rapid Antidepressant Effects Depending on Activating mTOR Signaling by Upregulating Downstream Synaptic Proteins in the Hippocampus. ACS Chem Neurosci 2021; 12:3939-3946. [PMID: 34601865 DOI: 10.1021/acschemneuro.1c00546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Major depressive disorder has become an increasingly serious disease in the world. However, convenient antidepressants have low efficacy and slow onset defects, which is dangerous for suicidal tendency patients. Nowadays, rapid antidepressant research has become the focus. Merazin hydrate (MH), a component of the natural herb Fructus Aurantii, has been shown to produce rapid antidepressant-like effects in animal models. However, the mechanism of its rapid antidepressant-like effects was still elusive like that of ketamine. The study aimed to reveal the relationship between the rapid antidepressant-like effects of MH and mTOR signaling, which is closely related to rapid antidepressants. The results showed that a single administration of MH was capable of reversing the behavioral defects at 2 h in two classic depressive models including learned helplessness (LH) and chronic mild stress (CMS). Moreover, the phosphorylated expression of mTOR, reduced by LH or CMS, was upregulated after a single administration of MH, and the expressions of BDNF and synaptic proteins in the hippocampus were also reversed 2 h later, similar to ketamine. Moreover, LH increased the expressions of eNOS, IL-10, and TNF-α in serum, which were all reversed by a single dose of MH at 2 h, similar to ketamine. Furthermore, we used rapamycin, an antagonist of mTOR, to confirm whether the rapid antidepressant-like effects of MH depend on mTOR or not. We found that inhibiting the activation of mTOR blocked the rapid antidepressant-like effects of MH, which also inhibited the upregulation of expressions of BDNF and PSD95. To sum up, the rapid antidepressant effect of MH depended on the activation of mTOR to regulate downstream BNDF and synaptic protein expressions.
Collapse
Affiliation(s)
- Chao Lu
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Xiangfei Liu
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jia Li
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yunke Huang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
- Master Degree Candidate at Department of Gynaecology and Obstetrics, Fudan University Medical School, Shanghai 200433, PR China
| | - Xi Huang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Guoliang Dai
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Lei Wu
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| |
Collapse
|
15
|
Abstract
Epigenetic mechanisms such as DNA methylation (DNAm) have been associated with stress responses and increased vulnerability to depression. Abnormal DNAm is observed in stressed animals and depressed individuals. Antidepressant treatment modulates DNAm levels and regulates gene expression in diverse tissues, including the brain and the blood. Therefore, DNAm could be a potential therapeutic target in depression. Here, we reviewed the current knowledge about the involvement of DNAm in the behavioural and molecular changes associated with stress exposure and depression. We also evaluated the possible use of DNAm changes as biomarkers of depression. Finally, we discussed current knowledge limitations and future perspectives.
Collapse
|
16
|
Wu Y, Rong W, Jiang Q, Wang R, Huang H. Downregulation of lncRNA GAS5 Alleviates Hippocampal Neuronal Damage in Mice with Depression-Like Behaviors Via Modulation of MicroRNA-26a/EGR1 Axis. J Stroke Cerebrovasc Dis 2021; 30:105550. [PMID: 33341564 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Accumulating evidences have demonstrated the roles of several long non-coding RNAs (lncRNAs) in depression. We aim to examine the capabilities of lncRNA growth arrest-specific transcript 5 (GAS5) on mice with depression-like behaviors and the mechanism of action. METHODS Fifty-six healthy mice were selected for model establishment. Morris water maze test and trapeze test were performed for evaluating learning and memory ability. The binding relationship between lncRNA GAS5 and microRNA-26a (miR-26a) and the target relationship between miR-26a and EGR1 were verified by dual-luciferase reporter gene assay. The apoptosis of neurons in the hippocampal CA1 region of mice was detected by TUNEL staining. The expression of inflammatory factors, lncRNA GAS5, miR-26a, early growth response gene 1 (EGR1), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway- and apoptosis-related factors in hippocampal tissues was tested by RT-qPCR and western blot analysis. RESULTS miR-26a expression was down-regulated while EGR1 and lncRNA GAS5 expression were up-regulated in hippocampal tissues of mice with depression-like behaviors. LncRNA GAS5 specifically bound to miR-26a and miR-26a targeted EGR1. Silencing of lncRNA GAS5 curtailed the release of inflammatory factors and the apoptosis of hippocampal neuron of mice with depression-like behaviors. EGR1 suppressed PI3K/AKT pathway activation to promote the release of inflammatory factors and the apoptosis of hippocampal neurons in mice with depression-like behaviors. CONCLUSION Our study provides evidence that silencing of lncRNA GAS5 could activate PI3K/AKT pathway to protect hippocampal neurons against damage in mice with depression-like behaviors by regulating the miR-26a/EGR1 axis.
Collapse
Affiliation(s)
- Yigao Wu
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| | - Wei Rong
- Department of Clinical Medical Psychology, The Second People's Hospital of Wuhu, Wuhu 241001, Anhui, PR China.
| | - Qin Jiang
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| | - Ruiquan Wang
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| | - Huilan Huang
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| |
Collapse
|
17
|
Neis VB, Moretti M, Rosa PB, Dalsenter YDO, Werle I, Platt N, Kaufmann FN, Rosado AF, Besen MH, Rodrigues ALS. The involvement of PI3K/Akt/mTOR/GSK3β signaling pathways in the antidepressant-like effect of AZD6765. Pharmacol Biochem Behav 2020; 198:173020. [DOI: 10.1016/j.pbb.2020.173020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022]
|
18
|
Shen C, Cao K, Cui S, Cui Y, Mo H, Wen W, Dong Z, Lin H, Bai S, Yang L, Zhang R, Shi Y. SiNiSan ameliorates depression-like behavior in rats by enhancing synaptic plasticity via the CaSR-PKC-ERK signaling pathway. Biomed Pharmacother 2020; 124:109787. [DOI: 10.1016/j.biopha.2019.109787] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
|
19
|
Polis AJ, Fitzgerald PJ, Hale PJ, Watson BO. Rodent ketamine depression-related research: Finding patterns in a literature of variability. Behav Brain Res 2019; 376:112153. [PMID: 31419519 PMCID: PMC6783386 DOI: 10.1016/j.bbr.2019.112153] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/23/2022]
Abstract
Discovering that the anesthetic drug ketamine has rapidly acting antidepressant effects in many individuals with major depression is one of the most important findings in clinical psychopharmacology in recent decades. The initial report of these effects in human subjects was based on a foundation of rodent preclinical studies carried out in the 1990s, and subsequent investigation has included both further studies in individuals with depression, as well as reverse translational experiments in animal models, especially rodents. While there is general agreement in the rodent literature that ketamine has rapidly-acting, and generally sustained, antidepressant-like properties, there are also points of contention across studies, including the precise mechanism of action of this drug. In this review, we briefly summarize prominent yet variable findings regarding the mechanism of action. We also discuss a combination of similarities and variances in the rodent literature in the antidepressant-like effects of ketamine as a function of dose, species and strain, test, stressor, and presumably sex of the experimenter. We then present previously unpublished mouse strain comparison data suggesting that subanesthetic ketamine does not have robust antidepressant-like properties in unstressed animals, and may actually promote depression-like behavior, in contrast to widely reported findings. We conclude that the data best support the notion of ketamine action principally via NMDA receptor antagonism, transiently boosting glutamatergic (and possibly other) signaling in diverse brain circuits. We also suggest that future studies should address in greater detail the extent to which antidepressant-like properties of this drug are stress-sensitive, in an effort to better model major depression present in humans.
Collapse
Affiliation(s)
- Andrew J Polis
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Paul J Fitzgerald
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Pho J Hale
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Brendon O Watson
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America.
| |
Collapse
|
20
|
Quantitative analysis of Gria1, Gria2, Dlg1 and Dlg4 expression levels in hippocampus following forced swim stress in mice. Sci Rep 2019; 9:14060. [PMID: 31575955 PMCID: PMC6773768 DOI: 10.1038/s41598-019-50689-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/18/2019] [Indexed: 01/09/2023] Open
Abstract
AMPA receptors and interacting proteins are importantly involved in mediating stress-dependent plasticity. Previously we reported that GluA1-containing AMPA receptors and their interaction with PDZ-proteins are required for the experience-dependent expression of behavioral despair in the forced swim test. However, it is unclear if the expression of GluA1-containing AMPA receptors is affected by this type of behavior. Here we investigated in wild type mice, whether hippocampal gene or protein levels of GluA1 or associated PDZ proteins is altered following forced swim stress. We show that expression of Dlg4 (the gene coding for PSD-95) was strongly reduced after two days of forced swimming. In contrast, levels of Dlg1, Gria1, and Gria2 (coding for SAP97, GluA1, and GluA2 respectively) were not affected after one or two days of forced swimming. The changes in gene expression largely did not translate to the protein level. These findings indicate a limited acute effect of forced swim stress on the expression of the investigated targets and suggest that the acute involvement of GluA1-containing AMPA receptors tor forced swim behavior is a result of non-genomic mechanisms.
Collapse
|
21
|
Abstract
The old classification of depression as reactive and endogenous, which are still observed in clinical practice, both cannot be accommodated under the current rubric of major depression. This is because psychiatric nosology under the Diagnostic and Statistical Manual of Mental Disorders (DSM) and its latest fifth edition (DSM-V) is still descriptive and not etiologic. The aim of this review was to revisit reactive and endogenous categories of depression from the perspective of today's understanding of etiological pathways. From an epigenetic perspective, the old dichotomy of reactive versus endogenous is interrelated through the impact of the environment (e.g., stress). This includes familial or prenatal depression, where the environmental impact is before birth, or childhood depression, where the early life stress is the precipitating factor to genetic susceptibility. In conclusion, searching for both environmental impact (e.g., stressors) and genetic predispositions in depression, even at a clinical level, could help clinicians with better therapeutic decisions.
Collapse
|
22
|
Camargo A, Pazini FL, Rosa JM, Wolin IAV, Moretti M, Rosa PB, Neis VB, Rodrigues ALS. Augmentation effect of ketamine by guanosine in the novelty-suppressed feeding test is dependent on mTOR signaling pathway. J Psychiatr Res 2019; 115:103-112. [PMID: 31128500 DOI: 10.1016/j.jpsychires.2019.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
The ketamine's potential for the treatment of refractory depression and anxiety has been considered one the most important discoveries in the last years, however, repeated use of ketamine is limited due to its side/adverse effects. Therefore, the search for effective augmentation strategies that may reduce ketamine doses is welcome. Therefore, this study sought to augment the effect of ketamine by guanosine in the novelty-suppressed feeding (NSF) test, a behavioral paradigm able to detect depression/anxiety-related behavior. Acute administration of guanosine (0.05 mg/kg, p.o.), similar to ketamine (1 mg/kg, i.p.), produced a rapid behavioral response in mice submitted to NSF test. Moreover, the coadministration of sub-effective doses of guanosine (0.01 mg/kg, p.o.) and ketamine (0.1 mg/kg, i.p.) was effective in mice submitted to NSF test. Subsequently, the intracellular mechanism underpinning the augmentation effect of ketamine by guanosine was investigated. Our results suggest that augmentation response of ketamine by guanosine in the NSF test probably involves the activation of mTOR signaling, since the treatment with rapamycin (0.2 nmol/site, i.c.v., a selective mTOR inhibitor) completely abolished this effect. This augmentation strategy also increased mTOR phosphorylation (Ser2448) in the hippocampus, reinforcing the role of mTOR in this augmentation response. However, no changes in the p70S6K, PSD-95, GluA1, and synapsin immunocontents were found in the hippocampus of ketamine plus guanosine-treated mice. Overall, results provide evidence that guanosine is able to augment the effect of ketamine in the NSF test via mTOR activation, a finding that might have therapeutic implications for the management of depression/anxiety.
Collapse
Affiliation(s)
- Anderson Camargo
- Neuroscience Postgraduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Julia M Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Ingrid A V Wolin
- Neuroscience Postgraduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Priscila B Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Neuroscience Postgraduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
23
|
Pochwat B, Nowak G, Szewczyk B. An update on NMDA antagonists in depression. Expert Rev Neurother 2019; 19:1055-1067. [DOI: 10.1080/14737175.2019.1643237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bartłomiej Pochwat
- Maj Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Trace Elements Neurobiology, Krakow, Poland
| | - Gabriel Nowak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Trace Elements Neurobiology, Krakow, Poland
| | - Bernadeta Szewczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Trace Elements Neurobiology, Krakow, Poland
| |
Collapse
|
24
|
Subanesthetic Dose of Ketamine Improved CFA-induced Inflammatory Pain and Depression-like Behaviors Via Caveolin-1 in Mice. J Neurosurg Anesthesiol 2019; 32:359-366. [DOI: 10.1097/ana.0000000000000610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Treccani G, Ardalan M, Chen F, Musazzi L, Popoli M, Wegener G, Nyengaard JR, Müller HK. S-Ketamine Reverses Hippocampal Dendritic Spine Deficits in Flinders Sensitive Line Rats Within 1 h of Administration. Mol Neurobiol 2019; 56:7368-7379. [PMID: 31037646 DOI: 10.1007/s12035-019-1613-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/15/2019] [Indexed: 11/26/2022]
Abstract
When administered as a single subanesthetic dose, the N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine, produces rapid (within hours) and relatively sustained antidepressant actions even in treatment-resistant patients. Preclinical studies have shown that ketamine increases dendritic spine density and synaptic proteins in brain areas critical for the actions of antidepressants, yet the temporal relationship between structural changes and the onset of antidepressant action remains poorly understood. In this study, we examined the effects of a single dose of S-ketamine (15 mg/kg) on dendritic length, dendritic arborization, spine density, and spine morphology in the Flinders Sensitive and Flinders Resistant Line (FSL/FRL) rat model of depression. We found that already 1 h after injection with ketamine, apical dendritic spine deficits in CA1 pyramidal neurons of FSL rats were completely restored. Notably, the observed increase in spine density was attributable to regulation of both mushroom and long-thin spines. In contrast, ketamine had no effect on dendritic spine density in FRL rats. On the molecular level, ketamine normalized elevated levels of phospho-cofilin and the NMDA receptor subunits GluN2A and GluN2B and reversed homer3 deficiency in hippocampal synaptosomes of FSL rats. Taken together, our data suggest that rapid formation of new spines may provide an important structural substrate during the initial phase of ketamine's antidepressant action.
Collapse
Affiliation(s)
- Giulia Treccani
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 72, 8240, Risskov, Denmark
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Untere Zahlbacher Straße 8, Mainz, Germany
- Deutsches Resilienz Zentrum (DRZ) gGmbH, Mainz, Germany
| | - Maryam Ardalan
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 72, 8240, Risskov, Denmark
| | - Fenghua Chen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 72, 8240, Risskov, Denmark
| | - Laura Musazzi
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milan, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milan, Italy
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 72, 8240, Risskov, Denmark
- AUGUST Centre, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Jens Randel Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 72, 8240, Risskov, Denmark.
| |
Collapse
|
26
|
Stress-sensitive antidepressant-like effects of ketamine in the mouse forced swim test. PLoS One 2019; 14:e0215554. [PMID: 30986274 PMCID: PMC6464213 DOI: 10.1371/journal.pone.0215554] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/03/2019] [Indexed: 01/18/2023] Open
Abstract
Major depression is a stress-linked disease with significant morbidity and the anesthetic drug ketamine is of growing interest in the treatment of depression, since in responsive individuals a single dose has rapid (within hours) antidepressant effects that can be sustained for over a week in some instances. This combination of fast action and a therapeutic effect that lasts far beyond the drug’s half-life points to a unique mechanism of action. In this reverse translational study, we investigate the degree to which ketamine counteracts stress-related depression-like behavioral responses by determining whether it affects unstressed animals similarly to stressed mice. To test this, male C57BL/6J mice were given a single injection of vehicle (0.9% saline; i.p.), 10 mg/kg ketamine, or 30 mg/kg ketamine, and were tested in the forced swim test (FST) 24 hours and 7 days later, as well as in the open field test on the eighth day. Unstressed mice had normal group housing, environmental enrichment, and experimenter pre-handling (5 days), whereas stressed animals were subjected to chronic mild stress (single housing, reduced enrichment and minimal handling), where some mice also had daily two-week unpredictable chronic stress (UCS). We find that ketamine (24 hours post-injection) decreases immobility and increases mobile (swimming) behavior (antidepressant-like effects) in UCS animals but does the opposite in unstressed mice, similar to recent human findings. In summary, these data suggest that chronic psychological stress interacts with ketamine treatment to modulate its effects in the C57BL/6J mouse FST, which reinforces the relevance of this test, and this strain of mice, to human, stress-induced depression.
Collapse
|
27
|
Leem YH, Park JS, Chang H, Park J, Kim HS. Exercise Prevents Memory Consolidation Defects Via Enhancing Prolactin Responsiveness of CA1 Neurons in Mice Under Chronic Stress. Mol Neurobiol 2019; 56:6609-6625. [DOI: 10.1007/s12035-019-1560-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
|
28
|
Xu W, Yu J, Jiang Z, Yan W, Li S, Luo Y, Xu J. The impact of subchronic low-dose exposure to nonylphenol on depression-like behaviors in high-sucrose and high-fat diet induced rats. Toxicology 2019; 414:27-34. [DOI: 10.1016/j.tox.2019.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/21/2018] [Accepted: 01/05/2019] [Indexed: 01/23/2023]
|
29
|
Camargo A, Rodrigues ALS. Novel Targets for Fast Antidepressant Responses: Possible Role of Endogenous Neuromodulators. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2019; 3:2470547019858083. [PMID: 32440595 PMCID: PMC7219953 DOI: 10.1177/2470547019858083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022]
Abstract
The available medications for the treatment of major depressive disorder have limitations, particularly their limited efficacy, delayed therapeutic effects, and the side effects associated with treatment. These issues highlight the need for better therapeutic agents that provide more efficacious and faster effects for the management of this disorder. Ketamine, an N-methyl-D-aspartate receptor antagonist, is the prototype for novel glutamate-based antidepressants that has been shown to cause a rapid and sustained antidepressant effect even in severe refractory depressive patients. Considering the importance of these findings, several studies have been conducted to elucidate the molecular targets for ketamine's effect. In addition, efforts are under way to characterize ketamine-like drugs. This review focuses particularly on evidence that endogenous glutamatergic neuromodulators may be able to modulate mood and to elicit fast antidepressant responses. Among these molecules, agmatine and creatine stand out as those with more published evidence of similarities with ketamine, but guanosine and ascorbic acid have also provided promising results. The possibility that these neuromodulators and ketamine have common neurobiological mechanisms, mainly the ability to activate mechanistic target of rapamycin and brain-derived neurotrophic factor signaling, and synthesis of synaptic proteins in the prefrontal cortex and/or hippocampus is presented and discussed.
Collapse
Affiliation(s)
- Anderson Camargo
- Neuroscience Postgraduate Program,
Center of Biological Sciences, Universidade Federal de Santa Catarina,
Florianópolis, Brazil
| | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of
Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis,
Brazil
| |
Collapse
|