1
|
Lyu C, Lyu X, Gong Q, Gao B, Wang Y. Neural activation signatures in individuals with subclinical depression: A task-fMRI meta-analysis. J Affect Disord 2024; 362:104-113. [PMID: 38909758 DOI: 10.1016/j.jad.2024.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Previous task-related functional magnetic resonance imaging (task-fMRI) investigations have documented abnormal brain activation associated with subclinical depression (SD), defined as a clinically relevant level of depressive symptoms that does not meet the diagnostic criteria for major depressive disorder. However, these task-fMRI studies have not reported consistent conclusions. Performing a voxel-based meta-analysis of task-fMRI studies may yield reliable findings. METHODS We extracted the peak coordinates and t values of included studies and analyzed brain activation between individuals with SD and healthy controls (HCs) using anisotropic effect-size signed differential mapping (AES-SDM). RESULTS A systematic literature search identified eight studies, including 266 individuals with SD and 281 HCs (aged 14 to 25). The meta-analysis showed that individuals with SD exhibited significantly greater activation in the right lenticular nucleus and putamen according to task-fMRI. The meta-regression analysis revealed a negative correlation between the proportion of females in a group and activation in the right striatum. LIMITATIONS The recruitment criteria for individuals with SD, type of tasks and MRI acquisition parameters of included studies were heterogeneous. The results should be interpreted cautiously due to insufficient included studies. CONCLUSION Our findings suggest that individuals with SD exhibit increased activation in the right lenticular nucleus, putamen and striatum, which may indicate a compensatory increase in response to an impairment of insular and striatal function caused by depression. These results provide valuable insights into the potential pathophysiology of brain dysfunction in SD.
Collapse
Affiliation(s)
- Cui Lyu
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xinyue Lyu
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qiyong Gong
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Gao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Key Laboratory of Brain Imaging, Guizhou Medical University, Guiyang, China.
| | - Yiming Wang
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
2
|
Alcaide J, Gramuntell Y, Klimczak P, Bueno-Fernandez C, Garcia-Verellen E, Guicciardini C, Sandi C, Castillo-Gómez E, Crespo C, Perez-Rando M, Nacher J. Long term effects of peripubertal stress on the thalamic reticular nucleus of female and male mice. Neurobiol Dis 2024; 200:106642. [PMID: 39173845 DOI: 10.1016/j.nbd.2024.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Adverse experiences during infancy and adolescence have an important and enduring effect on the brain and are predisposing factors for mental disorders, particularly major depression. This impact is particularly notable in regions with protracted development, such as the prefrontal cortex. The inhibitory neurons of this cortical region are altered by peripubertal stress (PPS), particularly in female mice. In this study we have explored whether the inhibitory circuits of the thalamus are impacted by PPS in male and female mice. This diencephalic structure, as the prefrontal cortex, also completes its development during postnatal life and is affected by adverse experiences. The long-term changes induced by PPS were exclusively found in adult female mice. We have found that PPS increases depressive-like behavior and induces changes in parvalbumin-expressing (PV+) cells of the thalamic reticular nucleus (TRN). We observed reductions in the volume of the TRN, together with those of parameters related to structures/molecules that regulate the plasticity and connectivity of PV+ cells: perineuronal nets, matricellular structures surrounding PV+ neurons, and the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). The expression of the GluN1, but not of GluN2C, NMDA receptor subunit was augmented in the TRN after PPS. An increase in the fluorescence intensity of PV+ puncta was also observed in the synaptic output of TRN neurons in the lateral posterior thalamic nucleus. These results demonstrate that the inhibitory circuits of the thalamus, as those of the prefrontal cortex, are vulnerable to the effects of aversive experiences during early life, particularly in females. This vulnerability is probably related to the protracted development of the TRN and might contribute to the development of psychiatric disorders.
Collapse
Affiliation(s)
- Julia Alcaide
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Patrycja Klimczak
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Clara Bueno-Fernandez
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Erica Garcia-Verellen
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Chiara Guicciardini
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Esther Castillo-Gómez
- Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Department of Medicine, School of Medical Sciences, Universitat Jaume I, Valencia, Spain
| | - Carlos Crespo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain.
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain.
| |
Collapse
|
3
|
Liu W, Heij J, Liu S, Liebrand L, Caan M, van der Zwaag W, Veltman DJ, Lu L, Aghajani M, van Wingen G. Structural connectivity of dopaminergic pathways in major depressive disorder: An ultra-high resolution 7-Tesla diffusion MRI study. Eur Neuropsychopharmacol 2024; 89:58-70. [PMID: 39341085 DOI: 10.1016/j.euroneuro.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 09/30/2024]
Abstract
Accumulating evidence points to imbalanced dopamine (DA) signaling and circulating levels in the pathophysiology of major depressive disorder (MDD). However, the use of conventional MRI scanners and acquisition techniques has prevented a thorough examination of DA neural pathways in MDD. We uniquely employed ultra-high field diffusion MRI at 7.0 Tesla to map the white matter architecture and integrity of several DA pathways in MDD patients. Fifty-three MDD patients and 12 healthy controls (HCs) were enrolled in the final analysis. Images were acquired using a 7.0 Tesla MRI scanner. FreeSurfer was used to segment components of DA pathways, and MRtrix was used to perform preprocessing and tractography of mesolimbic, mesocortical, nigrostriatal, and unconventional DA pathways. Bayesian analyses assessed the impact of MDD and clinical features on DA tracts. MDD was associated with perturbed white matter microstructural properties of the nigrostriatal pathway, while several MDD features (severity of depression/age of onset/insomnia) related to connectivity changes within mesocortical, nigrostriatal, and unconventional pathways. MDD is associated with microstructural differences in the nigrostriatal pathway. The findings provide insight into the structural architecture and integrity of several DA pathways in MDD, and implicate their involvement in the clinical manifestation of MDD.
Collapse
Affiliation(s)
- Weijian Liu
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands; Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China.
| | - Jurjen Heij
- Spinoza Centre for Neuroimaging, KNAW, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Shu Liu
- Key Laboratory of Genetic Evolution & Animal Models, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Luka Liebrand
- Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiation Oncology, Amsterdam, the Netherlands
| | - Matthan Caan
- Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering & Physics, Amsterdam, the Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, KNAW, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Dick J Veltman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam, Netherlands
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China; Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.
| | - Moji Aghajani
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam, Netherlands; Institute of Education & Child Studies, Section Forensic Family & Youth Care, Leiden University, the Netherlands
| | - Guido van Wingen
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Li Y. Effect of Xiaoyaosan on brain volume and microstructure diffusion changes to exert antidepressant-like effects in mice with chronic social defeat stress. Front Psychiatry 2024; 15:1414295. [PMID: 39371910 PMCID: PMC11450227 DOI: 10.3389/fpsyt.2024.1414295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/23/2024] [Indexed: 10/08/2024] Open
Abstract
Objective Depression is a prevalent mental disorder characterized by persistent negative mood and loss of pleasure. Although there are various treatment modalities available for depression, the rates of response and remission remain low. Xiaoyaosan (XYS), a traditional Chinese herbal formula with a long history of use in treating depression, has shown promising effects. However, the underlying mechanism of its therapeutic action remains elusive. The aim of this study is to investigate the neuroimaging changes in the brain associated with the antidepressant-like effects of XYS. Methods Here, we combined voxel-based morphometry of T2-weighted images and voxel-based analysis on diffusion tensor images to evaluate alterations in brain morphometry and microstructure between chronic social defeat stress (CSDS) model mice and control mice. Additionally, we examined the effect of XYS treatment on structural disruptions in the brains of XYS-treated mice. Furthermore, we explored the therapeutic effect of 18β-glycyrrhetinic acid (18β-GA), which was identified as the primary compound present in the brain following administration of XYS. Significant differences in brain structure were utilized as classification features for distinguishing mice with depression model form the controls using a machine learning method. Results Significant changes in brain volume and diffusion metrics were observed in the CSDS model mice, primarily concentrated in the nucleus accumbens (ACB), primary somatosensory area (SSP), thalamus (TH), hypothalamus (HY), basomedical amygdala nucleus (BMA), caudoputamen (CP), and retrosplenial area (RSP). However, both XYS and 18β-GA treatment prevented disruptions in brain volume and diffusion metrics in certain regions, including bilateral HY, right SSP, right ACB, bilateral CP, and left TH. The classification models based on each type of neuroimaging feature achieved high accuracy levels (gray matter volume: 76.39%, AUC=0.83; white matter volume: 76.39%, AUC=0.92; fractional anisotropy: 82.64%, AUC=0.9; radial diffusivity: 76.39%, AUC=0.82). Among these machine learning analyses, the right ACB, right HY, and right CP were identified as the most important brain regions for classification purposes. Conclusion These findings suggested that XYS can prevent abnormal changes in brain volume and microstructure within TH, SSP, ACB, and CP to exert prophylactic antidepressant-like effects in CSDS model mice. The neuroimaging features within these regions demonstrate excellent performance for classifying CSDS model mice from controls while providing valuable insights into the antidepressant effects of XYS.
Collapse
Affiliation(s)
- Yongxin Li
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional
Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Liu W, Heij J, Liu S, Liebrand L, Caan M, van der Zwaag W, Veltman DJ, Lu L, Aghajani M, van Wingen G. Hippocampal, thalamic, and amygdala subfield morphology in major depressive disorder: an ultra-high resolution MRI study at 7-Tesla. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01874-0. [PMID: 39217211 DOI: 10.1007/s00406-024-01874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Morphological changes in the hippocampal, thalamic, and amygdala subfields have been suggested to form part of the pathophysiology of major depressive disorder (MDD). However, the use of conventional MRI scanners and acquisition techniques has prevented in-depth examinations at the subfield level, precluding a fine-grained understanding of these subfields and their involvement in MDD pathophysiology. We uniquely employed ultra-high field MRI at 7.0 Tesla to map hippocampal, thalamic, and amygdala subfields in MDD. Fifty-six MDD patients and 14 healthy controls (HCs) were enrolled in the final analysis. FreeSurfer protocols were used to segment hippocampal, thalamic, and amygdala subfields. Bayesian analysis was then implemented to assess differences between groups and relations with clinical features. While no effect was found for MDD diagnosis (i.e., case-control comparison), clinical characteristics of MDD patients were associated with subfield volumes of the hippocampus, thalamus, and amygdala. Specifically, the severity of depressive symptoms, insomnia, and childhood trauma in MDD patients related to lower thalamic subfield volumes. In addition, MDD patients with typical MDD versus those with atypical MDD showed lower hippocampal, thalamic, and amygdala subfield volumes. MDD patients with recurrent MDD versus those with first-episode MDD also showed lower thalamic subfield volumes. These findings allow uniquely fine-grained insights into hippocampal, thalamic, and amygdala subfield morphology in MDD, linking some of them to the clinical manifestation of MDD.
Collapse
Affiliation(s)
- Weijian Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, HuayuanBei Road 51, Beijing, 100191, China.
- Department of Psychiatry, UMC Location University of Amsterdam, Meibergdreef 5, 1100 DD, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - Jurjen Heij
- Spinoza Centre for Neuroimaging, KNAW, Amsterdam, the Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Shu Liu
- Key Laboratory of Genetic Evolution & Animal Models, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Luka Liebrand
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Matthan Caan
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Biomedical Engineering & Physics, UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, KNAW, Amsterdam, the Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, HuayuanBei Road 51, Beijing, 100191, China.
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute of Education and Child Studies, Section Forensic Family and Youth Care, Leiden University, Leiden, the Netherlands
| | - Guido van Wingen
- Department of Psychiatry, UMC Location University of Amsterdam, Meibergdreef 5, 1100 DD, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Thng G, Shen X, Stolicyn A, Adams MJ, Yeung HW, Batziou V, Conole ELS, Buchanan CR, Lawrie SM, Bastin ME, McIntosh AM, Deary IJ, Tucker-Drob EM, Cox SR, Smith KM, Romaniuk L, Whalley HC. A comprehensive hierarchical comparison of structural connectomes in Major Depressive Disorder cases v. controls in two large population samples. Psychol Med 2024; 54:2515-2526. [PMID: 38497116 DOI: 10.1017/s0033291724000643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND The brain can be represented as a network, with nodes as brain regions and edges as region-to-region connections. Nodes with the most connections (hubs) are central to efficient brain function. Current findings on structural differences in Major Depressive Disorder (MDD) identified using network approaches remain inconsistent, potentially due to small sample sizes. It is still uncertain at what level of the connectome hierarchy differences may exist, and whether they are concentrated in hubs, disrupting fundamental brain connectivity. METHODS We utilized two large cohorts, UK Biobank (UKB, N = 5104) and Generation Scotland (GS, N = 725), to investigate MDD case-control differences in brain network properties. Network analysis was done across four hierarchical levels: (1) global, (2) tier (nodes grouped into four tiers based on degree) and rich club (between-hub connections), (3) nodal, and (4) connection. RESULTS In UKB, reductions in network efficiency were observed in MDD cases globally (d = -0.076, pFDR = 0.033), across all tiers (d = -0.069 to -0.079, pFDR = 0.020), and in hubs (d = -0.080 to -0.113, pFDR = 0.013-0.035). No differences in rich club organization and region-to-region connections were identified. The effect sizes and direction for these associations were generally consistent in GS, albeit not significant in our lower-N replication sample. CONCLUSION Our results suggest that the brain's fundamental rich club structure is similar in MDD cases and controls, but subtle topological differences exist across the brain. Consistent with recent large-scale neuroimaging findings, our findings offer a connectomic perspective on a similar scale and support the idea that minimal differences exist between MDD cases and controls.
Collapse
Affiliation(s)
- Gladi Thng
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Aleks Stolicyn
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark J Adams
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Hon Wah Yeung
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Venia Batziou
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Eleanor L S Conole
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
| | - Colin R Buchanan
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE), Edinburgh, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE), Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Generation Scotland, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Elliot M Tucker-Drob
- Department of Psychology, University of Texas, Austin, TX, USA
- Population Research Center and Center on Aging and Population Sciences, University of Texas, Austin, TX, USA
| | - Simon R Cox
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE), Edinburgh, UK
| | - Keith M Smith
- Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK
| | - Liana Romaniuk
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Heather C Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Generation Scotland, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Yang J, Guo H, Cai A, Zheng J, Liu J, Xiao Y, Ren S, Sun D, Duan J, Zhao T, Tang J, Zhang X, Zhu R, Wang J, Wang F. Aberrant Hippocampal Development in Early-onset Mental Disorders and Promising Interventions: Evidence from a Translational Study. Neurosci Bull 2024; 40:683-694. [PMID: 38141109 PMCID: PMC11178726 DOI: 10.1007/s12264-023-01162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/01/2023] [Indexed: 12/24/2023] Open
Abstract
Early-onset mental disorders are associated with disrupted neurodevelopmental processes during adolescence. The methylazoxymethanol acetate (MAM) animal model, in which disruption in neurodevelopmental processes is induced, mimics the abnormal neurodevelopment associated with early-onset mental disorders from an etiological perspective. We conducted longitudinal structural magnetic resonance imaging (MRI) scans during childhood, adolescence, and adulthood in MAM rats to identify specific brain regions and critical windows for intervention. Then, the effect of repetitive transcranial magnetic stimulation (rTMS) intervention on the target brain region during the critical window was investigated. In addition, the efficacy of this intervention paradigm was tested in a group of adolescent patients with early-onset mental disorders (diagnosed with major depressive disorder or bipolar disorder) to evaluate its clinical translational potential. The results demonstrated that, compared to the control group, the MAM rats exhibited significantly lower striatal volume from childhood to adulthood (all P <0.001). In contrast, the volume of the hippocampus did not show significant differences during childhood (P >0.05) but was significantly lower than the control group from adolescence to adulthood (both P <0.001). Subsequently, rTMS was applied to the occipital cortex, which is anatomically connected to the hippocampus, in the MAM models during adolescence. The MAM-rTMS group showed a significant increase in hippocampal volume compared to the MAM-sham group (P <0.01), while the volume of the striatum remained unchanged (P >0.05). In the clinical trial, adolescents with early-onset mental disorders showed a significant increase in hippocampal volume after rTMS treatment compared to baseline (P <0.01), and these volumetric changes were associated with improvement in depressive symptoms (r = - 0.524, P = 0.018). These findings highlight the potential of targeting aberrant hippocampal development during adolescence as a viable intervention for early-onset mental disorders with neurodevelopmental etiology as well as the promise of rTMS as a therapeutic approach for mitigating aberrant neurodevelopmental processes and alleviating clinical symptoms.
Collapse
Affiliation(s)
- Jingyu Yang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Huiling Guo
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
- School of Biomedical Engineering and Informatics, Nanjing, Medical University, Nanjing, 211166, China
| | - Aoling Cai
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
- School of Biomedical Engineering and Informatics, Nanjing, Medical University, Nanjing, 211166, China
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213004, China
| | - Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Juan Liu
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yao Xiao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Sihua Ren
- Department of Radiology, First Hospital of China Medical University, Shenyang, 110002, China
| | - Dandan Sun
- Department of Cardiac Function, The People's Hospital of China Medical University and the People's Hospital of Liaoning Province, Shenyang, 110067, China
| | - Jia Duan
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Tongtong Zhao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jingwei Tang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing, Medical University, Nanjing, 211166, China
| | - Rongxin Zhu
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430064, China.
- Institute of Neuroscience and Brain Diseases; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China.
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
8
|
Thomas-Odenthal F, Stein F, Vogelbacher C, Alexander N, Bechdolf A, Bermpohl F, Bröckel K, Brosch K, Correll CU, Evermann U, Falkenberg I, Fallgatter A, Flinkenflügel K, Grotegerd D, Hahn T, Hautzinger M, Jansen A, Juckel G, Krug A, Lambert M, Leicht G, Leopold K, Meinert S, Mikolas P, Mulert C, Nenadić I, Pfarr JK, Reif A, Ringwald K, Ritter P, Stamm T, Straube B, Teutenberg L, Thiel K, Usemann P, Winter A, Wroblewski A, Dannlowski U, Bauer M, Pfennig A, Kircher T. Larger putamen in individuals at risk and with manifest bipolar disorder. Psychol Med 2024:1-11. [PMID: 38801091 DOI: 10.1017/s0033291724001193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND Individuals at risk for bipolar disorder (BD) have a wide range of genetic and non-genetic risk factors, like a positive family history of BD or (sub)threshold affective symptoms. Yet, it is unclear whether these individuals at risk and those diagnosed with BD share similar gray matter brain alterations. METHODS In 410 male and female participants aged 17-35 years, we compared gray matter volume (3T MRI) between individuals at risk for BD (as assessed using the EPIbipolar scale; n = 208), patients with a DSM-IV-TR diagnosis of BD (n = 87), and healthy controls (n = 115) using voxel-based morphometry in SPM12/CAT12. We applied conjunction analyses to identify similarities in gray matter volume alterations in individuals at risk and BD patients, relative to healthy controls. We also performed exploratory whole-brain analyses to identify differences in gray matter volume among groups. ComBat was used to harmonize imaging data from seven sites. RESULTS Both individuals at risk and BD patients showed larger volumes in the right putamen than healthy controls. Furthermore, individuals at risk had smaller volumes in the right inferior occipital gyrus, and BD patients had larger volumes in the left precuneus, compared to healthy controls. These findings were independent of course of illness (number of lifetime manic and depressive episodes, number of hospitalizations), comorbid diagnoses (major depressive disorder, attention-deficit hyperactivity disorder, anxiety disorder, eating disorder), familial risk, current disease severity (global functioning, remission status), and current medication intake. CONCLUSIONS Our findings indicate that alterations in the right putamen might constitute a vulnerability marker for BD.
Collapse
Affiliation(s)
- Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Christoph Vogelbacher
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
- Translational Clinical Psychology, Department of Psychology, Philipps-University Marburg, Marburg, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Andreas Bechdolf
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Vivantes Hospital Am Urban and Vivantes Hospital Im Friedrichshain, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Campus Mitte, Berlin, Germany
| | - Felix Bermpohl
- Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kyra Bröckel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, TUD Dresden University of Technology, Dresden, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Christoph U Correll
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Ulrika Evermann
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Irina Falkenberg
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Andreas Fallgatter
- Department of Psychiatry and Psychotherapy, University of Tübingen, Germany; German Center for Mental Health (DZPG), partner site Tübingen, Germany
| | - Kira Flinkenflügel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Martin Hautzinger
- Department of Psychology, Clinical Psychology and Psychotherapy, Eberhard Karls University, Tübingen, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
- Core-Facility BrainImaging, Faculty of Medicine, Philipps-Universität Marburg, Marburg, Germany
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, Bochum, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University Hospital of Bonn, Bonn, Germany
| | - Martin Lambert
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karolina Leopold
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Vivantes Hospital Am Urban and Vivantes Hospital Im Friedrichshain, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, TUD Dresden University of Technology, Dresden, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Pavol Mikolas
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, TUD Dresden University of Technology, Dresden, Germany
| | - Christoph Mulert
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Psychiatry, Justus Liebig University, Giessen, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Kai Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, TUD Dresden University of Technology, Dresden, Germany
| | - Thomas Stamm
- Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Clinical Psychiatry and Psychotherapy Brandenburg Medical School, Neuruppin, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, TUD Dresden University of Technology, Dresden, Germany
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, TUD Dresden University of Technology, Dresden, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| |
Collapse
|
9
|
Viejo-Romero M, Whalley HC, Shen X, Stolicyn A, Smith DJ, Howard DM. An epidemiological study of season of birth, mental health, and neuroimaging in the UK Biobank. PLoS One 2024; 19:e0300449. [PMID: 38776272 PMCID: PMC11111058 DOI: 10.1371/journal.pone.0300449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/27/2024] [Indexed: 05/24/2024] Open
Abstract
Environmental exposures during the perinatal period are known to have a long-term effect on adult physical and mental health. One such influential environmental exposure is the time of year of birth which affects the amount of daylight, nutrients, and viral load that an individual is exposed to within this key developmental period. Here, we investigate associations between season of birth (seasonality), four mental health traits (n = 137,588) and multi-modal neuroimaging measures (n = 33,212) within the UK Biobank. Summer births were associated with probable recurrent Major Depressive Disorder (β = 0.026, pcorr = 0.028) and greater mean cortical thickness in temporal and occipital lobes (β = 0.013 to 0.014, pcorr<0.05). Winter births were associated with greater white matter integrity globally, in the association fibers, thalamic radiations, and six individual tracts (β = -0.013 to -0.022, pcorr<0.05). Results of sensitivity analyses adjusting for birth weight were similar, with an additional association between winter birth and white matter microstructure in the forceps minor and between summer births, greater cingulate thickness and amygdala volume. Further analyses revealed associations between probable depressive phenotypes and a range of neuroimaging measures but a paucity of interactions with seasonality. Our results suggest that seasonality of birth may affect later-life brain structure and play a role in lifetime recurrent Major Depressive Disorder. Due to the small effect sizes observed, and the lack of associations with other mental health traits, further research is required to validate birth season effects in the context of different latitudes, and by co-examining genetic and epigenetic measures to reveal informative biological pathways.
Collapse
Affiliation(s)
- Maria Viejo-Romero
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Heather C. Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Xueyi Shen
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Aleks Stolicyn
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Daniel J. Smith
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - David M. Howard
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
- Institute of Psychiatry, Social, Genetic and Developmental Psychiatry Centre, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
Yang W, Bai X, Guan X, Zhou C, Guo T, Wu J, Xu X, Zhang M, Zhang B, Pu J, Tian J. The longitudinal volumetric and shape changes of subcortical nuclei in Parkinson's disease. Sci Rep 2024; 14:7494. [PMID: 38553518 PMCID: PMC10980751 DOI: 10.1038/s41598-024-58187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Brain structural changes in Parkinson's disease (PD) are progressive throughout the disease course. Changes in surface morphology with disease progression remain unclear. This study aimed to assess the volumetric and shape changes of the subcortical nuclei during disease progression and explore their association with clinical symptoms. Thirty-four patients and 32 healthy controls were enrolled. The global volume and shape of the subcortical nuclei were compared between patients and controls at baseline. The volume and shape changes of the subcortical nuclei were also explored between baseline and 2 years of follow-up. Association analysis was performed between the volume of subcortical structures and clinical symptoms. In patients with PD, there were significantly atrophied areas in the left pallidum and left putamen, while in healthy controls, the right putamen was dilated compared to baseline. The local morphology of the left pallidum was correlated with Mini Mental State Examination scores. The left putamen shape variation was negatively correlated with changes in Unified Parkinson's Disease Rating Scale PART III scores. Local morphological atrophy of the putamen and pallidum is an important pathophysiological change in the development of PD, and is associated with motor symptoms and cognitive status in patients with PD.
Collapse
Affiliation(s)
- Wenyi Yang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Xueqin Bai
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Xiaojun Guan
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Cheng Zhou
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Tao Guo
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Jingjing Wu
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Xiaojun Xu
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Minming Zhang
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Jun Tian
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China.
| |
Collapse
|
11
|
Bae EB, Han KM. A structural equation modeling approach using behavioral and neuroimaging markers in major depressive disorder. J Psychiatr Res 2024; 171:246-255. [PMID: 38325105 DOI: 10.1016/j.jpsychires.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/16/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Major depressive disorder (MDD) has consistently proven to be a multifactorial and highly comorbid disease. Despite recent depression-related research demonstrating causalities between MDD-related factors and a small number of variables, including brain structural changes, a high-statistical power analysis of the various factors is yet to be conducted. We retrospectively analyzed data from 155 participants (84 healthy controls and 71 patients with MDD). We used magnetic resonance imaging and diffusion tensor imaging data, scales assessing childhood trauma, depression severity, cognitive dysfunction, impulsivity, and suicidal ideation. To simultaneously evaluate the causalities between multivariable, we implemented two types of MDD-specified structural equation models (SEM), the behavioral and neurobehavioral models. Behavioral SEM showed significant results in the MDD group: Comparative Fit Index [CFI] = 1.000, Root Mean Square Error of Approximation [RMSEA]) = 0.000), with a strong correlation in the scales for childhood trauma, depression severity, suicidal ideation, impulsivity, and cognitive dysfunction. Based on behavioral SEM, we established neurobehavioral models showing the best-fit in MDD, especially including the right cingulate cortex, central to the posterior corpus callosum, right putamen, pallidum, whole brainstem, and ventral diencephalon, including the thalamus (CFI >0.96, RMSEA <0.05). Our MDD-specific model revealed that the limbic-associated regions are strongly connected with childhood trauma rather than depression severity, and that they independently affect suicidal ideation and cognitive dysfunction. Furthermore, cognitive dysfunction could affect impulsivity.
Collapse
Affiliation(s)
- Eun Bit Bae
- Research Institute for Medical Bigdata Science, Korea University, Seoul, Republic of Korea; Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Lu W, Wen J. Neuroinflammation and Post-Stroke Depression: Focus on the Microglia and Astrocytes. Aging Dis 2024:AD.2024.0214-1. [PMID: 38421829 DOI: 10.14336/ad.2024.0214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Post-stroke depression (PSD), a frequent and disabling complication of stroke, has a strong impact on almost thirty percent of stroke survivors. The pathogenesis of PSD is not completely clear so far. Neuroinflammation following stroke is one of underlying mechanisms that involves in the pathophysiology of PSD and plays an important function in the development of depression and is regarded as a sign of depression. During the neuroinflammation after ischemic stroke onset, both astrocytes and microglia undergo a series of morphological and functional changes and play pro-inflammatory or anti-inflammatory effect in the pathological process of stroke. Importantly, astrocytes and microglia exert dual roles in the pathological process of PSD due to the phenotypic transformation. We summarize the latest evidence of neuroinflammation involving in PSD in this review, focus on the phenotypic transformation of microglia and astrocytes following ischemic stroke and reveal the dual roles of both microglia and astrocytes in the PSD via modulating the neuroinflammation.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Wu B, Chen Y, Long X, Cao Y, Xie H, Wang X, Roberts N, Gong Q, Jia Z. Altered single-subject gray matter structural networks in first-episode drug-naïve adolescent major depressive disorder. Psychiatry Res 2023; 329:115557. [PMID: 37890406 DOI: 10.1016/j.psychres.2023.115557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/11/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Although previous studies have demonstrated regional gray matter (GM) structural abnormalities in adolescents with major depressive disorder (MDD), how the topological organization of GM networks is affected in these patients is still unclear. Structural magnetic resonance imaging data were acquired from 100 first-episode drug-naïve adolescent MDD patients and 80 healthy controls (HCs). Whole-brain GM structural network was constructed for each subject, and a graph theory analysis was used to calculate the topological metrics of GM networks. Adolescent MDD patients showed significantly lower cluster coefficient and local efficiency compared to HCs. Compared to controls, adolescent MDD patients showed higher nodal centralities in the bilateral cuneus, left lingual gyrus, and right middle occipital gyrus and lower nodal centralities in the bilateral dorsolateral superior frontal gyrus, bilateral middle frontal gyrus, right anterior cingulate and paracingulate gyri, bilateral hippocampus, bilateral amygdala, bilateral caudate nucleus, and bilateral thalamus. Nodal centralities of the hippocampus were negatively associated with symptom severity and illness duration. Our findings suggest disrupted topological organization of GM structural networks in adolescent MDD patients. Impaired local segregation and abnormal nodal centralities in the prefrontal-subcortical-limbic areas and visual cortex regions may play important roles in the neurobiology of adolescent-onset MDD.
Collapse
Affiliation(s)
- Baolin Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ying Chen
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xiuli Wang
- Department of Clinical Psychology, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Neil Roberts
- The Queens Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Zhang E, Hauson AO, Pollard AA, Meis B, Lackey NS, Carson B, Khayat S, Fortea L, Radua J. Lateralized grey matter volume changes in adolescents versus adults with major depression: SDM-PSI meta-analysis. Psychiatry Res Neuroimaging 2023; 335:111691. [PMID: 37837793 DOI: 10.1016/j.pscychresns.2023.111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 10/16/2023]
Abstract
The current study is the first meta-analysis to examine grey matter volume (GMV) changes in adolescents and across the lifespan in major depressive disorder (MDD). Seed-based d mapping-with permutation of subject images (SDM-PSI) has advantages over previous coordinate-based meta-analytical methods (CBMA), such as reducing bias (via the MetaNSUE algorithm) and including non-statistically significant unreported effects. SDM-PSI was used to analyze 105 whole-brain GMV voxel-based morphometry (VBM) studies comparing 6,530 individuals with MDD versus 6,821 age-matched healthy controls (HC). A laterality effect was observed in which adults with MDD showed lower GMV than adult HC in left fronto-temporo-parietal structures (superior temporal gyrus, insula, Rolandic operculum, and inferior frontal gyrus). However, these abnormalities were not statistically significant for adolescent MDD versus adolescent HC. Instead, adolescent MDD showed lower GMV than adult MDD in right temporo-parietal structures (angular gyrus and middle temporal gyrus). These regional differences may be used as potential biomarkers to predict and monitor treatment outcomes as well as to choose the most effective treatments in adolescents versus adults. Finally, due to the paucity of youth, older adult, and longitudinal studies, future studies should attempt to replicate these GMV findings and examine whether they correlate with treatment response and illness severity.
Collapse
Affiliation(s)
- Emily Zhang
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Alexander O Hauson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America; Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America.
| | - Anna A Pollard
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Benjamin Meis
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Nicholas S Lackey
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Bryce Carson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Sarah Khayat
- Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
15
|
Bashford-Largo J, R Blair RJ, Blair KS, Dobbertin M, Dominguez A, Hatch M, Bajaj S. Identification of structural brain alterations in adolescents with depressive symptomatology. Brain Res Bull 2023; 201:110723. [PMID: 37536609 PMCID: PMC10451038 DOI: 10.1016/j.brainresbull.2023.110723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Depressive symptoms can emerge as early as childhood and may lead to adverse situations in adulthood. Studies have examined structural brain alternations in individuals with depressive symptoms, but findings remain inconclusive. Furthermore, previous studies have focused on adults or used a categorical approach to assess depression. The current study looks to identify grey matter volumes (GMV) that predict depressive symptomatology across a clinically concerning sample of adolescents. METHODS Structural MRI data were collected from 338 clinically concerning adolescents (mean age = 15.30 SD=2.07; mean IQ = 101.01 SD=12.43; 132 F). Depression symptoms were indexed via the Mood and Feelings Questionnaire (MFQ). Freesurfer was used to parcellate the brain into 68 cortical regions and 14 subcortical regions. GMV was extracted from all 82 brain areas. Multiple linear regression was used to look at the relationship between MFQ scores and region-specific GMV parameter. Follow up regressions were conducted to look at potential effects of psychiatric diagnoses and medication intake. RESULTS Our regression analysis produced a significant model (R2 = 0.446, F(86, 251) = 2.348, p < 0.001). Specifically, there was a negative association between GMV of the left parahippocampal (B = -0.203, p = 0.005), right rostral anterior cingulate (B = -0.162, p = 0.049), and right frontal pole (B = -0.147, p = 0.039) and a positive association between GMV of the left bank of the superior temporal sulcus (B = 0.173, p = 0.029). Follow up analyses produced results proximal to the main analysis. CONCLUSIONS Altered regional brain volumes may serve as biomarkers for the development of depressive symptoms during adolescence. These findings suggest a homogeneity of altered cortical structures in adolescents with depressive symptoms.
Collapse
Affiliation(s)
- Johannah Bashford-Largo
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - R James R Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Karina S Blair
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Matthew Dobbertin
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA; Child and Adolescent Inpatient Psychiatric Unit, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Ahria Dominguez
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Melissa Hatch
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Sahil Bajaj
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
16
|
Chen N, Guo M, Li Y, Hu X, Yao Z, Hu B. Estimation of Discriminative Multimodal Brain Network Connectivity Using Message-Passing-Based Nonlinear Network Fusion. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2398-2406. [PMID: 34941518 DOI: 10.1109/tcbb.2021.3137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Effective estimation of brain network connectivity enables better unraveling of the extraordinary complexity interactions of brain regions and helps in auxiliary diagnosis of psychiatric disorders. Considering different modalities can provide comprehensive characterizations of brain connectivity, we propose the message-passing-based nonlinear network fusion (MP-NNF) algorithm to estimate multimodal brain network connectivity. In the proposed method, the initial functional and structural networks were computed from fMRI and DTI separately. Then, we update every unimodal network iteratively, making it more similar to the others in every iteration, and finally converge to one unified network. The estimated brain connectivities integrate complementary information from multiple modalities while preserving their original structure, by adding the strong connectivities present in unimodal brain networks and eliminating the weak connectivities. The effectiveness of the method was evaluated by applying the learned brain connectivity for the classification of major depressive disorder (MDD). Specifically, 82.18% classification accuracy was achieved even with the simple feature selection and classification pipeline, which significantly outperforms the competing methods. Exploration of brain connectivity contributed to MDD identification suggests that the proposed method not only improves the classification performance but also was sensitive to critical disease-related neuroimaging biomarkers.
Collapse
|
17
|
Xu M, Wang Q, Li B, Qian S, Wang S, Wang Y, Chen C, Liu Z, Ji Y, Liu K, Xin K, Niu Y. Cerebellum and hippocampus abnormalities in patients with insomnia comorbid depression: a study on cerebral blood perfusion and functional connectivity. Front Neurosci 2023; 17:1202514. [PMID: 37397441 PMCID: PMC10311636 DOI: 10.3389/fnins.2023.1202514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023] Open
Abstract
Chronic insomnia disorder and major depressive disorder are highly-occurred mental diseases with extensive social harm. The comorbidity of these two diseases is commonly seen in clinical practice, but the mechanism remains unclear. To observe the characteristics of cerebral blood perfusion and functional connectivity in patients, so as to explore the potential pathogenesis and biological imaging markers, thereby improving the understanding of their comorbidity mechanism. 44 patients with chronic insomnia disorder comorbid major depressive disorder and 43 healthy controls were recruited in this study. The severity of insomnia and depression were assessed by questionnaire. The cerebral blood perfusion and functional connectivity values of participants were obtained to, analyze their correlation with questionnaire scores. The cerebral blood flow in cerebellum, vermis, right hippocampus, left parahippocampal gyrus of patients were reduced, which was negatively related to the severity of insomnia or depression. The connectivities of left cerebellum-right putamen and right hippocampus-left inferior frontal gyrus were increased, showing positive correlations with the severity of insomnia and depression. Decreased connectivities of left cerebellum-left fusiform gyrus, left cerebellum-left occipital lobe, right hippocampus-right paracentral lobule, right hippocampus-right precentral gyrus were partially associated with insomnia or depression. The connectivity of right hippocampus-left inferior frontal gyrus may mediate between insomnia and depression. Insomnia and depression can cause changes in cerebral blood flow and brain function. Changes in the cerebellar and hippocampal regions are the result of insomnia and depression. They reflect abnormalities in sleep and emotion regulation. That may be involved in the pathogenesis of comorbidity.
Collapse
Affiliation(s)
- Minghe Xu
- Postgraduate Training Base of the 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinzhou Medical University, Jinan, China
| | - Qian Wang
- Department of Radiology, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao, China
| | - Bo Li
- Department of Radiology, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Shaowen Qian
- Department of Radiology, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Shuang Wang
- Department of Radiology, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Yu Wang
- Department of Radiology, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Chunlian Chen
- Department of Radiology, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Zhe Liu
- Department of Radiology, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Yuqing Ji
- Department of Radiology, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Kai Liu
- Department of Radiology, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Kuolin Xin
- Sleep Clinic, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Yujun Niu
- Department of Radiology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
18
|
Wang Z, Zhang D, Guan M, Ren X, Li D, Yin K, Zhou P, Li B, Wang H. Increased thalamic gray matter volume induced by repetitive transcranial magnetic stimulation treatment in patients with major depressive disorder. Front Psychiatry 2023; 14:1163067. [PMID: 37252157 PMCID: PMC10218132 DOI: 10.3389/fpsyt.2023.1163067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose Repetitive transcranial magnetic stimulation (rTMS) is an effective therapy in improving depressive symptoms in MDD patients, but the intrinsic mechanism is still unclear. In this study, we investigated the influence of rTMS on brain gray matter volume for alleviating depressive symptoms in MDD patients using structural magnetic resonance imaging (sMRI) data. Methods Patients with first episode, unmedicated patients with MDD (n = 26), and healthy controls (n = 31) were selected for this study. Depressive symptoms were assessed before and after treatment by using the HAMD-17 score. High-frequency rTMS treatment was conducted in patients with MDD over 15 days. The rTMS treatment target is located at the F3 point of the left dorsolateral prefrontal cortex. Structural magnetic resonance imaging (sMRI) data were collected before and after treatment to compare the changes in brain gray matter volume. Results Before treatment, patients with MDD had significantly reduced gray matter volumes in the right fusiform gyrus, left and right inferior frontal gyrus (triangular part), left inferior frontal gyrus (orbital part), left parahippocampal gyrus, left thalamus, right precuneus, right calcarine fissure, and right median cingulate gyrus compared with healthy controls (P < 0.05). After rTMS treatment, significant growth in gray matter volume of the bilateral thalamus was observed in depressed patients (P < 0.05). Conclusion Bilateral thalamic gray matter volumes were enlarged in the thalamus of MDD patients after rTMS treatment and may be the underlying neural mechanism for the treatment of rTMS on depression.
Collapse
Affiliation(s)
- Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Dongning Zhang
- Department of Mental Health, Xi'an Medical College, Xi'an, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical College, Xi'an, China
| | - Xiaojiao Ren
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Dan Li
- Department of Psychiatry, Yulin Fifth Hospital, Yulin, China
| | - Kaiming Yin
- Department of Psychiatry, Shi Jiazhuang Psychological Hospital, Shijiazhuang, China
| | - Ping Zhou
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Baojuan Li
- School of Biomedical Engineering, Air Force Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
19
|
Liu C, Duan G, Zhang S, Wei Y, Liang L, Geng B, Piao R, Xu K, Li P, Zeng X, Deng D, Liu P. Altered functional connectivity density and structural covariance networks in women with premenstrual syndrome. Quant Imaging Med Surg 2023; 13:835-851. [PMID: 36819237 PMCID: PMC9929399 DOI: 10.21037/qims-22-506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023]
Abstract
Background Premenstrual syndrome (PMS) is a menstrual-related disorder, characterized by physical, emotional, behavioral and cognitive symptoms. However, the neuropathological mechanisms of PMS remain unclear. This study aimed to investigate the frequency-specific functional connectivity density (FCD) and structural covariance in PMS. Methods Functional and T1-weighted structural data were obtained from 35 PMS patients and 36 healthy controls (HCs). This study was a cross-sectional and prospective design. The local/long-range FCD (LFCD/LRFCD) across slow-4 (0.027-0.073 Hz) and slow-5 (0.01-0.027 Hz) bands were computed, and two-way analysis of variance (ANOVA) was performed to ascertain the main effects of group and interaction effects between group and frequency band. Receiver operating characteristic (ROC) curve was performed to investigate reliable biomarkers for identifying PMS from HCs. Based on the ROC results, characterized the changes of whole-brain structural covariance patterns of striatum subregions in two groups. Correlation analysis was applied to examine relationships between the clinical symptoms and abnormal brain regions. Results Compared with HCs, PMS patients exhibited: (I) aberrant functional communication in the middle cingulate cortex and precentral gyrus; (II) significant frequency band-by-group interaction effects of the striatum, thalamus and orbitofrontal cortex; (III) the better classification ability of the LFCD in the striatum in ROC analysis (slow-5); (IV) decreased gray matter volumes in the caudate subregions and decreased structural associations of between the caudate subregions and frontal cortex; (V) the LFCD value in thalamus were significantly negatively correlated with the sleep problems (slow-5). Conclusions Based on multi-modal magnetic resonance imaging (MRI) analysis, this study might imply the aberrant emotional regulation and cognitive function related to menstrual cycle in PMS and improve our understanding of the pathophysiologic mechanism in PMS from novel perspective.
Collapse
Affiliation(s)
- Chengxiang Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi’an, China;,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China;,Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, China
| | - Gaoxiong Duan
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shuming Zhang
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi’an, China;,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China;,Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, China
| | - Yichen Wei
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lingyan Liang
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Bowen Geng
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi’an, China;,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China;,Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, China
| | - Ruiqing Piao
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi’an, China;,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China;,Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, China
| | - Ke Xu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi’an, China;,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China;,Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, China
| | - Pengyu Li
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi’an, China;,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China;,Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, China
| | - Xiao Zeng
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi’an, China;,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China;,Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, China
| | - Demao Deng
- Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Peng Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi’an, China;,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China;,Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, China
| |
Collapse
|
20
|
Hung CI, Wu CT, Chao YP. Differences in gray matter volumes of subcortical nuclei between major depressive disorder with and without persistent depressive disorder. J Affect Disord 2023; 321:161-166. [PMID: 36272460 DOI: 10.1016/j.jad.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/01/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study aimed to compare the differences in gray matter volumes (GMVs) of subcortical nuclei between major depressive disorder (MDD) patients with and without persistent depressive disorder (PDD) at long-term follow-up. METHODS 114 and 94 subjects with MDD, including 48 and 41 with comorbid PDD, were enrolled to undergo high-resolution T1-weighted imaging at first (FIP) and second (three years later, SIP) investigation points, respectively. FreeSurfer was used to extract the GMVs of seven subcortical nuclei, and Generalized Estimating Equation models were employed to estimate the differences in GMVs of subcortical nuclei between the two subgroups. RESULTS The PDD subgroup had a significantly greater depressive severity and a higher percentage of patients undergoing pharmacotherapy at the FIP as compared with the non-PDD subgroup. These differences became insignificant at the SIP. The PDD subgroup had a significantly (p < 0.003) smaller GMV in the right putamen at the SIP and in the right nucleus accumbens (NAc) at the FIP and SIP as compared with the non-PDD subgroup. After controlling for clinical variables, PDD was independently associated with smaller GMVs in the right putamen and NAc. LIMITATIONS Imaging was not performed at baseline and pharmacotherapy was not controlled at the FIP and SIP. CONCLUSIONS MDD with PDD was associated with smaller GMVs in the right putamen and NAc as compared with MDD without PDD. Whether the two regions are biomarkers related to a poor prognosis and the chronicity of depression requires further study.
Collapse
Affiliation(s)
- Ching-I Hung
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Te Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
21
|
Xu C, Xu H, Yang Z, Guo C. Regional shape alteration of left thalamus associated with late chronotype in young adults. Chronobiol Int 2023; 40:234-245. [PMID: 36597182 DOI: 10.1080/07420528.2022.2162916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronotype reflects individual differences in circadian rhythms and influences individual psychology and behavior. Previous studies found altered subcortical structures are closely related to individual chronotypes. However, these studies have been conducted mainly using voxel-based morphometry and traditional volume measurement methods with certain limitations. This study aimed to investigate subcortical aberrant volume and shape patterns in late chronotypes (LC) young adults compared to early chronotypes (EC) young adults. Magnetic resonance imaging (MRI) scanning and chronotype assessment were performed once for all participants, including 49 LC young adults and 49 matched EC young adults. The morningness and eveningness preferences were assessed using the Chronotype Questionnaire. A vertex-wise shape analysis was conducted to analyze structural MRI data. There were no significant differences in brain tissue volume and subcortical structural volume between groups. LC young adults showed significant regional shape atrophy in the left ventral posterior thalamus compared to EC individuals. A significant correlation was found between the regional shape atrophy of left ventral posterior thalamus and the score of Chronotype Questionnaire in LC young adults. Regional shape alteration of left thalamus was closely related to the chronotype, and LC may be a potential risk factor for sleep-related behavioral and mental problems in young adults. However, the predominantly female sample and the failure to investigate the effect of chronotype on the subcortical structure-function network are limitations of this study. Further prospective studies are needed to investigate the temporal characteristics of thalamic shape changes and consequent behavioral and psychiatric problems in adults with LC.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Hui Xu
- Peter Boris Centre for Addictions Research, McMaster University/St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Zhenliang Yang
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Chenguang Guo
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
Zhang L, Pang M, Liu X, Hao X, Wang M, Xie C, Zhang Z, Yuan Y, Zhang D. Incorporating multi-stage diagnosis status to mine associations between genetic risk variants and the multi-modality phenotype network in major depressive disorder. Front Psychiatry 2023; 14:1139451. [PMID: 36937715 PMCID: PMC10017727 DOI: 10.3389/fpsyt.2023.1139451] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Depression (major depressive disorder, MDD) is a common and serious medical illness. Globally, it is estimated that 5% of adults suffer from depression. Recently, imaging genetics receives growing attention and become a powerful strategy for discoverying the associations between genetic variants (e.g., single-nucleotide polymorphisms, SNPs) and multi-modality brain imaging data. However, most of the existing MDD imaging genetic research studies conducted by clinicians usually utilize simple statistical analysis methods and only consider single-modality brain imaging, which are limited in the deeper discovery of the mechanistic understanding of MDD. It is therefore imperative to utilize a powerful and efficient technology to fully explore associations between genetic variants and multi-modality brain imaging. In this study, we developed a novel imaging genetic association framework to mine the multi-modality phenotype network between genetic risk variants and multi-stage diagnosis status. Specifically, the multi-modality phenotype network consists of voxel node features and connectivity edge features from structural magnetic resonance imaging (sMRI) and resting-state functional magnetic resonance imaging (rs-fMRI). Thereafter, an association model based on multi-task learning strategy was adopted to fully explore the relationship between the MDD risk SNP and the multi-modality phenotype network. The multi-stage diagnosis status was introduced to further mine the relation among the multiple modalities of different subjects. A multi-modality brain imaging data and genotype data were collected by us from two hospitals. The experimental results not only demonstrate the effectiveness of our proposed method but also identify some consistent and stable brain regions of interest (ROIs) biomarkers from the node and edge features of multi-modality phenotype network. Moreover, four new and potential risk SNPs associated with MDD were discovered.
Collapse
Affiliation(s)
- Li Zhang
- College of Computer Science and Technology, Nanjing Forestry University, Nanjing, China
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- *Correspondence: Li Zhang
| | - Mengqian Pang
- College of Computer Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Xiaoyun Liu
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaoke Hao
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Meiling Wang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Chunming Xie
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Yonggui Yuan
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Daoqiang Zhang
| |
Collapse
|
23
|
Chibaatar E, Watanabe K, Okamoto N, Orkhonselenge N, Natsuyama T, Hayakawa G, Ikenouchi A, Kakeda S, Yoshimura R. Volumetric assessment of individual thalamic nuclei in patients with drug-naïve, first-episode major depressive disorder. Front Psychiatry 2023; 14:1151551. [PMID: 37032922 PMCID: PMC10073419 DOI: 10.3389/fpsyt.2023.1151551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Despite the previous inconsistent findings of structural and functional abnormalities of the thalamus in patients with major depressive disorder (MDD), the disruption of the thalamic nuclei in the pathophysiology of this disorder has not yet been adequately studied. Therefore, we investigated the volumetric changes of thalamic subregions and their nuclei in drug-naïve, first-episode MDD patients. We also investigated the association between HAM-D scores, a clinical scale frequently used to evaluate the severity of depression and thalamic nuclei volumes in MDD patients. Methods This study included 76 drug-naïve MDD patients and an equal number of healthy subjects. Magnetic resonance imaging (MRI) data were obtained using a 3T MR system and thalamic nuclei volumes were evaluated using FreeSurfer ver.7.11. The volumetric differences were compared by one-way analysis of covariance (ANCOVA) and to ensure that effects were not accounted for by other factors, age, sex, and ETICV variables were included as covariates. Results We observed significant volume reductions of the left whole thalamus (p < 0.003) and several thalamic nuclei mostly on the left side in the MDD group compared with healthy controls (HCs). Furthermore, we have revealed weak negative correlations between several thalamic nuclei volumes and HAM-D total and subscale scores. Discussion This is the first research study to investigate alterations of the various thalamic nuclei volumes in MDD patients compared with HCs. Moreover, we first analyzed the association between individual thalamic nuclei volumes and HAM-D subscale scores. Though our study may be restricted at certain levels, especially by the demographic difference between the two groups, they possibly contribute at a preliminary level to understanding the thalamic structural changes at its subregions in patients with drug-naïve, first-episode MDD.
Collapse
Affiliation(s)
- Enkhmurun Chibaatar
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Keita Watanabe
- Open Innovation Institute, Kyoto University, Kyoto, Japan
| | - Naomichi Okamoto
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Nasanbadrakh Orkhonselenge
- Department of Second Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tomoya Natsuyama
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Gaku Hayakawa
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Atsuko Ikenouchi
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Kakeda
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
- *Correspondence: Reiji Yoshimura,
| |
Collapse
|
24
|
Jiang J, Li L, Lin J, Hu X, Zhao Y, Sweeney JA, Gong Q. A voxel-based meta-analysis comparing medication-naive patients of major depression with treated longer-term ill cases. Neurosci Biobehav Rev 2023; 144:104991. [PMID: 36476776 DOI: 10.1016/j.neubiorev.2022.104991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Structural neuroimaging studies have identified brain areas implicated in the pathogenesis of major depressive disorder (MDD). However, findings have been inconsistent, potentially due to variable illness duration and effects of antidepressant treatment. Using a meta-analytic approach, we compared gray matter (GM) volumes in patients grouped by medication status (naïve and treated) and illness duration (early course and long-term ill) to identify potential treatment and illness duration effects on brain structure. A total of 70 studies were included, including 3682 patients and 3469 controls. The pooled analysis found frontal, temporal and limbic regions with decreased GM volume in MDD patients. Additional analyses indicated that larger GM volume in the right striatum and smaller GM volume in the right precuneus are likely to be associated with drug effects, while smaller GM volume in the right temporal gyrus may correlate with longer illness duration. Similar GM decreases in bilateral medial frontal cortex between patient subgroups suggest that this alteration may persist over the course of illness and drug treatment.
Collapse
Affiliation(s)
- Jing Jiang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Lei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinping Lin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian, China.
| |
Collapse
|
25
|
Prolonged Longitudinal Transcutaneous Auricular Vagus Nerve Stimulation Effect on Striatal Functional Connectivity in Patients with Major Depressive Disorder. Brain Sci 2022; 12:brainsci12121730. [PMID: 36552189 PMCID: PMC9776392 DOI: 10.3390/brainsci12121730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (taVNS) is effective for treating major depressive disorder (MDD). We aimed to explore the modulating effect of prolonged longitudinal taVNS on the striatal subregions' functional connectivity (FC) in MDD patients. METHODS Sixteen MDD patients were enrolled and treated with taVNS for 8 weeks. Sixteen healthy control subjects (HCs) were recruited without intervention. The resting-state FC (rsFC) based on striatal subregion seed points and the Hamilton Depression Scale (HAMD) were evaluated in the MDD patients and HCs at baseline and after 8 weeks. A two-way ANCOVA test was performed on each rsFC metric to obtain the (group-by-time) interactions. RESULTS The rsFC values between the left ventral caudate (vCa) and right ventral prefrontal cortex (vPFC), and between the right nucleus accumbens (NAc) and right dorsal medial prefrontal cortex (dmPFC) and ventrolateral prefrontal cortex (vlPFC) are lower in the MDD patients compared to the HCs at baseline, and increase following taVNS; the rsFC values between the left vCa and right, superior occipital gyrus (SOG), and between the left dorsal caudate (dCa) and right cuneus are higher in MDD patients and decrease following taVNS. CONCLUSIONS Prolonged longitudinal taVNS can modulate the striatum rsFC with the prefrontal cortex, occipital cortex, temporal cortex, and intra-striatum, and these changes partly underlie any symptomatic improvements. The results indicate that prolonged longitudinal taVNS may produce beneficial treatment effects by modulating the cortical striatum circuitry in patients with MDD.
Collapse
|
26
|
Gray JP, Manuello J, Alexander-Bloch AF, Leonardo C, Franklin C, Choi KS, Cauda F, Costa T, Blangero J, Glahn DC, Mayberg HS, Fox PT. Co-alteration Network Architecture of Major Depressive Disorder: A Multi-modal Neuroimaging Assessment of Large-scale Disease Effects. Neuroinformatics 2022; 21:443-455. [PMID: 36469193 DOI: 10.1007/s12021-022-09614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) exhibits diverse symptomology and neuroimaging studies report widespread disruption of key brain areas. Numerous theories underpinning the network degeneration hypothesis (NDH) posit that neuropsychiatric diseases selectively target brain areas via meaningful network mechanisms rather than as indistinct disease effects. The present study tests the hypothesis that MDD is a network-based disorder, both structurally and functionally. Coordinate-based meta-analysis and Activation Likelihood Estimation (CBMA-ALE) were used to assess the convergence of findings from 92 previously published studies in depression. An extension of CBMA-ALE was then used to generate a node-and-edge network model representing the co-alteration of brain areas impacted by MDD. Standardized measures of graph theoretical network architecture were assessed. Co-alteration patterns among the meta-analytic MDD nodes were then tested in independent, clinical T1-weighted structural magnetic resonance imaging (MRI) and resting-state functional (rs-fMRI) data. Differences in co-alteration profiles between MDD patients and healthy controls, as well as between controls and clinical subgroups of MDD patients, were assessed. A 65-node 144-edge co-alteration network model was derived for MDD. Testing of co-alteration profiles in replication data using the MDD nodes provided distinction between MDD and healthy controls in structural data. However, co-alteration profiles were not distinguished between patients and controls in rs-fMRI data. Improved distinction between patients and healthy controls was observed in clinically homogenous MDD subgroups in T1 data. MDD abnormalities demonstrated both structural and functional network architecture, though only structural networks exhibited between-groups differences. Our findings suggest improved utility of structural co-alteration networks for ongoing biomarker development.
Collapse
|
27
|
Wu N, Yu H, Xu M. Alteration of brain nuclei in obese children with and without Prader-Willi syndrome. Front Neuroinform 2022; 16:1032636. [PMID: 36465689 PMCID: PMC9716021 DOI: 10.3389/fninf.2022.1032636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Introduction: Prader-Willi syndrome (PWS) is a multisystem genetic imprinting disorder mainly characterized by hyperphagia and childhood obesity. Extensive structural alterations are expected in PWS patients, and their influence on brain nuclei should be early and profound. To date, few studies have investigated brain nuclei in children with PWS, although functional and structural alterations of the cortex have been reported widely. Methods: In the current study, we used T1-weighted magnetic resonance imaging to investigate alterations in brain nuclei by three automated analysis methods: shape analysis to evaluate the shape of 14 cerebral nuclei (bilateral thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, and nucleus accumbens), automated segmentation methods integrated in Freesurfer 7.2.0 to investigate the volume of hypothalamic subregions, and region of interest-based analysis to investigate the volume of deep cerebellar nuclei (DCN). Twelve age- and sex-matched children with PWS, 18 obese children without PWS (OB) and 18 healthy controls participated in this study. Results: Compared with control and OB individuals, the PWS group exhibited significant atrophy in the bilateral thalamus, pallidum, hippocampus, amygdala, nucleus accumbens, right caudate, bilateral hypothalamus (left anterior-inferior, bilateral posterior, and bilateral tubular inferior subunits) and bilateral DCN (dentate, interposed, and fastigial nuclei), whereas no significant difference was found between the OB and control groups. Discussion: Based on our evidence, we suggested that alterations in brain nuclei influenced by imprinted genes were associated with clinical manifestations of PWS, such as eating disorders, cognitive disability and endocrine abnormalities, which were distinct from the neural mechanisms of obese children.
Collapse
Affiliation(s)
- Ning Wu
- Department of Medical Imaging, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Huan Yu
- Department of Radiology, Liangxiang Hospital, Beijing, China
| | - Mingze Xu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
28
|
Nazarova A, Schmidt M, Cookey J, Uher R. Neural markers of familial risk for depression - A systematic review. Dev Cogn Neurosci 2022; 58:101161. [PMID: 36242901 PMCID: PMC9557819 DOI: 10.1016/j.dcn.2022.101161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 01/13/2023] Open
Abstract
Structural and functional brain alterations are found in adults with depression. It is not known whether these changes are a result of illness or exist prior to disorder onset. Asymptomatic offspring of parents with depression offer a unique opportunity to research neural markers of familial risk to depression and clarify the temporal sequence between brain changes and disorder onset. We conducted a systematic review to investigate whether asymptomatic offspring at high familial risk have structural and functional brain changes like those reported in adults with depression. Our literature search resulted in 44 studies on 18,645 offspring ranging from 4 weeks to 25 years old. Reduced cortical thickness and white matter integrity, and altered striatal reward processing were the most consistent findings in high-risk offspring across ages. These alterations are also present in adults with depression, suggesting the existence of neural markers of familial risk for depression. Additional studies reproducing current results, streamlining fMRI data analyses, and investigating underexplored topics (i.e intracortical myelin, gyrification, subcortical shape) may be among the next steps required to improve our understanding of neural markers indexing the vulnerability to depression.
Collapse
Affiliation(s)
- Anna Nazarova
- Department of Psychiatry, Dalhousie University, 5909 Veterans’ Memorial Lane, Abbie J. Lane Memorial Building QEII Health Sciences Centre, B3H 2E2 Halifax, NS, Canada,Nova Scotia Health Authority, 5909 Veterans’ Memorial Lane, B3H 2E2 Halifax, NS, Canada
| | - Matthias Schmidt
- Nova Scotia Health Authority, 5909 Veterans’ Memorial Lane, B3H 2E2 Halifax, NS, Canada,Department of Diagnostic Radiology, Dalhousie University, Victoria Building, Office of the Department Head, Room 307, 1276 South Park Street PO BOX 9000, B3H 2Y9 Halifax NS, Canada
| | - Jacob Cookey
- Department of Psychiatry, Dalhousie University, 5909 Veterans’ Memorial Lane, Abbie J. Lane Memorial Building QEII Health Sciences Centre, B3H 2E2 Halifax, NS, Canada,Nova Scotia Health Authority, 5909 Veterans’ Memorial Lane, B3H 2E2 Halifax, NS, Canada
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, 5909 Veterans’ Memorial Lane, Abbie J. Lane Memorial Building QEII Health Sciences Centre, B3H 2E2 Halifax, NS, Canada,Nova Scotia Health Authority, 5909 Veterans’ Memorial Lane, B3H 2E2 Halifax, NS, Canada,Corresponding author at: Department of Psychiatry, Dalhousie University, 5909 Veterans’ Memorial Lane, Abbie J. Lane Memorial Building QEII Health Sciences Centre, B3H 2E2 Halifax, NS, Canada.
| |
Collapse
|
29
|
Fouche JP, Groenewold NA, Sevenoaks T, Heany S, Lochner C, Alonso P, Batistuzzo MC, Cardoner N, Ching CRK, de Wit SJ, Gutman B, Hoexter MQ, Jahanshad N, Kim M, Kwon JS, Mataix-Cols D, Menchon JM, Miguel EC, Nakamae T, Phillips ML, Pujol J, Sakai Y, Yun JY, Soriano-Mas C, Thompson PM, Yamada K, Veltman DJ, van den Heuvel OA, Stein DJ. Shape analysis of subcortical structures in obsessive-compulsive disorder and the relationship with comorbid anxiety, depression, and medication use: A meta-analysis by the OCD Brain Imaging Consortium. Brain Behav 2022; 12:e2755. [PMID: 36106505 PMCID: PMC9575597 DOI: 10.1002/brb3.2755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Neuroimaging studies of obsessive-compulsive disorder (OCD) patients have highlighted the important role of deep gray matter structures. Less work has however focused on subcortical shape in OCD patients. METHODS Here we pooled brain MRI scans from 412 OCD patients and 368 controls to perform a meta-analysis utilizing the ENIGMA-Shape protocol. In addition, we investigated modulating effects of medication status, comorbid anxiety or depression, and disease duration on subcortical shape. RESULTS There was no significant difference in shape thickness or surface area between OCD patients and healthy controls. For the subgroup analyses, OCD patients with comorbid depression or anxiety had lower thickness of the hippocampus and caudate nucleus and higher thickness of the putamen and pallidum compared to controls. OCD patients with comorbid depression had lower shape surface area in the thalamus, caudate nucleus, putamen, hippocampus, and nucleus accumbens and higher shape surface area in the pallidum. OCD patients with comorbid anxiety had lower shape surface area in the putamen and the left caudate nucleus and higher shape surface area in the pallidum and the right caudate nucleus. Further, OCD patients on medication had lower shape thickness of the putamen, thalamus, and hippocampus and higher thickness of the pallidum and caudate nucleus, as well as lower shape surface area in the hippocampus and amygdala and higher surface area in the putamen, pallidum, and caudate nucleus compared to controls. There were no significant differences between OCD patients without co-morbid anxiety and/or depression and healthy controls on shape measures. In addition, there were also no significant differences between OCD patients not using medication and healthy controls. CONCLUSIONS The findings here are partly consistent with prior work on brain volumes in OCD, insofar as they emphasize that alterations in subcortical brain morphology are associated with comorbidity and medication status. Further work is needed to understand the biological processes contributing to subcortical shape.
Collapse
Affiliation(s)
- Jean-Paul Fouche
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nynke A Groenewold
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Tatum Sevenoaks
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sarah Heany
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Christine Lochner
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Pino Alonso
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.,Carlos III Health Institute, Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Marcelo C Batistuzzo
- Department & Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Department of Methods and Techniques in Psychology, Pontifical Catholic University, Sao Paulo, SP, Brazil
| | - Narcis Cardoner
- Carlos III Health Institute, Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Sant Pau Mental Health Group, Institut d'Investigacio Biomedica Sant Pau (IBB-Sant Pau), Hospital de la Sant Creu i Sant Pau, Barcelona, Spain.,Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Christopher R K Ching
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - Stella J de Wit
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Boris Gutman
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Marcelo Q Hoexter
- Department & Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Neda Jahanshad
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, SNU MRC, Seoul, Republic of Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - David Mataix-Cols
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jose M Menchon
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.,Carlos III Health Institute, Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Euripedes C Miguel
- Department & Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Takashi Nakamae
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Jesus Pujol
- MRI Research Unit, Radiology Department, Hospital del Mar, Barcelona, Spain
| | - Yuki Sakai
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of Korea.,Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.,Carlos III Health Institute, Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona-UB, Barcelona, Spain
| | - Paul M Thompson
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - Kei Yamada
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
30
|
Zhang Y, Zhang Y, Ai H, Van Dam NT, Qian L, Hou G, Xu P. Microstructural deficits of the thalamus in major depressive disorder. Brain Commun 2022; 4:fcac236. [PMID: 36196087 PMCID: PMC9525011 DOI: 10.1093/braincomms/fcac236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Macroscopic structural abnormalities in the thalamus and thalamic circuits have been implicated in the neuropathology of major depressive disorder. However, cytoarchitectonic properties underlying these macroscopic abnormalities remain unknown. Here, we examined systematic deficits of brain architecture in depression, from structural brain network organization to microstructural properties. A multi-modal neuroimaging approach including diffusion, anatomical and quantitative MRI was used to examine structural-related alternations in 56 patients with depression compared with 35 age- and sex-matched controls. The seed-based probabilistic tractography showed multiple alterations of structural connectivity within a set of subcortical areas and their connections to cortical regions in patients with depression. These subcortical regions included the putamen, thalamus and caudate, which are predominantly involved in the limbic-cortical-striatal-pallidal-thalamic network. Structural connectivity was disrupted within and between large-scale networks, including the subcortical network, default-mode network and salience network. Consistently, morphometric measurements, including cortical thickness and voxel-based morphometry, showed widespread volume reductions of these key regions in patients with depression. A conjunction analysis identified common structural alternations of the left orbitofrontal cortex, left putamen, bilateral thalamus and right amygdala across macro-modalities. Importantly, the microstructural properties, longitudinal relaxation time of the left thalamus was increased and inversely correlated with its grey matter volume in patients with depression. Together, this work to date provides the first macro-micro neuroimaging evidence for the structural abnormalities of the thalamus in patients with depression, shedding light on the neuropathological disruptions of the limbic-cortical-striatal-pallidal-thalamic circuit in major depressive disorder. These findings have implications in understanding the abnormal changes of brain structures across the development of depression.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Yingli Zhang
- Department of Depressive Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Hui Ai
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging Center, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen 518052, China
| | - Nicholas T Van Dam
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne 3010, Australia
| | - Long Qian
- MR Research, GE Healthcare, Beijing 100176, China
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen 518107, China
| |
Collapse
|
31
|
Cheng B, Guo Y, Chen X, Lv B, Liao Y, Qu H, Hu X, Yang H, Meng Y, Deng W, Wang J. Postpartum depression and major depressive disorder: the same or not? Evidence from resting-state functional MRI. PSYCHORADIOLOGY 2022; 2:121-128. [PMID: 38665602 PMCID: PMC10917173 DOI: 10.1093/psyrad/kkac015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 04/28/2024]
Abstract
Background Although postpartum depression (PPD) and non-peripartum major depressive disorder (MDD) occurring within and outside the postpartum period share many clinical characteristics, whether PPD and MDD are the same or not remains controversial. Methods The current study was devoted to identify the shared and different neural circuits between PPD and MDD by resting-state functional magnetic resonance imaging data from 77 participants (22 first-episodic drug-naïve MDD, 26 drug-naïve PPD, and 29 healthy controls (HC)). Results Both the PPD and MDD groups exhibited higher fractional amplitude of low-frequency fluctuation (fALFF) in left temporal pole relative to the HC group; the MDD group showed specifically increased degree centrality in the right cerebellum while PPD showed specifically decreased fALFF in the left supplementary motor area and posterior middle temporal gyrus (pMTG_L), and specifically decreased functional connectivities between pMTG and precuneus and between left subgeneual anterior cingulate cortex (sgACC_L) and right sgACC. Moreover, sgACC and left thalamus showed abnormal regional homogeneity of functional activities between any pair of HC, MDD, and PPD. Conclusions These results provide initial evidence that PPD and MDD have common and distinct neural circuits, which may facilitate understanding the neurophysiological basis and precision treatment for PPD.
Collapse
Affiliation(s)
- Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Yi Guo
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Xijian Chen
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Bin Lv
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Liao
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Xiao Hu
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Haoxiang Yang
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Yajing Meng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Deng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310063, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| |
Collapse
|
32
|
Li H, Song S, Wang D, Zhang D, Tan Z, Lian Z, Wang Y, Zhou X, Pan C, Wu Y. Treatment Response Prediction for Major Depressive Disorder Patients via Multivariate Pattern Analysis of Thalamic Features. Front Comput Neurosci 2022; 16:837093. [PMID: 35720774 PMCID: PMC9199000 DOI: 10.3389/fncom.2022.837093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Antidepressant treatment, as an important method in clinical practice, is not suitable for all major depressive disorder (MDD) patients. Although magnetic resonance imaging (MRI) studies have found thalamic abnormalities in MDD patients, it is not clear whether the features of the thalamus are suitable to serve as predictive aids for treatment responses at the individual level. Here, we tested the predictive value of gray matter density (GMD), gray matter volume (GMV), amplitude of low-frequency fluctuations (ALFF), and fractional ALFF (fALFF) of the thalamus using multivariate pattern analysis (MVPA). A total of 74 MDD patients and 44 healthy control (HC) subjects were recruited. Thirty-nine MDD patients and 35 HC subjects underwent scanning twice. Between the two scanning sessions, patients in the MDD group received selective serotonin reuptake inhibitor (SSRI) treatment for 3-month, and HC group did not receive any treatment. Gaussian process regression (GPR) was trained to predict the percentage decrease in the Hamilton Depression Scale (HAMD) score after treatment. The percentage decrease in HAMD score after SSRI treatment was predicted by building GPRs trained with baseline thalamic data. The results showed significant correlations between the true percentage of HAMD score decreases and predictions (p < 0.01, r2 = 0.11) in GPRs trained with GMD. We did not find significant correlations between the true percentage of HAMD score decreases and predictions in GMV (p = 0.16, r2 = 0.00), ALFF (p = 0.125, r2 = 0.00), and fALFF (p = 0.485, r2 = 0.10). Our results suggest that GMD of the thalamus has good potential as an aid in individualized treatment response predictions of MDD patients.
Collapse
Affiliation(s)
- Hanxiaoran Li
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Sutao Song
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
- *Correspondence: Sutao Song,
| | - Donglin Wang
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Department of Psychiatry, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
- Donglin Wang,
| | - Danning Zhang
- Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
- Danning Zhang,
| | - Zhonglin Tan
- Department of Psychiatry, Hangzhou Seventh People’s Hospital, Hangzhou, China
| | - Zhenzhen Lian
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yan Wang
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Department of Psychiatry, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Xin Zhou
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Chenyuan Pan
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yue Wu
- Department of Translational Psychiatry Laboratory, Hangzhou Seventh People’s Hospital, Hangzhou, China
| |
Collapse
|
33
|
Touchant M, Labonté B. Sex-Specific Brain Transcriptional Signatures in Human MDD and Their Correlates in Mouse Models of Depression. Front Behav Neurosci 2022; 16:845491. [PMID: 35592639 PMCID: PMC9110970 DOI: 10.3389/fnbeh.2022.845491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
Major depressive disorder (MDD) is amongst the most devastating psychiatric conditions affecting several millions of people worldwide every year. Despite the importance of this disease and its impact on modern societies, still very little is known about the etiological mechanisms. Treatment strategies have stagnated over the last decades and very little progress has been made to improve the efficiency of current therapeutic approaches. In order to better understand the disease, it is necessary for researchers to use appropriate animal models that reproduce specific aspects of the complex clinical manifestations at the behavioral and molecular levels. Here, we review the current literature describing the use of mouse models to reproduce specific aspects of MDD and anxiety in males and females. We first describe some of the most commonly used mouse models and their capacity to display unique but also shared features relevant to MDD. We then transition toward an integral description, combined with genome-wide transcriptional strategies. The use of these models reveals crucial insights into the molecular programs underlying the expression of stress susceptibility and resilience in a sex-specific fashion. These studies performed on human and mouse tissues establish correlates into the mechanisms mediating the impact of stress and the extent to which different mouse models of chronic stress recapitulate the molecular changes observed in depressed humans. The focus of this review is specifically to highlight the sex differences revealed from different stress paradigms and transcriptional analyses both in human and animal models.
Collapse
Affiliation(s)
- Maureen Touchant
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Benoit Labonté
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
- *Correspondence: Benoit Labonté
| |
Collapse
|
34
|
Tu PC, Chang WC, Chen MH, Hsu JW, Lin WC, Li CT, Su TP, Bai YM. Identifying common and distinct subcortical volumetric abnormalities in 3 major psychiatric disorders: a single-site analysis of 640 participants. J Psychiatry Neurosci 2022; 47:E230-E238. [PMID: 35728922 PMCID: PMC9343126 DOI: 10.1503/jpn.210154] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/01/2022] [Accepted: 05/10/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Subcortical volumetric abnormalities in schizophrenia, bipolar disorder and major depressive disorder (MDD) have been consistently found on a single-diagnosis basis in previous studies. However, whether such volumetric abnormalities are specific to a particular disorder or shared by other disorders remains unclear. METHODS We analyzed the structural MRIs of 160 patients with schizophrenia, 160 patients with bipolar disorder, 160 patients with MDD and 160 healthy controls. We calculated the volumes of the thalamus, hippocampus, amygdala, accumbens, putamen, caudate, pallidum and lateral ventricles using FreeSurfer 7.0 and compared them among the groups using general linear models. RESULTS We found a significant group effect on the volumes of the thalamus, hippocampus, accumbens and pallidum. Further post hoc analysis revealed that thalamic volumes in patients with schizophrenia, bipolar disorder and MDD were significantly reduced compared to those in healthy controls, but did not differ from one another. Patients with schizophrenia and bipolar disorder also shared a significant reduction in hippocampal volumes. Among the 3 clinical groups, patients with schizophrenia showed significantly lower hippocampal volumes and higher pallidal volumes than patients with bipolar disorder and MDD. LIMITATIONS Differences in psychotropic use and duration of illness among the patient groups may limit the interpretation of our findings. CONCLUSION Our findings indicate that decreased thalamic volume is a common feature of schizophrenia, bipolar disorder and MDD. Smaller hippocampal and larger pallidal volumes differentiate schizophrenia from bipolar disorder and MDD and may provide clues to the biological basis for the Kraepelinian distinction between these illnesses.
Collapse
Affiliation(s)
- Pei-Chi Tu
- From the Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (Tu, Chang); the Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan (Tu, Chang, Chen, Hsu, Lin, Li, Bai); the Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan (Tu); the Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (Tu, Chen, Hsu, Lin, Li, Su, Bai); the Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan (Chang); the Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan (Lin, Li, Su, Bai); the Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan (Su)
| | - Wan-Chen Chang
- From the Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (Tu, Chang); the Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan (Tu, Chang, Chen, Hsu, Lin, Li, Bai); the Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan (Tu); the Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (Tu, Chen, Hsu, Lin, Li, Su, Bai); the Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan (Chang); the Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan (Lin, Li, Su, Bai); the Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan (Su)
| | - Mu-Hong Chen
- From the Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (Tu, Chang); the Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan (Tu, Chang, Chen, Hsu, Lin, Li, Bai); the Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan (Tu); the Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (Tu, Chen, Hsu, Lin, Li, Su, Bai); the Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan (Chang); the Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan (Lin, Li, Su, Bai); the Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan (Su)
| | - Ju-Wei Hsu
- From the Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (Tu, Chang); the Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan (Tu, Chang, Chen, Hsu, Lin, Li, Bai); the Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan (Tu); the Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (Tu, Chen, Hsu, Lin, Li, Su, Bai); the Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan (Chang); the Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan (Lin, Li, Su, Bai); the Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan (Su)
| | - Wei-Chen Lin
- From the Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (Tu, Chang); the Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan (Tu, Chang, Chen, Hsu, Lin, Li, Bai); the Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan (Tu); the Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (Tu, Chen, Hsu, Lin, Li, Su, Bai); the Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan (Chang); the Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan (Lin, Li, Su, Bai); the Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan (Su)
| | - Cheng-Ta Li
- From the Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (Tu, Chang); the Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan (Tu, Chang, Chen, Hsu, Lin, Li, Bai); the Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan (Tu); the Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (Tu, Chen, Hsu, Lin, Li, Su, Bai); the Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan (Chang); the Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan (Lin, Li, Su, Bai); the Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan (Su)
| | - Tung-Ping Su
- From the Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (Tu, Chang); the Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan (Tu, Chang, Chen, Hsu, Lin, Li, Bai); the Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan (Tu); the Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (Tu, Chen, Hsu, Lin, Li, Su, Bai); the Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan (Chang); the Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan (Lin, Li, Su, Bai); the Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan (Su)
| | - Ya-Mei Bai
- From the Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (Tu, Chang); the Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan (Tu, Chang, Chen, Hsu, Lin, Li, Bai); the Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan (Tu); the Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (Tu, Chen, Hsu, Lin, Li, Su, Bai); the Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan (Chang); the Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan (Lin, Li, Su, Bai); the Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan (Su)
| |
Collapse
|
35
|
Lee J, Kim N, Jeong H, Jun JY, Yoo SY, Lee SH, Lee J, Lee YJ, Kim SJ. Gray Matter Volume of Thalamic Nuclei in Traumatized North Korean Refugees. Front Psychiatry 2022; 13:756202. [PMID: 35573348 PMCID: PMC9095986 DOI: 10.3389/fpsyt.2022.756202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The current study investigated differences in the regional gray matter (GM) volume of specific thalamic nuclei between North Korean (NK) refugees and South Korean (SK) residents. It also investigated associations between thalamic GM volume changes and psychological symptoms. Psychological evaluations and magnetic resonance imaging were conducted on 50 traumatized NK refugees and 55 non-traumatized SK residents. The regional GM volume ratios in the bilateral thalami were calculated for all participants using voxel-based morphometry. NK refugees showed greater GM volume ratios in the right medial-posterior nuclei and left medial nuclei compared with SK residents. NK refugees also exhibited more depressive symptoms than SK residents. However, increased GM volume ratios in both right medial-posterior nuclei and left medial nuclei were correlated with fewer depressive symptoms in NK refugees, but not in SK residents. The findings indicate that traumatized NK refugees had increased GM volumes in the right medial-posterior nuclei and left medial nuclei, which were associated with fewer depressive symptoms. The enlarged specific thalamic nuclei presented among refugees in the current study might be associated with a neurobiological compensatory mechanism that prevents the development or progression of depression in refugees after repetitive traumatic experiences.
Collapse
Affiliation(s)
- Jiye Lee
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Nambeom Kim
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
| | - Hyunwoo Jeong
- Geumsan-gun Public Health Center, Seoul, South Korea
| | - Jin Yong Jun
- Department of Psychiatry, Seoul National Hospital, Seoul, South Korea
| | - So Young Yoo
- Department of Psychiatry, National Medical Center, Seoul, South Korea
| | - So Hee Lee
- Department of Psychiatry, National Medical Center, Seoul, South Korea
| | - Jooyoung Lee
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yu Jin Lee
- Department of Psychiatry and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, South Korea
| | - Seog Ju Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
36
|
Yang HG, Liu WV, Wen Z, Hu LH, Fan GG, Zha YF. Altered voxel-level whole-brain functional connectivity in multiple system atrophy patients with depression symptoms. BMC Psychiatry 2022; 22:279. [PMID: 35443639 PMCID: PMC9020004 DOI: 10.1186/s12888-022-03893-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/28/2022] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND It is yet unknown if the whole-brain resting-state network is altered in multiple system atrophy with symptoms of depression. This study aimed to investigate if and how depression symptoms in multiple system atrophy are associated with resting-state network dysfunction. METHODS We assessed the resting-state functional network matric using Degree centrality (DC) coupling with a second ROI-wise functional connectivity (FC) algorithm in a multimodal imaging case-control study that enrolled 32 multiple system atrophy patients with depression symptoms (MSA-D), 30 multiple system atrophy patients without depression symptoms (MSA-ND), and 34 healthy controls (HC). RESULTS Compared to HC, MSA-D showed more extensive DC hub dysfunction in the left precentral and right middle frontal cortex than MSA-ND. A direct comparison between MSA-D and MSA-ND detected increased DC in the right anterior cingulum cortex, but decreased DC in the left cerebellum lobule IV and lobule V, left middle pole temporal cortex, and right superior frontal cortex. Only right anterior cingulum cortex mean DC values showed a positive correlation with depression severity, and used ACC as seed, a second ROI-wise functional connectivity further revealed MSA-D patients showed decreased connectivity between the ACC and right thalamus and right middle temporal gyrus (MTG). CONCLUSIONS These findings revealed that dysfunction of rACC, right middle temporal lobe and right thalamus involved in depressed MSA. Our study might help to the understanding of the neuropathological mechanism of depression in MSA.
Collapse
Affiliation(s)
- Hua Guang Yang
- grid.412632.00000 0004 1758 2270Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | | | - Zhi Wen
- grid.412632.00000 0004 1758 2270Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Lan Hua Hu
- grid.412632.00000 0004 1758 2270Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Guo Guang Fan
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, LN, China.
| | - Yun Fei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
37
|
Harris MA, Cox SR, de Nooij L, Barbu MC, Adams MJ, Shen X, Deary IJ, Lawrie SM, McIntosh AM, Whalley HC. Structural neuroimaging measures and lifetime depression across levels of phenotyping in UK biobank. Transl Psychiatry 2022; 12:157. [PMID: 35418197 PMCID: PMC9007989 DOI: 10.1038/s41398-022-01926-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
Depression is assessed in various ways in research, with large population studies often relying on minimal phenotyping. Genetic results suggest clinical diagnoses and self-report measures of depression show some core similarities, but also important differences. It is not yet clear how neuroimaging associations depend on levels of phenotyping. We studied 39,300 UK Biobank imaging participants (20,701 female; aged 44.6 to 82.3 years, M = 64.1, SD = 7.5) with structural neuroimaging and lifetime depression data. Past depression phenotypes included a single-item self-report measure, an intermediate measure of 'probable' lifetime depression, derived from multiple questionnaire items relevant to a history of depression, and a retrospective clinical diagnosis according to DSM-IV criteria. We tested (i) associations between brain structural measures and each depression phenotype, and (ii) effects of phenotype on these associations. Depression-brain structure associations were small (β < 0.1) for all phenotypes, but still significant after FDR correction for many regional metrics. Lifetime depression was consistently associated with reduced white matter integrity across phenotypes. Cortical thickness showed negative associations with Self-reported Depression in particular. Phenotype effects were small across most metrics, but significant for cortical thickness in most regions. We report consistent effects of lifetime depression in brain structural measures, including reduced integrity of thalamic radiations and association fibres. We also observed significant differences in associations with cortical thickness across depression phenotypes. Although these results did not relate to level of phenotyping as expected, effects of phenotype definition are still an important consideration for future depression research.
Collapse
Affiliation(s)
- Mathew A Harris
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Laura de Nooij
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Miruna C Barbu
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
38
|
Du H, Xia J, Fan J, Gao F, Wang X, Han Y, Tan C, Zhu X. Spontaneous neural activity in the right fusiform gyrus and putamen is associated with consummatory anhedonia in obsessive compulsive disorder. Brain Imaging Behav 2022; 16:1708-1720. [DOI: 10.1007/s11682-021-00619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
|
39
|
The Problem of Malnutrition Associated with Major Depressive Disorder from a Sex-Gender Perspective. Nutrients 2022; 14:nu14051107. [PMID: 35268082 PMCID: PMC8912662 DOI: 10.3390/nu14051107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/03/2023] Open
Abstract
Major depressive disorder (MDD) is an incapacitating condition characterized by loss of interest, anhedonia and low mood, which affects almost 4% of people worldwide. With rising prevalence, it is considered a public health issue that affects economic productivity and heavily increases health costs alone or as a comorbidity for other pandemic non-communicable diseases (such as obesity, cardiovascular disease, diabetes, inflammatory bowel diseases, etc.). What is even more noteworthy is the double number of women suffering from MDD compared to men. In fact, this sex-related ratio has been contemplated since men and women have different sexual hormone oscillations, where women meet significant changes depending on the age range and moment of life (menstruation, premenstruation, pregnancy, postpartum, menopause…), which seem to be associated with susceptibility to depressive symptoms. For instance, a decreased estrogen level promotes decreased activation of serotonin transporters. Nevertheless, sexual hormones are not the only triggers that alter neurotransmission of monoamines and other neuropeptides. Actually, different dietary habits and/or nutritional requirements for specific moments of life severely affect MDD pathophysiology in women. In this context, the present review aims to descriptively collect information regarding the role of malnutrition in MDD onset and course, focusing on female patient and especially macro- and micronutrient deficiencies (amino acids, ω3 polyunsaturated fatty acids (ω3 PUFAs), folate, vitamin B12, vitamin D, minerals…), besides providing evidence for future nutritional intervention programs with a sex-gender perspective that hopefully improves mental health and quality of life in women.
Collapse
|
40
|
Sun K, Liu Z, Chen G, Zhou Z, Zhong S, Tang Z, Wang S, Zhou G, Zhou X, Shao L, Ye X, Zhang Y, Jia Y, Pan J, Huang L, Liu X, Liu J, Tian J, Wang Y. A two-center radiomic analysis for differentiating major depressive disorder using multi-modality MRI data under different parcellation methods. J Affect Disord 2022; 300:1-9. [PMID: 34942222 DOI: 10.1016/j.jad.2021.12.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 09/13/2021] [Accepted: 12/19/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND The present study aimed to explore the difference in the brain function and structure between patients with major depressive disorder (MDD) and healthy controls (HCs) using two-center and multi-modal MRI data, which would be helpful to investigate the pathogenesis of MDD. METHODS The subjects were collected from two hospitals. One including 140 patients with MDD and 138 HCs was used as primary cohort. Another one including 29 patients with MDD and 52 HCs was used as validation cohort. Functional and structural magnetic resonance images (MRI) were acquired to extract four types of features: functional connectivity (FC), amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and gray matter volume (GMV). Then classifiers using different combinations among the four types of selected features were respectively built to discriminate patients from HCs. Different templates were applied and the results under different templates were compared. RESULTS The classifier built with the combination of FC, ALFF, and GMV under the AAL template discriminated patients from HCs with the best performance (AUC=0.916, ACC=84.8%). The regions selected in all the different templates were mainly located in the default mode network, affective network, prefrontal cortex. LIMITATIONS First, the sample size of the validation cohort was limited. Second, diffusion tensor imaging data were not collected. CONCLUSION The performance of classifier was improved by using multi-modal MRI imaging. Different templates would be suitable for different types of analysis. The regions selected in all the different templates are possibly the core regions to investigate the pathophysiology of MDD.
Collapse
Affiliation(s)
- Kai Sun
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Science, Beijing, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhifeng Zhou
- Shenzhen Institute of Mental Health, Shenzhen Kangning Hospital, Shenzhen, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhenchao Tang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China
| | - Guifei Zhou
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Xuezhi Zhou
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China
| | - Lizhi Shao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Xiaoying Ye
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yingli Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiyang Pan
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xia Liu
- Shenzhen Institute of Mental Health, Shenzhen Kangning Hospital, Shenzhen, China.
| | - Jiangang Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology.
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology; School of Artificial Intelligence, University of Chinese Academy of Science, Beijing, China.
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
41
|
Kotikalapudi R, Dricu M, Moser DA, Aue T. Brain Structure and Optimism Bias: A Voxel-Based Morphometry Approach. Brain Sci 2022; 12:315. [PMID: 35326271 PMCID: PMC8946158 DOI: 10.3390/brainsci12030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
Individuals often anticipate an unrealistically favorable future for themselves (personal optimism bias) or others (social optimism bias). While such biases are well established, little is known about their neuroanatomy. In this study, participants engaged in a soccer task and estimated the likelihood of successful passes in personal and social scenarios. Voxel-based morphometry revealed that personal optimism bias varied as a positive function of gray matter volume (GMV) in the putamen, frontal pole, hippocampus, temporal pole, inferior temporal gyrus, visual association areas, and mid-superior temporal gyrus. Social optimism bias correlated positively with GMV in the temporoparietal junction and negatively with GMV in the inferior temporal gyrus and pre-supplementary motor areas. Together, these findings suggest that parts of our optimistic outlook are biologically rooted. Moreover, while the two biases looked similar at the behavioral level, they were related to distinct gray matter structures, proposing that their underlying mechanisms are not identical.
Collapse
Affiliation(s)
- Raviteja Kotikalapudi
- Institute for Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland; (M.D.); (D.A.M.)
| | | | | | - Tatjana Aue
- Institute for Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland; (M.D.); (D.A.M.)
| |
Collapse
|
42
|
Tian T, Wu J, Chen T, Li J, Yan S, Zhou Y, Peng X, Li Y, Zheng N, Cai A, Ning Q, Xiang H, Xu F, Qin Y, Zhu W, Wang J. Long-term follow-up of dynamic brain changes in patients recovered from COVID-19 without neurological manifestations. JCI Insight 2022; 7:155827. [PMID: 35191397 PMCID: PMC8876627 DOI: 10.1172/jci.insight.155827] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND After the initial surge in COVID-19 cases, large numbers of patients were discharged from a hospital without assessment of recovery. Now, an increasing number of patients report postacute neurological sequelae, known as “long COVID” — even those without specific neurological manifestations in the acute phase. METHODS Dynamic brain changes are crucial for a better understanding and early prevention of “long COVID.” Here, we explored the cross-sectional and longitudinal consequences of COVID-19 on the brain in 34 discharged patients without neurological manifestations. Gray matter morphology, cerebral blood flow (CBF), and volumes of white matter tracts were investigated using advanced magnetic resonance imaging techniques to explore dynamic brain changes from 3 to 10 months after discharge. RESULTS Overall, the differences of cortical thickness were dynamic and finally returned to the baseline. For cortical CBF, hypoperfusion in severe cases observed at 3 months tended to recover at 10 months. Subcortical nuclei and white matter differences between groups and within subjects showed various trends, including recoverable and long-term unrecovered differences. After a 10-month recovery period, a reduced volume of nuclei in severe cases was still more extensive and profound than that in mild cases. CONCLUSION Our study provides objective neuroimaging evidence for the coexistence of recoverable and long-term unrecovered changes in 10-month effects of COVID-19 on the brain. The remaining potential abnormalities still deserve public attention, which is critically important for a better understanding of “long COVID” and early clinical guidance toward complete recovery. FUNDING National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinfeng Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
| | - Tao Chen
- Institute and Department of Infectious Disease and
| | - Jia Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiran Zhou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaolong Peng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
| | - Qin Ning
- Institute and Department of Infectious Disease and
| | - Hongbing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Sun J, Ma Y, Du Z, Wang Z, Guo C, Luo Y, Chen L, Gao D, Li X, Xu K, Hong Y, Xu F, Yu X, Xiao X, Fang J, Hou X. Immediate Modulation of Transcutaneous Auricular Vagus Nerve Stimulation in Patients With Treatment-Resistant Depression: A Resting-State Functional Magnetic Resonance Imaging Study. Front Psychiatry 2022; 13:923783. [PMID: 35845466 PMCID: PMC9284008 DOI: 10.3389/fpsyt.2022.923783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Previous studies found that transcutaneous auricular vagus nerve stimulation (taVNS) was clinically effective in treating a case of treatment-resistant depression (TRD). However, the brain neural mechanisms underlying the immediate effects of taVNS treatment for TRD have not been elucidated. MATERIALS AND METHODS Differences in the amplitude of low-frequency fluctuations (ALFF) between TRD and healthy control (HC) groups were observed. The TRD group was treated with taVNS for 30 min, and changes in ALFF in the TRD group before and after immediate treatment were observed. The ALFF brain regions altered by taVNS induction were used as regions of interest to analyze whole-brain functional connectivity (FC) changes in the TRD group. RESULTS A total of 44 TRD patients and 44 HCs completed the study and were included in the data analysis. Compared with the HC group, the TRD group had increased ALFF in the left orbital area of the middle frontal gyrus. After taVNS treatment, ALFF in the left orbital area of the middle frontal gyrus and right middle frontal gyrus decreased in the TRD group, while ALFF in the right orbital area of the superior frontal gyrus increased. The FC in the left orbital area of the middle frontal gyrus with left middle frontal gyrus and the right inferior occipital gyrus was significantly increased. CONCLUSION Transcutaneous auricular vagus nerve stimulation demonstrates immediate modulation of functional activity in the emotional network, cognitive control network, and visual processing cortex, and may be a potential brain imaging biomarker for the treatment of TRD.
Collapse
Affiliation(s)
- Jifei Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongming Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Deqiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojiao Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Hong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengquan Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaobing Hou
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| |
Collapse
|
44
|
Hong W, Li M, Liu Z, Li X, Huai H, Jia D, Jin W, Zhao Z, Liu L, Li J, Sun F, Xu R, Zhao Z. Heterogeneous alterations in thalamic subfields in major depression disorder. J Affect Disord 2021; 295:1079-1086. [PMID: 34706417 DOI: 10.1016/j.jad.2021.08.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/30/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND It is well known that the thalamus is not a unitary and homogeneous entity but a complex and highly connected archeocortical structure. Although many neuroimaging studies have reported alterations in the thalamus in major depressive disorder (MDD), the structural alterations in thalamic subfields remain unclear. This study aimed to investigate changes in gray matter volume (GMV) in thalamic subfields in MDD patients. METHODS The present study included structural images of 848 MDD patients and 794 age-matched normal controls (NC) from 17 study sites of the REST-meta-MDD consortium. We performed voxel-based morphometric analyses to calculate the GMV in the entire thalamus and its subfields using three different automated anatomical labeling atlases and subsequently compared the differences between first-episode drug-naïve major depressive disorder (FEDN), recurrent major depressive disorder (RMDD), and NC groups. We also evaluated the relationships between thalamic GMV and clinical symptoms in MDD patients. RESULTS Compared to NC, the FEDN patients showed increased GMV in thalamic subfields but not in the entire thalamus, while RMDD patients showed no significant alterations in GMV in the entire thalamus and its subfields. Moreover, the mean GMV in the right anterior thalamus and left anteroventral thalamus in RMDD patients were mildly positively correlated with the Hamilton Anxiety Rating Scale scores. LIMITATIONS The main limitations are a single-modal analysis based on T1-weighted MR images and a cross-sectional design. CONCLUSIONS Our findings suggest that FEDN and RMDD patients show heterogeneous alterations across thalamic subfields, which may help us understand the pathophysiological mechanisms of MDD.
Collapse
Affiliation(s)
- Wenjun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ming Li
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zaixing Liu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xiguang Li
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Hongbo Huai
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Dongqi Jia
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wei Jin
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhigang Zhao
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Liang Liu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jiyuan Li
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Fenfen Sun
- Center for Brain, Mind, and Education, Shaoxing University, Shaoxing 312000, China.
| | - Rong Xu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Cobia D, Rich C, Smith MJ, Mamah D, Csernansky JG, Wang L. Basal ganglia shape features differentiate schizoaffective disorder from schizophrenia. Psychiatry Res Neuroimaging 2021; 317:111352. [PMID: 34399283 PMCID: PMC8545830 DOI: 10.1016/j.pscychresns.2021.111352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 06/14/2021] [Accepted: 07/30/2021] [Indexed: 01/18/2023]
Abstract
There is growing evidence that schizophrenia and schizoaffective disorder represent closely related syndromes that vary in severity along a neurobiological continuum. In the present study, volume and shape of the basal ganglia was examined in people with schizophrenia and schizoaffective disorder relative to healthy controls and hypothesized that unique neuroanatomical differences would be observed in each patient group. Magnetic resonance 1.5T images were obtained from schizophrenia (n = 47), schizoaffective disorder (n = 15), and from healthy control (n = 42) participants, matched for age, gender, parental socioeconomic status, and race. The caudate, putamen, and globus pallidus were characterized using high-dimensional brain mapping procedures (Csernansky et al., 2004b). Results revealed significant shape deformations between schizophrenia and schizoaffective disorder that also differed from control subjects. Relative to schizophrenia, schizoaffective subjects showed exaggerated inward deformations indicative of localized volume loss in subregions of the caudate, putamen, and globus pallidus (all p < 0.001). These shape features correlated with mental flexibility and negative symptoms in schizophrenia (all p < 0.05), but not schizoaffective disorder. To the extent that differences in important basal ganglia substructures reflect biological heterogeneity among these two psychotic illnesses, this data could prove useful in improving diagnostic precision, as well as informing the affective component of mental illness.
Collapse
Affiliation(s)
- Derin Cobia
- Department of Psychology and Neuroscience Center, Brigham Young University, 1036 KMBL, Provo, UT 84602, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Chaz Rich
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew J Smith
- School of Social Work, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel Mamah
- Department of Psychiatry, Washington University, St. Louis, Missouri, USA
| | - John G Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
46
|
Xiong G, Dong D, Cheng C, Jiang Y, Sun X, He J, Li C, Gao Y, Zhong X, Zhao H, Wang X, Yao S. Potential structural trait markers of depression in the form of alterations in the structures of subcortical nuclei and structural covariance network properties. NEUROIMAGE-CLINICAL 2021; 32:102871. [PMID: 34749291 PMCID: PMC8578037 DOI: 10.1016/j.nicl.2021.102871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
It has been proposed recently that major depressive disorder (MDD) could represent an adaptation to conserve energy after the perceived loss of an investment in a vital source, such as group identity, personal assets, or relationships. Energy conserving behaviors associated with MDD may form a persistent marker in brain regions and networks involved in cognition and emotion regulation. In this study, we examined whether subcortical regions and volume-based structural covariance networks (SCNs) have state-independent alterations (trait markers). First-episode drug-naïve currently depressed (cMDD) patients (N = 131), remitted MDD (RD) patients (N = 67), and healthy controls (HCs, N = 235) underwent structural magnetic resonance imaging (MRI). Subcortical gray matter volumes (GMVs) were calculated in FreeSurfer software, and group differences in GMVs and SCN were analyzed. Compared to HCs, major findings were decreased GMVs of left pallidum and pulvinar anterior of thalamus in the cMDD and RD groups, indicative of a trait marker. Relative to HCs, subcortical SCNs of both cMDD and RD patients were found to have reduced small-world-ness and path length, which together may represent a trait-like topological feature of depression. In sum, the left pallidum, left pulvinar anterior of thalamus volumetric alterations may represent trait marker and reduced small-world-ness, path length may represent trait-like topological feature of MDD.
Collapse
Affiliation(s)
- Ge Xiong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Chang Cheng
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Yali Jiang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Jiayue He
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Chuting Li
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan 410011, China
| | - Yidian Gao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Xue Zhong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Haofei Zhao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan 410011, China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan 410011, China.
| |
Collapse
|
47
|
Amidfar M, Quevedo J, Z Réus G, Kim YK. Grey matter volume abnormalities in the first depressive episode of medication-naïve adult individuals: a systematic review of voxel based morphometric studies. Int J Psychiatry Clin Pract 2021; 25:407-420. [PMID: 33351672 DOI: 10.1080/13651501.2020.1861632] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND To identify the reliable and consistent grey matter volume (GMV) abnormalities associated with major depressive disorder (MDD), we excluded the influence of confounding clinical characteristics, comorbidities and brain degeneration on brain morphological abnormalities by inclusion of non-comorbid and non-geriatric drug-naïve MDD individuals experiencing first episode depressive. METHODS The PubMed, Scopus, Web of Science, Science Direct and Google scholar databases were searched for papers published in English up to April 2020. RESULTS A total of 21 voxel based morphometric (VBM) studies comparing 845 individuals in the first depressive episode and medication-naïve with 940 healthy control subjects were included. The results showed a grey matter volumes reductions in the orbitofrontal cortex (OFC), prefrontal cortex (PFC), frontal and temporal gyri, temporal pole, insular lobe, thalamus, basal ganglia, cerebellum, hippocampus, cingulate cortex, and amygdala. In addition, increased grey matter volumes in the postcentral gyrus, superior frontal gyrus, insula, basal ganglia, thalamus, amygdala, cuneus, and precuneus differentiated the first depressive episode in medication-naïve individuals from healthy subjects. CONCLUSION The present systematic review provided additional support for the involvement of grey matter structural abnormalities in limbic-cortical circuits as possibly specific structural abnormalities in the early stage of MDD.Key pointsDistinct brain regions in MDD patients might be associated with the early stages of illness, and thus it is critical to study the causal relationship between brain structures and the onset of the disease to improve the evaluation in clinic.Grey matter alterations in the fronto-limbic networks in the first episode, medication-naïve MDD might suggest that these abnormalities may play an important role in the neuropathophysiology of MDD at its onset.First episode, medically naïve depressive patients show grey matter volume alterations in brain regions mainly associated with emotion regulation including parietal-temporal regions, PFC, insular lobe, thalamus, basal ganglia, cerebellum and limbic structures that may be specific changes in early stage of MDD.Genotype-diagnosis interaction effects on brain morphology in the cortico-limbic-striatal circuits, including the PFC, amygdala, hippocampus and striatum that might be implicated in the dysfunctional regulation of emotion in first-episode MDD patients.Future longitudinal and prospective studies should be conducted to identify the core structural brain changes in people at-risk for MDD and explore the association of their brain volumes with symptom onset.
Collapse
Affiliation(s)
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Yong-Ku Kim
- Departments of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
48
|
Chen F, Lv X, Fang J, Li T, Xu J, Wang X, Hong Y, Hong L, Wang J, Wang W, Wang C. Body-mind relaxation meditation modulates the thalamocortical functional connectivity in major depressive disorder: a preliminary resting-state fMRI study. Transl Psychiatry 2021; 11:546. [PMID: 34689151 PMCID: PMC8542047 DOI: 10.1038/s41398-021-01637-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 08/12/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Mindfulness-based interventions such as meditation have increasingly been utilized for the treatment of psychological disorders and have been shown to be effective in the treatment of depression and relapse prevention. However, it remains largely unclear the neural mechanism of the therapeutic effects of meditation among depressed individuals. In this study, we investigated how body-mind relaxation meditation (BMRM) can modulate the thalamocortical functional connectivity (FC) in major depressive disorder patients and healthy controls. In the present study, we recruited 21 medication-naive adolescents with major depressive disorder (MDDs) and 24 matched healthy controls (HCs). We designed an audio recording to induce body-mind relaxation meditation. Resting-state fMRI (rs-fMRI) scans were collected before and after the BMRM intervention in both groups. The thalamus subregions were defined according to the Human Brainnetome Atlas, and functional connectivity (FC) was measured and compared to find brain regions that were affected by the BMRM intervention. Before the BMRM intervention, MDDs showed reduced FC of the bilateral precuneus/post cingulate cortex with the left posterior parietal thalamus and left caudal temporal thalamus, as well as an increased FC of the left occipital thalamus with the left medial frontal cortex. Moreover, aberrant FCs in MDDs at baseline were normalized following the BMRM intervention. After the BMRM intervention, both MDDs and HCs showed decreased FC between the left rostral temporal thalamus and the left inferior occipital. Given the small sample used in this study, future studies are warranted to evaluate the generalizability of these findings. Our findings suggest that BMRM is associated with changes in thalamocortical functional connectivity in MDDs. BMRM may act by strengthening connections between the thalamus and the default mode network, which are involved in a variety of high-level functioning, such as attention and self-related processes.
Collapse
Affiliation(s)
- Fangfang Chen
- grid.263488.30000 0001 0472 9649College of Mathematics and Statistics, Shenzhen University, Shenzhen, 518060 China
| | - Xueyu Lv
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Jiliang Fang
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Tao Li
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Jinping Xu
- grid.458489.c0000 0001 0483 7922Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Xiaoling Wang
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Yang Hong
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Lan Hong
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Jian Wang
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Weidong Wang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Chao Wang
- School of Psychology, Shenzhen University, Shenzhen, 518060, China. .,Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
49
|
Yan X, Jiang K, Li H, Wang Z, Perkins K, Cao F. Convergent and divergent brain structural and functional abnormalities associated with developmental dyslexia. eLife 2021; 10:e69523. [PMID: 34569931 PMCID: PMC8497057 DOI: 10.7554/elife.69523] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Brain abnormalities in the reading network have been repeatedly reported in individuals with developmental dyslexia (DD); however, it is still not totally understood where the structural and functional abnormalities are consistent/inconsistent across languages. In the current multimodal meta-analysis, we found convergent structural and functional alterations in the left superior temporal gyrus across languages, suggesting a neural signature of DD. We found greater reduction in grey matter volume and brain activation in the left inferior frontal gyrus in morpho-syllabic languages (e.g. Chinese) than in alphabetic languages, and greater reduction in brain activation in the left middle temporal gyrus and fusiform gyrus in alphabetic languages than in morpho-syllabic languages. These language differences are explained as consequences of being DD while learning a specific language. In addition, we also found brain regions that showed increased grey matter volume and brain activation, presumably suggesting compensations and brain regions that showed inconsistent alterations in brain structure and function. Our study provides important insights about the etiology of DD from a cross-linguistic perspective with considerations of consistency/inconsistency between structural and functional alterations.
Collapse
Affiliation(s)
- Xiaohui Yan
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| | - Ke Jiang
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| | - Hui Li
- Department of Preschool Education, Anyang Preschool Education CollegeAnyangChina
| | - Ziyi Wang
- School of Foreign Language, Jining UniversityJiningChina
| | - Kyle Perkins
- Florida International University (Retired Professor)MiamiUnited States
| | - Fan Cao
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| |
Collapse
|
50
|
Sigirli D, Ozdemir ST, Erer S, Sahin I, Ercan I, Ozpar R, Orun MO, Hakyemez B. Statistical shape analysis of putamen in early-onset Parkinson's disease. Clin Neurol Neurosurg 2021; 209:106936. [PMID: 34530266 DOI: 10.1016/j.clineuro.2021.106936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the shape differences in the putamen of early-onset Parkinson's patients compared with healthy controls and to assess and to assess sub-regional brain abnormalities. METHODS This study was conducted using the 3-T MRI scans of 23 early-onset Parkinson's patients and age and gender matched control subjects. Landmark coordinate data obtained and Procrustes analysis was used to compare mean shapes. The relationships between the centroid sizes of the left and right putamen, and the durations of disease examined using growth curve models. RESULTS While there was a significant difference between the right putamen shape of control and patient groups, there was not found a significant difference in terms of left putamen. Sub-regional analyses showed that for the right putamen, the most prominent deformations were localized in the middle-posterior putamen and minimal deformations were seen in the anterior putamen. CONCLUSION Although they were not as pronounced as those in the right putamen, the deformations in the left putamen mimic the deformations in the right putamen which are found mainly in the middle-posterior putamen and at a lesser extend in the anterior putamen.
Collapse
Affiliation(s)
- Deniz Sigirli
- Department of Biostatistics, Faculty of Medicine, Bursa Uludag University, Gorukle Campus, 16059 Bursa, Turkey.
| | - Senem Turan Ozdemir
- Department of Anatomy, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| | - Sevda Erer
- Department of Neurology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| | - Ibrahim Sahin
- Department of Biostatistics, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey.
| | - Ilker Ercan
- Department of Biostatistics, Faculty of Medicine, Bursa Uludag University, Gorukle Campus, 16059 Bursa, Turkey.
| | - Rifat Ozpar
- Department of Radiology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| | - Muhammet Okay Orun
- Department of Neurology, Van Training and Research Hospital, Van, Turkey.
| | - Bahattin Hakyemez
- Department of Radiology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| |
Collapse
|