1
|
Akber U, Jung JH, Yoon H, Seo J, Park CS. CRBN modulates synuclein fibrillation via degradation of DNAJB1 in mouse model of Parkinson disease. NPJ Parkinsons Dis 2024; 10:194. [PMID: 39443520 PMCID: PMC11500381 DOI: 10.1038/s41531-024-00801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Cereblon (CRBN) is a substrate recruiter for CRL4CRBN E3 ubiquitin ligase system playing a plethora of pivotal roles for biological systems. Here, we identified DNAJB1 (DJ1) as endogenous substrate of CRBN and report how CRBN influences the aggregation and toxicity of alpha-synuclein (α-SYN) via modulation of DJ1. CRBN interferes with molecular activities of DJ1 in vitro, in cells, and in vivo resulting in a reduced disaggregation of α-SYN fibrils, increased formation of preformed fibrils (PFFs) of α-SYN, and high susceptibility of mice to MPTP and PFF-induced neurotoxicity. Depletion of Crbn improves the behavioral and biochemical responses of mice towards neurotoxic insult. Finally, we designed a peptide inhibitor to inhibit the recruitment of DJ1 to CRBN for ubiquitination, resulting in an enhanced supply of DJ1 to counteract the toxicity of aggregated α-SYN. Our data has important implications for development of CRBN-targeting therapies that could prevent or delay progression of neurodegenerative synucleinopathy.
Collapse
Affiliation(s)
- Uroos Akber
- Laboratory of Molecular Neurobiology, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jun-Hyung Jung
- Laboratory of Molecular Neurobiology, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Heewoong Yoon
- Department of Chemistry, Peptide Drug Discovery Laboratory, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Peptide Drug Discovery Laboratory, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Chul-Seung Park
- Laboratory of Molecular Neurobiology, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
- Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
2
|
Ning C, Jin M, Cai Y, Fan L, Hu K, Lu Z, Zhang M, Chen C, Li Y, Hu N, Zhang D, Liu Y, Chen S, Jiang Y, He C, Wang Z, Cao Z, Li H, Li G, Ma Q, Geng H, Tian W, Zhang H, Yang X, Huang C, Wei Y, Li B, Zhu Y, Li X, Miao X, Tian J. Genetic architectures of the human hippocampus and those involved in neuropsychiatric traits. BMC Med 2024; 22:456. [PMID: 39394562 PMCID: PMC11470718 DOI: 10.1186/s12916-024-03682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND The hippocampus, with its complex subfields, is linked to numerous neuropsychiatric traits. While most research has focused on its global structure or a few specific subfields, a comprehensive analysis of hippocampal substructures and their genetic correlations across a wide range of neuropsychiatric traits remains underexplored. Given the hippocampus's high heritability, considering hippocampal and subfield volumes (HASV) as endophenotypes for neuropsychiatric conditions is essential. METHODS We analyzed MRI-derived volumetric data of hippocampal and subfield structures from 41,525 UK Biobank participants. Genome-wide association studies (GWAS) on 24 HASV traits were conducted, followed by genetic correlation, overlap, and Mendelian randomization (MR) analyses with 10 common neuropsychiatric traits. Polygenic risk scores (PRS) based on HASV traits were also evaluated for predicting these traits. RESULTS Our analysis identified 352 independent genetic variants surpassing a significance threshold of 2.1 × 10-9 within the 24 HASV traits, located across 93 chromosomal regions. Notably, the regions 12q14.3, 17q21.31, 12q24.22, 6q21, 9q33.1, 6q25.1, and 2q24.2 were found to influence multiple HASVs. Gene set analysis revealed enrichment of neural differentiation and signaling pathways, as well as protein binding and degradation. Of 240 HASV-neuropsychiatric trait pairs, 75 demonstrated significant genetic correlations (P < 0.05/240), revealing 433 pleiotropic loci. Particularly, genes like ACBD4, ARHGAP27, KANSL1, MAPT, ARL17A, and ARL17B were involved in over 50 HASV-neuropsychiatric pairs. Leveraging Mendelian randomization analysis, we further confirmed that atrophy in the left hippocampus, right hippocampus, right hippocampal body, and right CA1-3 region were associated with an increased risk of developing Parkinson's disease (PD). Furthermore, PRS for all four HASVs were significantly linked to a higher risk of Parkinson's disease (PD), with the highest hazard ratio (HR) of 1.30 (95% CI 1.18-1.43, P = 6.15 × 10⁻⁸) for right hippocampal volume. CONCLUSIONS These findings highlight the extensive distribution of pleiotropic genetic determinants between HASVs and neuropsychiatric traits. Moreover, they suggest a significant potential for effectively managing and intervening in these diseases during their early stages.
Collapse
Affiliation(s)
- Caibo Ning
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences of Wuhan University, Wuhan, 430071, China
| | - Meng Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences of Wuhan University, Wuhan, 430071, China
| | - Linyun Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Kexin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Can Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yanmin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Naifan Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Donghui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yizhuo Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Shuoni Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yuan Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Chunyi He
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Zhuo Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Zilong Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Hanting Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Gaoyuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Qianying Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Hui Geng
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Wen Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Heng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yongchang Wei
- Department of Gastrointestinal Oncology, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences of Wuhan University, Wuhan, 430071, China
| | - Xiangpan Li
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences of Wuhan University, Wuhan, 430071, China.
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
Wang Y, Xie M, Zheng L, Ma J, Wang M, Zhang L. Associations between parental rearing style and amygdala and hippocampal subfield abnormalities in drug-naive females with anorexia nervosa. BMC Psychiatry 2024; 24:648. [PMID: 39358695 PMCID: PMC11445996 DOI: 10.1186/s12888-024-06120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Altered volumes in the hippocampus and amygdala have been linked to anorexia nervosa (AN). This study aimed to investigate amygdala and hippocampal subfields volume abnormalities in AN patients, and their associations with parental rearing practices and clinical psychological characteristics. METHODS This study included twenty-nine drug-naive females with AN from West China Hospital of Sichuan University, China, and fifty-nine age- and gender-matched healthy controls (HCs) recruited through advertisement. All participants underwent T1-weighted imaging. Amygdala and hippocampal subfields volume was calculated using FreeSurfer 7.0. The Core Self-Evaluation Scale (CSES) and Rosenberg Self-Esteem Scale (RSES) were used to assess the psychological characteristics of AN patients. The Egna Minnen av Barndoms Uppfostran (EMBU) was employed to evaluate parental rearing practices. Group differences in brain volumes were analyzed with covariates like age and total intracranial volume (TIV). Partial correlation analysis explored the correlations between brain region volumes and clinical psychological characteristics. RESULTS AN patients exhibited lower RSES and CSES scores, and more adverse parental rearing style than healthy norms. After adjusting for covariates, AN patients showed decreased gray matter volume (GMV) in the left medial (Me) and cortical (Co) nucleus, as well as in the right hippocampal-amygdala transition area (HATA). GMV in the left Me was correlated with years of education among HCs but not among AN patients. GMV in the right HATA was positively correlated with paternal penalty and severity, as well as maternal overinterference. CONCLUSION This study supports structure abnormalities in amygdala and hippocampus in AN patients and suggests that parental rearing practices may be associated with hippocampal abnormalities, potentially contributing to the pathophysiology of AN. Addressing appropriate parental rearing styles may offer a positive impact on AN.
Collapse
Affiliation(s)
- Yu Wang
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Min Xie
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Linli Zheng
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Jing Ma
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Meiou Wang
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Lan Zhang
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
4
|
Giustiniani A, Maistrello L, Mologni V, Danesin L, Burgio F. TMS and tDCS as potential tools for the treatment of cognitive deficits in Parkinson's disease: a meta-analysis. Neurol Sci 2024:10.1007/s10072-024-07778-0. [PMID: 39320648 DOI: 10.1007/s10072-024-07778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Cognitive deficits are common nonmotor symptoms in Parkinson's disease (PD). Non-Invasive Brain Stimulation (NIBS) could be a potential aid to prevent or delay dementia progression in this clinical population. However, previous studies reported controversial results concerning their efficacy on cognitive symptoms of PD. Hence, the present meta-analysis aims to systematically examine the effects of NIBS as possible treatments for PD cognitive impairments. Understanding NIBS' impact on these symptoms may be of outstanding importance to implement new therapeutic strategies and improve the patients' quality of life. METHODS EMBASE, Scopus, and PubMed databases were systematically searched for consecutive studies published from 2000 to March 2023 describing Randomized Controlled Trials studies evaluating the effect of NIBS on PD cognitive symptoms. From the included studies, data concerning neuropsychological tests were extracted and grouped into six cognitive domains, separately analyzed. Hedge's method was computed as the effect size measure of the extracted data; heterogeneity among studies and publication bias were also assessed. The Cochrane's RoB2 tool was used to evaluate the risk of bias for each of the included studies. RESULTS After database searching and screening of texts, sixteen studies met the inclusion criteria. No significant results emerged from any investigated cognitive domain when comparing NIBS and sham treatments. CONCLUSION Several factors may have contributed to the lack of effects; among these, methodological choices, the small sample of studies, the high heterogeneity of data and stimulation protocols pose the need for more controlled studies to highlight the potentiality of NIBS as a future treatment for PD cognitive impairments.
Collapse
Affiliation(s)
- Andreina Giustiniani
- Neuropsychology Department, IRCCS San Camillo Hospital, Via Alberoni 70, 30126, Venice, Italy
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Lorenza Maistrello
- Neuropsychology Department, IRCCS San Camillo Hospital, Via Alberoni 70, 30126, Venice, Italy
| | - Valentina Mologni
- Neuropsychology Department, IRCCS San Camillo Hospital, Via Alberoni 70, 30126, Venice, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
- Department of General Psychology, University of Padova, Padua, Italy
| | - Laura Danesin
- Neuropsychology Department, IRCCS San Camillo Hospital, Via Alberoni 70, 30126, Venice, Italy.
| | - Francesca Burgio
- Neuropsychology Department, IRCCS San Camillo Hospital, Via Alberoni 70, 30126, Venice, Italy
| |
Collapse
|
5
|
Saville L, Wu L, Habtewold J, Cheng Y, Gollen B, Mitchell L, Stuart-Edwards M, Haight T, Mohajerani M, Zovoilis A. NERD-seq: a novel approach of Nanopore direct RNA sequencing that expands representation of non-coding RNAs. Genome Biol 2024; 25:233. [PMID: 39198865 PMCID: PMC11351768 DOI: 10.1186/s13059-024-03375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are frequently documented RNA modification substrates. Nanopore Technologies enables the direct sequencing of RNAs and the detection of modified nucleobases. Ordinarily, direct RNA sequencing uses polyadenylation selection, studying primarily mRNA gene expression. Here, we present NERD-seq, which enables detection of multiple non-coding RNAs, excluded by the standard approach, alongside natively polyadenylated transcripts. Using neural tissues as a proof of principle, we show that NERD-seq expands representation of frequently modified non-coding RNAs, such as snoRNAs, snRNAs, scRNAs, srpRNAs, tRNAs, and rRFs. NERD-seq represents an RNA-seq approach to simultaneously study mRNA and ncRNA epitranscriptomes in brain tissues and beyond.
Collapse
Affiliation(s)
- Luke Saville
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Li Wu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
| | - Jemaneh Habtewold
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
| | - Yubo Cheng
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Babita Gollen
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Liam Mitchell
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Matthew Stuart-Edwards
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Travis Haight
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Majid Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Athanasios Zovoilis
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada.
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada.
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada.
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada.
| |
Collapse
|
6
|
Martins LA, Schiavo A, Paz LV, Xavier LL, Mestriner RG. Neural underpinnings of fine motor skills under stress and anxiety: A review. Physiol Behav 2024; 282:114593. [PMID: 38782244 DOI: 10.1016/j.physbeh.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
This review offers a comprehensive examination of how stress and anxiety affect motor behavior, particularly focusing on fine motor skills and gait adaptability. We explore the role of several neurochemicals, including brain-derived neurotrophic factor (BDNF) and dopamine, in modulating neural plasticity and motor control under these affective states. The review highlights the importance of developing therapeutic strategies that enhance motor performance by leveraging the interactions between key neurochemicals. Additionally, we investigate the complex interplay between emotional-cognitive states and sensorimotor behaviors, showing how stress and anxiety disrupt neural integration, leading to impairments in skilled movements and negatively impacting quality of life. Synthesizing evidence from human and rodent studies, we provide a detailed understanding of the relationships among stress, anxiety, and motor behavior. Our findings reveal neurophysiological pathways, behavioral outcomes, and potential therapeutic targets, emphasizing the intricate connections between neurobiological mechanisms, environmental factors, and motor performance.
Collapse
Affiliation(s)
- Lucas Athaydes Martins
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Aniuska Schiavo
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Lisiê Valéria Paz
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Léder Leal Xavier
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Régis Gemerasca Mestriner
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil.
| |
Collapse
|
7
|
Baset A, Huang F. Shedding light on subiculum's role in human brain disorders. Brain Res Bull 2024; 214:110993. [PMID: 38825254 DOI: 10.1016/j.brainresbull.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Subiculum is a pivotal output component of the hippocampal formation, a structure often overlooked in neuroscientific research. Here, this review aims to explore the role of the subiculum in various brain disorders, shedding light on its significance within the functional-neuroanatomical perspective on neurological diseases. The subiculum's involvement in multiple brain disorders was thoroughly examined. In Alzheimer's disease, subiculum alterations precede cognitive decline, while in epilepsy, the subiculum plays a critical role in seizure initiation. Stress involves the subiculum's impact on the hypothalamic-pituitary-adrenocortical axis. Moreover, the subiculum exhibits structural and functional changes in anxiety, schizophrenia, and Parkinson's disease, contributing to cognitive deficits. Bipolar disorder is linked to subiculum structural abnormalities, while autism spectrum disorder reveals an alteration of inward deformation in the subiculum. Lastly, frontotemporal dementia shows volumetric differences in the subiculum, emphasizing its contribution to the disorder's complexity. Taken together, this review consolidates existing knowledge on the subiculum's role in brain disorders, and may facilitate future research, diagnostic strategies, and therapeutic interventions for various neurological conditions.
Collapse
Affiliation(s)
- Abdul Baset
- Department of Neuroscience, City University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China
| | - Fengwen Huang
- Department of Neuroscience, City University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China.
| |
Collapse
|
8
|
Tarhan M, Atalay B, Buz Yaşar A, Özdilek FB. Exploring the cognitive assessment potential of MRI-based volumetric hippocampal segmentation in Parkinson's disease. Brain Behav 2024; 14:e3576. [PMID: 38970157 PMCID: PMC11226409 DOI: 10.1002/brb3.3576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 07/08/2024] Open
Abstract
PURPOSE To investigate the potential of magnetic resonance imaging (MRI)-based total and segmental hippocampus volume analysis in the assessment of cognitive status in Parkinson's disease (PD). METHODS We divided participants into three groups Group A-Parkinson patients (Pp) with normal cognitive status (n = 25), Group B-Pp with dementia (n = 17), and Group C-healthy controls (n = 37). Three-dimensional T1W Fast Spoiled Gradient Recalled Echo images were used for Volbrain hippocampus subfield segmentation. We used the "Winterburn" protocol, which divides the hippocampus into five segments, Cornu Ammonis (CA),CA2/CA3, CA4/dentate gyrus, stratum radiatum, lacunosum, and moleculare, and subiculum. RESULTS A total of 79 participants were included in the study, consisting of 42 individuals with PD (64.2% male) and 37 healthy controls (54.1% male). The mean age of PD was 60.9 ± 10.7 years and the mean age of control group was 59.27 ± 12.3 years. Significant differences were found in total hippocampal volumes between Group A and B (p = .047. Statistically significant group differences were found in total, right, and left CA1 volumes (analysis of variance [ANOVA]: F(2,76) = 8.098, p = .001; F(2,76) = 7.628, p = .001; F(2,76) = 5.084, p = .008, respectively), as well as in total subiculum volumes (ANOVA: F(2,76) = 4.368, p = .016). Post hoc tests showed that total subiculum volume was significantly lower in individuals with normal cognitive status (0.474 ± 0.116 cm3) compared to healthy controls (0.578 ± 0.151 cm3, p = .013). CONCLUSION Volumetric hippocampal MRI can be used to assess the cognitive status of Pp. Longitudinal studies that evaluate Pp who progress from normal cognition to dementia are required to establish a causal relationship.
Collapse
Affiliation(s)
- Merve Tarhan
- Department of RadiologyIstanbul Medeniyet University Göztepe Training and Research HospitalIstanbulTurkey
| | - Başak Atalay
- Department of RadiologyIstanbul Medeniyet University Göztepe Training and Research HospitalIstanbulTurkey
| | | | - Fatma Betül Özdilek
- Department of NeurologyIstanbul Medeniyet University Göztepe Training and Research HospitalIstanbulTurkey
| |
Collapse
|
9
|
Ye R, Goodheart AE, Locascio JJ, Peterec E, Properzi M, Thibault EG, Chuba E, Johnson KA, Brickhouse MJ, Touroutoglou A, Growdon JH, Dickerson BC, Gomperts SN. Differential Vulnerability of Hippocampal Subfields to Amyloid and Tau Deposition in the Lewy Body Diseases. Neurology 2024; 102:e209460. [PMID: 38815233 PMCID: PMC11244748 DOI: 10.1212/wnl.0000000000209460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/11/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Alzheimer disease (AD) copathologies of β-amyloid and tau are common in the Lewy body diseases (LBD), dementia with Lewy bodies (DLB) and Parkinson disease (PD), and target distinct hippocampal subfields compared with Lewy pathology, including subiculum and CA1. We investigated the hypothesis that AD copathologies impact the pattern of hippocampal subregion volume loss and cognitive function in LBD. METHODS This was a cross-sectional and longitudinal, single-center, observational cohort study. Participants underwent neuropsychological testing and 3T-MRI with hippocampal segmentation using FreeSurferV7. PiB-PET and flortaucipir-PET imaging of comorbid β-amyloid (A) and tau (T) were acquired. The association of functional cognition, β-amyloid, and tau loads with hippocampal subregion volume was assessed. The contribution of subregion volumes to the relationship of AD-related deposits on functional cognition was examined with mediation analysis. The effects of AD-related deposits on the rate of subregion atrophy were evaluated with mixed-effects models. RESULTS Of 103 participants (mean age: 70.3 years; 37.3% female), 52 had LBD with impaired cognition (LBD-I), 26 had normal cognition (LBD-N), and 25 were A- healthy controls (HCs). Volumes of hippocampal subregions prone to AD copathologies, including subiculum (F = 6.9, p = 0.002), presubiculum (F = 7.3, p = 0.001), and parasubiculum (F = 5.9, p = 0.004), were reduced in LBD-I compared with LBD-N and HC. Volume was preserved in CA2/3, Lewy pathology susceptible subregions. In LBD-I, reduced CA1, subiculum, and presubiculum volumes were associated with greater functional cognitive impairment (all p < 0.05). Compared with HC, subiculum volume was reduced in A+T+ but not A-T- participants (F = 2.62, p = 0.043). Reduced subiculum volume mediated the effect of amyloid on functional cognition (0.12, 95% CI: 0.005 to 0.26, p = 0.040). In 26 longitudinally-evaluated participants, baseline tau deposition was associated with faster CA1 (p = 0.021) and subiculum (p = 0.002) atrophy. DISCUSSION In LBD, volume loss in hippocampal output subregions-particularly the subiculum-is associated with functional cognition and AD-related deposits. Tau deposition appears to accelerate subiculum and CA1 atrophy, whereas Aβ does not. Subiculum volume may have value as a biomarker of AD copathology-mediated neurodegeneration and disease progression.
Collapse
Affiliation(s)
- Rong Ye
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Anna E Goodheart
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Joseph J Locascio
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Erin Peterec
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Michael Properzi
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Emma G Thibault
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Erin Chuba
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Keith A Johnson
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Michael J Brickhouse
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Alexandra Touroutoglou
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - John H Growdon
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Bradford C Dickerson
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Stephen N Gomperts
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| |
Collapse
|
10
|
Schneider I, Schönfeld R, Hanert A, Philippen S, Tödt I, Granert O, Mehdorn M, Becktepe J, Deuschl G, Berg D, Paschen S, Bartsch T. Deep brain stimulation of the subthalamic nucleus restores spatial reversal learning in patients with Parkinson's disease. Brain Commun 2024; 6:fcae068. [PMID: 38560516 PMCID: PMC10979721 DOI: 10.1093/braincomms/fcae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Spatial learning and navigation are supported by distinct memory systems in the human brain such as the hippocampus-based navigational system and the striatum-cortex-based system involved in motor sequence, habit and reversal learning. Here, we studied the role of subthalamic circuits in hippocampus-associated spatial memory and striatal-associated spatial reversal learning formation in patients with Parkinson's disease, who underwent a deep brain stimulation of the subthalamic nucleus. Deep brain stimulation patients (Parkinson's disease-subthalamic nucleus: n = 26) and healthy subjects (n = 15) were tested in a novel experimental spatial memory task based on the Morris water maze that assesses both hippocampal place memory as well as spatial reversal learning. All subjects were trained to navigate to a distinct spatial location hidden within the virtual environment during 16 learning trials in a subthalamic nucleus Stim-On condition. Patients were then randomized into two groups with either a deep brain stimulation On or Off condition. Four hours later, subjects were retested in a delayed recall and reversal learning condition. The reversal learning was realized with a new hidden location that should be memorized during six consecutive trials. The performance was measured by means of an index indicating the improvement during the reversal learning. In the delayed recall condition, neither patients, healthy subjects nor the deep brain stimulation On- versus Off groups showed a difference in place memory performance of the former trained location. In the reversal learning condition, healthy subjects (reversal index 2.0) and patients in the deep brain stimulation On condition (reversal index 1.6) showed a significant improvement. However, patients in the deep brain stimulation Off condition (reversal index 1.1) performed significantly worse and did not improve. There were no differences between all groups in a final visual guided navigation task with a visible target. These results suggest that deep brain stimulation of subthalamic nucleus restores spatial reversal learning in a virtual navigation task in patients with Parkinson's disease and gives insight into the neuromodulation effects on cognition of subthalamic circuits in Parkinson's disease.
Collapse
Affiliation(s)
- Isabel Schneider
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Robby Schönfeld
- Institute of Psychology, Martin-Luther-University Halle-Wittenberg, Halle 06108, Germany
| | - Annika Hanert
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Sarah Philippen
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Inken Tödt
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Oliver Granert
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Maximilian Mehdorn
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Jos Becktepe
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Günther Deuschl
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Daniela Berg
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Steffen Paschen
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Thorsten Bartsch
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
11
|
Camacho M, Wilms M, Almgren H, Amador K, Camicioli R, Ismail Z, Monchi O, Forkert ND. Exploiting macro- and micro-structural brain changes for improved Parkinson's disease classification from MRI data. NPJ Parkinsons Dis 2024; 10:43. [PMID: 38409244 PMCID: PMC10897162 DOI: 10.1038/s41531-024-00647-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Accurate PD diagnosis is crucial for effective treatment and prognosis but can be challenging, especially at early disease stages. This study aimed to develop and evaluate an explainable deep learning model for PD classification from multimodal neuroimaging data. The model was trained using one of the largest collections of T1-weighted and diffusion-tensor magnetic resonance imaging (MRI) datasets. A total of 1264 datasets from eight different studies were collected, including 611 PD patients and 653 healthy controls (HC). These datasets were pre-processed and non-linearly registered to the MNI PD25 atlas. Six imaging maps describing the macro- and micro-structural integrity of brain tissues complemented with age and sex parameters were used to train a convolutional neural network (CNN) to classify PD/HC subjects. Explainability of the model's decision-making was achieved using SmoothGrad saliency maps, highlighting important brain regions. The CNN was trained using a 75%/10%/15% train/validation/test split stratified by diagnosis, sex, age, and study, achieving a ROC-AUC of 0.89, accuracy of 80.8%, specificity of 82.4%, and sensitivity of 79.1% on the test set. Saliency maps revealed that diffusion tensor imaging data, especially fractional anisotropy, was more important for the classification than T1-weighted data, highlighting subcortical regions such as the brainstem, thalamus, amygdala, hippocampus, and cortical areas. The proposed model, trained on a large multimodal MRI database, can classify PD patients and HC subjects with high accuracy and clinically reasonable explanations, suggesting that micro-structural brain changes play an essential role in the disease course.
Collapse
Affiliation(s)
- Milton Camacho
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.
- Department of Radiology, University of Calgary, Calgary, AB, Canada.
| | - Matthias Wilms
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics and Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Hannes Almgren
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Kimberly Amador
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Richard Camicioli
- Neuroscience and Mental Health Institute and Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Zahinoor Ismail
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Oury Monchi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Radio-oncology and Nuclear Medicine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics and Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Zhang L, Zhang P, Dong Q, Zhao Z, Zheng W, Zhang J, Hu X, Yao Z, Hu B. Fine-grained features characterize hippocampal and amygdaloid change pattern in Parkinson's disease and discriminate cognitive-deficit subtype. CNS Neurosci Ther 2024; 30:e14480. [PMID: 37849445 PMCID: PMC10805398 DOI: 10.1111/cns.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
AIMS To extract vertex-wise features of the hippocampus and amygdala in Parkinson's disease (PD) with mild cognitive impairment (MCI) and normal cognition (NC) and further evaluate their discriminatory efficacy. METHODS High-resolution 3D-T1 data were collected from 68 PD-MCI, 211 PD-NC, and 100 matched healthy controls (HC). Surface geometric features were captured using surface conformal representation, and surfaces were registered to a common template using fluid registration. The statistical tests were performed to detect differences between groups. The disease-discriminatory ability of features was also tested in the ensemble classifiers. RESULTS The amygdala, not the hippocampus, showed significant overall differences among the groups. Compared with PD-NC, the right amygdala in MCI patients showed expansion (anterior cortical, anterior amygdaloid, and accessory basal areas) and atrophy (basolateral ventromedial area) subregions. There was notable atrophy in the right CA1 and hippocampal subiculum of PD-MCI. The accuracy of classifiers with multivariate morphometry statistics as features exceeded 85%. CONCLUSION PD-MCI is associated with multiscale morphological changes in the amygdala, as well as subtle atrophy in the hippocampus. These novel metrics demonstrated the potential to serve as biomarkers for PD-MCI diagnosis. Overall, these findings from this study help understand the role of subcortical structures in the neuropathological mechanisms of PD cognitive impairment.
Collapse
Affiliation(s)
- Lingyu Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
| | - Pengfei Zhang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhouChina
| | - Qunxi Dong
- School of Medical TechnologyBeijing Institute of TechnologyBeijingChina
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
| | - Jing Zhang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhouChina
| | - Xiping Hu
- School of Medical TechnologyBeijing Institute of TechnologyBeijingChina
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
- School of Medical TechnologyBeijing Institute of TechnologyBeijingChina
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of SemiconductorsChinese Academy of SciencesLanzhouChina
| |
Collapse
|
13
|
Jellinger KA. Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. Int J Mol Sci 2023; 25:498. [PMID: 38203667 PMCID: PMC10778722 DOI: 10.3390/ijms25010498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cognitive impairment (CI) is a characteristic non-motor feature of Parkinson disease (PD) that poses a severe burden on the patients and caregivers, yet relatively little is known about its pathobiology. Cognitive deficits are evident throughout the course of PD, with around 25% of subtle cognitive decline and mild CI (MCI) at the time of diagnosis and up to 83% of patients developing dementia after 20 years. The heterogeneity of cognitive phenotypes suggests that a common neuropathological process, characterized by progressive degeneration of the dopaminergic striatonigral system and of many other neuronal systems, results not only in structural deficits but also extensive changes of functional neuronal network activities and neurotransmitter dysfunctions. Modern neuroimaging studies revealed multilocular cortical and subcortical atrophies and alterations in intrinsic neuronal connectivities. The decreased functional connectivity (FC) of the default mode network (DMN) in the bilateral prefrontal cortex is affected already before the development of clinical CI and in the absence of structural changes. Longitudinal cognitive decline is associated with frontostriatal and limbic affections, white matter microlesions and changes between multiple functional neuronal networks, including thalamo-insular, frontoparietal and attention networks, the cholinergic forebrain and the noradrenergic system. Superimposed Alzheimer-related (and other concomitant) pathologies due to interactions between α-synuclein, tau-protein and β-amyloid contribute to dementia pathogenesis in both PD and dementia with Lewy bodies (DLB). To further elucidate the interaction of the pathomechanisms responsible for CI in PD, well-designed longitudinal clinico-pathological studies are warranted that are supported by fluid and sophisticated imaging biomarkers as a basis for better early diagnosis and future disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
14
|
Xiao Y, Hu Y, Huang K. Atrophy of hippocampal subfields relates to memory decline during the pathological progression of Alzheimer's disease. Front Aging Neurosci 2023; 15:1287122. [PMID: 38149170 PMCID: PMC10749921 DOI: 10.3389/fnagi.2023.1287122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Background It has been well documented that atrophy of hippocampus and hippocampal subfields is closely linked to cognitive decline in normal aging and patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, evidence is still sparce regarding the atrophy of hippocampus and hippocampal subfields in normal aging adults who later developed MCI or AD. Objective To examine whether atrophy of hippocampus and hippocampal subfields has occurred in normal aging before a diagnosis of MCI or AD. Methods We analyzed structural magnetic resonance imaging (MRI) data of cognitively normal (CN, n = 144), MCI (n = 90), and AD (n = 145) participants obtained from the Alzheimer's Disease Neuroimaging Initiative. The CN participants were categorized into early dementia converters (CN-C) and non-converters (CN-NC) based on their scores of clinical dementia rating after an average of 36.2 months (range: 6-105 months). We extracted the whole hippocampus and hippocampal subfields for each participant using FreeSurfer, and analyzed the differences in volumes of hippocampus and hippocampal subfields between groups. We then examined the associations between volume of hippocampal subfields and delayed recall scores in each group separately. Results Hippocampus and most of the hippocampal subfields demonstrated significant atrophy during the progression of AD. The CN-C and CN-NC groups differed in the left hippocampus-amygdala transition area (HATA). Furthermore, the volume of presubiculum was significantly correlated with delayed recall scores in the CN-NC and AD groups, but not in the CN-C and MCI groups. Conclusion Hippocampal subfield atrophy (i.e., left HATA) had occurred in cognitively normal elderly individuals before clinical symptoms were recognized. Significant associations of presubiculum with delayed recall scores in the CN-NC and AD groups highlight the essential role of the hippocampal subfields in both early dementia detection and AD progression.
Collapse
Affiliation(s)
- Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | | | | | | |
Collapse
|
15
|
Huang X, He Q, Ruan X, Li Y, Kuang Z, Wang M, Guo R, Bu S, Wang Z, Yu S, Chen A, Wei X. Structural connectivity from DTI to predict mild cognitive impairment in de novo Parkinson's disease. Neuroimage Clin 2023; 41:103548. [PMID: 38061176 PMCID: PMC10755095 DOI: 10.1016/j.nicl.2023.103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/01/2024]
Abstract
BACKGROUND Early detection of Parkinson's disease (PD) patients at high risk for mild cognitive impairment (MCI) can help with timely intervention. White matter structural connectivity is considered an early and sensitive indicator of neurodegenerative disease. OBJECTIVES To investigate whether baseline white matter structural connectivity features from diffusion tensor imaging (DTI) of de novo PD patients can help predict PD-MCI conversion at an individual level using machine learning methods. METHODS We included 90 de novo PD patients who underwent DTI and 3D T1-weighted imaging. Elastic net-based feature consensus ranking (ENFCR) was used with 1000 random training sets to select clinical and structural connectivity features. Linear discrimination analysis (LDA), support vector machine (SVM), K-nearest neighbor (KNN) and naïve Bayes (NB) classifiers were trained based on features selected more than 500 times. The area under the ROC curve (AUC), accuracy (ACC), sensitivity (SEN) and specificity (SPE) were used to evaluate model performance. RESULTS A total of 57 PD patients were classified as PD-MCI nonconverters, and 33 PD patients were classified as PD-MCI converters. The models trained with clinical data showed moderate performance (AUC range: 0.62-0.68; ACC range: 0.63-0.77; SEN range: 0.45-0.66; SPE range: 0.64-0.84). Models trained with structural connectivity (AUC range, 0.81-0.84; ACC range, 0.75-0.86; SEN range, 0.77-0.91; SPE range, 0.71-0.88) performed similar to models that were trained with both clinical and structural connectivity data (AUC range, 0.81-0.85; ACC range, 0.74-0.85; SEN range, 0.79-0.91; SPE range, 0.70-0.89). CONCLUSIONS Baseline white matter structural connectivity from DTI is helpful in predicting future MCI conversion in de novo PD patients.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Qing He
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Xiuhang Ruan
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Yuting Li
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China; Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Guangdong, China
| | - Zhanyu Kuang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Mengfan Wang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Riyu Guo
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Shuwen Bu
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Zhaoxiu Wang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Shaode Yu
- School of Information and Communication Engineering, Communication University of China, Beijing, China.
| | - Amei Chen
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China.
| | - Xinhua Wei
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China.
| |
Collapse
|
16
|
Shi Y, Yang Y, Li W, Zhao Z, Yan L, Wang W, Aschner M, Zhang J, Zheng G, Shen X. High blood lead level correlates with selective hippocampal subfield atrophy and neuropsychological impairments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114945. [PMID: 37105093 DOI: 10.1016/j.ecoenv.2023.114945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Lead contamination is a major public health concern. Previous studies have demonstrated that lead exposure could affect the hippocampus, which is a complex and heterogeneous structure composed of 12 subregions. Here, we explored volumetric and functional changes in hippocampal subfields and neuropsychological alterations after lead exposure. METHODS We performed a cross-sectional study at a smelting company between September 2020 and December 2021. Blood lead level was recorded, and neuropsychological functions were assessed by Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS). The hippocampus was segmented into 12 subfields in each hemisphere in magnetic resonance images (MRIs). Then, the effect of altered hippocampal subfield volumes on brain functions were studied by seed-based functional connectivity (FC) analysis. Finally, the relationships between the lead level with hippocampal subfield volumes and neuropsychological functions were investigated. Baseline characteristics, hippocampal subfield volumes, and FC analysis were compared between lead-exposed (≥ 300 μg/L) and the control group (≤ 100 μg/L). RESULTS In 76 participants, lead level positively correlated with SDS(r = 0.422) and negatively correlated with MoCA(r = -0.414), MMSE(r = -0.251), Concentration(r = -0.331), Recall(r = -0.319), Orientation(r = -0.298) and Executive Function/Visuospatial abilities(r = -0.231). Lead group (26 participants) had lower MoCA and MMSE and higher SDS than control group (23 participants). A significantly decreased volume in the left CA4 and GC-ML-DG subfields was found in the lead group compared with the control group. The left GC-ML-DG of the lead group showed a decreased FC with the bilateral postcentral gyrus. The left CA4(r = -0.409) and left GC-ML-DG (r = -0.383) volumes negatively correlated with lead level. The FC between left GC-ML-DG and left postcentral gyrus positively correlated with MoCA(r = 0.318), MMSE(r = 0.379) and Recall(r = 0.311). The FC between left GC-ML-DG and right postcentral gyrus positively correlated with MoCA(r = 0.326), Executive Function/Visuospatial abilities(r = 0.307) and Concentration(r = 0.297). CONCLUSION High blood lead level was associated with neuropsychological alterations, hippocampal structural and functional changes. The left GC-ML-DG and CA4 atrophy might serve as predictive imaging markers for neurological damage associated with high lead exposure.
Collapse
Affiliation(s)
- Yi Shi
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Yang Yang
- Department of Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Wenhao Li
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Zaihua Zhao
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Linfeng Yan
- Department of Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Wen Wang
- Department of Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, United States
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Gang Zheng
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Xuefeng Shen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
17
|
Wang T, Chen X, Zhang J, Feng Q, Huang M. Deep multimodality-disentangled association analysis network for imaging genetics in neurodegenerative diseases. Med Image Anal 2023; 88:102842. [PMID: 37247468 DOI: 10.1016/j.media.2023.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/01/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Imaging genetics is a crucial tool that is applied to explore potentially disease-related biomarkers, particularly for neurodegenerative diseases (NDs). With the development of imaging technology, the association analysis between multimodal imaging data and genetic data is gradually being concerned by a wide range of imaging genetics studies. However, multimodal data are fused first and then correlated with genetic data in traditional methods, which leads to an incomplete exploration of their common and complementary information. In addition, the inaccurate formulation in the complex relationships between imaging and genetic data and information loss caused by missing multimodal data are still open problems in imaging genetics studies. Therefore, in this study, a deep multimodality-disentangled association analysis network (DMAAN) is proposed to solve the aforementioned issues and detect the disease-related biomarkers of NDs simultaneously. First, the imaging data are nonlinearly projected into a latent space and imaging representations can be achieved. The imaging representations are further disentangled into common and specific parts by using a multimodal-disentangled module. Second, the genetic data are encoded to achieve genetic representations, and then, the achieved genetic representations are nonlinearly mapped to the common and specific imaging representations to build nonlinear associations between imaging and genetic data through an association analysis module. Moreover, modality mask vectors are synchronously synthesized to integrate the genetic and imaging data, which helps the following disease diagnosis. Finally, the proposed method achieves reasonable diagnosis performance via a disease diagnosis module and utilizes the label information to detect the disease-related modality-shared and modality-specific biomarkers. Furthermore, the genetic representation can be used to impute the missing multimodal data with our learning strategy. Two publicly available datasets with different NDs are used to demonstrate the effectiveness of the proposed DMAAN. The experimental results show that the proposed DMAAN can identify the disease-related biomarkers, which suggests the proposed DMAAN may provide new insights into the pathological mechanism and early diagnosis of NDs. The codes are publicly available at https://github.com/Meiyan88/DMAAN.
Collapse
Affiliation(s)
- Tao Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Xiumei Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Jiawei Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | - Meiyan Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
18
|
Erhardt E, Horner A, Shaff N, Wertz C, Nitschke S, Vakhtin A, Mayer A, Adair J, Knoefel J, Rosenberg G, Poston K, Suarez Cedeno G, Deligtisch A, Pirio Richardson S, Ryman S. Longitudinal hippocampal subfields, CSF biomarkers, and cognition in patients with Parkinson disease. Clin Park Relat Disord 2023; 9:100199. [PMID: 38107672 PMCID: PMC10724830 DOI: 10.1016/j.prdoa.2023.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 12/19/2023] Open
Abstract
Objective Hippocampal atrophy is an indicator of emerging dementia in PD, though it is unclear whether cerebral spinal fluid (CSF) Abeta-42, t-tau, or alpha-syn predict hippocampal subfield atrophy in a de novo cohort of PD patients. To examine whether levels of CSF alpha-synuclein (alpha-syn), beta-amyloid 1-42 (Abeta-42), or total-tau (t-tau) are associated with hippocampal subfield volumes over time. Methods We identified a subset of Parkinson's Progression Markers Initiative (PPMI) de novo PD patients with longitudinal T1-weighted imaging (baseline plus at least two additional visits across 12, 24, and 48 months) and CSF biomarkers available at baseline. We performed cross-sectional, regression, and linear mixed model analyses to evaluate the baseline and longitudinal CSF biomarkers, hippocampal subfields, and cognition. A false discovery rate (FDR) was used to correct for multiple comparisons. Results 88 PD-CN and 21 PD-MCI had high quality longitudinal data. PD-MCI patients exhibited reduced bilateral CA1 volumes relative to PD-CN, though there were no significant differences in CSF biomarkers between these groups. Relationships between CSF biomarkers and hippocampal subfields changed over time, with a general pattern that lower CSF Abeta-42, higher t-tau and higher alpha-syn were associated with smaller hippocampal subfields, primarily in the right hemisphere. Conclusion We replicated prior reports that demonstrated reduced CA1 volumes in PD-MCI in a de novo PD cohort. CSF biomarkers were associated with individual subfields, with evidence that the increased CSF t-tau was associated with smaller subiculum volumes at baseline and over time, though there was no clear indication that the subfields associated with cognition (CA1 and HATA) were associated with CSF biomarkers.
Collapse
Affiliation(s)
- Erik Erhardt
- University of New Mexico, Department of Mathematics and Statistics, USA
| | - Anna Horner
- Mind Research Network, Department of Translational Neuroscience, USA
| | - Nicholas Shaff
- Mind Research Network, Department of Translational Neuroscience, USA
| | - Chris Wertz
- Mind Research Network, Department of Translational Neuroscience, USA
| | | | - Andrei Vakhtin
- Mind Research Network, Department of Translational Neuroscience, USA
| | - Andrew Mayer
- Mind Research Network, Department of Translational Neuroscience, USA
| | - John Adair
- University of New Mexico Health Science Center, Department of Neurology, USA
| | - Janice Knoefel
- University of New Mexico Health Science Center, Department of Neurology, USA
| | - Gary Rosenberg
- University of New Mexico Health Science Center, Department of Neurology, USA
| | - Kathleen Poston
- Stanford University, Department of Neurology and Neurological Sciences, USA
| | | | - Amanda Deligtisch
- University of New Mexico Health Science Center, Department of Neurology, USA
| | | | - Sephira Ryman
- Mind Research Network, Department of Translational Neuroscience, USA
| |
Collapse
|
19
|
Vastegani SM, Khoshnam SE, Mansouri E, Hajipour S, Ghafouri S, Bakhtiari N, Sarkaki A, Farbood Y. Neuroprotective effect of anethole against rotenone induced non-motor deficits and oxidative stress in rat model of Parkinson's disease. Behav Brain Res 2023; 437:114100. [PMID: 36075399 DOI: 10.1016/j.bbr.2022.114100] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 12/09/2022]
Abstract
INTRODUCTION Non-motor symptoms (NMS) have high prevalence in patients with Parkinson's disease (PD). These symptoms are mainly the result of increased oxidative stress and neuronal damage. In this study we investigated the possible neuroprotective effects of anethole as a potent antioxidant on rotenone-induced behavioral deficits, hippocampal neuronal death, and oxidative stress profile in rats. METHODS Male Wistar rats were administered with anethole (62.5, 125, and 250 mg/kg, i.g) concomitantly with rotenone (2 mg/kg, s.c) for 35 days. Shuttle box and novel object recognition tests were performed to determine cognitive functions, and tail flick test was used to measure pain sensitivity. The levels of BDNF, MDA, SOD, and GPx were assayed in the hippocampus. Hippocampal neuronal damage was evaluated using cresyl violet staining technique. RESULTS Chronic administration of rotenone induced cognitive deficit and reduced thermal pain threshold. Rotenone also decreased SOD and GPx activities, increased MDA level, and reduced the expression of BDNF in the hippocampus. In addition, hippocampal neuronal loss was increased in rotenone treated rats. Treatment with high dose of anethole (250 mg/kg) improved cognitive function and increased pain threshold in all three doses (62.5, 125, and 250 mg/kg). Despite the unchanged SOD and GPx activities, hippocampal levels of MDA was significantly decreased after high-dose anethole treatment. Moreover, High dose of anethole increased the number of surviving neurons in the hippocampus, but couldn't increase the BDNF expression. CONCLUSION Our findings indicated that anethole has antioxidant and neuroprotective effects against non-motor disorders induced by rotenone toxicity.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and molecular research center, Medical Basic Sciences Research Institute, Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samireh Ghafouri
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nima Bakhtiari
- Pain Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
20
|
Wan M, Xia R, Lin H, Ye Y, Qiu P, Zheng G. Baduanjin exercise modulates the hippocampal subregion structure in community-dwelling older adults with cognitive frailty. Front Aging Neurosci 2022; 14:956273. [PMID: 36600804 PMCID: PMC9806122 DOI: 10.3389/fnagi.2022.956273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Background Regular Baduanjin exercise intervention was proven to be beneficial in improving the cognitive ability and physical performance of older adults with different health conditions but was unclear to influence the structural plasticity of the hippocampus. This study aimed to explore the modulation of hippocampal subregions as a mechanism by which Baduanjin exercise improves cognitive frailty in older adults. Methods A total of 102 community-dwelling older adults with cognitive frailty were recruited and randomly allocated to the Baduanjin exercise training group and usual physical activity control group. The participants in the Baduanjin exercise training group participated in a 24-week Baduanjin exercise intervention program with an exercise frequency of 60 min per day, 3 days per week. Cognitive ability and physical frailty were assessed, and MRI scans were performed on all participants at baseline and after 24 weeks of intervention. The structural MRI data were processed with MRIConvert (version 2.0 Rev. 235) and FreeSurfer (version 6.0.0) software. Data analyses were performed using the independent sample t tests/Mann-Whitney U tests with the Bonferroni correction, mixed linear model, correlation, or mediation analysis by the SPSS 24.0 software (IBM Corp, Armonk, NY, United States). Results After 24 weeks of intervention, a statistically significant increase was found for the Montreal Cognitive Assessment (MoCA) scores (p = 0.002) with a large effect size (Cohen's d = 0.94) and the significant interaction effect (P goup × time < 0.05), Memory Quotient (MQ) scores (p = 0.019) with a medium effect size (Cohen's d = 0.688) and the significant interaction effect (P goup × time < 0.05), and other parameters of WMS-RC test including pictures (p = 0.042), recognition (p = 0.017), and association (p = 0.045) test with a medium effect size (Cohens' d = 0.592, 0.703, and 0.581) for the Baduanjin training group, while significant decrease for the Edmonton Frailty Scale (EFS) score (p = 0.022), with a medium effect size (Cohen's d = -0.659) and the significant interaction effect (P goup × time < 0.05) for the Baduanjin training group. The differences in the left parasubiculum, Hippocampal Amygdala Transition Area (HATA), right Cornu Ammonis Subfield 1 (CA1) and presubiculum volumes from baseline to 24 weeks after intervention in the Baduanjin training group were significantly greater than those in the control group (p < 0.05/12). Further analysis showed that the changes in right CA1 volume were positively correlated with the changes in MoCA and MQ scores (r = 0.510, p = 0.015; r = 0.484, p = 0.022;), the changes in right presubiculum and left parasubiculum volumes were positively correlated with the changes in MQ (r = 0.435, p = 0.043) and picture test scores (r = 0.509, p = 0.016), respectively, and the changes in left parasubiculum and HATA volumes were negatively correlated with the changes in EFS scores (r = -0.534, p = 0.011; r = -0.575, p = 0.005) in the Baduanjin training group, even after adjusting for age, sex, years of education and marital status; furthermore, the volume changes in left parasubiculum and left HATA significantly mediated the Baduanjin exercise training-induced decrease in the EFS scores (β = 0.376, 95% CI 0.024 ~ 0.947; β = 0.484, 95% CI 0.091 ~ 0.995); the changes of left parasubiculum and right CA1 significantly mediated the Baduanjin exercise training-induced increase in the picture and MO scores (β = -0.83, 95% CI-1.95 ~ -0.002; β = -2.44, 95% CI-5.99 ~ -0.32). Conclusion A 24-week Baduanjin exercise intervention effectively improved cognitive ability and reduced physical frailty in community-dwelling older adults with cognitive frailty, and the mechanism might be associated with modulating the structural plasticity of the hippocampal subregion.
Collapse
Affiliation(s)
- Mingyue Wan
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China,College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Rui Xia
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Department of Rehabilitation, Shenzhen Bao ‘an District People’s Hospital, Shenzhen, China
| | - Huiying Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yu Ye
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Pingting Qiu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guohua Zheng
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Guohua Zheng,
| |
Collapse
|
21
|
Siquier A, Andrés P. Face name matching and memory complaints in Parkinson's disease. Front Psychol 2022; 13:1051488. [PMID: 36452376 PMCID: PMC9702071 DOI: 10.3389/fpsyg.2022.1051488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2024] Open
Abstract
Objective Memory impairment is a hallmark cognitive deficit in Parkinson's disease (PD). However, it remains unclear which processes underlie this deficit in PD. Also, little is known on these patients' subjective experiences of memory difficulties and their relationship with objective measures. We aim to portray memory deficits in PD by combining objective and subjective memory measures. Methods Fifteen PD patients and 15 controls were assessed with an extended version of the Face-Name Associative Memory Exam (FNAME) and the Memory Failures of Everyday Questionnaire (MFE-28). We also explored the relationship among clinical and cognitive variables. Results Participants with PD presented with more memory complaints. On the FNAME, these patients exhibited lower performance in free recall, as well as in name recognition and matching. Importantly, when controlling for initial learning, group effects disappeared, except for matching. Associative memory therefore was significantly compromised in PD and correlated with subjective memory complaints (SMC). Conclusion Our findings suggest that associative memory may constitute a sensitive measure to detect subtle memory deficits in PD. Moreover, the current study further clarifies the source of memory impairment in PD. Thus, our study highlights the clinical value of including associative memory tests such as the FNAME in PD neuropsychological assessment.
Collapse
Affiliation(s)
- Antònia Siquier
- Neuropsychology and Cognition Research Group, Department of Psychology, Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Pilar Andrés
- Neuropsychology and Cognition Research Group, Department of Psychology, Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
22
|
Imaging the Limbic System in Parkinson's Disease-A Review of Limbic Pathology and Clinical Symptoms. Brain Sci 2022; 12:brainsci12091248. [PMID: 36138984 PMCID: PMC9496800 DOI: 10.3390/brainsci12091248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023] Open
Abstract
The limbic system describes a complex of brain structures central for memory, learning, as well as goal directed and emotional behavior. In addition to pathological studies, recent findings using in vivo structural and functional imaging of the brain pinpoint the vulnerability of limbic structures to neurodegeneration in Parkinson's disease (PD) throughout the disease course. Accordingly, dysfunction of the limbic system is critically related to the symptom complex which characterizes PD, including neuropsychiatric, vegetative, and motor symptoms, and their heterogeneity in patients with PD. The aim of this systematic review was to put the spotlight on neuroimaging of the limbic system in PD and to give an overview of the most important structures affected by the disease, their function, disease related alterations, and corresponding clinical manifestations. PubMed was searched in order to identify the most recent studies that investigate the limbic system in PD with the help of neuroimaging methods. First, PD related neuropathological changes and corresponding clinical symptoms of each limbic system region are reviewed, and, finally, a network integration of the limbic system within the complex of PD pathology is discussed.
Collapse
|
23
|
Palmas MF, Etzi M, Pisanu A, Camoglio C, Sagheddu C, Santoni M, Manchinu MF, Pala M, Fusco G, De Simone A, Picci L, Mulas G, Spiga S, Scherma M, Fadda P, Pistis M, Simola N, Carboni E, Carta AR. The Intranigral Infusion of Human-Alpha Synuclein Oligomers Induces a Cognitive Impairment in Rats Associated with Changes in Neuronal Firing and Neuroinflammation in the Anterior Cingulate Cortex. Cells 2022; 11:cells11172628. [PMID: 36078036 PMCID: PMC9454687 DOI: 10.3390/cells11172628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is a complex pathology causing a plethora of non-motor symptoms besides classical motor impairments, including cognitive disturbances. Recent studies in the PD human brain have reported microgliosis in limbic and neocortical structures, suggesting a role for neuroinflammation in the development of cognitive decline. Yet, the mechanism underlying the cognitive pathology is under investigated, mainly for the lack of a valid preclinical neuropathological model reproducing the disease’s motor and non-motor aspects. Here, we show that the bilateral intracerebral infusion of pre-formed human alpha synuclein oligomers (H-αSynOs) within the substantia nigra pars compacta (SNpc) offers a valid model for studying the cognitive symptoms of PD, which adds to the classical motor aspects previously described in the same model. Indeed, H-αSynOs-infused rats displayed memory deficits in the two-trial recognition task in a Y maze and the novel object recognition (NOR) test performed three months after the oligomer infusion. In the anterior cingulate cortex (ACC) of H-αSynOs-infused rats the in vivo electrophysiological activity was altered and the expression of the neuron-specific immediate early gene (IEG) Npas4 (Neuronal PAS domain protein 4) and the AMPA receptor subunit GluR1 were decreased. The histological analysis of the brain of cognitively impaired rats showed a neuroinflammatory response in cognition-related regions such as the ACC and discrete subareas of the hippocampus, in the absence of any evident neuronal loss, supporting a role of neuroinflammation in cognitive decline. We found an increased GFAP reactivity and the acquisition of a proinflammatory phenotype by microglia, as indicated by the increased levels of microglial Tumor Necrosis Factor alpha (TNF-α) as compared to vehicle-infused rats. Moreover, diffused deposits of phospho-alpha synuclein (p-αSyn) and Lewy neurite-like aggregates were found in the SNpc and striatum, suggesting the spreading of toxic protein within anatomically interconnected areas. Altogether, we present a neuropathological rat model of PD that is relevant for the study of cognitive dysfunction featuring the disease. The intranigral infusion of toxic oligomeric species of alpha-synuclein (α-Syn) induced spreading and neuroinflammation in distant cognition-relevant regions, which may drive the altered neuronal activity underlying cognitive deficits.
Collapse
Affiliation(s)
| | - Michela Etzi
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Augusta Pisanu
- National Research Council, Institute of Neuroscience, 09040 Cagliari, Italy
| | - Chiara Camoglio
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Claudia Sagheddu
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Michele Santoni
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Maria Francesca Manchinu
- Istituto Di Ricerca Genetica e Biomedica Del Consiglio Nazionale Delle Ricerche, 09040 Monserrato, Italy
| | - Mauro Pala
- Istituto Di Ricerca Genetica e Biomedica Del Consiglio Nazionale Delle Ricerche, 09040 Monserrato, Italy
| | - Giuliana Fusco
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Alfonso De Simone
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| | - Luca Picci
- Department of Life and Environmental Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Giovanna Mulas
- Department of Life and Environmental Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Saturnino Spiga
- Department of Life and Environmental Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Anna R. Carta
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
- Correspondence:
| |
Collapse
|
24
|
Lopes MJP, Delmondes GDA, Leite GMDL, Cavalcante DRA, Aquino PÉAD, Lima FAVD, Neves KRT, Costa AS, Oliveira HDD, Bezerra Felipe CF, Pampolha Lima IS, Kerntopf MR, Viana GSDB. The Protein-Rich Fraction from Spirulina platensis Exerts Neuroprotection in Hemiparkinsonian Rats by Decreasing Brain Inflammatory-Related Enzymes and Glial Fibrillary Acidic Protein Expressions. J Med Food 2022; 25:695-709. [PMID: 35834631 DOI: 10.1089/jmf.2021.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Spirulina platensis is a cyanobacterium with high protein content and presenting neuroprotective effects. Now, we studied a protein-enriched fraction (SPF), on behavior, neurochemical and immunohistochemical (IHC) assays in hemiparkinsonian rats, distributed into the groups: SO (sham-operated), 6-hydroxydopamine (6-OHDA), and 6-OHDA (treated with SPF, 5 and 10 mg/kg, p.o., 15 days). Afterward, animals were subjected to behavioral tests and euthanized, and brain areas used for neurochemical and IHC assays. SPF partly reversed the changes in the apomorphine-induced rotations, open field and forced swim tests, and also the decrease in striatal dopamine and 3,4-dihydroxyphenylacetic acid contents seen in hemiparkinsonian rats. Furthermore, SPF reduced brain oxidative stress and increased striatal expressions of tyrosine hydroxylase and dopamine transporter and significantly reduced hippocampal inducible nitric oxide synthase, cyclooxygenase-2 and glial fibrillary acidic protein expressions. The data suggest that the protein fraction from S. platensis, through its brain anti-inflammatory and antioxidative actions, exerts neuroprotective effects that could benefit patients affected by neurodegenerative diseases, like Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andréa Santos Costa
- Faculty of Medicine of the Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Morphological basis of Parkinson disease-associated cognitive impairment: an update. J Neural Transm (Vienna) 2022; 129:977-999. [PMID: 35726096 DOI: 10.1007/s00702-022-02522-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Cognitive impairment is one of the most salient non-motor symptoms of Parkinson disease (PD) that poses a significant burden on the patients and carers as well as being a risk factor for early mortality. People with PD show a wide spectrum of cognitive dysfunctions ranging from subjective cognitive decline and mild cognitive impairment (MCI) to frank dementia. The mean frequency of PD with MCI (PD-MCI) is 25.8% and the pooled dementia frequency is 26.3% increasing up to 83% 20 years after diagnosis. A better understanding of the underlying pathological processes will aid in directing disease-specific treatment. Modern neuroimaging studies revealed considerable changes in gray and white matter in PD patients with cognitive impairment, cortical atrophy, hypometabolism, dopamine/cholinergic or other neurotransmitter dysfunction and increased amyloid burden, but multiple mechanism are likely involved. Combined analysis of imaging and fluid markers is the most promising method for identifying PD-MCI and Parkinson disease dementia (PDD). Morphological substrates are a combination of Lewy- and Alzheimer-associated and other concomitant pathologies with aggregation of α-synuclein, amyloid, tau and other pathological proteins in cortical and subcortical regions causing destruction of essential neuronal networks. Significant pathological heterogeneity within PD-MCI reflects deficits in various cognitive domains. This review highlights the essential neuroimaging data and neuropathological changes in PD with cognitive impairment, the amount and topographical distribution of pathological protein aggregates and their pathophysiological relevance. Large-scale clinicopathological correlative studies are warranted to further elucidate the exact neuropathological correlates of cognitive impairment in PD and related synucleinopathies as a basis for early diagnosis and future disease-modifying therapies.
Collapse
|
26
|
Structure-constrained combination-based nonlinear association analysis between incomplete multimodal imaging and genetic data for biomarker detection of neurodegenerative diseases. Med Image Anal 2022; 78:102419. [DOI: 10.1016/j.media.2022.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/15/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
|
27
|
Kumar D, Yatawara C, Wang B, Wong B, Tan YJ, Zailan FZ, Ng KP, Kandiah N. APOE4 and Confluent White Matter Hyperintensities Have a Synergistic Effect on Episodic Memory Impairment in Prodromal Dementia. J Alzheimers Dis 2022; 87:1103-1114. [DOI: 10.3233/jad-215556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: White matter hyperintensities (WMH) are a known risk factor for cognitive decline. While the ɛ4 allele of apolipoprotein E gene (APOE4) is another risk factor for cognitive decline, it remains unclear how APOE4 affects the relationship between WMH and cognitive decline, specifically in the prodromal stage of dementia. Objective: To determine how APOE4 moderates the relationship between WMH and cognition in prodromal dementia. Methods: Two-hundred-sixteen participants with prodromal dementia underwent magnetic resonance imaging (MRI), neuropsychological testing (global and domain wise), cardiovascular risk factor assessments, and APOE genotyping. Visual ratings for WMH as well as total and lobar WMH volumes were quantified. Moderation analysis was performed to determine the influence of APOE4 on the relationship between WMH and performance on global and domain-specific cognitive measures. The role of confluent and non-confluent WMH on cognition was additionally studied using logistic regression. Results: APOE4 carriers (n = 49) had poorer memory and higher global WMH (10.01 mL versus 6.23 mL, p = 0.04), temporal WMH (1.17 mL versus 0.58 mL, p = 0.01), and occipital WMH (0.38mL versus 0.22 mL, p = 0.02) compared to APOE4 non-carriers (n = 167). Moderation analysis revealed that APOE4 positivity strengthened the relationship between higher global as well as lobar WMH burden and poorer episodic memory. Furthermore, APOE4 carriers with confluent WMH were 4.81 times more likely to have impaired episodic memory compared to non-confluent WMH and non-APOE carriers. Conclusion: The impact of WMH on memory may be strongest among APOE4 carriers. Clinicians targeting WMH would need to consider the APOE4 allele and WMH severity status to strategize cognitive interventions.
Collapse
Affiliation(s)
| | | | - Brian Wang
- National Neuroscience Institute, Singapore
| | | | | | | | - Kok Pin Ng
- National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
| | - Nagaendran Kandiah
- National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
- Nanyang Technological University - Lee Kong Chian School of Medicine, Singapore
| |
Collapse
|
28
|
Hou Y, Shang H. Magnetic Resonance Imaging Markers for Cognitive Impairment in Parkinson’s Disease: Current View. Front Aging Neurosci 2022; 14:788846. [PMID: 35145396 PMCID: PMC8821910 DOI: 10.3389/fnagi.2022.788846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022] Open
Abstract
Cognitive impairment (CI) ranging from mild cognitive impairment (MCI) to dementia is a common and disturbing complication in patients with Parkinson’s disease (PD). Numerous studies have focused on neuropathological mechanisms underlying CI in PD, along with the identification of specific biomarkers for CI. Magnetic resonance imaging (MRI), a promising method, has been adopted to examine the changes in the brain and identify the candidate biomarkers associated with CI. In this review, we have summarized the potential biomarkers for CI in PD which have been identified through multi-modal MRI studies. Structural MRI technology is widely used in biomarker research. Specific patterns of gray matter atrophy are promising predictors of the evolution of CI in patients with PD. Moreover, other MRI techniques, such as MRI related to small-vessel disease, neuromelanin-sensitive MRI, quantitative susceptibility mapping, MR diffusion imaging, MRI related to cerebrovascular abnormality, resting-state functional MRI, and proton magnetic resonance spectroscopy, can provide imaging features with a good degree of prediction for CI. In the future, novel combined biomarkers should be developed using the recognized analysis tools and predictive algorithms in both cross-sectional and longitudinal studies.
Collapse
|
29
|
Li M, Li Y, Liu Y, Huang H, Leng X, Chen Y, Feng Y, Ma X, Tan X, Liang Y, Qiu S. Altered Hippocampal Subfields Volumes Is Associated With Memory Function in Type 2 Diabetes Mellitus. Front Neurol 2021; 12:756500. [PMID: 34899576 PMCID: PMC8657943 DOI: 10.3389/fneur.2021.756500] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/03/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: Cognitive impairment in type 2 diabetes mellitus (T2DM) patients is related to changes in hippocampal structure and function. However, the alternation of hippocampal subfields volumes and their relationship with cognitive function are unclear. This study explored morphological alterations in the hippocampus and its subfields in T2DM patients and their relationship with cognitive function. Methods: Thirty T2DM patients and 20 healthy controls (HCs) were recruited and underwent 3-dimensional, high-resolution T1-weighted sequence (3D-T1) and a battery of cognitive tests. Freesurfer 6.0 was performed to segment the hippocampus into 12 subregions automatically. Then relationships between hippocampal subfield volumes and neurocognitive scale scores in the T2DM group were evaluated. Results: Immediate memory scores on the auditory verbal learning test (AVLT) and Montreal Cognitive Assessment (MoCA) scores in T2DM patients were lower than in the HCs. T2DM patients showed that volumes of the bilateral hippocampus were significantly reduced, mainly in the bilateral molecular layer, granule cell and molecular layer of the dentate gyrus (GC-ML-DG), cornu ammonis 4 (CA4), fimbria, and left subiculum and the right hippocampus amygdala transition area (HATA) compared to HCs. In addition, T2DM patients showed the FINS was negatively correlated with volume of left GC-ML-DG (r = -0.415, P = 0.035) and left CA4 (r = -0.489, P = 0.011); the FBG was negatively correlated with volume of right fimbria (r = -0.460, P = 0.018); the HOMA-IR was negatively correlated with volume of left GC-ML-DG (r = -0.367, P = 0.046) and left CA4(r = 0.462, P = 0.010). Partial correlation analysis found that the volume of right HATA in T2DM group was positively correlated with AVLT (immediate) scores (r = 0.427, P = 0.03). Conclusion: This study showed the volumes of multiple hippocampal subfields decreased and they were correlated with FINS, FBG and HOMA-IR in T2DM patients. We hypothesized that decreased hippocampal subfields volumes in T2DM patients was related to insulin resistance and impaired vascular function. In addition, we also found that abnormal hippocampal subfields volumes were related to memory function in T2DM patients, suggesting that reduced volumes in specific hippocampal subfields may be the potential mechanism of memory dysfunction in these patients.
Collapse
Affiliation(s)
- Mingrui Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Liu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoming Huang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Leng
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Feng
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaomeng Ma
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Liang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijun Qiu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
30
|
Khlif MS, Werden E, Bird LJ, Egorova-Brumley N, Brodtmann A. Atrophy of Ipsilesional Hippocampal Subfields Vary Over First Year After Ischemic Stroke. J Magn Reson Imaging 2021; 56:273-281. [PMID: 34837426 DOI: 10.1002/jmri.28009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The structural integrity of hippocampal subfields has been investigated in many neurological disorders and was shown to be better associated with cognitive performance than whole hippocampus. In stroke, hippocampal atrophy is linked to cognitive impairment, but it is unknown whether the hippocampal subfields atrophy differently. PURPOSE To evaluate longitudinal hippocampal subfield atrophy in first year poststroke, in comparison with atrophy in healthy individuals. STUDY TYPE Cohort. SUBJECTS A total of 92 ischemic stroke (age: 67 ± 12 years, 63 men) and 39 healthy participants (age: 69 ± 7 years, 24 men). FIELD STRENGTH/SEQUENCE A3 T/T1-MPRAGE, T2-SPACE, and T2-FLAIR. ASSESSMENT FreeSurfer (6.0) was used to delineate 12 hippocampal subfields. Whole hippocampal volume was computed as sum of subfield volumes excluding hippocampal fissure volume. Separate assessments were completed for contralesional and ipsilesional hippocampi. STATISTICAL TESTS A mixed-effect regression model was used to compare subfield volumes cross-sectionally between healthy and stroke groups and longitudinally between 3-month and 12-month timepoints. False discovery rate at 0.05 significance level was used to correct for multiple comparisons. Also, a receiver operating characteristic (ROC) curve analysis was performed to assess differentiation between healthy and stroke participants based on subfield volumes. RESULTS There were no volume differences between groups at 3 months, but there was a significant difference (P = 0.027) in whole hippocampal volume reduction over time between control and stroke ipsilesionally. Thus, the ipsilesional whole hippocampal volume in stroke became significantly smaller (P = 0.035) at 12 months. The hippocampal tail was the highest single-region contributor (22.7%) to ipsilesional hippocampal atrophy (1.19%) over 9 months. The cornu ammonis areas (CA1) subfield volume reduction was minimal in controls and stroke contralesionally but significant ipsilesionally (P = 0.007). CA1 volume significantly outperformed whole hippocampal volume (P < 0.01) in discriminating between stroke participants and healthy controls in ROC curve analysis. DATA CONCLUSION Greater stroke-induced effects were observed in the ipsilesional hippocampus anteriorly in CA1 and posteriorly in the hippocampal tail. Atrophy of CA1 and hippocampal tail may provide a better link to cognitive impairment than whole hippocampal atrophy. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Mohamed Salah Khlif
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Emilio Werden
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Laura J Bird
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Natalia Egorova-Brumley
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia.,Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Amy Brodtmann
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia.,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Eastern Cognitive Disorders Clinic, Box Hill Hospital, Monash University, Box Hill, Victoria, Australia
| |
Collapse
|
31
|
Luo C, Gao Y, Hu N, Wei X, Xiao Y, Wang W, Lui S, Gong Q. Distinct hippocampal subfield atrophy in Parkinson's disease regarding motor subtypes. Parkinsonism Relat Disord 2021; 93:66-70. [PMID: 34808520 DOI: 10.1016/j.parkreldis.2021.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Global hippocampal atrophy has been repeatedly reported in patients with Parkinson's disease (PD). However, there is limited literature on the differential involvement of hippocampal subfields among PD motor subtypes. This study aimed to investigate hippocampal subfield alterations in patients with PD based on their predominant symptoms. METHOD We enrolled 31 PD patients with the tremor-dominant (TD) subtype, 27 PD patients with postural instability and gait disturbance-dominant (PIGD) subtype, and 40 healthy controls (HCs). All participants underwent high-spatial-resolution T1-weighted magnetic resonance imaging. The volume of hippocampal subfields was measured using FreeSurfer software, compared across groups, and correlated with clinical features. RESULTS We found volumetric reductions in the hippocampal subfield in both patient subtypes compared to HCs, which were more pronounced in the PIGD subtype. The PIGD subtype had accelerated age-related alterations in the hippocampus compared to the TD subtype. Bilateral hippocampal volumes were positively associated with cognitive performance levels, but not with disease severity and duration in patients. CONCLUSIONS Alterations in the hippocampal subfields of patients with PD differed based on their predominant symptoms. These findings are of relevance for understanding the pathophysiology of the increased risk of cognitive impairment in PIGD.
Collapse
Affiliation(s)
- Chunyan Luo
- Huaxi MR Research Center, Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China; Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Gao
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Na Hu
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Xia Wei
- Huaxi MR Research Center, Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China; Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Huaxi MR Research Center, Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China; Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China.
| | - Su Lui
- Huaxi MR Research Center, Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China; Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China.
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China; Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Martín-Bastida A, Delgado-Alvarado M, Navalpotro-Gómez I, Rodríguez-Oroz MC. Imaging Cognitive Impairment and Impulse Control Disorders in Parkinson's Disease. Front Neurol 2021; 12:733570. [PMID: 34803882 PMCID: PMC8602579 DOI: 10.3389/fneur.2021.733570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
Dementia and mild forms of cognitive impairment as well as neuropsychiatric symptoms (i. e., impulse control disorders) are frequent and disabling non-motor symptoms of Parkinson's disease (PD). The identification of changes in neuroimaging studies for the early diagnosis and monitoring of the cognitive and neuropsychiatric symptoms associated with Parkinson's disease, as well as their pathophysiological understanding, are critical for the development of an optimal therapeutic approach. In the current literature review, we present an update on the latest structural and functional neuroimaging findings, including high magnetic field resonance and radionuclide imaging, assessing cognitive dysfunction and impulse control disorders in PD.
Collapse
Affiliation(s)
- Antonio Martín-Bastida
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, Pamplona, Spain
| | | | - Irene Navalpotro-Gómez
- Cognitive Impairment and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain.,Clinical and Biological Research in Neurodegenerative Diseases, Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain.,Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - María Cruz Rodríguez-Oroz
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
33
|
Schaeffer E, Roeben B, Granert O, Hanert A, Liepelt-Scarfone I, Leks E, Otterbein S, Saraykin P, Busch JH, Synofzik M, Stransky E, Bartsch T, Berg D. Effects of exergaming on hippocampal volume and brain-derived neurotrophic factor levels in Parkinson's disease. Eur J Neurol 2021; 29:441-449. [PMID: 34724287 DOI: 10.1111/ene.15165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/17/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Cognitive impairment is among the most burdensome non-motor symptoms in Parkinson's disease (PD) and has been associated with hippocampal atrophy. Exercise has been reported to enhance neuroplasticity in the hippocampus in correlation with an improvement of cognitive function. We present data from the Training-PD study, which was designed to evaluate effects of an "" training protocol on neuronal plasticity in PD. METHODS We initiated a 6-week exergaming training program, combining visually stimulating computer games with physical exercise in 17 PD patients and 18 matched healthy controls. Volumetric segmentation of hippocampal subfields on T1- and T2-weighted magnetic resonance imaging and brain-derived neurotrophic factor (BDNF) serum levels were analyzed before and after the training protocol. RESULTS The PD group showed a group-dependent significant volume increase of the left hippocampal subfields CA1, CA4/dentate gyrus (DG) and subiculum after the 6-week training protocol. The effect was most pronounced in the left DG of PD patients, who showed a significantly smaller percentage volume compared to healthy controls at baseline, but not at follow-up. Both groups had a significant increase in serum BDNF levels after training. CONCLUSIONS The results of the present study indicate that exergaming might be a suitable approach to induce hippocampal volume changes in PD patients. Further and larger studies are needed to verify our findings.
Collapse
Affiliation(s)
- Eva Schaeffer
- Department of Neurology, Christian-Albrecht-University Kiel, Kiel, Germany
| | - Benjamin Roeben
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Oliver Granert
- Department of Neurology, Christian-Albrecht-University Kiel, Kiel, Germany
| | - Annika Hanert
- Department of Neurology, Christian-Albrecht-University Kiel, Kiel, Germany
| | - Inga Liepelt-Scarfone
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,IB Hochschule, Studienzentrum Stuttgart, Stuttgart, Germany
| | - Edyta Leks
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Sascha Otterbein
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Pavel Saraykin
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jan-Hinrich Busch
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Matthis Synofzik
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Elke Stransky
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Thorsten Bartsch
- Department of Neurology, Christian-Albrecht-University Kiel, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, Christian-Albrecht-University Kiel, Kiel, Germany.,Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Memon AA, Bagley ME, Creed RB, Amara AW, Goldberg MS, McMahon LL. Basal Synaptic Transmission and Long-Term Plasticity at CA3-CA1 Synapses Are Unaffected in Young Adult PINK1-Deficient Rats. Front Neurosci 2021; 15:655901. [PMID: 34483814 PMCID: PMC8414523 DOI: 10.3389/fnins.2021.655901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Loss of function mutations in PARK6, the gene that encodes the protein PTEN-induced kinase 1 (PINK1), cause autosomal recessive familial Parkinson’s disease (PD). While PD is clinically diagnosed by its motor symptoms, recent studies point to the impact of non-motor symptoms, including cognitive dysfunction in the early pre-motor stages of the disease (Aarsland et al., 2004; Chaudhuri and Schapira, 2009). As the hippocampus is a key structure for learning and memory, this study aimed to determine whether synaptic transmission is affected at CA3-CA1 excitatory synapses in PINK1 knockout rats at an age when we recently reported a gain of function at excitatory synapses onto spiny projection neurons in the dorsal striatum (Creed et al., 2020) and when motor symptoms are beginning to appear (Dave et al., 2014). Using extracellular dendritic field excitatory postsynaptic potential recordings at CA3-CA1 synapses in dorsal hippocampus 4-to 5- month old PINK1 KO rats and wild-type littermate controls, we observed no detectable differences in the strength of basal synaptic transmission, paired-pulse facilitation, or long-term potentiation. Our results suggest that loss of PINK1 protein does not cause a general dysfunction of excitatory transmission throughout the brain at this young adult age when excitatory transmission is abnormal in the striatum.
Collapse
Affiliation(s)
- Adeel A Memon
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Neuroengineering, School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States.,Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Micah E Bagley
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rose B Creed
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States.,Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amy W Amara
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States.,Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matthew S Goldberg
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States.,Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lori L McMahon
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States.,Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
35
|
Cholinergic basal forebrain and hippocampal structure influence visuospatial memory in Parkinson's disease. Brain Imaging Behav 2021; 16:118-129. [PMID: 34176042 DOI: 10.1007/s11682-021-00481-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Visuospatial impairment in Parkinson's disease (PD) heralds the onset of a progressive dementia syndrome and might be associated with cholinergic dysfunction. It remains unclear however, whether degeneration of the cholinergic basal forebrain is directly related to cognitive decline, or whether relationships between this region and cognitive function are mediated by closely related brain structures such as those in the medial temporal lobe. To evaluate relationships between structure of the cholinergic basal forebrain, medial temporal lobe and cognition, 27 PD patients without dementia and 20 controls underwent neuropsychological assessment and MRI. Volumes of the cholinergic basal forebrain nuclei, the entorhinal cortex, the hippocampus and its subfields were measured. Regression models utilised basal forebrain and hippocampal volumetric measures to predict cognitive performance. In PD, visuospatial memory (but not verbal memory or executive function) was correlated with hippocampal volume, particularly CA2-3, and basal forebrain subregion Ch1-2, but not Ch4. In addition, hippocampal volume was correlated with Ch1-2 in PD. The relationship between Ch1-2 and visuospatial memory was mediated by CA2-3 integrity. There were no correlations between cognitive and volumetric measures in controls. Our data imply that the integrity of the cholinergic basal forebrain is associated with subregional hippocampal volume. Additionally, a relationship between visuospatial function and cholinergic nuclei does exist, but is fully mediated by variations in hippocampal structure. These findings are consistent with the recent hypothesis that forebrain cholinergic system degeneration results in cognitive deficits via cholinergic denervation, and subsequent structural degeneration, of its target regions.
Collapse
|
36
|
Khlif MS, Bird LJ, Restrepo C, Khan W, Werden E, Egorova‐Brumley N, Brodtmann A. Hippocampal subfield volumes are associated with verbal memory after first-ever ischemic stroke. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12195. [PMID: 34136634 PMCID: PMC8197170 DOI: 10.1002/dad2.12195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Hippocampal subfield volumes are more closely associated with cognitive impairment than whole hippocampal volume in many diseases. Both memory and whole hippocampal volume decline after stroke. Understanding the subfields' temporal evolution could reveal valuable information about post-stroke memory. METHODS We sampled 120 participants (38 control, 82 stroke), with cognitive testing and 3T-MRI available at 3 months and 3 years, from the Cognition and Neocortical Volume after Stroke (CANVAS) study. Verbal memory was assessed using the Hopkins Verbal Learning Test-Revised. Subfields were delineated using FreeSurfer. We used partial Pearson's correlation to assess the associations between subfield volumes and verbal memory scores, adjusting for years of education, sex, and stroke side. RESULTS The left cornu ammonis areas 2/3 and hippocampal tail volumes were significantly associated with verbal memory 3-month post-stroke. At 3 years, the associations became stronger and involved more subfields. DISCUSSION Hippocampal subfield volumes may be a useful biomarker for post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Mohamed Salah Khlif
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Laura J. Bird
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Carolina Restrepo
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Wasim Khan
- Department of NeuroscienceCentral Clinical SchoolMonash UniversityClaytonVictoriaAustralia
- Department of Neuroimaging Institute of PsychiatryPsychology, and Neuroscience (IoPPN), King's College LondonLondonUK
| | - Emilio Werden
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Natalia Egorova‐Brumley
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- Melbourne School of Psychological SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAustin HealthHeidelbergVictoriaAustralia
- Eastern Cognitive Disorders ClinicBox Hill HospitalMonash UniversityBox HillVictoriaAustralia
| |
Collapse
|
37
|
Carlesimo GA, Taglieri S, Zabberoni S, Scalici F, Peppe A, Caltagirone C, Costa A. Subjective organization in the episodic memory of individuals with Parkinson's disease associated with mild cognitive impairment. J Neuropsychol 2021; 16:161-182. [PMID: 34089629 DOI: 10.1111/jnp.12256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Word clustering (i.e., the ability to reproduce the same word pairs in consecutive recall trials of an unrelated word list) has been extensively investigated as a proxy of subjective organization (SO) of memorandum. In healthy subjects and in groups of brain-damaged patients, the rate of SO generally predicts accuracy of word list recall. This study aimed at evaluating SO in the performance of patients with Parkinson's disease (PD) on a word list recall task in order to investigate the basic mechanisms of episodic memory impairment that are frequently observed in these patients. For this purpose, 56 PD patients, who were stratified according to the presence and quality of mild cognitive impairment (MCI), and a group of healthy controls (HCs) were administered a word list task and an extensive battery of neuropsychological tests. Results showed that recall accuracy on the word list task progressively decreased passing from HC to PD patients without cognitive impairment, to patients with single-domain dysexecutive MCI and to patients with multiple-domain dysexecutive and amnesic MCI. Conversely, only the latter PD group showed a lower SO score than that achieved by the other groups. In the overall PD group, correlational and regression analyses demonstrated that SO scores and a composite score of executive functions were not reciprocally related, but both provided an independent and significant contribution to the prediction of word list recall accuracy. These data are discussed in terms of the contribution of executive functions and hippocampal storage processes to the onset of memory impairment in PD.
Collapse
Affiliation(s)
- Giovanni Augusto Carlesimo
- Department of Systems Medicine, Tor Vergata University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sara Taglieri
- IRCCS Santa Lucia Foundation, Rome, Italy.,Niccolò Cusano University, Rome, Italy
| | | | | | | | - Carlo Caltagirone
- Department of Systems Medicine, Tor Vergata University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Alberto Costa
- IRCCS Santa Lucia Foundation, Rome, Italy.,Niccolò Cusano University, Rome, Italy
| |
Collapse
|
38
|
Pourzinal D, Yang JHJ, Bakker A, McMahon KL, Byrne GJ, Pontone GM, Mari Z, Dissanayaka NN. Hippocampal correlates of episodic memory in Parkinson's disease: A systematic review of magnetic resonance imaging studies. J Neurosci Res 2021; 99:2097-2116. [PMID: 34075634 DOI: 10.1002/jnr.24863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
The present review asks whether magnetic resonance imaging (MRI) studies are able to define neural correlates of episodic memory within the hippocampus in Parkinson's disease (PD). Systematic searches were performed in PubMed, Web of Science, Medline, CINAHL, and EMBASE using search terms related to structural and functional MRI (fMRI), the hippocampus, episodic memory, and PD. Risk of bias was assessed for each study using the Newtown-Ottawa Scale. Thirty-nine studies met inclusion criteria; eight fMRI, seven diffusion MRI (dMRI), and 24 structural MRI (14 exploring whole hippocampus and 10 exploring hippocampal subfields). Critical analysis of the literature revealed mixed evidence from functional and dMRI, but stronger evidence from sMRI of the hippocampus as a biomarker for episodic memory impairment in PD. Hippocampal subfield studies most often implicated CA1, CA3/4, and subiculum volume in episodic memory and cognitive decline in PD. Despite differences in imaging methodology, study design, and sample characteristics, MRI studies have helped elucidate an important neural correlate of episodic memory impairment in PD with both clinical and theoretical implications. Natural progression of this work encourages future research on hippocampal subfield function as a potential biomarker of, or therapeutic target for, episodic memory dysfunction in PD.
Collapse
Affiliation(s)
- Dana Pourzinal
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| | - Ji Hyun J Yang
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Katie L McMahon
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gerard J Byrne
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia.,Mental Health Service, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| | - Gregory M Pontone
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Zoltan Mari
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Nadeeka N Dissanayaka
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia.,School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
39
|
Episodic Memory Impairment in Parkinson's Disease: Disentangling the Role of Encoding and Retrieval. J Int Neuropsychol Soc 2021; 27:261-269. [PMID: 32967754 DOI: 10.1017/s1355617720000909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The source of episodic memory (EM) impairment in Parkinson's disease (PD) is still unclear. In the present study, we sought to quantify specifically encoding, consolidation, and retrieval process deficits in a list-learning paradigm by a novel method, the item-specific deficit approach (ISDA). METHODS We applied the ISDA method to the Free and Cued Selective Reminding Test (FCSRT) in a sample of 15 PD patients and 15 healthy participants. RESULTS The results revealed differences in free recall performance between PD patients and controls. These patients, however, benefited from cues as much as controls did, and total recall did not differ between groups. When analyzing the ISDA indices for encoding, consolidation, and retrieval deficits, the results showed a general memory deficit, but with a clear focus on encoding and retrieval, as revealed by the sensitivity values. Moreover, controlling for initial learning did not eliminate group effects in retrieval. CONCLUSIONS Our findings reveal a mixed pattern in PD patients, with deficits in both encoding and retrieval processes in memory. Also, despite the fact that an encoding dysfunction may explain some of the deficits observed at retrieval, it cannot fully account for the differences, highlighting that both encoding and retrieval factors are necessary to understand memory deficits in PD.
Collapse
|
40
|
Vattimo EFQ, Dos Santos AC, Hoexter MQ, Frudit P, Miguel EC, Shavitt RG, Batistuzzo MC. Higher volumes of hippocampal subfields in pediatric obsessive-compulsive disorder. Psychiatry Res Neuroimaging 2021; 307:111200. [PMID: 33059948 DOI: 10.1016/j.pscychresns.2020.111200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 09/12/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
Differences in hippocampus volume have been identified in adult patients with obsessive-compulsive disorder (OCD). However, the role of this limbic structure in pediatric patients is unclear. This study aimed to investigate the hippocampus and its subregions in a sample of 29 children and adolescents with OCD compared to 28 healthy controls, matched for age, sex, education, and IQ. Volumetric segmentation was performed using the Freesurfer software to calculate the volumes of the subregions that reflect the hippocampal cytoarchitecture. The volumes of three anatomic subregions (tail, body, and head) were also calculated. ANCOVA was performed to investigate differences of these volumes between patients and controls, controlling for total gray matter volume. After Bonferroni correction for multiple comparisons (p-value < 0.00556 for the body and < 0.00625 for the head structures), patients presented statistically significant larger volumes of the following structures: left subiculum body; left CA4 body; left GC-DG body; left molecular layer body; right parasubiculum; left CA4 head; left molecular layer head; right subiculum head and right molecular layer head. These enlarged volumes resulted in larger left and right whole hippocampi in patients, as well as bilateral hippocampal heads and left hippocampal body (all p-values < 0.00625). There were no associations between OCD severity and hippocampal volumes. These findings diverge from previous reports on adults and may indicate that larger hippocampal volumes could reflect an early marker of OCD, not present in adults.
Collapse
Affiliation(s)
- Edoardo F Q Vattimo
- Departamento de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo, SP, Brazil
| | | | - Marcelo Q Hoexter
- Departamento de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo, SP, Brazil
| | - Paula Frudit
- Faculdade de Ciências Médicas da Santa Casa de São Paulo, SP, Brazil
| | - Euripedes C Miguel
- Departamento de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo, SP, Brazil
| | - Roseli G Shavitt
- Departamento de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo, SP, Brazil
| | - Marcelo C Batistuzzo
- Departamento de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo, SP, Brazil; Departamento de Métodos e Técnicas, Curso de Psicologia da Faculdade de Ciências Humanas e da Saúde, Pontifícia Universidade Católica de São Paulo, SP, Brazil.
| |
Collapse
|
41
|
Wan M, Ye Y, Lin H, Xu Y, Liang S, Xia R, He J, Qiu P, Huang C, Tao J, Chen L, Zheng G. Deviations in Hippocampal Subregion in Older Adults With Cognitive Frailty. Front Aging Neurosci 2021; 12:615852. [PMID: 33519422 PMCID: PMC7838368 DOI: 10.3389/fnagi.2020.615852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/15/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Cognitive frailty is a particular state of cognitive vulnerability toward dementia with neuropathological hallmarks. The hippocampus is a complex, heterogeneous structure closely relates to the cognitive impairment in elderly which is composed of 12 subregions. Atrophy of these subregions has been implicated in a variety of neurodegenerative diseases. The aim of this study was to explore the changes in hippocampal subregions in older adults with cognitive frailty and the relationship between subregions and cognitive impairment as well as physical frailty. METHODS Twenty-six older adults with cognitive frailty and 26 matched healthy controls were included in this study. Cognitive function was evaluated by the Montreal Cognitive Assessment (MoCA) scale (Fuzhou version) and Wechsler Memory Scale-Revised Chinese version (WMS-RC), while physical frailty was tested with the Chinese version of the Edmonton Frailty Scale (EFS) and grip strength. The volume of the hippocampal subregions was measured with structural brain magnetic resonance imaging. Partial correlation analysis was carried out between the volumes of hippocampal subregions and MoCA scores, Wechsler's Memory Quotient and physical frailty indexes. RESULTS A significant volume decrease was found in six hippocampal subregions, including the bilateral presubiculum, the left parasubiculum, molecular layer of the hippocampus proper (molecular layer of the HP), and hippocampal amygdala transition area (HATA), and the right cornu ammonis subfield 1 (CA1) area, in older adults with cognitive frailty, while the proportion of brain parenchyma and total number of white matter fibers were lower than those in the healthy controls. Positive correlations were found between Wechsler's Memory Quotient and the size of the left molecular layer of the HP and HATA and the right presubiculum. The sizes of the left presubiculum, molecular of the layer HP, and HATA and right CA1 and presubiculum were found to be positively correlated with MoCA score. The sizes of the left parasubiculum, molecular layer of the HP and HATA were found to be negatively correlated with the physical frailty index. CONCLUSION Significant volume decrease occurs in hippocampal subregions of older adults with cognitive frailty, and these changes are correlated with cognitive impairment and physical frailty. Therefore, the atrophy of hippocampal subregions could participate in the pathological progression of cognitive frailty.
Collapse
Affiliation(s)
- Mingyue Wan
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yu Ye
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huiying Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ying Xu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shengxiang Liang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Rui Xia
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianquan He
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Pingting Qiu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Chengwu Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guohua Zheng
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
42
|
Villar-Conde S, Astillero-Lopez V, Gonzalez-Rodriguez M, Villanueva-Anguita P, Saiz-Sanchez D, Martinez-Marcos A, Flores-Cuadrado A, Ubeda-Bañon I. The Human Hippocampus in Parkinson's Disease: An Integrative Stereological and Proteomic Study. JOURNAL OF PARKINSON'S DISEASE 2021; 11:1345-1365. [PMID: 34092653 PMCID: PMC8461741 DOI: 10.3233/jpd-202465] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/16/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a prevalent neurodegenerative disease that is pathologically described as a six-stage α-synucleinopathy. In stage 4, α-synuclein reaches the hippocampus, inducing cognitive deficits, from which it progresses to the isocortex, leading to dementia. Among hippocampal fields, cornu ammonis 2 is particularly affected by this α-synucleinopathy and critical for cognitive decline. Volumetric studies using magnetic resonance imaging have produced controversial results, with only some reporting volume loss, whereas stereological data obtained using nonspecific markers do not reveal volume changes, neural or glial loss. Proteomic analysis has not been carried out in the hippocampus of patients with PD. OBJECTIVE This study aims to explain hippocampal changes in patients with PD at the cellular and proteomic levels. METHODS α-Synuclein inclusions, volume and neural (NeuN), microglial (Iba-1) and astroglial (GFAP) populations were stereologically analyzed. SWATH-MS quantitative proteomic analysis was also conducted. RESULTS Area fraction fractionator probe revealed a higher area fraction α-synucleinopathy in cornu ammonis 2. No volume change, neurodegeneration, microgliosis or astrogliosis was detected. Proteomic analysis identified 1,634 proteins, of which 83 were particularly useful for defining differences among PD and non-PD groups. Among them, upregulated (PHYIP, CTND2, AHSA1 and SNTA1) and downregulated (TM163, REEP2 and CSKI1) proteins were related to synaptic structures in the diseased hippocampus. CONCLUSION The distribution of α-synuclein in the hippocampus is not associated with volumetric, neural or glial changes. Proteomic analysis, however, reveals a series of changes in proteins associated with synaptic structures, suggesting that hippocampal changes occur at the synapse level during PD.
Collapse
Affiliation(s)
- Sandra Villar-Conde
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Veronica Astillero-Lopez
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Melania Gonzalez-Rodriguez
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Patricia Villanueva-Anguita
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Daniel Saiz-Sanchez
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Alino Martinez-Marcos
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Alicia Flores-Cuadrado
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Isabel Ubeda-Bañon
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
43
|
Sämann PG, Iglesias JE, Gutman B, Grotegerd D, Leenings R, Flint C, Dannlowski U, Clarke‐Rubright EK, Morey RA, Erp TG, Whelan CD, Han LKM, Velzen LS, Cao B, Augustinack JC, Thompson PM, Jahanshad N, Schmaal L. FreeSurfer
‐based segmentation of hippocampal subfields: A review of methods and applications, with a novel quality control procedure for
ENIGMA
studies and other collaborative efforts. Hum Brain Mapp 2020; 43:207-233. [PMID: 33368865 PMCID: PMC8805696 DOI: 10.1002/hbm.25326] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Structural hippocampal abnormalities are common in many neurological and psychiatric disorders, and variation in hippocampal measures is related to cognitive performance and other complex phenotypes such as stress sensitivity. Hippocampal subregions are increasingly studied, as automated algorithms have become available for mapping and volume quantification. In the context of the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium, several Disease Working Groups are using the FreeSurfer software to analyze hippocampal subregion (subfield) volumes in patients with neurological and psychiatric conditions along with data from matched controls. In this overview, we explain the algorithm's principles, summarize measurement reliability studies, and demonstrate two additional aspects (subfield autocorrelation and volume/reliability correlation) with illustrative data. We then explain the rationale for a standardized hippocampal subfield segmentation quality control (QC) procedure for improved pipeline harmonization. To guide researchers to make optimal use of the algorithm, we discuss how global size and age effects can be modeled, how QC steps can be incorporated and how subfields may be aggregated into composite volumes. This discussion is based on a synopsis of 162 published neuroimaging studies (01/2013–12/2019) that applied the FreeSurfer hippocampal subfield segmentation in a broad range of domains including cognition and healthy aging, brain development and neurodegeneration, affective disorders, psychosis, stress regulation, neurotoxicity, epilepsy, inflammatory disease, childhood adversity and posttraumatic stress disorder, and candidate and whole genome (epi‐)genetics. Finally, we highlight points where FreeSurfer‐based hippocampal subfield studies may be optimized.
Collapse
Affiliation(s)
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing University College London London UK
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital/Harvard Medical School Boston Massachusetts US
- Computer Science and AI Laboratory (CSAIL), Massachusetts Institute of Technology (MIT) Cambridge Massachusetts US
| | - Boris Gutman
- Department of Biomedical Engineering Illinois Institute of Technology Chicago USA
| | | | - Ramona Leenings
- Department of Psychiatry University of Münster Münster Germany
| | - Claas Flint
- Department of Psychiatry University of Münster Münster Germany
- Department of Mathematics and Computer Science University of Münster Germany
| | - Udo Dannlowski
- Department of Psychiatry University of Münster Münster Germany
| | - Emily K. Clarke‐Rubright
- Brain Imaging and Analysis Center, Duke University Durham North Carolina USA
- VISN 6 MIRECC, Durham VA Durham North Carolina USA
| | - Rajendra A. Morey
- Brain Imaging and Analysis Center, Duke University Durham North Carolina USA
- VISN 6 MIRECC, Durham VA Durham North Carolina USA
| | - Theo G.M. Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine California USA
- Center for the Neurobiology of Learning and Memory University of California Irvine Irvine California USA
| | - Christopher D. Whelan
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Laura K. M. Han
- Department of Psychiatry Amsterdam University Medical Centers, Vrije Universiteit and GGZ inGeest, Amsterdam Neuroscience Amsterdam The Netherlands
| | - Laura S. Velzen
- Orygen Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry University of Alberta Edmonton Canada
| | - Jean C. Augustinack
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital/Harvard Medical School Boston Massachusetts US
| | - Paul M. Thompson
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Neda Jahanshad
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Lianne Schmaal
- Orygen Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| |
Collapse
|
44
|
Becker S, Granert O, Timmers M, Pilotto A, Van Nueten L, Roeben B, Salvadore G, Galpern WR, Streffer J, Scheffler K, Maetzler W, Berg D, Liepelt-Scarfone I. Association of Hippocampal Subfields, CSF Biomarkers, and Cognition in Patients With Parkinson Disease Without Dementia. Neurology 2020; 96:e904-e915. [PMID: 33219138 DOI: 10.1212/wnl.0000000000011224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To examine whether hippocampal volume loss is primarily associated with cognitive status or pathologic β-amyloid 1-42 (Aβ42) levels, this study compared hippocampal subfield volumes between patients with Parkinson disease (PD) with mild cognitive impairment (PD-MCI) and without cognitive impairment (PD-CN) and between patients with low and high Aβ42 levels, in addition exploring the relationship among hippocampal subfield volumes, CSF biomarkers (Aβ42, phosphorylated and total tau), neuropsychological tests, and activities of daily living. METHODS Forty-five patients with PD without dementia underwent CSF analyses and MRI as well as comprehensive motor and neuropsychological examinations. Hippocampal segmentation was conducted using FreeSurfer image analysis suite 6.0. Regression models were used to compare hippocampal subfield volumes between groups, and partial correlations defined the association between variables while controlling for intracranial volume (ICV). RESULTS Linear regressions revealed cognitive group as a statistically significant predictor of both the hippocampal-amygdaloid transition area (HATA; β = -0.23, 95% CI -0.44 to -0.02) and the cornu ammonis 1 region (CA1; β = -0.28, 95% confidence interval [CI] -0.56 to -0.02), independent of disease duration and ICV, with patients with PD-MCI showing significantly smaller volumes than PD-CN. In contrast, no subfields were predicted by Aβ42 levels. Smaller hippocampal volumes were associated with worse performance on memory, language, spatial working memory, and executive functioning tests. The subiculum was negatively correlated with total tau levels (r = -0.37, 95% CI -0.60 to -0.09). CONCLUSION Cognitive status, but not CSF Aβ42, predicted hippocampal volumes, specifically the CA1 and HATA. Hippocampal subfields were associated with various cognitive domains, as well as with tau pathology.
Collapse
Affiliation(s)
- Sara Becker
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany.
| | - Oliver Granert
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Maarten Timmers
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Andrea Pilotto
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Luc Van Nueten
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Benjamin Roeben
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Giacomo Salvadore
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Wendy R Galpern
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Johannes Streffer
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Klaus Scheffler
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Walter Maetzler
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Daniela Berg
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| | - Inga Liepelt-Scarfone
- From the Department of Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Hertie Institute for Clinical Brain Research; German Center for Neurodegenerative Diseases (S.B., B.R., I.L.-S.), Tübingen; Department of Neurology (O.G., W.M., D.B.), Christian-Albrechts-University, Kiel, Germany; Janssen Research and Development, a Division of Janssen Pharmaceutica N.V. (M.T., L.V.N., J.S.), Beerse; Reference Center for Biological Markers of Dementia (M.T.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Clinical and Experimental Sciences (A.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A.P.), FERB ONLUS Sant'Isidoro Hospital, Trescore Balneario, Italy; Janssen Research and Development LLC (G.S., W.R.G.), Titusville, NJ; Translational Medicine Neuroscience (J.S.), UCB Biopharma SPRK, Braine-l'Alleud, Belgium; Magnetic Resonance Center (K.S.), Max Planck Institute for Biological Cybernetics; and Department of Biomedical Magnetic Resonance (K.S.), University Hospital Tübingen, Germany
| |
Collapse
|
45
|
Cong S, Yao X, Huang Z, Risacher SL, Nho K, Saykin AJ, Shen L. Volumetric GWAS of medial temporal lobe structures identifies an ERC1 locus using ADNI high-resolution T2-weighted MRI data. Neurobiol Aging 2020; 95:81-93. [PMID: 32768867 PMCID: PMC7609616 DOI: 10.1016/j.neurobiolaging.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/09/2020] [Accepted: 07/04/2020] [Indexed: 12/18/2022]
Abstract
Medial temporal lobe (MTL) consists of hippocampal subfields and neighboring cortices. These heterogeneous structures are differentially involved in memory, cognitive and emotional functions, and present nonuniformly distributed atrophy contributing to cognitive disorders. This study aims to examine how genetics influences Alzheimer's disease (AD) pathogenesis via MTL substructures by analyzing high-resolution magnetic resonance imaging (MRI) data. We performed genome-wide association study to examine the associations between 565,373 single nucleotide polymorphisms (SNPs) and 14 MTL substructure volumes. A novel association with right Brodmann area 36 volume was discovered in an ERC1 SNP (i.e., rs2968869). Further analyses on larger samples found rs2968869 to be associated with gray matter density and glucose metabolism measures in the right hippocampus, and disease status. Tissue-specific transcriptomic analysis identified the minor allele of rs2968869 (rs2968869-C) to be associated with reduced ERC1 expression in the hippocampus. All the findings indicated a protective role of rs2968869-C in AD. We demonstrated the power of high-resolution MRI and the promise of fine-grained MTL substructures for revealing the genetic basis of AD biomarkers.
Collapse
Affiliation(s)
- Shan Cong
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Xiaohui Yao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhi Huang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Etherton MR, Fotiadis P, Giese AK, Iglesias JE, Wu O, Rost NS. White Matter Hyperintensity Burden Is Associated With Hippocampal Subfield Volume in Stroke. Front Neurol 2020; 11:588883. [PMID: 33193055 PMCID: PMC7649326 DOI: 10.3389/fneur.2020.588883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/05/2020] [Indexed: 12/05/2022] Open
Abstract
White matter hyperintensities of presumed vascular origin (WMH) are a prevalent form of cerebral small-vessel disease and an important risk factor for post-stroke cognitive dysfunction. Despite this prevalence, it is not well understood how WMH contributes to post-stroke cognitive dysfunction. Preliminary findings suggest that increasing WMH volume is associated with total hippocampal volume in chronic stroke patients. The hippocampus, however, is a complex structure with distinct subfields that have varying roles in the function of the hippocampal circuitry and unique anatomical projections to different brain regions. For these reasons, an investigation into the relationship between WMH and hippocampal subfield volume may further delineate how WMH predispose to post-stroke cognitive dysfunction. In a prospective study of acute ischemic stroke patients with moderate/severe WMH burden, we assessed the relationship between quantitative WMH burden and hippocampal subfield volumes. Patients underwent a 3T MRI brain within 2–5 days of stroke onset. Total WMH volume was calculated in a semi-automated manner. Mean cortical thickness and hippocampal volumes were measured in the contralesional hemisphere. Total and subfield hippocampal volumes were measured using an automated, high-resolution, ex vivo computational atlas. Linear regression analyses were performed for predictors of total and subfield hippocampal volumes. Forty patients with acute ischemic stroke and moderate/severe white matter hyperintensity burden were included in this analysis. Median WMH volume was 9.0 cm3. Adjusting for intracranial volume and stroke laterality, age (β = −3.7, P < 0.001), hypertension (β = −44.7, P = 0.04), WMH volume (β = −0.89, P = 0.049), and mean cortical thickness (β = 286.2, P = 0.006) were associated with total hippocampal volume. In multivariable analysis, age (β = −3.3, P < 0.001) and cortical thickness (β = 205.2, P = 0.028) remained independently associated with total hippocampal volume. In linear regression for predictors of hippocampal subfield volume, increasing WMH volume was associated with decreased hippocampal-amygdala transition area volume (β = −0.04, P = 0.001). These finding suggest that in ischemic stroke patients, increased WMH burden is associated with selective hippocampal subfield degeneration in the hippocampal-amygdala transition area.
Collapse
Affiliation(s)
- Mark R Etherton
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Panagiotis Fotiadis
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anne-Katrin Giese
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Juan E Iglesias
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Ona Wu
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Natalia S Rost
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
47
|
Brandão PRP, Munhoz RP, Grippe TC, Cardoso FEC, de Almeida E Castro BM, Titze-de-Almeida R, Tomaz C, Tavares MCH. Cognitive impairment in Parkinson's disease: A clinical and pathophysiological overview. J Neurol Sci 2020; 419:117177. [PMID: 33068906 DOI: 10.1016/j.jns.2020.117177] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/16/2020] [Accepted: 10/08/2020] [Indexed: 11/29/2022]
Abstract
Cognitive dysfunction in Parkinson's disease (PD) has received increasing attention, and, together with other non-motor symptoms, exert a significant functional impact in the daily lives of patients. This article aims to compile and briefly summarize selected published data about clinical features, cognitive evaluation, biomarkers, and pathophysiology of PD-related dementia (PDD). The literature search included articles indexed in the MEDLINE/PubMed database, published in English, over the last two decades. Despite significant progress on clinical criteria and cohort studies for PD-mild cognitive impairment (PD-MCI) and PDD, there are still knowledge gaps about its exact molecular and pathological basis. Here we overview the scientific literature on the role of functional circuits, neurotransmitter systems (monoaminergic and cholinergic), basal forebrain, and brainstem nuclei dysfunction in PD-MCI. Correlations between neuroimaging and cerebrospinal fluid (CSF) biomarkers, clinical outcomes, and pathological results are described to aid in uncovering the neurodegeneration pattern in PD-MCI and PDD.
Collapse
Affiliation(s)
- Pedro Renato P Brandão
- Laboratory of Neuroscience and Behavior, Institute of Biological Sciences, Universidade de Brasília (UnB); Neurology Section, Medical Department, Chamber of Deputies of the Federal Republic of Brazil, Brasília, DF, Brazil.
| | - Renato Puppi Munhoz
- Toronto Western Hospital, Movement Disorders Centre, Toronto Western Hospital - UHN, Division of Neurology, University of Toronto, Toronto, Canada.
| | - Talyta Cortez Grippe
- Laboratory of Neuroscience and Behavior, Institute of Biological Sciences, Universidade de Brasília (UnB); Movement Disorders Group, Neurology Unit, Hospital de Base do Distrito Federal; School of Medicine, Centro Universitário de Brasília (UniCEUB), Brasília, DF, Brazil
| | - Francisco Eduardo Costa Cardoso
- Movement Disorders Unit, Internal Medicine Department, Neurology Service, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília/FAV, Brasília, DF, Brazil
| | - Carlos Tomaz
- Laboratory of Neuroscience and Behavior and Graduate Program in Environment, CEUMA University - UniCEUMA, São Luís, MA, Brazil.
| | | |
Collapse
|
48
|
Borda MG, Jaramillo-Jimenez A, Tovar-Rios DA, Ferreira D, Garcia-Cifuentes E, Vik-Mo AO, Aarsland V, Aarsland D, Oppedal K. Hippocampal subfields and decline in activities of daily living in Alzheimer's disease and dementia with Lewy bodies. Neurodegener Dis Manag 2020; 10:357-367. [PMID: 32967534 DOI: 10.2217/nmt-2020-0039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: Hippocampal atrophy is presented in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). Cognition, dual-tasks, muscular function, goal-related behaviors and neuropsychiatric symptoms are linked to hippocampal volumes and may lead to functional decline in activities of daily living. We examined the association between baseline hippocampal subfield volumes (HSv) in mild AD and DLB, and functional decline. Materials & methods: 12 HSv were computed from structural magnetic resonance images using Freesurfer 6.0 segmentation. Functional decline was assessed using the rapid disability rating scale score. Linear regressions were conducted. Results: In AD, HSv were smaller bilaterally. However, HSv were not associated with functional decline. Conclusion: Functional decline does not depend on HSv in mild AD and DLB.
Collapse
Affiliation(s)
- Miguel Germán Borda
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway.,Semillero de Neurociencias y Envejecimiento, Ageing Institute, Medical School, Pontificia Universidad Javeriana, Bogotá, Colombia.,Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
| | - Alberto Jaramillo-Jimenez
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway.,Faculty of Health Sciences, University of Stavanger, Stavanger, Norway.,Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellín, Colombia.,Grupo Neuropsicología y Conducta, School of Medicine, Universidad de Antioquia, Medellín, Colombia.,Semillero de investigación SINAPSIS, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Diego A Tovar-Rios
- School of Statistics, Universidad del Valle, Santiago de Cali, Colombia.,School of Basic Sciences, Universidad Autónoma de Occidente, Santiago de Cali, Colombia
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences & Society, Karolinska Institutet, Stockholm, Sweden
| | - Elkin Garcia-Cifuentes
- Semillero de Neurociencias y Envejecimiento, Ageing Institute, Medical School, Pontificia Universidad Javeriana, Bogotá, Colombia.,Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Audun Osland Vik-Mo
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Vera Aarsland
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway.,School of Medicine, Semmelweis University, Budapest, Hungary
| | - Dag Aarsland
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | - Ketil Oppedal
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway.,Stavanger Medical Imaging Laboratory (SMIL), Department of Radiology, Stavanger University Hospital, Stavanger, Norway.,Department of Electrical Engineering & Computer Science, University of Stavanger, Stavanger, Norway
| |
Collapse
|
49
|
Cerebral Small Vessel Disease Influences Hippocampal Subfield Atrophy in Mild Cognitive Impairment. Transl Stroke Res 2020; 12:284-292. [PMID: 32894401 DOI: 10.1007/s12975-020-00847-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 01/04/2023]
Abstract
To investigate patterns of hippocampal subfield atrophy among patients with amnestic mild cognitive impairment, stratified by severity of small vessel disease (SVD) and corresponding associations with cognitive domains. One hundred seventy-six MCI subjects (mean age = 65.56 years, SD = 8.77) underwent neuropsychological assessments and magnetic resonance imaging. SVD was rated 0 (no SVD), 1 (mild SVD) and 2 (moderate to severe SVD) based on load of white matter hyperintensities (WMH) and lacunes. Demographics, cerebrovascular risk factors, grey and white matter volumes and hippocampal subfield atrophies were compared across SVD severity through ANCOVA analyses. Subjects were categorized into positive or negative SVD-hippocampal subfield atrophy (HSA) and influence of positive SVD-HSA on episodic memory and frontal executive function was evaluated through ANCOVA analyses. All analyses corrected for covariates and bias-corrected bootstrap estimation with 1000 resamples was applied with Bonferroni correction. Hippocampal subfield atrophy worsened with increasing SVD severity. Positive SVD-HSA was characterised by significant atrophy in the subiculum, CA1, CA4, molecular layer and dentate gyrus. Greater atrophy was seen with moderate to severe SVD compared to mild SVD in these subfields. Atrophy in the five subfields of SVD-HSA was significantly associated with poor episodic memory and frontal executive function. Presence and burden of SVD influences the pattern and severity of hippocampal subfield atrophy. SVD-related hippocampal subfield atrophy is associated with poorer episodic memory and frontal executive function in mild cognitive impairment.
Collapse
|
50
|
Liu S, Hou B, Zhang Y, Lin T, Fan X, You H, Feng F. Inter-scanner reproducibility of brain volumetry: influence of automated brain segmentation software. BMC Neurosci 2020; 21:35. [PMID: 32887546 PMCID: PMC7472704 DOI: 10.1186/s12868-020-00585-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/19/2020] [Indexed: 11/26/2022] Open
Abstract
Background The inter-scanner reproducibility of brain volumetry is important in multi-site neuroimaging studies, where the reliability of automated brain segmentation (ABS) tools plays an important role. This study aimed to evaluate the influence of ABS tools on the consistency and reproducibility of the quantified brain volumetry from different scanners. Methods We included fifteen healthy volunteers who were scanned with 3D isotropic brain T1-weighted sequence on three different 3.0 Tesla MRI scanners (GE, Siemens and Philips). For each individual, the time span between image acquisitions on different scanners was limited to 1 h. All the T1-weighted images were processed with FreeSurfer v6.0, FSL v5.0 and AccuBrain® with default settings to obtain volumetry of brain tissues (e.g. gray matter) and substructures (e.g. basal ganglia structures) if available. Coefficient of variation (CV) was calculated to test inter-scanner variability in brain volumetry of various structures as quantified by these ABS tools. Results The mean inter-scanner CV values per brain structure among three MRI scanners ranged from 6.946 to 12.29% (mean, 9.577%) for FreeSurfer, 7.245 to 20.98% (mean, 12.60%) for FSL and 1.348 to 8.800% (mean value, 3.546%) for AccuBrain®. In addition, AccuBrain® and FreeSurfer achieved the lowest mean values of region-specific CV between GE and Siemens scanners (from 0.818 to 5.958% for AccuBrain®, and from 0.903 to 7.977% for FreeSurfer), while FSL-FIRST had the lowest mean values of region-specific CV between GE and Philips scanners (from 2.603 to 16.310%). AccuBrain® also had the lowest mean values of region-specific CV between Siemens and Philips scanners (from 1.138 to 6.615%). Conclusion There is a large discrepancy in the inter-scanner reproducibility of brain volumetry when using different processing software. Image acquisition protocols and selection of ABS tool for brain volumetry quantification have impact on the robustness of results in multi-site studies.
Collapse
Affiliation(s)
- Sirui Liu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yiwei Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tianye Lin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoyuan Fan
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|