1
|
Athavale P, Pandit D, Das N. ‘Nitric Oxide’ A Dual Performer in Dengue Virus Infection. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2022. [DOI: 10.30699/ijmm.16.6.537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
2
|
Jackson EK, Menshikova EV, Ritov VB, Gillespie DG, Mi Z. Biochemical Pathways of 8-Aminoguanine Production In Sprague-Dawley and Dahl Salt-Sensitive Rats. Biochem Pharmacol 2022; 201:115076. [PMID: 35551915 DOI: 10.1016/j.bcp.2022.115076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND 8-Aminoguanine exerts natriuretic and antihypertensive activity. Whether and how "free" 8-aminoguanine exists in vivo is unclear. Because 8-nitroguanosine is naturally occurring, we tested the hypothesis that 8-aminoguanine can arise from: pathway 1, 8-nitroguanosine→8-aminoguanosine→8-aminoguanine; and pathway 2, 8-nitroguanosine→8-nitroguanine→8-aminoguanine. METHODS 8-Aminoguanine biosynthesis was explored in rats using renal microdialysis, mass spectrometry and enzyme kinetics. RESULTS In Sprague-Dawley rats, 8-nitroguanosine infusions increased kidney levels of 8-nitroguanine, 8-aminoguanosine and 8-aminoguanine; 8-nitroguanine infusions increased 8-aminoguanine. Purine nucleoside phosphorylase (PNPase) converted 8-nitroguanosine to 8-nitroguanine and 8-aminoguanosine to 8-aminoguanine. Forodesine (PNPase inhibitor) reduced metabolism of 8-nitroguanosine by pathway 2 and shunted metabolism of 8-nitroguanosine to 8-aminoguanosine. In Dahl salt-sensitive rats, 8-nitroguanosine infusions increased kidney levels of 8-nitroguanine, 8-aminoguanosine and 8-aminoguanine. These results indicate that both pathways 1 and 2 participate in the biosynthesis of 8-aminoguanine in Sprague-Dawley and Dahl rats. Endogenous 8-aminoguanine in kidneys and urine were elevated many-fold in Dahl, compared to Sprague-Dawley, rats. The increased levels of 8-aminoguanine in Dahl rats were not due to alterations in pathways 1 and 2 but were associated with increased urine levels of endogenous 8-nitroguanosine suggesting that the "upstream" production of 8-nitroguanosine was increased in Dahl rats. Dahl rats are known to have high levels of peroxynitrite, and peroxynitrite is known to nitrate guanosine in biomolecules. Here we confirm that a peroxynitrite donor increases kidney levels of 8-aminoguanine. CONCLUSION 8-Aminoguanine occurs naturally via two distinct pathways and kidney levels of 8-aminoguanine are increased in Dahl rats, likely due to increased production of 8-nitroguanosine, a by-product of peroxynitrite chemistry.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219.
| | - Elizabeth V Menshikova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Vladimir B Ritov
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
3
|
Staszek P, Gniazdowska A. Peroxynitrite induced signaling pathways in plant response to non-proteinogenic amino acids. PLANTA 2020; 252:5. [PMID: 32535658 PMCID: PMC7293691 DOI: 10.1007/s00425-020-03411-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/06/2020] [Indexed: 05/02/2023]
Abstract
Nitro/oxidative modifications of proteins and RNA nitration resulted from altered peroxynitrite generation are elements of the indirect mode of action of canavanine and meta-tyrosine in plants Environmental conditions and stresses, including supplementation with toxic compounds, are known to impair reactive oxygen (ROS) and reactive nitrogen species (RNS) homeostasis, leading to modification in production of oxidized and nitrated derivatives. The role of nitrated and/or oxidized biotargets differs depending on the stress factors and developmental stage of plants. Canavanine (CAN) and meta-tyrosine (m-Tyr) are non-proteinogenic amino acids (NPAAs). CAN, the structural analog of arginine, is found mostly in seeds of Fabaceae species, as a storage form of nitrogen. In mammalian cells, CAN is used as an anticancer agent due to its inhibitory action on nitric oxide synthesis. m-Tyr is a structural analogue of phenylalanine and an allelochemical found in root exudates of fescues. In animals, m-Tyr is recognized as a marker of oxidative stress. Supplementation of plants with CAN or m-Tyr modify ROS and RNS metabolism. Over the last few years of our research, we have collected the complex data on ROS and RNS metabolism in tomato (Solanum lycopersicum L.) plants exposed to CAN or m-Tyr. In addition, we have shown the level of nitrated RNA (8-Nitro-guanine) in roots of seedlings, stressed by the tested NPAAs. In this review, we describe the model of CAN and m-Tyr mode of action in plants based on modifications of signaling pathways induced by ROS/RNS with a special focus on peroxynitrite induced RNA and protein modifications.
Collapse
Affiliation(s)
- Pawel Staszek
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
4
|
O'Connor PJ, Alonso-Amelot ME, Roberts SA, Povey AC. The role of bracken fern illudanes in bracken fern-induced toxicities. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 782:108276. [PMID: 31843140 DOI: 10.1016/j.mrrev.2019.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/29/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022]
Abstract
Bracken fern is carcinogenic when fed to domestic and laboratory animals inducing bladder and ileal tumours and is currently classified as a possible human carcinogen by IARC. The carcinogenic illudane, ptaquiloside (PTQ) was isolated from bracken fern and is widely assumed to be the major bracken carcinogen. However, several other structurally similar illudanes are found in bracken fern, in some cases at higher levels than PTQ and so may contribute to the overall toxicity and carcinogenicity of bracken fern. In this review, we critically evaluate the role of illudanes in bracken fern induced toxicity and carcinogenicity, the mechanistic basis of these effects including the role of DNA damage, and the potential for human exposure in order to highlight deficiencies in the current literature. Critical gaps remain in our understanding of bracken fern induced carcinogenesis, a better understanding of these processes is essential to establish whether bracken fern is also a human carcinogen.
Collapse
Affiliation(s)
- P J O'Connor
- Centre for Occupational and Environmental Health, Centre for Epidemiology, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - M E Alonso-Amelot
- Chemical Ecology Group, Faculty of Sciences, University of Los Andes, Mérida 5101, Venezuela
| | - S A Roberts
- Centre for Biostatistics, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - A C Povey
- Centre for Occupational and Environmental Health, Centre for Epidemiology, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK.
| |
Collapse
|
5
|
Melittin Exerts Beneficial Effects on Paraquat-Induced Lung Injuries In Mice by Modifying Oxidative Stress and Apoptosis. Molecules 2019; 24:molecules24081498. [PMID: 30995821 PMCID: PMC6514788 DOI: 10.3390/molecules24081498] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Melittin (MEL) is a 26-amino acid peptide with numerous biological activities. Paraquat (PQ) is one of the most widely used herbicides, although it is extremely toxic to humans. To date, PQ poisoning has no effective treatment, and therefore the current study aimed to assess for the first time the possible effects of MEL on PQ-induced lung injuries in mice. Mice received a single intraperitoneal (IP) injection of PQ (30 mg/kg), followed by IP treatment with MEL (0.1 and 0.5 mg/kg) twice per week for four consecutive weeks. Histological alterations, oxidative stress, and apoptosis in the lungs were studied. Hematoxylin and eosin (H&E) staining indicated that MEL markedly reduced lung injuries induced by PQ. Furthermore, treatment with MEL increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity, and decreased malonaldehyde (MDA) and nitric oxide (NO) levels in lung tissue homogenates. Moreover, immunohistochemical staining showed that B-cell lymphoma-2 (Bcl-2) and survivin expressions were upregulated after MEL treatment, while Ki-67 expression was downregulated. The high dose of MEL was more effective than the low dose in all experiments. In summary, MEL efficiently reduced PQ-induced lung injuries in mice. Specific pharmacological examinations are required to determine the effectiveness of MEL in cases of human PQ poisoning.
Collapse
|
6
|
Ward MH, Jones RR, Brender JD, de Kok TM, Weyer PJ, Nolan BT, Villanueva CM, van Breda SG. Drinking Water Nitrate and Human Health: An Updated Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1557. [PMID: 30041450 PMCID: PMC6068531 DOI: 10.3390/ijerph15071557] [Citation(s) in RCA: 416] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 02/07/2023]
Abstract
Nitrate levels in our water resources have increased in many areas of the world largely due to applications of inorganic fertilizer and animal manure in agricultural areas. The regulatory limit for nitrate in public drinking water supplies was set to protect against infant methemoglobinemia, but other health effects were not considered. Risk of specific cancers and birth defects may be increased when nitrate is ingested under conditions that increase formation of N-nitroso compounds. We previously reviewed epidemiologic studies before 2005 of nitrate intake from drinking water and cancer, adverse reproductive outcomes and other health effects. Since that review, more than 30 epidemiologic studies have evaluated drinking water nitrate and these outcomes. The most common endpoints studied were colorectal cancer, bladder, and breast cancer (three studies each), and thyroid disease (four studies). Considering all studies, the strongest evidence for a relationship between drinking water nitrate ingestion and adverse health outcomes (besides methemoglobinemia) is for colorectal cancer, thyroid disease, and neural tube defects. Many studies observed increased risk with ingestion of water nitrate levels that were below regulatory limits. Future studies of these and other health outcomes should include improved exposure assessment and accurate characterization of individual factors that affect endogenous nitrosation.
Collapse
Affiliation(s)
- Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Dr. Room 6E138, Rockville, MD 20850, USA.
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Dr. Room 6E138, Rockville, MD 20850, USA.
| | - Jean D Brender
- Department of Epidemiology and Biostatistics, Texas A&M University, School of Public Health, College Station, TX 77843, USA.
| | - Theo M de Kok
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, P.O Box 616, 6200 MD Maastricht, The Netherlands.
| | - Peter J Weyer
- The Center for Health Effects of Environmental Contamination, The University of Iowa, 455 Van Allen Hall, Iowa City, IA 52242, USA.
| | - Bernard T Nolan
- U.S. Geological Survey, Water Mission Area, National Water Quality Program, 12201 Sunrise Valley Drive, Reston, VA 20192, USA.
| | - Cristina M Villanueva
- ISGlobal, 08003 Barcelona, Spain.
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.
| | - Simone G van Breda
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, P.O Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
7
|
Ramachandran RA, Lupfer C, Zaki H. The Inflammasome: Regulation of Nitric Oxide and Antimicrobial Host Defence. Adv Microb Physiol 2018; 72:65-115. [PMID: 29778217 DOI: 10.1016/bs.ampbs.2018.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a gaseous signalling molecule that plays diverse physiological functions including antimicrobial host defence. During microbial infection, NO is synthesized by inducible NO synthase (iNOS), which is expressed by host immune cells through the recognition of microbial pattern molecules. Therefore, sensing pathogens or their pattern molecules by pattern recognition receptors (PRRs), which are located at the cell surface, endosomal and phagosomal compartment, or in the cytosol, is key in inducing iNOS and eliciting antimicrobial host defence. A group of cytosolic PRRs is involved in inducing NO and other antimicrobial molecules by forming a molecular complex called the inflammasome. Assembled inflammasomes activate inflammatory caspases, such as caspase-1 and caspase-11, which in turn process proinflammatory cytokines IL-1β and IL-18 into their mature forms and induce pyroptotic cell death. IL-1β and IL-18 play a central role in immunity against microbial infection through activation and recruitment of immune cells, induction of inflammatory molecules, and regulation of antimicrobial mediators including NO. Interestingly, NO can also regulate inflammasome activity in an autocrine and paracrine manner. Here, we discuss molecular mechanisms of inflammasome formation and the inflammasome-mediated regulation of host defence responses during microbial infections.
Collapse
Affiliation(s)
| | | | - Hasan Zaki
- UT Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
8
|
Marhuenda J, Medina S, Martínez-Hernández P, Arina S, Zafrilla P, Mulero J, Genieser HG, Ferreres F, Gil-Izquierdo Á. Melatonin and hydroxytyrosol-rich wines influence the generation of DNA oxidation catabolites linked to mutagenesis after the ingestion of three types of wine by healthy volunteers. Food Funct 2018; 7:4781-4796. [PMID: 27883159 DOI: 10.1039/c6fo01246a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Mediterranean Diet (MD) has been proved to exert benefits with respect to the maintenance of the redox balance, and wine is a representative component. Bioactive compounds such as polyphenols, melatonin and hydroxytyrosol act as radical scavengers and regulate the oxidation status of organisms. Oxidative damage to DNA yields a large range of end products. The repair of oxidized DNA entails the removal of the useless bases and/or nucleotides as well as the release of circulating nucleotides and nucleosides. The current research aims to elucidate, for the first time, the DNA protection against oxidative stress provided by three types of red wine - relating it to the intake of bioactive compounds - after the intake of a serving of red wine/must by 18 healthy female volunteers during a short term double-blind, crossover and placebo-controlled study. The novelty of our work is to describe the importance of melatonin and hydroxytyrosol and its metabolites (from gut microflora) in comparison with polyphenols in a red wine matrix (excluding colon derivatives). The results show that the intake of red wine and must secondarily reduces oxidative stress and carcinogenesis due to their content of homovanillic acid, as measured by decreases in the plasmatic concentration of 8-hydroxy-2'deoxyguanosine, 8-hydroxyguanine, and 8-nitroguanosine. Moreover, the intake of wine appears to exert vasodilatory effects, mediated by the action of nitric oxide and increased plasma guanosine-3'-5'-cyclic monophosphate plasmatic levels, owing to the intake of wines higher in melatonin and homovanillic acid. Therefore, the results obtained in the present study revealed that polyphenols, despite being the major compounds in the red wine matrix, are not the most effective compounds protecting DNA from oxidative attack.
Collapse
Affiliation(s)
- Javier Marhuenda
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain. and Department of Food Technology and Nutrition, Catholic University of San Antonio, Murcia 30107, Spain
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain.
| | - Pedro Martínez-Hernández
- Lab of Clinical Analysis, University Hospital Virgen de la Arrixaca, Murcia, Spain and Bodegas Baigorri S.A.U., Ctra. Vitoria-Logroño Km. 53, 01307 Samaniego, Álava, Spain
| | - Simón Arina
- Bodegas Baigorri S.A.U., Ctra. Vitoria-Logroño Km. 53, 01307 Samaniego, Álava, Spain
| | - Pilar Zafrilla
- Department of Food Technology and Nutrition, Catholic University of San Antonio, Murcia 30107, Spain
| | - Juana Mulero
- Department of Food Technology and Nutrition, Catholic University of San Antonio, Murcia 30107, Spain
| | | | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain.
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain.
| |
Collapse
|
9
|
García-Flores LA, Medina S, Cejuela-Anta R, Martínez-Sanz JM, Abellán Á, Genieser HG, Ferreres F, Gil-Izquierdo Á. DNA catabolites in triathletes: effects of supplementation with an aronia-citrus juice (polyphenols-rich juice). Food Funct 2016; 7:2084-93. [PMID: 27050256 DOI: 10.1039/c6fo00252h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study we analyzed whether our aronia-citrus juice (ACJ, the composition is based on a mixture of 95% citrus juice with 5% of Aronia melanocarpa juice), rich in polyphenols, and physical exercise had an effect on seven catabolites of DNA identified in plasma and on a urine isoprostane (8-iso-PGF2α). Sixteen elite triathletes on a controlled diet for triathlon training (45 days) were used in this clinical trial. Our results show a decrease in the 8-hydroxy-2'-deoxyguanosine concentration due to chronic physical exercise. The ACJ intake and physical exercise maintained the guanosine-3',5'-cyclic monophosphate plasmatic concentrations and decreased the concentration of 8-hydroxyguanine as well as urinary values of 8-iso-PGF2α. Finally, we observed a significant increase in the 8-nitroguanosine levels in triathletes after ACJ intake, compared to the placebo stage. It is concluded that the combination of the intake of ACJ, rich in polyphenolic compounds, with adequate training was able to influence the plasmatic and urinary values of oxidative stress biomarkers. This suggests a positive effect on the oxidative damage and potential associations with DNA repair mechanisms.
Collapse
Affiliation(s)
| | - Sonia Medina
- Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo 25, 30100 Espinardo, Murcia, Spain.
| | - Roberto Cejuela-Anta
- Department of Physical Education and Sport, Faculty of Education, University of Alicante, Campus San Vicente del Raspeig, 03540 San Vicent del Raspeig, Alicante, Spain
| | - José Miguel Martínez-Sanz
- Department of Physical Education and Sport, Faculty of Education, University of Alicante, Campus San Vicente del Raspeig, 03540 San Vicent del Raspeig, Alicante, Spain
| | - Ángel Abellán
- Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo 25, 30100 Espinardo, Murcia, Spain.
| | | | - Federico Ferreres
- Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo 25, 30100 Espinardo, Murcia, Spain.
| | - Ángel Gil-Izquierdo
- Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo 25, 30100 Espinardo, Murcia, Spain.
| |
Collapse
|
10
|
The bacterial DNA repair protein Mfd confers resistance to the host nitrogen immune response. Sci Rep 2016; 6:29349. [PMID: 27435260 PMCID: PMC4951645 DOI: 10.1038/srep29349] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/17/2016] [Indexed: 01/23/2023] Open
Abstract
Production of reactive nitrogen species (NO) is a key step in the immune response following infections. NO induces lesions to bacterial DNA, thus limiting bacterial growth within hosts. Using two pathogenic bacteria, Bacillus cereus and Shigella flexneri, we show that the DNA-repair protein Mfd (Mutation-Frequency-Decline) is required for bacterial resistance to the host-NO-response. In both species, a mutant deficient for mfd does not survive to NO, produced in vitro or by phagocytic cells. In vivo, the ∆mfd mutant is avirulent and unable to survive the NO-stress. Moreover, NO induces DNA-double-strand-breaks and point mutations in the Δmfd mutant. In overall, these observations demonstrate that NO damages bacterial DNA and that Mfd is required to maintain bacterial genomic integrity. This unexpected discovery reveals that Mfd, a typical housekeeping gene, turns out to be a true virulence factor allowing survival and growth of the pathogen in its host, due to its capacity to protect the bacterium against NO, a key molecule of the innate immune defense. As Mfd is widely conserved in the bacterial kingdom, these data highlight a mechanism that may be used by a large spectrum of bacteria to overcome the host immune response and especially the mutagenic properties of NO.
Collapse
|
11
|
Villaño D, Vilaplana C, Medina S, Cejuela-Anta R, Martínez-Sanz JM, Gil P, Genieser HG, Ferreres F, Gil-Izquierdo A. Effect of elite physical exercise by triathletes on seven catabolites of DNA oxidation. Free Radic Res 2015; 49:973-83. [PMID: 25786325 DOI: 10.3109/10715762.2015.1025388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The oxidized nucleoside 8-hydroxy-2'-deoxyguanosine has been widely studied as a marker of DNA oxidation; however, data on the occurrence of other metabolites in plasma that are related to DNA damage are scarce. We have applied an improved, sensitive, robust, and reliable method, involving solid phase extraction and ultrahigh-performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS/MS), to the precise quantitation of seven metabolites in the plasma of 15 elite triathletes after a 2-week training program. All compounds were eluted in the first 1.6 min, with limits of detection and quantification ranging between 0.001 and 0.3 ng.mL(-1) and 0.009 and 0.6 ng.mL(-1), respectively. Four compounds were detected in plasma: guanosine-3'-5'-cyclic monophosphate, 8-hydroxyguanine, 8-hydroxy-2'-deoxyguanosine, and 8-nitroguanosine. After two weeks of training, 8-hydroxyguanine exhibited the highest increase (from 0.031 ± 0.008 nM to 0.036 ± 0.012 nM) (p < 0.05), which could be related to the enhanced activity of DNA-repairing enzymes that excise this oxidized base. Increased levels of guanosine-3'-5'-cyclic monophosphate and 8-hydroxy-2'-deoxyguanosine were also observed. In contrast, levels of 8-nitroguanosine (p < 0.05) were significantly reduced, which might be a protective measure as this compound strongly stimulates the generation of superoxide radicals, and its excess is related to pathologies such as microbial (viral) infections and other inflammatory and degenerative disorders. The results obtained indicate an induced adaptive response to the increased oxidative stress related to elite training, and point to the benefits associated with regular exercise.
Collapse
Affiliation(s)
- D Villaño
- Department of Food Science and Technology, CEBAS-CSIC , Murcia , Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yao R, Zhou Y, He Y, Jiang Y, Liu P, Ye L, Zheng Z, Lau WB, Cao Y, Zeng Z. Adiponectin protects against paraquat-induced lung injury by attenuating oxidative/nitrative stress. Exp Ther Med 2014; 9:131-136. [PMID: 25452788 PMCID: PMC4247297 DOI: 10.3892/etm.2014.2073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 09/11/2014] [Indexed: 02/05/2023] Open
Abstract
The specific mechanisms underlying paraquat (PQ)-induced lung injury remain unknown, which limits understanding of its cytotoxic potential. Although oxidative stress has been established as an important mechanism underlying PQ toxicity, multiple antioxidants have proven ineffective in attenuating the deleterious effects of PQ. Adiponectin, which shows anti-oxidative and antinitrative effects, may have the potential to reduce PQ-mediated injury. The present study determined the protective action of globular domain adiponectin (gAd) on PQ-induced lung injury, and attempted to elucidate the underlying mechanism or mechanisms of action. BALB/c mice were administered PQ, with and without 12 or 36 h of gAd pre-treatment. The pulmonary oxidative/nitrative status was assessed by measuring pulmonary O2•−, superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO) and 8-hydroxy-2-dydeoxy guanosine (8-OHdG) production, and blood 3-Nitrotyrosine (3-NT). At a dose of 20 mg/kg, PQ markedly increased O2•−, SOD, MDA, NO and 8-OHdG production 3 h post-administration, but did not significantly increase 3-NT levels until 12 h. gAd inhibited these changes in a dose-dependent manner, via transient activation of MDA, followed by attenuation of MDA formation from 6 h onwards. Histological analysis demonstrated that gAd decreased interstitial edema and inflammatory cell infiltration. These results suggest that gAd protects against PQ-induced lung injury by mitigating oxidative/nitrative stress. Furthermore, gAd may be a potential therapeutic agent for PQ-induced lung injury, and further pharmacological studies are therefore warranted.
Collapse
Affiliation(s)
- Rong Yao
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yaxiong Zhou
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yarong He
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yaowen Jiang
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Peng Liu
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lei Ye
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhijie Zheng
- Electrocardiogram Department, No.4 West China Teaching Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Yu Cao
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhi Zeng
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
13
|
Habermeyer M, Roth A, Guth S, Diel P, Engel KH, Epe B, Fürst P, Heinz V, Humpf HU, Joost HG, Knorr D, de Kok T, Kulling S, Lampen A, Marko D, Rechkemmer G, Rietjens I, Stadler RH, Vieths S, Vogel R, Steinberg P, Eisenbrand G. Nitrate and nitrite in the diet: how to assess their benefit and risk for human health. Mol Nutr Food Res 2014; 59:106-28. [PMID: 25164923 DOI: 10.1002/mnfr.201400286] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 12/15/2022]
Abstract
Nitrate is a natural constituent of the human diet and an approved food additive. It can be partially converted to nitrogen monoxide, which induces vasodilation and thereby decreases blood pressure. This effect is associated with a reduced risk regarding cardiovascular disease, myocardial infarction, and stroke. Moreover, dietary nitrate has been associated with beneficial effects in patients with gastric ulcer, renal failure, or metabolic syndrome. Recent studies indicate that such beneficial health effects due to dietary nitrate may be achievable at intake levels resulting from the daily consumption of nitrate-rich vegetables. N-nitroso compounds are endogenously formed in humans. However, their relevance for human health has not been adequately explored up to now. Nitrate and nitrite are per se not carcinogenic, but under conditions that result in endogenous nitrosation, it cannot be excluded that ingested nitrate and nitrite may lead to an increased cancer risk and may probably be carcinogenic to humans. In this review, the known beneficial and detrimental health effects related to dietary nitrate/nitrite intake are described and the identified gaps in knowledge as well as the research needs required to perform a reliable benefit/risk assessment in terms of long-term human health consequences due to dietary nitrate/nitrite intake are presented.
Collapse
Affiliation(s)
- Michael Habermeyer
- Department of Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany**
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Heinrich TA, da Silva RS, Miranda KM, Switzer CH, Wink DA, Fukuto JM. Biological nitric oxide signalling: chemistry and terminology. Br J Pharmacol 2013; 169:1417-29. [PMID: 23617570 PMCID: PMC3724101 DOI: 10.1111/bph.12217] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/05/2013] [Accepted: 03/26/2013] [Indexed: 12/12/2022] Open
Abstract
Biological nitrogen oxide signalling and stress is an area of extreme clinical, pharmacological, toxicological, biochemical and chemical research interest. The utility of nitric oxide and derived species as signalling agents is due to their novel and vast chemical interactions with a variety of biological targets. Herein, the chemistry associated with the interaction of the biologically relevant nitrogen oxide species with fundamental biochemical targets is discussed. Specifically, the chemical interactions of nitrogen oxides with nucleophiles (e.g. thiols), metals (e.g. hemeproteins) and paramagnetic species (e.g. dioxygen and superoxide) are addressed. Importantly, the terms associated with the mechanisms by which NO (and derived species) react with their respective biological targets have been defined by numerous past chemical studies. Thus, in order to assist researchers in referring to chemical processes associated with nitrogen oxide biology, the vernacular associated with these chemical interactions is addressed.
Collapse
Affiliation(s)
- Tassiele A Heinrich
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto – USPRibeirão Preto, Brazil
| | - Roberto S da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto – USPRibeirão Preto, Brazil
| | - Katrina M Miranda
- Department of Chemistry and Biochemistry, University of ArizonaTucson, AZ, USA
| | - Christopher H Switzer
- Radiation Biology Branch, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| | - David A Wink
- Radiation Biology Branch, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| | - Jon M Fukuto
- Department of Chemistry, Sonoma State UniversityRohnert Park, CA, USA
| |
Collapse
|
15
|
Vandelle E, Delledonne M. Peroxynitrite formation and function in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:534-9. [PMID: 21893249 DOI: 10.1016/j.plantsci.2011.05.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/29/2011] [Accepted: 05/05/2011] [Indexed: 05/23/2023]
Abstract
Peroxynitrite (ONOO(-)) is a reactive nitrogen species formed when nitric oxide (NO) reacts with the superoxide anion (O(2)(-)). It was first identified as a mediator of cell death in animals but was later shown to act as a positive regulator of cell signaling, mainly through the posttranslational modification of proteins by tyrosine nitration. In plants, peroxynitrite is not involved in NO-mediated cell death and its physiological function is poorly understood. However, it is emerging as a potential signaling molecule during the induction of defense responses against pathogens and this could be mediated by the selective nitration of tyrosine residues in a small number of proteins. In this review we discuss the general role of tyrosine nitration in plants and evaluate recent evidence suggesting that peroxynitrite is an effector of NO-mediated signaling following pathogen infection.
Collapse
Affiliation(s)
- Elodie Vandelle
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie, 15, 37 134 Verona, Italy.
| | | |
Collapse
|
16
|
Fatty liver is associated with recurrent bacterial infections independent of metabolic syndrome. Dig Dis Sci 2011; 56:3328-34. [PMID: 21562784 DOI: 10.1007/s10620-011-1736-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/21/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND Diabetes mellitus and obesity are important components of metabolic syndrome (MetS) which are associated with infections. MetS is frequent in nonalcoholic fatty liver disease (NAFLD). AIMS The objective of this study was to examine whether patients with NAFLD are at higher risk of recurrent bacterial infections (RBIs). METHODS Two-hundred and forty-seven from 296 hospitalized NAFLD patients were assessed over a three-year period for the occurrence of RBIs and were compared with 100 age and gender-matched patients without NAFLD, who were hospitalized over the same period because of a bacterial infection. An RBI was defined as: ≥2 episodes of bacterial infections per year for a period of three consecutive years. NAFLD was diagnosed by ultrasonography. Biomarkers of inflammation, the level of oxidative stress, insulin resistance, and serum vitamin D levels were measured. RESULTS NAFLD patients had significantly more RBIs than the patients without NAFLD (22% vs. 8%; P < 0.001). Univariate analysis showed that age, BMI, male waist circumference, serum 25(OH)D, triglycerides, serum malondialdehyde, and paraoxonase-1 are associated with RBIs in NAFLD patients. Multivariate analysis showed that NAFLD (odds ratio (OR) = 3.0, 95% confidence interval (CI) = 2.6-4.2, P < 0.001), serum 25(OH)D level <20 ng/mL (OR = 2.6; 95% CI 2.4-3.1, P = 0.01), obesity (BMI >30 kg/m(2) (OR = 2.2, 95% CI 1.8-2.9, P = 0.02) were associated with RBIs, irrespective of MetS. CONCLUSIONS NAFLD is associated with increased risk of RBIs irrespective of MetS. Vitamin D insufficiency is frequent in NAFLD and is associated with increased risk of RBIs.
Collapse
|
17
|
Shizuma T, Ishiwata K, Nagano M, Mori H, Fukuyama N. Protective effects of Kurozu and Kurozu Moromimatsu on dextran sulfate sodium-induced experimental colitis. Dig Dis Sci 2011; 56:1387-92. [PMID: 20936352 DOI: 10.1007/s10620-010-1432-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 09/09/2010] [Indexed: 01/18/2023]
Abstract
BACKGROUND Kurozu, a traditional Japanese black vinegar made from unpolished rice, and Kurozu Moromimatsu (Kurozu-M), its sediment, are both consumed in Japan as health foods or supplements. However, it is not known whether they have anti-colitis activity. AIMS We examined the protective effects of Kurozu and Kurozu-M in an animal model of dextran sulfate sodium (DSS)-induced colitis. METHODS DSS-induced colitis was induced in C57 black 6 mice by orally administering 3.5% DSS solution for 12 days. The control group received basal CE-2 diet (n = 10), the Kurozu group received CE-2 containing Kurozu (n = 10), the Kurozu-M group received CE-2 containing Kurozu-M (n = 10), and the acetic acid group received CE-2 containing acetic acid (n = 10), starting a week before DSS administration. Changes of body weight and bloody stool frequency were monitored. At 12 days after DSS administration, mice were killed for pathological examination and measurement of nitrotyrosine levels in rectal tissues. RESULTS Kurozu significantly inhibited body weight loss during 6-12 days after DSS administration and reduced bloody stool frequency during 2-12 days, and also significantly decreased nitrotyrosine levels at 12 days, compared to the control group. Kurozu-M significantly inhibited body weight loss during 6-8 days after DSS administration and reduced bloody stool frequency during 2-12 days, but tissue nitrotyrosine level was not significantly different from the control. Acetic acid had no ameliorating effect on DSS-induced colitis compared to the control group. CONCLUSIONS Kurozu and Kurozu-M have protective effects against DSS-induced colitis. Kurozu has anti-oxidative and anti-nitration activity.
Collapse
Affiliation(s)
- Toru Shizuma
- Department of Physiology, School of Medicine, Tokai University, 143, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Exogenous cannabinoids or receptor antagonists may influence many cellular and systemic host responses. The anti-inflammatory activity of cannabinoids may compromise host inflammatory responses to acute viral infections, but may be beneficial in persistent infections. In neurons, where innate antiviral/pro-resolution responses include the activation of NOS-1, inhibition of Ca2+ activity by cannabinoids, increased viral replication and disease. This review examines the effect(s) of cannabinoids and their antagonists in viral infections.
Collapse
Affiliation(s)
- Carol Shoshkes Reiss
- Department of Biology, Center for Neural Science, NYU Cancer Institute and Department of Microbiology, New York University, 100 Washington Square East, New York, NY, 10003, USA; ; Tel.: +1-212-998-8269
| |
Collapse
|
19
|
Corpas FJ, Chaki M, Leterrier M, Barroso JB. Protein tyrosine nitration: a new challenge in plants. PLANT SIGNALING & BEHAVIOR 2009; 4:920-3. [PMID: 19826215 PMCID: PMC2801353 DOI: 10.4161/psb.4.10.9466] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 06/24/2009] [Indexed: 05/19/2023]
Abstract
Nitric oxide metabolism in plant cells has a relative short history. Nitration is a chemical process which consists of introducing a nitro group (-NO(2)) into a chemical compound. In biological systems, this process has been found in different molecules such as proteins, lipids and nucleic acids that can affect its function. This mini-review offers an overview of this process with special emphasis on protein tyrosine nitration in plants and its involvement in the process of nitrosative stress.
Collapse
Affiliation(s)
- Francisco J Corpas
- Departamento de Bioquímica; Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain.
| | | | | | | |
Collapse
|
20
|
Chaturvedi UC, Nagar R. Nitric oxide in dengue and dengue haemorrhagic fever: necessity or nuisance? FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2009; 56:9-24. [PMID: 19239490 PMCID: PMC7110348 DOI: 10.1111/j.1574-695x.2009.00544.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/23/2008] [Accepted: 01/22/2009] [Indexed: 01/03/2023]
Abstract
Advances in free radical research show that reactive oxygen and nitrogen oxide species, for example superoxide, nitric oxide (NO) and peroxynitrite, play an important role in the pathogenesis of different viral infections, including dengue virus. The pathogenic mechanism of dengue haemorrhagic fever (DHF) is complicated and is not clearly understood. The hallmarks of the dengue disease, the antibody-dependent enhancement, the shift from T-helper type 1 (Th1) to Th2 cytokine response and the cytokine tsunami resulting in vascular leakage can now be explained much better with the knowledge gained about NO and peroxynitrite. This paper makes an effort to present a synthesis of the current opinions to explain the pathogenesis of DHF/shock syndrome with NO on centre stage.
Collapse
|
21
|
Richardson AR, Soliven KC, Castor ME, Barnes PD, Libby SJ, Fang FC. The Base Excision Repair system of Salmonella enterica serovar typhimurium counteracts DNA damage by host nitric oxide. PLoS Pathog 2009; 5:e1000451. [PMID: 19478870 PMCID: PMC2680585 DOI: 10.1371/journal.ppat.1000451] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 04/27/2009] [Indexed: 01/28/2023] Open
Abstract
Intracellular pathogens must withstand nitric oxide (NO.) generated by host phagocytes. Salmonella enterica serovar Typhimurium interferes with intracellular trafficking of inducible nitric oxide synthase (iNOS) and possesses multiple systems to detoxify NO.. Consequently, the level of NO. stress encountered by S. Typhimurium during infection in vivo has been unknown. The Base Excision Repair (BER) system recognizes and repairs damaged DNA bases including cytosine and guanine residues modified by reactive nitrogen species. Apurinic/apyrimidinic (AP) sites generated by BER glycosylases require subsequent processing by AP endonucleases. S. Typhimurium xth nfo mutants lacking AP endonuclease activity exhibit increased NO. sensitivity resulting from chromosomal fragmentation at unprocessed AP sites. BER mutant strains were thus used to probe the nature and extent of nitrosative damage sustained by intracellular bacteria during infection. Here we show that an xth nfo S. Typhimurium mutant is attenuated for virulence in C3H/HeN mice, and virulence can be completely restored by the iNOS inhibitor L-NIL. Inactivation of the ung or fpg glycosylase genes partially restores virulence to xth nfo mutant S. Typhimurium, demonstrating that NO. fluxes in vivo are sufficient to modify cytosine and guanine bases, respectively. Mutants lacking ung or fpg exhibit NO.-dependent hypermutability during infection, underscoring the importance of BER in protecting Salmonella from the genotoxic effects of host NO.. These observations demonstrate that host-derived NO. damages Salmonella DNA in vivo, and the BER system is required to maintain bacterial genomic integrity.
Collapse
|
22
|
Quantum chemical investigation of nitrotyrosine (3-nitro-l-tyrosine) and 8-nitroguanine. Amino Acids 2009; 38:319-27. [DOI: 10.1007/s00726-009-0253-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 02/02/2009] [Indexed: 12/31/2022]
|
23
|
Yoh K, Hirayama A, Ishizaki K, Yamada A, Takeuchi M, Yamagishi SI, Morito N, Nakano T, Ojima M, Shimohata H, Itoh K, Takahashi S, Yamamoto M. Hyperglycemia induces oxidative and nitrosative stress and increases renal functional impairment in Nrf2-deficient mice. Genes Cells 2009; 13:1159-70. [PMID: 19090810 DOI: 10.1111/j.1365-2443.2008.01234.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The transcription factor Nrf2 regulates the expression of antioxidant genes. Hyperglycemia-induced oxidative stress is involved in the pathogenesis of diabetes and its complications. However, little is known about the protective role of Nrf2 in diabetes. To gain insight into the protective role of Nrf2 in diabetes we treated Nrf2 knockout (Nrf2 KO) mice with streptozotocin (STZ). The STZ Nrf2 KO mice did not develop renal hyperfiltration, which was observed in the STZ-treated wild-type (STZ WT) mice, but renal function gradually deteriorated over the 10-week observation period. Urinary excretion of nitric oxide metabolites and the occurrence of 8-nitroguanosine, which was detected in glomerular lesions, were increased in STZ Nrf2 KO mice during the early stages after treatment. In vivo electron paramagnetic resonance analysis revealed an accelerated rate of decay of the 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl spin probe signal in STZ Nrf2 KO mice. The addition of superoxide dismutase prolonged the half-life of the signal, which suggested that increased oxygen radical formation occurred in the STZ Nrf2 KO mice. These results suggested that hyperglycemia increased oxidative and nitrosative stress and accelerated renal injury in the Nrf2 KO mice and that Nrf2 serves as a defense factor against some diabetic complications.
Collapse
Affiliation(s)
- Keigyou Yoh
- Pathophysiology of Renal Diseases, Doctoral Program in Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yoshitake J, Kato K, Yoshioka D, Sueishi Y, Sawa T, Akaike T, Yoshimura T. Suppression of NO production and 8-nitroguanosine formation by phenol-containing endocrine-disrupting chemicals in LPS-stimulated macrophages: Involvement of estrogen receptor-dependent or -independent pathways. Nitric Oxide 2008; 18:223-8. [DOI: 10.1016/j.niox.2008.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 01/15/2008] [Accepted: 01/16/2008] [Indexed: 01/12/2023]
|
25
|
Kaneko K, Akuta T, Sawa T, Kim HW, Fujii S, Okamoto T, Nakayama H, Ohigashi H, Murakami A, Akaike T. Mutagenicity of 8-nitroguanosine, a product of nitrative nucleoside modification by reactive nitrogen oxides, in mammalian cells. Cancer Lett 2008; 262:239-47. [PMID: 18248787 DOI: 10.1016/j.canlet.2007.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 11/30/2007] [Accepted: 12/03/2007] [Indexed: 11/18/2022]
Abstract
8-Nitroguanosine is a nitratively modified nucleoside that is formed endogeneously under inflammatory conditions dependent on nitric oxide production, particularly associated with cancer risks. Here, we investigated the mutagenic potential of 8-nitroguanosine in mammalian cells. Treatment with 8-nitroguanosine (10-1000 microM) for 1h significantly increased (by 6-8 times) the mutation frequency of the xanthine-guanine phosphoribosyltransferase (gpt) gene in AS52 cells without cytotoxic effects. 8-Nitroguanosine treatment induced a G-to-T transversion in gpt gene at position 86. It also significantly increased levels of abasic sites in DNA. These observations suggest that formation of 8-nitroguanosine may contribute to the pathogenesis of inflammation-associated carcinogenesis.
Collapse
Affiliation(s)
- Kazuyoshi Kaneko
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|