1
|
Liu T, Zhang M, Li Q, Schroeder H, Power GG, Blood AB. Nitrite reverses nitroglycerin tolerance via repletion of a nitrodilator-activated nitric oxide store in vascular smooth muscle cells. Redox Biol 2025; 80:103513. [PMID: 39879735 DOI: 10.1016/j.redox.2025.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Repeated use of nitroglycerin results in a loss of its vasodilatory efficacy which limits its clinical use for the treatment of angina pectoris. This tolerance phenomenon is a defining characteristic of all compounds classified as nitrodilators, which includes NTG as well as S-nitrosothiols and dinitrosyl iron complexes. These compounds vasodilate via activation of soluble guanylate cyclase, although they do not release requisite amounts of free nitric oxide (NO) and some do not even cross the plasma membrane. Here we demonstrate that nitrodilators cause vasodilation via mobilization of NO moiety from a nitrodilator-activated NO store (NANOS) pre-formed in the vascular smooth muscle cell, similar to the mechanism by which UV light is also known to cause vasodilation and tolerance. Intraperitoneal nitrite prevented NTG tolerance in coronary arteries of rats that received NTG transdermal patches for 4 days, and potentiated NTG- and GSNO- mediated mesenteric vasodilation in intact rats. Consistent with the incorporation of nitrite into the depletable NANOS, incubation of arteries with 15N-nitrite resulted in the accumulation of high molecular weight 15N-NO-containing compounds in arteries, and subsequent exposure to NTG, GSNO, or UV light resulted in efflux of 15N-NO species. In addition, H2O2 and metal/metalloproteins synergistically facilitated NO release from nitrite, while the oxidative stress associated with inflammation and nitrite synergistically potentiated the nitrodilator-mediated vasodilation. In conclusion, NTG mediates vasodilation via activation of a depletable intracellular store of NO that can be replenished by nitrite, thereby preventing tolerance.
Collapse
Affiliation(s)
- Taiming Liu
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Meijuan Zhang
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Qian Li
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hobe Schroeder
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Gordon G Power
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Arlin B Blood
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
2
|
Abeje JI, Shittu STT, Asafa OO, Bolarinwa B, Lasisi TJ. Sleep recovery ameliorates submandibular salivary gland inflammation associated with paradoxical sleep deprivation in male Wistar rats. J Appl Oral Sci 2025; 33:e20240133. [PMID: 39813519 DOI: 10.1590/1678-7757-2024-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/04/2024] [Indexed: 01/18/2025] Open
Abstract
OBJECTIVE Submandibular salivary gland inflammation has been suggested as one of the mechanisms underlying impaired salivary secretion associated with sleep deprivation (SD). However, whether the salivary inflammatory response occurs to the same extent in paradoxical sleep deprivation with or without sleep recovery remains unknown. This study evaluated the extent to which inflammation influences salivary impairments associated with paradoxical sleep deprivation with or without sleep recovery. METHODOLOGY Male Wistar rats were randomly assigned into three groups as control, partial SD (PSD) with sleep recovery for four hours a day and total SD (TSD). Paradoxical SD was carried out for seven days in the SD groups, after which saliva, blood, and submandibular gland samples were taken. Levels of interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), and nitrite were determined in saliva, serum, and the submandibular salivary gland. Leucocyte count and neutrophil-lymphocyte ratio were determined in all groups. One-way ANOVA and the Tukey's post hoc tests were used for data analysis. P-values < 0.05 were considered statistically significant. RESULTS Levels of TNF-α, IL-6, and nitrite in the submandibular salivary glands were significantly higher in the TSD groups (p=0.04,p<0.001, p=0.03, respectively) than in the control. Saliva level of TNF-α was higher in the PSD and TSD groups (p=0.003 and p=0.01 respectively) than in the control. Neutrophil-lymphocyte ratio was significantly higher in both PSD and TSD groups than in the control (p<0.01 for both). CONCLUSION While total SD produced higher inflammatory response in the submandibular salivary gland, four-hour sleep recovery ameliorated this impact. This finding suggests that sleep recovery is crucial to improve inflammatory salivary gland dysfunction induced by sleep deprivation.
Collapse
Affiliation(s)
- Jude Ijuo Abeje
- University of Ibadan, College of Medicine, Department of Physiology, Ibadan, Nigeria
| | - Shehu-Tijani T Shittu
- University of Ibadan, College of Medicine, Department of Physiology, Ibadan, Nigeria
| | | | - Bimpe Bolarinwa
- University of Ibadan, College of Medicine, Department of Physiology, Ibadan, Nigeria
| | - Taye J Lasisi
- University of Ibadan, College of Medicine, Department of Physiology, Ibadan, Nigeria
- University of Ibadan, College of Medicine, Department of Oral Pathology, Ibadan, Nigeria
| |
Collapse
|
3
|
Nayak AK, Canepari M, Das SL, Misbah C. Nitric oxide modelling and its bioavailability influenced by red blood cells. J R Soc Interface 2024; 21:20240458. [PMID: 39691087 DOI: 10.1098/rsif.2024.0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/04/2024] [Accepted: 10/17/2024] [Indexed: 12/19/2024] Open
Abstract
Nitric oxide (NO) is an important vasodilator responsible for maintaining vascular tone in the human body. Its production in endothelial cells (ECs) is regulated by the rise of cytoplasmic Ca2+ concentration and shear stress perceived by blood flow. The increase in cytoplasmic Ca2+ concentration is mainly activated by adenosine triphosphate (ATP) released from red blood cells (RBCs) and ECs. However, RBCs, which act as NO scavengers, can affect the bioavailability of NO in blood vessels. In this study, we developed a model that incorporates ATP and shear stress-dependent NO production, integrating various biochemical pathways. The model results are qualitatively consistent with the experimental findings. Given that ATP concentration and shear stress vary spatially within blood circulation, influenced by factors such as vessel width, flow strength and RBC concentration, these variations can significantly affect NO bioavailability. Here, we study RBC flow, ATP release from RBCs and ECs, and [Formula: see text] and NO dynamics in a two-dimensional channel using the immersed boundary lattice Boltzmann method. The main findings from the study include: (i) an increase in RBC concentration leads to a rise in ATP and cytoplasmic Ca2+ concentrations for all variation in channel widths, while NO concentration exhibits a decrease; (ii) NO bioavailability is significantly influenced by RBC distribution, particularly in strongly confined channels; and (iii) two phases of NO bioavailability are observed in different regions of the blood vessels: one with a significant concentration change at low RBC concentration and another with a minimal concentration change at high RBC concentration, across all confinements. The outcomes of this study may provide valuable insights into the mechanisms of NO-dependent vasodilation and the transport of oxygen by RBCs within microvascular networks for future studies.
Collapse
Affiliation(s)
| | - Marco Canepari
- Université Grenoble Alpes, CNRS, LIPhy, Grenoble 38000, France
| | - Sovan Lal Das
- Physical and Chemical Biology Laboratory, and Department of Mechanical Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| | - Chaouqi Misbah
- Université Grenoble Alpes, CNRS, LIPhy, Grenoble 38000, France
| |
Collapse
|
4
|
Carr JMJR, Hoiland RL, Fernandes IA, Schrage WG, Ainslie PN. Recent insights into mechanisms of hypoxia-induced vasodilatation in the human brain. J Physiol 2024; 602:5601-5618. [PMID: 37655827 DOI: 10.1113/jp284608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
The cerebral vasculature manages oxygen delivery by adjusting arterial blood in-flow in the face of reductions in oxygen availability. Hypoxic cerebral vasodilatation, and the associated hypoxic cerebral blood flow reactivity, involve many vascular, erythrocytic and cerebral tissue mechanisms that mediate elevations in cerebral blood flow via micro- and macrovascular dilatation. This contemporary review focuses on in vivo human work - with reference to seminal preclinical work where necessary - on hypoxic cerebrovascular reactivity, particularly where recent advancements have been made. We provide updates with the following information: in humans, hypoxic cerebral vasodilatation is partially mediated via a - likely non-obligatory - combination of: (1) nitric oxide synthases, (2) deoxygenation-coupled S-nitrosothiols, (3) potassium channel-related vascular smooth muscle hyperpolarization, and (4) prostaglandin mechanisms with some contribution from an interrelationship with reactive oxygen species. And finally, we discuss the fact that, due to the engagement of deoxyhaemoglobin-related mechanisms, reductions in O2 content via haemoglobin per se seem to account for ∼50% of that seen with hypoxic cerebral vasodilatation during hypoxaemia. We further highlight the issue that methodological impediments challenge the complete elucidation of hypoxic cerebral reactivity mechanisms in vivo in healthy humans. Future research is needed to confirm recent advancements and to reconcile human and animal findings. Further investigations are also required to extend these findings to address questions of sex-, heredity-, age-, and disease-related differences. The final step is to then ultimately translate understanding of these mechanisms into actionable, targetable pathways for the prevention and treatment of cerebral vascular dysfunction and cerebral hypoxic brain injury.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for Researching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
| | - Igor A Fernandes
- Department of Health and Kinesiology, Purdue University, Indiana, USA
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
5
|
Delgado Spicuzza JM, Gosalia J, Studinski M, Armando C, Alipour E, Kim-Shapiro DB, Flanagan M, Somani YB, Proctor DN. The acute effects of dietary nitrate supplementation on postmenopausal endothelial resistance to ischemia reperfusion injury: a randomized, placebo-controlled, double blind, crossover clinical trial. Can J Physiol Pharmacol 2024; 102:634-647. [PMID: 38901043 DOI: 10.1139/cjpp-2024-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Postmenopausal cardiovascular health is a critical determinant of longevity. Consumption of beetroot juice (BR) and other nitrate-rich foods is a safe, effective non-pharmaceutical intervention to increase systemic bioavailability of the vasoprotective molecule, nitric oxide, through the exogenous nitrate (NO3 -)-nitrite (NO2 -)-nitric oxide (NO) pathway. We hypothesized that a single dose of nitrate-rich beetroot juice (BRnitrate 600 mg NO3 -/140 mL, BRplacebo ∼ 0 mg/140 mL) would improve resting endothelial function and resistance to ischemia-reperfusion (IR) injury to a greater extent in early-postmenopausal (1-6 years following their final menstrual period (FMP), n = 12) compared to late-postmenopausal (6+ years after FMP, n = 12) women. Analyses with general linear models revealed a significant (p < 0.05) time*treatment interaction effect for brachial artery adjusted flow-mediated dilation (FMD). Pairwise comparisons revealed that adjusted FMD was significantly lower following IR-injury in comparison to all other time points with BRplacebo (early FMD 2.51 ± 1.18%, late FMD 1.30 ± 1.10, p < 0.001) and was lower than post-IR with BRnitrate (early FMD 3.84 ± 1.21%, late FMD 3.21 ± 1.13%, p = 0.014). A single dose of BRnitrate significantly increased resting macrovascular function in the late postmenopausal group only (p = 0.005). Considering the postmenopausal stage-dependent variations in endothelial responsiveness to dietary nitrate, we predict differing mechanisms underpin macrovascular protection against IR injury.
Collapse
Affiliation(s)
| | - Jigar Gosalia
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Matthew Studinski
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA, USA
| | - Chenée Armando
- Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | | | - Michael Flanagan
- Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Yasina B Somani
- Department of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - David N Proctor
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA, USA
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
- Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
6
|
Stachelska-Wierzchowska A, Narczyk M, Wierzchowski J, Bzowska A, Wielgus-Kutrowska B. Interaction of Tri-Cyclic Nucleobase Analogs with Enzymes of Purine Metabolism: Xanthine Oxidase and Purine Nucleoside Phosphorylase. Int J Mol Sci 2024; 25:10426. [PMID: 39408755 PMCID: PMC11477426 DOI: 10.3390/ijms251910426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Fluorescent markers play important roles in spectroscopic and microscopic research techniques and are broadly used in basic and applied sciences. We have obtained markers with fluorescent properties, two etheno derivatives of 2-aminopurine, as follows: 1,N2-etheno-2-aminopurine (1,N2-ε2APu, I) and N2,3-etheno-2-aminopurine (N2,3-ε2APu, II). In the present paper, we investigate their interaction with two key enzymes of purine metabolism, purine nucleoside phosphorylase (PNP), and xanthine oxidase (XO), using diffraction of X-rays on protein crystals, isothermal titration calorimetry, and fluorescence spectroscopy. Crystals were obtained and structures were solved for WT PNP and D204N-PNP mutant in a complex with N2,3-ε2APu (II). In the case of WT PNP-1,N2-ε2APu (I) complex, the electron density corresponding to the ligand could not be identified in the active site. Small electron density bobbles may indicate that the ligand binds to the active site of a small number of molecules. On the basis of spectroscopic studies in solution, we found that, in contrast to PNP, 1,N2-ε2APu (I) is the ligand with better affinity to XO. Enzymatic oxidation of (I) leads to a marked increase in fluorescence near 400 nm. Hence, we have developed a new method to determine XO activity in biological material, particularly suitable for milk analysis.
Collapse
Affiliation(s)
- Alicja Stachelska-Wierzchowska
- Department of Physics and Biophysics, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 4 Oczapowskiego St., PL-10-719 Olsztyn, Poland; (A.S.-W.); (J.W.)
| | - Marta Narczyk
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 4 Oczapowskiego St., PL-10-719 Olsztyn, Poland; (A.S.-W.); (J.W.)
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| |
Collapse
|
7
|
Sun YH, You HL, Narwane M, Koi RX, Kao CL, Yuan SSF, Liao WT, Lu TT, Hsu SCN. A half sandwich Ru(II)- p-cymene nitrite complex selectively induces cell death in cisplatin-resistant malignant melanoma cells. Dalton Trans 2024; 53:12620-12626. [PMID: 39010726 DOI: 10.1039/d4dt01012d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The Ru(II)-nitrite complex, Ru4, is explored to release nitric oxide (NO) under acidic conditions and selectively induce a cytotoxic effect towards SK-MEL-28 cisplatin-resistant malignant melanoma cells. These findings suggest that targeting the tumor-associated pHe level could be an effective strategy for the drug function of Ru(II)-nitrite compounds.
Collapse
Affiliation(s)
- Yin-Hsuan Sun
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Manmath Narwane
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ru Xin Koi
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Translational Research Center, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Shyng-Shiou F Yuan
- Translational Research Center, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Faculty and College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Ting Liao
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Translational Research Center, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
8
|
Delgado Spicuzza JM, Gosalia J, Zhong L, Bondonno C, Petersen KS, De Souza MJ, Alipour E, Kim-Shapiro DB, Somani YB, Proctor DN. Seven-day dietary nitrate supplementation clinically significantly improves basal macrovascular function in postmenopausal women: a randomized, placebo-controlled, double-blind, crossover clinical trial. Front Nutr 2024; 11:1359671. [PMID: 38915856 PMCID: PMC11194363 DOI: 10.3389/fnut.2024.1359671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/09/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction Cardiovascular disease (CVD) is the leading cause of death in women, with increased risk following menopause. Dietary intake of beetroot juice and other plant-based nitrate-rich foods is a promising non-pharmacological strategy for increasing systemic nitric oxide and improving endothelial function in elderly populations. The purpose of this randomized, placebo-controlled, double-blind, crossover clinical trial was to determine the effects of short-term dietary nitrate (NO3 -) supplementation, in the form of beetroot juice, on resting macrovascular endothelial function and endothelial resistance to whole-arm ischemia-reperfusion (IR) injury in postmenopausal women at two distinct stages of menopause. Methods Early-postmenopausal [1-6 years following their final menstrual period (FMP), n = 12] and late-postmenopausal (6+ years FMP, n = 12) women consumed nitrate-rich (400 mg NO3 -/70 mL) and nitrate-depleted beetroot juice (approximately 40 mg NO3 -/70 mL, placebo) daily for 7 days. Brachial artery flow-mediated dilation (FMD) was measured pre-supplementation (Day 0), and approximately 24 h after the last beetroot juice (BR) dose (Day 8, post-7-day BR). Consequently, FMD was measured immediately post-IR injury and 15 min later (recovery). Results Results of the linear mixed-effects model revealed a significantly greater increase in resting FMD with 7 days of BRnitrate compared to BRplacebo (mean difference of 2.21, 95% CI [0.082, 4.34], p = 0.042); however, neither treatment blunted the decline in post-IR injury FMD in either postmenopausal group. Our results suggest that 7-day BRnitrate-mediated endothelial protection is lost within the 24-h period following the final dose of BRnitrate. Conclusion Our findings demonstrate that nitrate-mediated postmenopausal endothelial protection is dependent on the timing of supplementation in relation to IR injury and chronobiological variations in dietary nitrate metabolism. Clinical trial registration https://classic.clinicaltrials.gov/ct2/show/NCT03644472.
Collapse
Affiliation(s)
- Jocelyn M. Delgado Spicuzza
- Integrative Vascular Physiology Lab, Integrative and Biomedical Physiology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Jigar Gosalia
- Integrative Vascular Physiology Lab, Department of Kinesiology, College of Health and Human Development, The Pennsylvania State University, University Park, PA, United States
| | - Liezhou Zhong
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Catherine Bondonno
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Kristina S. Petersen
- Cardiometabolic Nutrition Research Lab, Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State University, University Park, PA, United States
| | - Mary Jane De Souza
- Integrative Vascular Physiology Lab, Integrative and Biomedical Physiology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States
- Women’s Health and Exercise Lab, Department of Kinesiology, College of Health and Human Development, The Pennsylvania State University, University Park, PA, United States
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC, United States
| | | | - Yasina B. Somani
- Faculty of Biological Sciences, Department of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - David N. Proctor
- Integrative Vascular Physiology Lab, Integrative and Biomedical Physiology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States
- Integrative Vascular Physiology Lab, Department of Kinesiology, College of Health and Human Development, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
9
|
Lbban E, Macey A, Rundle J, Ashor A, Idris I, Siervo M. Effects of dietary nitrate and vitamin C co-ingestion on blood pressure and hand-grip strength in young adults. INT J VITAM NUTR RES 2024; 94:342-353. [PMID: 37938096 DOI: 10.1024/0300-9831/a000799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Background: Co-administration of vitamin C and inorganic nitrate ([Formula: see text]) may reduce oxidative stress, boost the conversion of nitrite ([Formula: see text]) into NO and elicit positive vascular effects. Aims: We aimed to test the effects of oral inorganic [Formula: see text] and vitamin C co-supplementation on vascular function, muscular strength, and on concentrations of urinary [Formula: see text], vitamin C, 8-isoprostanes and salivary [Formula: see text] in healthy young adults. Methods: Ten young healthy participants were enrolled in a randomised, double-blind (only for the [Formula: see text] intervention) crossover clinical trial. Participants consumed in random order: 1) nitrate-rich beetroot juice and vitamin C (N+VC), 2) nitrate-rich beetroot juice alone (N) or 3) nitrate-depleted beetroot juice alone (ND). Resting blood pressure (BP) was measured at the research centre and at home. Non-invasive, continuous measurements of BP and cardiac function parameters were performed using a Finometer device. Free-living physical activity and hand-grip strength were assessed. Salivary [Formula: see text] and [Formula: see text] and urinary [Formula: see text], 8-isoprostanes and vitamin C concentrations were measured. Results: There were no significant differences for any of the vascular outcomes between the three interventions groups. However, analyses of within-intervention changes showed a significant lower daily systolic BP in the [Formula: see text]+vitamin C (N+VC) group only (P=0.04). Urinary [Formula: see text] (P=0.002) and salivary [Formula: see text] (P=0.001) were significantly higher in the N+VC group compared to the N and ND groups. Conclusion: These preliminary findings suggest that combining dietary [Formula: see text] with vitamin C could have protective effects on vascular function in young adults and could represent an effective strategy for the maintenance of healthy cardiovascular trajectories.
Collapse
Affiliation(s)
- Eazaz Lbban
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
- Department of Physiology, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Alex Macey
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Joshua Rundle
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Ammar Ashor
- College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Iskandar Idris
- School of Medicine, The University of Nottingham Medical School, Derby Hospital, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
- School of Population Health, Curtin University, Perth, Australia
- Dementia Centre of Excellence, enAble Institute, Curtin University, Perth, Australia
| |
Collapse
|
10
|
Mikuteit M, Baskal S, Klawitter S, Dopfer-Jablonka A, Behrens GMN, Müller F, Schröder D, Klawonn F, Steffens S, Tsikas D. Amino acids, post-translational modifications, nitric oxide, and oxidative stress in serum and urine of long COVID and ex COVID human subjects. Amino Acids 2023; 55:1173-1188. [PMID: 37516715 PMCID: PMC10564820 DOI: 10.1007/s00726-023-03305-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
In this study, we investigated the status of amino acids, their post-translational modifications (PTM), major nitric oxide (NO) metabolites and of malondialdehyde (MDA) as a biomarker of oxidative stress in serum and urine samples of long COVID (LoCo, n = 124) and ex COVID (ExCo, n = 24) human subjects collected in 2022. Amino acids and metabolites were measured by gas chromatography-mass spectrometry (GC-MS) methods using stable-isotope labelled analogs as internal standards. There were no differences with respect to circulating and excretory arginine and asymmetric dimethylarginine (ADMA). LoCo participants excreted higher amounts of guanidino acetate than ExCo participants (17.8 ± 10.4 µM/mM vs. 12.6 ± 8.86 µM/mM, P = 0.005). By contrast, LoCo participants excreted lower amounts of the advanced glycation end-product (AGE) NG-carboxyethylarginine (CEA) than ExCo participants did (0.675 ± 0.781 µM/mM vs. 1.16 ± 2.04 µM/mM, P = 0.0326). The serum concentrations of MDA did not differ between the groups, indicating no elevated oxidative stress in LoCo or ExCo. The serum concentration of nitrite was lower in LoCo compared to ExCo (1.96 ± 0.92 µM vs. 2.56 ± 1.08 µM; AUC, 0.718), suggesting altered NO synthesis in the endothelium. The serum concentration of nitrite correlated inversely with the symptom anxiety (r = - 0.293, P = 0.0003). The creatinine-corrected urinary excretion of Lys and its metabolite L-5-hydroxy-Lys correlated positively with COVID toes (r = 0.306, P = 0.00027) and sore throat (r = 0.302, P = 0.0003). Our results suggest that amino acid metabolism, PTM and oxidative stress are not severely affected in long COVID. LoCo participants may have a lower circulating NO reservoir than ExCo.
Collapse
Affiliation(s)
- Marie Mikuteit
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Hannover Medical School, Dean’s Office–Curriculum Development, Hannover, Germany
| | - Svetlana Baskal
- Hannover Medical School, Institute of Toxicology, Core Unit Proteomics, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Sandra Klawitter
- Institute for Information Engineering, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
| | | | - Georg M. N. Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Centre for Individualized Infection Medicine (CiiM), Hannover Medical School, Hannover, Germany
| | - Frank Müller
- Department of General Practice, University Medical Center Göttingen, Göttingen, Germany
- Department of Family Medicine, Michigan State University, Grand Rapids, MI USA
| | - Dominik Schröder
- Department of General Practice, University Medical Center Göttingen, Göttingen, Germany
| | - Frank Klawonn
- Institute for Information Engineering, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
- Biostatistics Research Group, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Sandra Steffens
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Hannover Medical School, Dean’s Office–Curriculum Development, Hannover, Germany
| | - Dimitrios Tsikas
- Hannover Medical School, Institute of Toxicology, Core Unit Proteomics, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
11
|
Martins LZ, da Silva MLS, Rodrigues SD, Gomes SEB, Molezini L, Rizzi E, Montenegro MF, Dias-Junior CA. Sodium Nitrite Attenuates Reduced Activity of Vascular Matrix Metalloproteinase-2 and Vascular Hyper-Reactivity and Increased Systolic Blood Pressure Induced by the Placental Ischemia Model of Preeclampsia in Anesthetized Rats. Int J Mol Sci 2023; 24:12818. [PMID: 37628999 PMCID: PMC10454117 DOI: 10.3390/ijms241612818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Preeclampsia is a maternal hypertension disorder associated with vascular dysfunction and fetal and placental growth restrictions. Placental ischemia is suggested as the primary trigger of preeclampsia-associated impairments of both endothelium-derived nitric oxide (NO) and the vascular activity of extracellular matrix metalloproteinase-2 (MMP-2). Reduced uteroplacental perfusion pressure (RUPP) is a placental ischemia model of preeclampsia. Reduction of sodium nitrite to NO may occur during ischemic conditions. However, sodium nitrite effects in the RUPP model of preeclampsia have not yet been investigated. Pregnant rats were divided into four groups: normotensive pregnant rats (Norm-Preg), pregnant rats treated with sodium nitrite (Preg + Nitrite), preeclamptic rats (RUPP), and preeclamptic rats treated with sodium nitrite (RUPP + Nitrite). Maternal blood pressure and fetal and placental parameters were recorded. Vascular function, circulating NO metabolites, and the gelatinolytic activity of vascular MMP-2 were also examined. Sodium nitrite attenuates increased blood pressure, prevents fetal and placental weight loss, counteracts vascular hyper-reactivity, and partially restores NO metabolites and MMP-2 activity. In conclusion, sodium nitrite reduction to NO may occur during RUPP-induced placental ischemia, thereby attenuating increased blood pressure, fetal and placental growth restriction, and vascular hyper-reactivity associated with preeclampsia and possibly restoring NO and MMP-2 activity, which underlie the blood pressure-lowering effects.
Collapse
Affiliation(s)
- Laisla Zanetoni Martins
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.Z.M.); (M.L.S.d.S.); (S.D.R.); (S.E.B.G.)
| | - Maria Luiza Santos da Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.Z.M.); (M.L.S.d.S.); (S.D.R.); (S.E.B.G.)
| | - Serginara David Rodrigues
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.Z.M.); (M.L.S.d.S.); (S.D.R.); (S.E.B.G.)
| | - Sáskia Estela Biasotti Gomes
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.Z.M.); (M.L.S.d.S.); (S.D.R.); (S.E.B.G.)
| | - Laura Molezini
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (L.M.); (E.R.)
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (L.M.); (E.R.)
| | - Marcelo Freitas Montenegro
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden;
| | - Carlos Alan Dias-Junior
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.Z.M.); (M.L.S.d.S.); (S.D.R.); (S.E.B.G.)
| |
Collapse
|
12
|
Molecular Mechanisms and Pathophysiological Significance of Eryptosis. Int J Mol Sci 2023; 24:ijms24065079. [PMID: 36982153 PMCID: PMC10049269 DOI: 10.3390/ijms24065079] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Despite lacking the central apoptotic machinery, senescent or damaged RBCs can undergo an unusual apoptosis-like cell death, termed eryptosis. This premature death can be caused by, or a symptom of, a wide range of diseases. However, various adverse conditions, xenobiotics, and endogenous mediators have also been recognized as triggers and inhibitors of eryptosis. Eukaryotic RBCs are unique among their cell membrane distribution of phospholipids. The change in the RBC membrane composition of the outer leaflet occurs in a variety of diseases, including sickle cell disease, renal diseases, leukemia, Parkinson’s disease, and diabetes. Eryptotic erythrocytes exhibit various morphological alterations such as shrinkage, swelling, and increased granulation. Biochemical changes include cytosolic Ca2+ increase, oxidative stress, stimulation of caspases, metabolic exhaustion, and ceramide accumulation. Eryptosis is an effective mechanism for the elimination of dysfunctional erythrocytes due to senescence, infection, or injury to prevent hemolysis. Nevertheless, excessive eryptosis is associated with multiple pathologies, most notably anemia, abnormal microcirculation, and prothrombotic risk; all of which contribute to the pathogenesis of several diseases. In this review, we provide an overview of the molecular mechanisms, physiological and pathophysiological relevance of eryptosis, as well as the potential role of natural and synthetic compounds in modulating RBC survival and death.
Collapse
|
13
|
Is vitamin C a booster of the effects of dietary nitrate on endothelial function? Physiologic rationale and implications for research. Nutrition 2023; 109:111995. [PMID: 36917872 DOI: 10.1016/j.nut.2023.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
Endothelial dysfunction (ED) is an early marker of vascular damage linked to the loss of integrity of the endothelial lining and represents a key step in the pathogenesis of atherosclerosis and cardiovascular diseases (CVDs). ED may be reversible, hence the development and testing of effective early interventions could be beneficial for the prevention and treatment of CVDs. Recent studies have demonstrated that the consumption of dietary nitrate (NO3-), an inorganic anion that serves as a substrate for the gas transmitter nitric oxide (NO), can lower blood pressure, improve endothelial function and, in observational studies, reduce the risk for CVD. We hypothesize that the co-consumption of NO3- with vitamin C, which is a potent antioxidant, could enhance the "yield" of NO produced from a given NO3- dose byThis could translate into greater NO-dependent effects on endothelial function (EF) and overall vascular health (than may be experienced with NO3- supplementation alone). This review presents evidence to suggest that the combination of vitamin C and dietary nitrate could represent a promising and effective approach to improve EF and reduce CVD risk, and discuss opportunities for future research.
Collapse
|
14
|
Lv F, Zhang J, Tao Y. Efficacy and safety of inorganic nitrate/nitrite supplementary therapy in heart failure with preserved ejection fraction. Front Cardiovasc Med 2023; 10:1054666. [PMID: 36818337 PMCID: PMC9932197 DOI: 10.3389/fcvm.2023.1054666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Background Approximately half of patients with heart failure have a preserved ejection fraction (HFpEF). To date, only SGLT-2i, ARNi, and MRAs treatments have been shown to be effective for HFpEF. Exercise intolerance is the primary clinical feature of HFpEF. The aim of this meta-analysis was to explore the effect of inorganic nitrate/nitrite supplementary therapy on the exercise capacity of HFpEF patients. Methods We searched PubMed, Embase, Cochrane Library, OVID, and Web of Science for eligible studies for this meta-analysis. The primary outcomes were peak oxygen consumption (peak VO2), exercise time, and respiratory exchange ratio (RER) during exercise. The secondary outcomes were cardiac output, heart rate, systolic blood pressure, diastolic blood pressure, mean arterial pressure, and systemic vascular resistance during rest and exercise, respectively. Results A total of eight randomized-controlled trials were enrolled for this meta-analysis. We found no benefit of inorganic nitrate/nitrite on exercise capacity in patients with HFpEF. Inorganic nitrate/nitrite compared to placebo, did not significantly increased peak VO2 (MD = 0.361, 95% CI = -0.17 to 0.89, p = 0.183), exercise time (MD = 9.74, 95% CI = -46.47 to 65.95, p = 0.734), and respiratory exchange ratio during exercise (MD = -0.003, 95% CI = -0.036 to 0.029, p = 0.834). Among the six diameters reflecting cardiac and artery hemodynamics, inorganic nitrate/nitrite can lower rest SBP, rest/exercise DBP, rest/exercise MAP, and exercise SVR, but has no effect in cardiac output and heart rate for HFpEF patients. Conclusion Our meta-analysis suggested that inorganic nitrate/nitrite supplementary therapy has no benefit in improving the exercise capacity of patients with HFpEF, but can yield a blood pressure lowering effect, especially during exercise.
Collapse
Affiliation(s)
- Feng Lv
- Department of Cardiology, Shengzhou People’s Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou City, Zhejiang Province, China
| | - Junyi Zhang
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province, China
| | - Yuan Tao
- Department of Cardiology, Shengzhou People’s Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou City, Zhejiang Province, China,*Correspondence: Yuan Tao,
| |
Collapse
|
15
|
Alayash AI. Oxidation reactions of cellular and acellular hemoglobins: Implications for human health. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:1068972. [PMID: 36518991 PMCID: PMC9744253 DOI: 10.3389/fmedt.2022.1068972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 01/11/2025] Open
Abstract
Oxygen reversibly binds to the redox active iron, a transition metal in human Hemoglobin (Hb), which subsequently undergoes oxidation in air. This process is akin to iron rusting in non-biological systems. This results in the formation of non-oxygen carrying methemoglobin (ferric) (Fe3+) and reactive oxygen species (ROS). In circulating red blood cells (RBCs), Hb remains largely in the ferrous functional form (HbF2+) throughout the RBC's lifespan due to the presence of effective enzymatic and non-enzymatic proteins that keep the levels of metHb to a minimum (1%-3%). In biological systems Hb is viewed as a Fenton reagent where oxidative toxicity is attributed to the formation of a highly reactive hydroxyl radical (OH•) generated by the reaction between Hb's iron (Fe2+) and hydrogen peroxide (H2O2). However, recent research on both cellular and acellular Hbs revealed that the protein engages in enzymatic-like activity when challenged with H2O2, resulting in the formation of a highly reactive ferryl heme (Fe4+) that can target other biological molecules before it self-destructs. Accumulating evidence from several in vitro and in vivo studies are summarized in this review to show that Hb's pseudoperoxidase activity is physiologically more dominant than the Fenton reaction and it plays a pivotal role in the pathophysiology of several blood disorders, storage lesions associated with old blood, and in the toxicity associated with the infusion of Hb-derived oxygen therapeutics.
Collapse
|
16
|
Li Y, Zhu M, Liu Y, Luo B, Cui J, Huang L, Chen K, Liu Y. The oral microbiota and cardiometabolic health: A comprehensive review and emerging insights. Front Immunol 2022; 13:1010368. [PMID: 36466857 PMCID: PMC9716288 DOI: 10.3389/fimmu.2022.1010368] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/26/2022] [Indexed: 08/26/2023] Open
Abstract
There is mounting evidence demonstrating that oral dysbiosis causes periodontal disease and promotes the development of cardiovascular disease. The advancement of omics techniques has driven the optimization of oral microbiota species analysis and has provided a deeper understanding of oral pathogenic bacteria. A bi-directional relationship exists between the oral microbiota and the host, and oral-gut microbiota transfer is known to alter the composition of the gut microbiota and may cause local metabolic disorders. Furthermore, cardiovascular health can also be highly affected by oral microbiota functions and metabolites, including short-chain fatty acids (SCFAs), nitric oxide (NO), hydrogen sulfide (H2S), and some lipid metabolites. Studies have found that trimethylamine oxide (TMAO) may have adverse effects on cardiovascular health, whereas SCFAs, NO, and H2S have cardioprotective effects. SCFAs and H2S exert varying oral and cardiovascular effects, however reports on this specific topic remain controversial. Previous evidences are accustomed to summarizing the functions of oral microbiota in the context of periodontitis. The direct relationship between oral microbiota and cardiovascular diseases is insufficient. By systematically summarizing the methods associated with oral microbiota transplantation (OMT), this review facilitates an investigation into the causal links between oral microbiota and cardiovascular disease. The concomitant development of omics, bioinformatics, bacterial culture techniques, and microbiota transplantation techniques is required to gain a deeper understanding of the relationship between oral microbiota and cardiovascular disease occurrence.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Binyu Luo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Cui
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- China Center for Evidence-based Medicine of Traditional Chinese Medicine (TCM), China Academy of Chinese Medical Sciences, Beijing, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Keller TCS, Lechauve C, Keller AS, Broseghini-Filho GB, Butcher JT, Askew Page HR, Islam A, Tan ZY, DeLalio LJ, Brooks S, Sharma P, Hong K, Xu W, Padilha AS, Ruddiman CA, Best AK, Macal E, Kim-Shapiro DB, Christ G, Yan Z, Cortese-Krott MM, Ricart K, Patel R, Bender TP, Sonkusare SK, Weiss MJ, Ackerman H, Columbus L, Isakson BE. Endothelial alpha globin is a nitrite reductase. Nat Commun 2022; 13:6405. [PMID: 36302779 PMCID: PMC9613979 DOI: 10.1038/s41467-022-34154-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 10/04/2022] [Indexed: 01/29/2023] Open
Abstract
Resistance artery vasodilation in response to hypoxia is essential for matching tissue oxygen and demand. In hypoxia, erythrocytic hemoglobin tetramers produce nitric oxide through nitrite reduction. We hypothesized that the alpha subunit of hemoglobin expressed in endothelium also facilitates nitrite reduction proximal to smooth muscle. Here, we create two mouse strains to test this: an endothelial-specific alpha globin knockout (EC Hba1Δ/Δ) and another with an alpha globin allele mutated to prevent alpha globin's inhibitory interaction with endothelial nitric oxide synthase (Hba1WT/Δ36-39). The EC Hba1Δ/Δ mice had significantly decreased exercise capacity and intracellular nitrite consumption in hypoxic conditions, an effect absent in Hba1WT/Δ36-39 mice. Hypoxia-induced vasodilation is significantly decreased in arteries from EC Hba1Δ/Δ, but not Hba1WT/Δ36-39 mice. Hypoxia also does not lower blood pressure in EC Hba1Δ/Δ mice. We conclude the presence of alpha globin in resistance artery endothelium acts as a nitrite reductase providing local nitric oxide in response to hypoxia.
Collapse
Affiliation(s)
- T C Stevenson Keller
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Christophe Lechauve
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alexander S Keller
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Gilson Brás Broseghini-Filho
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| | - Joshua T Butcher
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Henry R Askew Page
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Aditi Islam
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Zhe Yin Tan
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Leon J DeLalio
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Steven Brooks
- Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Poonam Sharma
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kwangseok Hong
- Department of Physical Education, College of Education, Chung-Ang University, Seoul, South Korea
| | - Wenhao Xu
- Transgenic Mouse Facility, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Claire A Ruddiman
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Angela K Best
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Edgar Macal
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Daniel B Kim-Shapiro
- Department of Physics, Translational Science Center, Wake Forest University, Winston-Salem, NC, USA
| | - George Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Zhen Yan
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Karina Ricart
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rakesh Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timothy P Bender
- Department of Microbiology, Immunology and Cancer, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Swapnil K Sonkusare
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hans Ackerman
- Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Linda Columbus
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Brant E Isakson
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
18
|
Chronic High-Altitude Hypoxia Alters Iron and Nitric Oxide Homeostasis in Fetal and Maternal Sheep Blood and Aorta. Antioxidants (Basel) 2022; 11:antiox11091821. [PMID: 36139895 PMCID: PMC9495375 DOI: 10.3390/antiox11091821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
The mammalian fetus thrives at oxygen tensions much lower than those of adults. Gestation at high altitude superimposes hypoxic stresses on the fetus resulting in increased erythropoiesis. We hypothesized that chronic hypoxia at high altitude alters the homeostasis of iron and bioactive nitric oxide metabolites (NOx) in gestation. To test for this, electron paramagnetic resonance was used to provide unique measurements of iron, metalloproteins, and free radicals in the blood and aorta of fetal and maternal sheep from either high or low altitudes (3801 or 300 m). Using ozone-based chemiluminescence with selectivity for various NOx species, we determined the NOx levels in these samples immediately after collection. These experiments demonstrated a systemic redistribution of iron in high altitude fetuses as manifested by a decrease in both chelatable and total iron in the aorta and an increase in non-transferrin bound iron and total iron in plasma. Likewise, high altitude altered the redox status diversely in fetal blood and aorta. This study also found significant increases in blood and aortic tissue NOx in fetuses and mothers at high altitude. In addition, gradients in NOx concentrations observed between fetus and mother, umbilical artery and vein, and plasma and RBCs demonstrated complex dynamic homeostasis of NOx among these circulatory compartments, such as placental generation and efflux as well as fetal consumption of iron-nitrosyls in RBCs, probably HbNO. In conclusion, these results may suggest the utilization of iron from non-hematopoietic tissues iron for erythropoiesis in the fetus and increased NO bioavailability in response to chronic hypoxic stress at high altitude during gestation.
Collapse
|
19
|
Somani YB, Soares RN, Gosalia J, Delgado JM, Flanagan M, Basu S, Kim-Shapiro DB, Murias JM, Proctor DN. A single dose of dietary nitrate supplementation protects against endothelial ischemia-reperfusion injury in early postmenopausal women. Appl Physiol Nutr Metab 2022; 47:749-761. [PMID: 35358395 PMCID: PMC10941101 DOI: 10.1139/apnm-2021-0693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The onset of menopause and accompanying changes to ovarian hormones often precedes endothelial dysfunction in women. In particular, accelerated impairments in macrovascular and microvascular function coincide with the loss of estrogen, as does impaired endothelial responses to ischemia-reperfusion (IR) injury. In healthy, early postmenopausal women (n = 12; 3.9 ± 1.5 years since menopause) we tested the hypothesis that acute dietary nitrate (NO3-) supplementation would improve endothelial function and attenuate the magnitude of endothelial dysfunction following whole-arm IR in comparison with placebo. In this randomized, double-blind, placebo-controlled, crossover study we tested participants before and after NO3--rich (BRnitrate) and NO3--depleted (BRplacebo) beetroot juice (BR) consumption, as well as following IR injury, and 15 min after IR to assess recovery. Analyses with repeated-measures general linear models revealed a condition × time interaction for brachial artery flow-mediated dilation (FMD; P = 0.04), and no interaction effect was found for the near-infrared spectroscopy-derived reperfusion slope (P = 0.86). Follow-up analysis showed a significant decline in FMD following IR injury with BRplacebo in comparison with all other timepoints (all, P < 0.05), while this decline was not present with BRnitrate (all, P > 0.05). Our findings demonstrate that a single dose of dietary NO3- minimizes IR-induced macrovascular endothelial dysfunction in healthy, early postmenopausal women, but does not improve resting macrovascular and microvascular function. Trial registration number: NCT03644472. Novelty: In healthy, early postmenopausal women, a single dose of NO3--rich BR can protect against IR-induced endothelial dysfunction. This protection may be due to nitric oxide bioactivity during IR rather than improved endothelial function prior to the IR protocol per se.
Collapse
Affiliation(s)
- Y B Somani
- Department of Kinesiology, Integrative Vascular Physiology Lab, Penn State University, University Park, PA, USA
| | - R N Soares
- Dalton Cardiovascular Research Center, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - J Gosalia
- Department of Kinesiology, Integrative Vascular Physiology Lab, Penn State University, University Park, PA, USA
| | - J M Delgado
- Department of Kinesiology, Integrative Vascular Physiology Lab, Penn State University, University Park, PA, USA
| | - M Flanagan
- Penn State Hershey Family and Community Medicine, University Park, PA, USA
| | - S Basu
- Translational Science Center and Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - D B Kim-Shapiro
- Translational Science Center and Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - J M Murias
- Department of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - D N Proctor
- Department of Kinesiology, Integrative Vascular Physiology Lab, Penn State University, University Park, PA, USA
| |
Collapse
|
20
|
Mukosera GT, Principe P, Mata-Greenwood E, Liu T, Schroeder H, Parast M, Blood AB. Iron nitrosyl complexes are formed from nitrite in the human placenta. J Biol Chem 2022; 298:102078. [PMID: 35643317 PMCID: PMC9257420 DOI: 10.1016/j.jbc.2022.102078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 11/19/2022] Open
Abstract
Placental nitric oxide (NO) is critical for maintaining perfusion in the maternal-fetal-placental circulation during normal pregnancy. NO and its many metabolites are also increased in pregnancies complicated by maternal inflammation such as preeclampsia, fetal growth restriction, gestational diabetes, and bacterial infection. However, it is unclear how increased levels of NO or its metabolites affect placental function or how the placenta deals with excessive levels of NO or its metabolites. Since there is uncertainty over the direction of change in plasma levels of NO metabolites in preeclampsia, we measured the levels of these metabolites at the placental tissue level. We found that NO metabolites are increased in placentas from patients with preeclampsia compared to healthy controls. We also discovered by ozone-based chemiluminescence and electron paramagnetic resonance that nitrite is efficiently converted into iron nitrosyl complexes (FeNOs) within the human placenta and also observed the existence of endogenous FeNOs within placentas from sheep and rats. We show these nitrite-derived FeNOs are relatively short-lived, predominantly protein-bound, heme-FeNOs. The efficient formation of FeNOs from nitrite in the human placenta hints toward the importance of both nitrite and FeNOs in placental physiology or pathology. As iron nitrosylation is an important posttranslational modification that affects the activity of multiple iron-containing proteins such as those in the electron transport chain, or those involved in epigenetic regulation, we conclude that FeNOs merit increased study in pregnancy complications.
Collapse
Affiliation(s)
- George T Mukosera
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University, Loma Linda, California, USA
| | - Patricia Principe
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University, Loma Linda, California, USA
| | - Eugenia Mata-Greenwood
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University, Loma Linda, California, USA
| | - Taiming Liu
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Hobe Schroeder
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University, Loma Linda, California, USA
| | - Mana Parast
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Arlin B Blood
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University, Loma Linda, California, USA; Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California, USA.
| |
Collapse
|
21
|
Liu T, Schroeder H, Power GG, Blood AB. A physiologically relevant role for NO stored in vascular smooth muscle cells: A novel theory of vascular NO signaling. Redox Biol 2022; 53:102327. [PMID: 35605454 PMCID: PMC9126848 DOI: 10.1016/j.redox.2022.102327] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 01/16/2023] Open
Abstract
S-nitrosothiols (SNO), dinitrosyl iron complexes (DNIC), and nitroglycerine (NTG) dilate vessels via activation of soluble guanylyl cyclase (sGC) in vascular smooth muscle cells. Although these compounds are often considered to be nitric oxide (NO) donors, attempts to ascribe their vasodilatory activity to NO-donating properties have failed. Even more puzzling, many of these compounds have vasodilatory potency comparable to or even greater than that of NO itself, despite low membrane permeability. This raises the question: How do these NO adducts activate cytosolic sGC when their NO moiety is still outside the cell? In this review, we classify these compounds as ‘nitrodilators’, defined by their potent NO-mimetic vasoactivities despite not releasing requisite amounts of free NO. We propose that nitrodilators activate sGC via a preformed nitrodilator-activated NO store (NANOS) found within the vascular smooth muscle cell. We reinterpret vascular NO handling in the framework of this NANOS paradigm, and describe the knowledge gaps and perspectives of this novel model.
Collapse
|
22
|
Chervinets VM, Chervinets YV, Chichanovskaja LV, Ganzja DV, Grigoryants EO, Belyaev VS, Mironov AY. The microbiome of oral cavity patients with periodontitis, adhesive and biofilm forming properties. Klin Lab Diagn 2022; 67:163-169. [PMID: 35320632 DOI: 10.51620/0869-2084-2022-67-3-163-169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The work characterizes the intestinal microbiota of patients with ischemic stroke, including the spectrum, frequency and number of microorganisms, as well as the spectrum and amount of gas signaling molecules secreted by lactobacilli. It was found that in patients with ischemic stroke, the frequency of the main representatives of normal microflora, Bifidobacterium spp., Lactobacillus spp., Escherichia coli, decreased in 2-3 times, and the same time the prevalence of Clostridia spp., Bacillus spp., Peptostreptococcus spp., Klebsiella spp. increased in 2-3 times; yeast like fungi C. albicans was isolated in 25% of cases. Lactobacilli isolated from the intestinal microbiota of patients with ischemic stroke were represented by a wide variety of species: L. rhamnosus, L. fermentum, L. plantarum, L. brevis, L. pentosus, L. curvatus, L. salivarius. In most cases, they did not produce NO, they released CO 2 times less compared to healthy people. The most active NO producers - L. plantarum, CO - L. rhamnosus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - A Yu Mironov
- G.N. Gabrichevskogo Moscow research institute for epidemiology and microbiology.,Russian academy of post-graduate education Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia
| |
Collapse
|
23
|
Dent MR, DeMartino AW, Tejero J, Gladwin MT. Endogenous Hemoprotein-Dependent Signaling Pathways of Nitric Oxide and Nitrite. Inorg Chem 2021; 60:15918-15940. [PMID: 34313417 PMCID: PMC9167621 DOI: 10.1021/acs.inorgchem.1c01048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interdisciplinary research at the interface of chemistry, physiology, and biomedicine have uncovered pivotal roles of nitric oxide (NO) as a signaling molecule that regulates vascular tone, platelet aggregation, and other pathways relevant to human health and disease. Heme is central to physiological NO signaling, serving as the active site for canonical NO biosynthesis in nitric oxide synthase (NOS) enzymes and as the highly selective NO binding site in the soluble guanylyl cyclase receptor. Outside of the primary NOS-dependent biosynthetic pathway, other hemoproteins, including hemoglobin and myoglobin, generate NO via the reduction of nitrite. This auxiliary hemoprotein reaction unlocks a "second axis" of NO signaling in which nitrite serves as a stable NO reservoir. In this Forum Article, we highlight these NO-dependent physiological pathways and examine complex chemical and biochemical reactions that govern NO and nitrite signaling in vivo. We focus on hemoprotein-dependent reaction pathways that generate and consume NO in the presence of nitrite and consider intermediate nitrogen oxides, including NO2, N2O3, and S-nitrosothiols, that may facilitate nitrite-based signaling in blood vessels and tissues. We also discuss emergent therapeutic strategies that leverage our understanding of these key reaction pathways to target NO signaling and treat a wide range of diseases.
Collapse
Affiliation(s)
- Matthew R Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
24
|
Antioxidant tempol modulates the increases in tissue nitric oxide metabolites concentrations after oral nitrite administration. Chem Biol Interact 2021; 349:109658. [PMID: 34543659 DOI: 10.1016/j.cbi.2021.109658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) metabolites have physiological and pharmacological importance and increasing their tissue concentrations may result in beneficial effects. Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) has antioxidant properties that may improve NO bioavailability. Moreover, tempol increases oral nitrite-derived gastric formation of S-nitrosothiols (RSNO). We hypothesized that pretreatment with tempol may further increase tissue concentrations of NO-related species after oral nitrite administration and therefore we carried out a time-dependent analysis of how tempol affects the concentrations of NO metabolites in different tissues after oral nitrite administration to rats. NO metabolites (nitrate, nitrite and RSNO) were assessed by ozone-based reductive chemiluminescence assays in plasma, stomach, aorta, heart and liver samples obtained from anesthetized rats at baseline conditions and 15 min, 30 min, 2 h or 24 h after oral nitrite (15 mg/kg) was administered to rats pretreated with tempol (18 mg/kg) or vehicle 15 min prior to nitrite administration. Aortic protein nitrosation was assessed by resin-assited capture (SNO-RAC) method. We found that pretreatment with tempol transiently enhanced nitrite-induced increases in nitrite, RSNO and nitrate concentrations in the stomach and in the plasma (all P < 0.05), particularly for 15-30 min, without affecting aortic protein nitrosation. Pretreatment with tempol enhanced nitrite-induced increases in nitrite (but not RSNO or nitrate) concentrations in the heart (P < 0.05). In contrast, tempol attenuated nitrite-induced increases in nitrite, RSNO or nitrate concentrations in the liver. These findings show that pretreatment with tempol affects oral nitrite-induced changes in tissue concentrations of NO metabolites depending on tissue type and does not increase nitrite-induced vascular nitrosation. These results may indicate that oral nitrite therapy aiming at achieving increased nitrosation of cardiovascular targets requires appropriate doses of nitrite and is not optimized by tempol.
Collapse
|
25
|
Miranda KM, Ridnour LA, McGinity CL, Bhattacharyya D, Wink DA. Nitric Oxide and Cancer: When to Give and When to Take Away? Inorg Chem 2021; 60:15941-15947. [PMID: 34694129 DOI: 10.1021/acs.inorgchem.1c02434] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mechanistic roles of nitric oxide (NO) during cancer progression have been important considerations since its discovery as an endogenously generated free radical. Nonetheless, the impacts of this signaling molecule can be seemingly contradictory, being both pro-and antitumorigenic, which complicates the development of cancer treatments based on the modulation of NO fluxes in tumors. At a fundamental level, low levels of NO drive oncogenic pathways, immunosuppression, metastasis, and angiogenesis, while higher levels lead to apoptosis and reduced hypoxia and also sensitize tumors to conventional therapies. However, clinical outcome depends on the type and stage of the tumor as well as the tumor microenvironment. In this Viewpoint, the current understanding of the concentration, spatial, and temporal dependence of responses to NO is correlated with potential treatment and prevention technologies and strategies.
Collapse
Affiliation(s)
- Katrina M Miranda
- Department of Chemistry and Biochemistry and the BIO5 Institute, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Lisa A Ridnour
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Christopher L McGinity
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Dana Bhattacharyya
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| | - David A Wink
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
26
|
Mondal P, Tolbert GB, Wijeratne GB. Bio-inspired nitrogen oxide (NO x) interconversion reactivities of synthetic heme Compound-I and Compound-II intermediates. J Inorg Biochem 2021; 226:111633. [PMID: 34749065 DOI: 10.1016/j.jinorgbio.2021.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Dioxygen activating heme enzymes have long predicted to be powerhouses for nitrogen oxide interconversion, especially for nitric oxide (NO) oxidation which has far-reaching biological and/or environmental impacts. Lending credence, reactivity of NO with high-valent heme‑oxygen intermediates of globin proteins has recently been implicated in the regulation of a variety of pivotal physiological events such as modulating catalytic activities of various heme enzymes, enhancing antioxidant activity to inhibit oxidative damage, controlling inflammatory and infectious properties within the local heme environments, and NO scavenging. To reveal insights into such crucial biological processes, we have investigated low temperature NO reactivities of two classes of synthetic high-valent heme intermediates, Compound-II and Compound-I. In that, Compound-II rapidly reacts with NO yielding the six-coordinate (NO bound) heme ferric nitrite complex, which upon warming to room temperature converts into the five-coordinate heme ferric nitrite species. These ferric nitrite complexes mediate efficient substrate oxidation reactions liberating NO; i.e., shuttling NO2- back to NO. In contrast, Compound-I and NO proceed through an oxygen-atom transfer process generating the strong nitrating agent NO2, along with the corresponding ferric nitrosyl species that converts to the naked heme ferric parent complex upon warmup. All reaction components have been fully characterized by UV-vis, 2H NMR and EPR spectroscopic methods, mass spectrometry, elemental analyses, and semi-quantitative determination of NO2- anions. The clean, efficient, potentially catalytic NOx interconversions driven by high-valent heme species presented herein illustrate the strong prospects of a heme enzyme/O2/NOx dependent unexplored territory that is central to human physiology, pathology, and therapeutics.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| | - Garrett B Tolbert
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| | - Gayan B Wijeratne
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States.
| |
Collapse
|
27
|
Kobayashi J. Nitrite in breast milk: roles in neonatal pathophysiology. Pediatr Res 2021; 90:30-36. [PMID: 33173179 DOI: 10.1038/s41390-020-01247-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 11/09/2022]
Abstract
Dietary nitrate has beneficial effects on health maintenance and prevention of lifestyle-related diseases in adulthood by serving as an alternative source of nitric oxide (NO) through the enterosalivary nitrate-nitrite-NO pathway, particularly when endogenous NO generation is lacking due to vascular endothelial dysfunction. However, this pathway is not developed in the early postnatal period due to a lack of oral commensal nitrate-reducing bacteria and less saliva production than in adults. To compensate for the decrease in nitrite during this period, colostrum contains the highest amount of nitrite compared with transitional, mature, and even artificial milk, suggesting that colostrum plays an important role in tentatively replenishing nitrite, in addition to involving a nutritional aspect, until the enterosalivary nitrate-nitrite-NO pathway is established. Increasing evidence demonstrates that breast milk rich in nitrite can be effective in the prevention of neonatal infections and gastrointestinal diseases such as infantile hypertrophic pyloric stenosis and necrotizing enterocolitis, suggesting that breastfeeding is advantageous for newborns at risk, given the physiological role of nitrite in the early postnatal period. IMPACT: The aim of this review is to discuss the physiological roles of nitrite in breast milk and its implications for neonates. Nitrite in breast milk may compensate for the decrease in nitrite during the early neonatal period until the enterosalivary nitrate-nitrite-nitric oxide pathway is established. Breast milk rich in nitrite may be effective in the prevention of neonatal infections and gastrointestinal diseases by providing nitric oxide bioavailability.
Collapse
Affiliation(s)
- Jun Kobayashi
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Science, Josai University, Saitama, Japan.
| |
Collapse
|
28
|
Ritz T, Salsman ML, Young DA, Lippert AR, Khan DA, Ginty AT. Boosting nitric oxide in stress and respiratory infection: Potential relevance for asthma and COVID-19. Brain Behav Immun Health 2021; 14:100255. [PMID: 33842899 PMCID: PMC8019595 DOI: 10.1016/j.bbih.2021.100255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/12/2023] Open
Abstract
Nitric oxide (NO) is a ubiquitous signaling molecule that is critical for supporting a plethora of processes in biological organisms. Among these, its role in the innate immune system as a first line of defense against pathogens has received less attention. In asthma, levels of exhaled NO have been utilized as a window into airway inflammation caused by allergic processes. However, respiratory infections count among the most important triggers of disease exacerbations. Among the multitude of factors that affect NO levels are psychological processes. In particular, longer lasting states of psychological stress and depression have been shown to attenuate NO production. The novel SARS-CoV-2 virus, which has caused a pandemic, and with that, sustained levels of psychological stress globally, also adversely affects NO signaling. We review evidence on the role of NO in respiratory infection, including COVID-19, and stress, and argue that boosting NO bioavailability may be beneficial in protection from infections, thus benefitting individuals who suffer from stress in asthma or SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Thomas Ritz
- Department of Psychology, Southern Methodist University, 6116 N. Central Expressway, Suite 1160, Dallas, TX, USA
| | - Margot L Salsman
- Department of Psychology, Southern Methodist University, 6116 N. Central Expressway, Suite 1160, Dallas, TX, USA
| | - Danielle A Young
- Department of Psychology and Neuroscience, Baylor University, One Bear Place, 97334, Baylor Sciences Building, Suite B.309, Waco, TX, USA
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Fondren Science Building 303, P.O. Box, 750314, Dallas, TX, USA
| | - Dave A Khan
- Department of Internal Medicine, Allergy and Immunology, The University of Texas Southwestern Medical Center, 5323, Harry Hines Blvd., Dallas, TX, USA
| | - Annie T Ginty
- Department of Psychology and Neuroscience, Baylor University, One Bear Place, 97334, Baylor Sciences Building, Suite B.309, Waco, TX, USA
| |
Collapse
|
29
|
Chronic nitrite treatment activates adenosine monophosphate-activated protein kinase-endothelial nitric oxide synthase pathway in human aortic endothelial cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
30
|
Li Y, Zhang X, Ma A, Kang Y. Rational Application of β-Hydroxybutyrate Attenuates Ischemic Stroke by Suppressing Oxidative Stress and Mitochondrial-Dependent Apoptosis via Activation of the Erk/CREB/eNOS Pathway. ACS Chem Neurosci 2021; 12:1219-1227. [PMID: 33739811 DOI: 10.1021/acschemneuro.1c00046] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stroke is one of the leading causes of disability and death. Increasing evidence indicates that β-hydroxybutyrate (BHB) exerts beneficial effects in treating stroke, but the underlying mechanism remains largely unknown. In this study, we injected different doses of BHB into the lateral ventricle in middle cerebral artery occlusion (MCAO) model rats and neuronal cells were treated with different doses of BHB followed by oxygen-glucose deprivation (OGD). We found that a moderate dose of BHB enhanced mitochondrial complex I respiratory chain complex I activity, reduced oxidative stress, inhibited mitochondrial apoptosis, improved neurological scores, and reduced infarct volume after ischemia. We further showed that the effects of BHB were achieved by upregulating the dedicated BHB transporter SMCT1 and activating the Erk/CREB/eNOS pathway. These results provide us with a foundation for a novel understanding of the neuroprotective effects of BHB in stroke.
Collapse
Affiliation(s)
- Yang Li
- Intensive Care Unit, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Xuepeng Zhang
- Intensive Care Unit, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Aijia Ma
- Intensive Care Unit, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Yan Kang
- Intensive Care Unit, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| |
Collapse
|
31
|
Rokkedal-Lausch T, Franch J, Poulsen MK, Thomsen LP, Weitzberg E, Kamavuako EN, Karbing DS, Larsen RG. Multiple-day high-dose beetroot juice supplementation does not improve pulmonary or muscle deoxygenation kinetics of well-trained cyclists in normoxia and hypoxia. Nitric Oxide 2021; 111-112:37-44. [PMID: 33831566 DOI: 10.1016/j.niox.2021.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Dietary nitrate (NO3-) supplementation via beetroot juice (BR) has been reported to lower oxygen cost (i.e., increased exercise efficiency) and speed up oxygen uptake (VO2) kinetics in untrained and moderately trained individuals, particularly during conditions of low oxygen availability (i.e., hypoxia). However, the effects of multiple-day, high dose (12.4 mmol NO3- per day) BR supplementation on exercise efficiency and VO2 kinetics during normoxia and hypoxia in well-trained individuals are not resolved. In a double-blinded, randomized crossover study, 12 well-trained cyclists (66.4 ± 5.3 ml min-1∙kg-1) completed three transitions from rest to moderate-intensity (~70% of gas exchange threshold) cycling in hypoxia and normoxia with supplementation of BR or nitrate-depleted BR as placebo. Continuous measures of VO2 and muscle (vastus lateralis) deoxygenation (ΔHHb, using near-infrared spectroscopy) were acquired during all transitions. Kinetics of VO2 and deoxygenation (ΔHHb) were modeled using mono-exponential functions. Our results showed that BR supplementation did not alter the primary time constant for VO2 or ΔHHb during the transition from rest to moderate-intensity cycling. While BR supplementation lowered the amplitude of the VO2 response (2.1%, p = 0.038), BR did not alter steady state VO2 derived from the fit (p = 0.258), raw VO2 data (p = 0.231), moderate intensity exercise efficiency (p = 0.333) nor steady state ΔHHb (p = 0.224). Altogether, these results demonstrate that multiple-day, high-dose BR supplementation does not alter exercise efficiency or oxygen uptake kinetics during normoxia and hypoxia in well-trained athletes.
Collapse
Affiliation(s)
- Torben Rokkedal-Lausch
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark.
| | - Jesper Franch
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| | - Mathias K Poulsen
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| | - Lars P Thomsen
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ernest N Kamavuako
- Center for Robotics Research, Department of Engineering, King's College London, London, United Kingdom
| | - Dan S Karbing
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| | - Ryan G Larsen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| |
Collapse
|
32
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
33
|
Hallmark L, Almeida LE, Kamimura S, Smith M, Quezado ZM. Nitric oxide and sickle cell disease-Is there a painful connection? Exp Biol Med (Maywood) 2020; 246:332-341. [PMID: 33517776 DOI: 10.1177/1535370220976397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sickle cell disease is the most common hemoglobinopathy and affects millions worldwide. The disease is associated with severe organ dysfunction, acute and chronic pain, and significantly decreased life expectancy. The large body of work demonstrating that hemolysis results in rapid consumption of the endogenous vasodilator nitric oxide, decreased nitric oxide production, and promotion of vaso-occlusion provides the basis for the hypothesis that nitric oxide bioavailability is reduced in sickle cell disease and that this deficit plays a role in sickle cell disease pain. Despite initial promising results, large clinical trials using strategies to increase nitric oxide bioavailability in sickle cell disease patients yielded no significant change in duration or frequency of acute pain crises. Further, recent investigations showed that sickle cell disease patients and mouse models have elevated baseline levels of blood nitrite, a reservoir for nitric oxide formation and a product of nitric oxide metabolism, regardless of pain phenotype. These conflicting results challenge the hypotheses that nitric oxide bioavailability is decreased and that it plays a significant role in the pathogenesis in sickle cell disease acute pain crises. Conversely, a large body of work demonstrates that nitric oxide, as a neurotransmitter, has a complex role in pain neurobiology, contributes to the development of central sensitization, and can mediate hyperalgesia in inflammatory and neuropathic pain. These results support an alternative hypothesis: one proposing that altered nitric oxide signaling may contribute to the development of neuropathic and/or inflammatory pain in sickle cell disease through its role as a neurotransmitter.
Collapse
Affiliation(s)
- Lillian Hallmark
- Department of Perioperative Medicine, 2511National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis Ef Almeida
- Department of Perioperative Medicine, 2511National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sayuri Kamimura
- Department of Perioperative Medicine, 2511National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghann Smith
- Department of Perioperative Medicine, 2511National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zenaide Mn Quezado
- Department of Perioperative Medicine, 2511National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Basaqr R, Skleres M, Jayswal R, Thomas DT. The effect of dietary nitrate and vitamin C on endothelial function, oxidative stress and blood lipids in untreated hypercholesterolemic subjects: A randomized double-blind crossover study. Clin Nutr 2020; 40:1851-1860. [PMID: 33115598 DOI: 10.1016/j.clnu.2020.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Vitamin C may enhance nitric oxide (NO) production through stepwise reduction of dietary nitrate (NO3) to nitrite (NO2) to NO. The combined effect of vitamin C and NO3 supplementation is relatively unexplored in untreated hypercholesterolemia. AIMS We aimed to examine whether co-administration of vitamin C and nitrate for 4-weeks would improve endothelial function (primary outcome), plasma NO metabolites, oxidative stress, and blood lipids (secondary outcomes). METHODS Subjects 50-70 years of age with low density lipoprotein (LDL) > 130 mg/dL and RHI ≤2 were enrolled in this randomized double-blind crossover study. Subjects were assigned to two 4-week supplementation treatments starting with 70 ml of concentrated beetroot juice (CBJ) with 1000 mg of vitamin C (NC) or CBJ with matched placebo (N), then switched to alternate treatment following 2-week washout. The change in reactive hyperemia index (RHI), sum of plasma NO metabolites (NO2 + NO3 (NOx)), oxidized LDL (oxLDL), and serum lipids were assessed at baseline and at 4-weeks of each treatment period. RESULTS Eighteen subjects (11M:7F) completed all study visits. No significant treatment differences were observed in RHI change (N: 0.21 ± 0.12; NC: 0.20 ± 0.17; p = 0.99). Secondary analysis revealed that a subgroup of NC subjects who started with a baseline RHI of <1.67 (threshold value for ED) had greater improvements in RHI compared to subjects with RHI >1.67 (1.23 ± 0.15 to 1.96 ± 0.19; n = 8 vs. 1.75 ± 0.11 to 1.43 ± 0.10; n = 8; p = 0.02). Compared to N, NC experienced a significant increase in plasma NOx (N: 94.2 ± 15.5 μmol/L; NC: 128.7 ± 29.1 μmol/L; p = 0.01). Although there was no significant difference in oxLDL change between treatments (N: -1.08 ± 9.8 U/L; NC: -6.07 ± 9.14 U/L; p = 0.19), NC elicited significant reductions in LDL (N: 2.2 ± 2; NC: -10.7 ± 23; p = 0.049), triglycerides (N: 14.6 ± 43; NC: -43.7 ± 45; p = 0.03), and no change in serum high density lipoprotein. Within treatment group comparisons showed that only NC reduced oxLDL significantly from baseline to 4 weeks (p = 0.01). CONCLUSIONS No between intervention differences were observed in RHI. RHI only improved in NC subjects with ED at intervention baseline. Four weeks of NC enriched the NO pool and promoted reduction of blood lipids and oxidative stress in subjects with hypercholesterolemia. These preliminary findings highlight a supplementation strategy that may reduce the progression of atherosclerotic disease and deserves further attention in studies using flow mediated dilation methods. CLINICAL TRIAL REGISTRATION www.clinicaltrials.gov (NCT04283630).
Collapse
Affiliation(s)
- Reem Basaqr
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, USA.
| | - Michealia Skleres
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, USA.
| | - Rani Jayswal
- Department of Biostatistics & Bioinformatics, University of Kentucky, USA.
| | - D Travis Thomas
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, USA.
| |
Collapse
|
35
|
Yu KK, Pan SL, Li K, Shi L, Liu YH, Chen SY, Yu XQ. A novel near-infrared fluorescent sensor for zero background nitrite detection via the "covalent-assembly" principle. Food Chem 2020; 341:128254. [PMID: 33039741 DOI: 10.1016/j.foodchem.2020.128254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/03/2020] [Accepted: 09/27/2020] [Indexed: 01/03/2023]
Abstract
Different chemical states of nitrogen are present in many freshwater and marine ecosystems, and nitrite ions are one of the most toxic water-soluble nitrogen species. Developing an effective and convenient sensing method to constantly detect the concentration of nitrite has become a wide concern. Here, a novel near-infrared fluorescent probe (AAC) was designed and synthesized via the "covalent assembly" principle, showing excellent selectivity and high sensitivity for nitrite. A new nitrite-quantitative method was established with the help of AAC, and the detection limit of nitrite using the new method was as low as 6.7 nM. AAC was successfully applied for the quantitative detection of nitrite in real-world environmental and food samples (including river water and Chinese sauerkraut), and the detection results were essentially identical to the results obtained from the traditional Griess assay. Moreover, AAC was successfully applied for tracking nitrite in Escherichia coli by fluorescence imaging. Since nitrite can have devastating effects, the method established with AAC allowed us to "see" effectively about the water quality, food quality, etc.
Collapse
Affiliation(s)
- Kang-Kang Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China; Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China.
| | - Sheng-Lin Pan
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China
| | - Lei Shi
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China
| | - Shan-Yong Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China.
| |
Collapse
|
36
|
Amdahl MB, DeMartino AW, Gladwin MT. Inorganic nitrite bioactivation and role in physiological signaling and therapeutics. Biol Chem 2020; 401:201-211. [PMID: 31747370 DOI: 10.1515/hsz-2019-0349] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/02/2019] [Indexed: 01/23/2023]
Abstract
The bioactivation of inorganic nitrite refers to the conversion of otherwise 'inert' nitrite to the diatomic signaling molecule nitric oxide (NO), which plays important roles in human physiology and disease, notably in the regulation of vascular tone and blood flow. While the most well-known sources of NO are the nitric oxide synthase (NOS) enzymes, another source of NO is the nitrate-nitrite-NO pathway, whereby nitrite (obtained from reduction of dietary nitrate) is further reduced to form NO. The past few decades have seen extensive study of the mechanisms of NO generation through nitrate and nitrite bioactivation, as well as growing appreciation of the contribution of this pathway to NO signaling in vivo. This review, prepared for the volume 400 celebration issue of Biological Chemistry, summarizes some of the key reactions of the nitrate-nitrite-NO pathway such as reduction, disproportionation, dehydration, and oxidative denitrosylation, as well as current evidence for the contribution of the pathway to human cardiovascular physiology. Finally, ongoing efforts to develop novel medical therapies for multifarious conditions, especially those related to pathologic vasoconstriction and ischemia/reperfusion injury, are also explored.
Collapse
Affiliation(s)
- Matthew B Amdahl
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
37
|
Blood AB, Liu T, Mukosera G, Hanson SF, Terry MH, Schroeder H, Power GG. Evidence for placental-derived iron-nitrosyls in the circulation of the fetal lamb and against a role for nitrite in mediating the cardiovascular transition at birth. Am J Physiol Regul Integr Comp Physiol 2020; 319:R401-R411. [PMID: 32813540 DOI: 10.1152/ajpregu.00196.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Circulating metabolites of nitric oxide, such as nitrite, iron nitrosyls (FeNO), and nitrosothiols, have vasodilatory bioactivity. In both human and sheep neonates, plasma concentrations of these NO metabolite (NOx) concentrations fall >50% within minutes after birth, raising the possibility that circulating NOx plays a role in maintaining low fetal vascular resistance and in the cardiovascular transition at birth. To test whether the fall in plasma NOx concentrations at birth is due to either ligation of the umbilical cord or oxygenation of the fetus to newborn levels, plasma NOx concentrations were measured during stepwise delivery of near-term fetal lambs. When fetal lambs were intubated and mechanically ventilated with 100% O2 to oxygenate the arterial blood while still in utero with the umbilical circulation still intact, there was no change in plasma NOx levels. In contrast, when the umbilical cord was ligated while fetal lambs were mechanically ventilated with O2 levels that maintained fetal arterial blood gases, plasma NOx levels decreased by nearly 50%. Characterization of the individual NOx species in plasma revealed that the overall fall in NOx at birth was attributable mainly to FeNO compounds. Finally, when the typical fall in NOx after birth was prevented by intravenous nitrite infusion, birth-related changes in blood pressure, heart rate, and carotid flow changes were little affected, suggesting the cardiovascular transition at birth is not dependent on a fall in plasma NOx. In conclusion, this study shows FeNO is released from the placenta and that its decline accounts for most of the measured fall in plasma NOx at birth.
Collapse
Affiliation(s)
- Arlin B Blood
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Pediatrics, School of Medicine, Loma Linda University, Loma Linda, California
| | - Taiming Liu
- Department of Pediatrics, School of Medicine, Loma Linda University, Loma Linda, California
| | - George Mukosera
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Shawn F Hanson
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Michael H Terry
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, California
| | - Hobe Schroeder
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Gordon G Power
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
38
|
Abstract
Several adverse events have been associated with the infusion of hemoglobin-based oxygen carriers (HBOCs), including transient hypertension, gastrointestinal, pancreatic/liver enzyme elevation, and cardiac/renal injury in humans. Although several mechanisms have been suggested, the basis of HBOC toxicity is still poorly understood. Scavenging of vascular endothelial nitric oxide (NO) and heme-mediated oxidative side reactions are thought to be the major causes of toxicity. However, based on more recent preclinical studies, oxidative pathways (driven by the heme prosthetic group) seem to play a more prominent role in the overall toxicity of free Hb or HBOCs. HBOCs display a diversity of physicochemical properties, including molecular size/cross-linking characteristics leading to differences in oxygen affinity, allosteric, redox properties, and even oxidative inactivation by protein/heme clearing mechanisms. These diverse characteristics can therefore be manipulated independently, leaving open the possibility of engineering a safe and effective HBOC. To date, several antioxidative strategies have been proposed to counteract the redox side reactions of current generation HBOCs.
Collapse
|
39
|
Bahadoran Z, Carlström M, Mirmiran P, Ghasemi A. Nitric oxide: To be or not to be an endocrine hormone? Acta Physiol (Oxf) 2020; 229:e13443. [PMID: 31944587 DOI: 10.1111/apha.13443] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 01/02/2023]
Abstract
Nitric oxide (NO), a highly reactive gasotransmitter, is critical for a number of cellular processes and has multiple biological functions. Due to its limited lifetime and diffusion distance, NO has been mainly believed to act in autocrine/paracrine fashion. The increasingly recognized effects of pharmacologically delivered and endogenous NO at a distant site have changed the conventional wisdom and introduced NO as an endocrine signalling molecule. The notion is greatly supported by the detection of a number of NO adducts and their circulatory cycles, which in turn contribute to the transport and delivery of NO bioactivity, remote from the sites of its synthesis. The existence of endocrine sites of synthesis, negative feedback regulation of biosynthesis, integrated storage and transport systems, having an exclusive receptor, that is, soluble guanylyl cyclase (sGC), and organized circadian rhythmicity make NO something beyond a simple autocrine/paracrine signalling molecule that could qualify for being an endocrine signalling molecule. Here, we discuss hormonal features of NO from the classical endocrine point of view and review available knowledge supporting NO as a true endocrine hormone. This new insight can provide a new framework within which to reinterpret NO biology and its clinical applications.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mattias Carlström
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
40
|
Ashor AW, Shannon OM, Werner AD, Scialo F, Gilliard CN, Cassel KS, Seal CJ, Zheng D, Mathers JC, Siervo M. Effects of inorganic nitrate and vitamin C co-supplementation on blood pressure and vascular function in younger and older healthy adults: A randomised double-blind crossover trial. Clin Nutr 2020; 39:708-717. [PMID: 30930132 DOI: 10.1016/j.clnu.2019.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Vitamin C and inorganic nitrate have been linked to enhanced nitric oxide (NO) production and reduced oxidative stress. Vitamin C may also enhance the conversion of nitrite into NO. AIMS We investigated the potential acute effects of vitamin C and inorganic nitrate co-supplementation on blood pressure (BP) and peripheral vascular function. The secondary aim was to investigate whether age modified the effects of vitamin C and inorganic nitrate on these vascular outcomes. METHODS Ten younger (age 18-40 y) and ten older (age 55-70 y) healthy participants were enrolled in a randomised double-blind crossover clinical trial. Participants ingested a solution of potassium nitrate (7 mg/kg body weight) and/or vitamin C (20 mg/kg body weight) or their placebos. Acute changes in resting BP and vascular function (post-occlusion reactive hyperemia [PORH], peripheral pulse wave velocity [PWV]) were monitored over a 3-h period. RESULTS Vitamin C supplementation reduced PWV significantly (vitamin C: -0.70 ± 0.31 m/s; vitamin C placebo: +0.43 ± 0.30 m/s; P = 0.007). There were significant interactions between age and vitamin C for systolic, diastolic, and mean arterial BP (P = 0.02, P = 0.03, P = 0.02, respectively), with systolic, diastolic and mean BP decreasing in older participants and diastolic BP increasing in younger participants following vitamin C administration. Nitrate supplementation did not influence BP (systolic: P = 0.81; diastolic: P = 0.24; mean BP: P = 0.87) or vascular function (PORH: P = 0.05; PWV: P = 0.44) significantly in both younger and older participants. However, combined supplementation with nitrate and vitamin C reduced mean arterial BP (-2.6 mmHg, P = 0.03) and decreased PWV in older participants (PWV: -2.0 m/s, P = 0.02). CONCLUSIONS The co-administration of a single dose of inorganic nitrate and vitamin C lowered diastolic BP and improved PVW in older participants. Vitamin C supplementation improved PWV in both age groups but decreased systolic and mean BP in older participants only. CLINICAL TRIAL REGISTRATION Current Controlled Trials (ISRCTN98942199).
Collapse
Affiliation(s)
- Ammar W Ashor
- Department of Internal Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq; Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, William Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom.
| | - Oliver M Shannon
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, William Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Anke-Dorothee Werner
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, William Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Filippo Scialo
- Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, University of Newcastle, Newcastle upon Tyne, NE4 5PL, United Kingdom
| | - Cameron N Gilliard
- Department of Anesthesiology, Penn State Health Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA, 17033, USA
| | - Katelyn S Cassel
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Chris J Seal
- Department of Internal Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Dingchang Zheng
- Faculty of Medical Science, Anglia Ruskin University, Bishop Road, Chelmsford, CM1 1SQ, United Kingdom
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, William Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Mario Siervo
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, William Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom; School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
41
|
Mindukshev IV, Sudnitsyna JS, Skverchinskaya EA, Andreyeva AY, Dobrylko IA, Senchenkova EY, Krivchenko AI, Gambaryan SP. Erythrocytes’ Reactions to Osmotic, Ammonium, and Oxidative Stress Are Inhibited under Hypoxia. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2020. [DOI: 10.1134/s1990747819040081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Liu Y, Croft KD, Hodgson JM, Mori T, Ward NC. Mechanisms of the protective effects of nitrate and nitrite in cardiovascular and metabolic diseases. Nitric Oxide 2020; 96:35-43. [PMID: 31954804 DOI: 10.1016/j.niox.2020.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
Abstract
Within the body, NO is produced by nitric oxide synthases via converting l-arginine to citrulline. Additionally, NO is also produced via the NOS-independent nitrate-nitrite-NO pathway. Unlike the classical pathway, the nitrate-nitrite-NO pathway is oxygen independent and viewed as a back-up function to ensure NO generation during ischaemia/hypoxia. Dietary nitrate and nitrite have emerged as substrates for endogenous NO generation and other bioactive nitrogen oxides with promising protective effects on cardiovascular and metabolic function. In brief, inorganic nitrate and nitrite can decrease blood pressure, protect against ischaemia-reperfusion injury, enhance endothelial function, inhibit platelet aggregation, modulate mitochondrial function and improve features of the metabolic syndrome. However, many questions regarding the specific mechanisms of these protective effects on cardiovascular and metabolic diseases remain unclear. In this review, we focus on nitrate/nitrite bioactivation, as well as the potential mechanisms for nitrate/nitrite-mediated effects on cardiovascular and metabolic diseases. Understanding how dietary nitrate and nitrite induce beneficial effect on cardiovascular and metabolic diseases could open up novel therapeutic opportunities in clinical practice.
Collapse
Affiliation(s)
- Yang Liu
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Kevin D Croft
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Jonathan M Hodgson
- School of Biomedical Sciences, University of Western Australia, Perth, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Trevor Mori
- Medical School, University of Western Australia, Perth, Australia
| | - Natalie C Ward
- Medical School, University of Western Australia, Perth, Australia; School of Public Health and Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| |
Collapse
|
43
|
Wang L, Sparacino-Watkins CE, Wang J, Wajih N, Varano P, Xu Q, Cecco E, Tejero J, Soleimani M, Kim-Shapiro DB, Gladwin MT. Carbonic anhydrase II does not regulate nitrite-dependent nitric oxide formation and vasodilation. Br J Pharmacol 2019; 177:898-911. [PMID: 31658361 DOI: 10.1111/bph.14887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Although it has been reported that bovine carbonic anhydrase CAII is capable of generating NO from nitrite, the function and mechanism of CAII in nitrite-dependent NO formation and vascular responses remain controversial. We tested the hypothesis that CAII catalyses NO formation from nitrite and contributes to nitrite-dependent inhibition of platelet activation and vasodilation. EXPERIMENT APPROACH The role of CAII in enzymatic NO generation was investigated by measuring NO formation from the reaction of isolated human and bovine CAII with nitrite using NO photolysis-chemiluminescence. A CAII-deficient mouse model was used to determine the role of CAII in red blood cell mediated nitrite reduction and vasodilation. KEY RESULTS We found that the commercially available purified bovine CAII exhibited limited and non-enzymatic NO-generating reactivity in the presence of nitrite with or without addition of the CA inhibitor dorzolamide; the NO formation was eliminated with purification of the enzyme. There was no significant detectable NO production from the reaction of nitrite with recombinant human CAII. Using a CAII-deficient mouse model, there were no measurable changes in nitrite-dependent vasodilation in isolated aorta rings and in vivo in CAII-/- , CAII+/- , and wild-type mice. Moreover, deletion of the CAII gene in mice did not block nitrite reduction by red blood cells and the nitrite-NO-dependent inhibition of platelet activation. CONCLUSION AND IMPLICATIONS These studies suggest that human, bovine and mouse CAII are not responsible for nitrite-dependent NO formation in red blood cells, aorta, or the systemic circulation.
Collapse
Affiliation(s)
- Ling Wang
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Courtney E Sparacino-Watkins
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jun Wang
- Hubei University of Technology, Wuhan, P. R. China
| | - Nadeem Wajih
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina
| | - Paul Varano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qinzi Xu
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eric Cecco
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Daniel B Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina.,Translational Science Center, Wake Forest University, Winston-Salem, North Carolina
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
44
|
Liu T, Mukosera GT, Blood AB. The role of gasotransmitters in neonatal physiology. Nitric Oxide 2019; 95:29-44. [PMID: 31870965 DOI: 10.1016/j.niox.2019.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 11/07/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
The gasotransmitters, nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO), are endogenously-produced volatile molecules that perform signaling functions throughout the body. In biological tissues, these small, lipid-permeable molecules exist in free gaseous form for only seconds or less, and thus they are ideal for paracrine signaling that can be controlled rapidly by changes in their rates of production or consumption. In addition, tissue concentrations of the gasotransmitters are influenced by fluctuations in the level of O2 and reactive oxygen species (ROS). The normal transition from fetus to newborn involves a several-fold increase in tissue O2 tensions and ROS, and requires rapid morphological and functional adaptations to the extrauterine environment. This review summarizes the role of gasotransmitters as it pertains to newborn physiology. Particular focus is given to the vasculature, ventilatory, and gastrointestinal systems, each of which uniquely illustrate the function of gasotransmitters in the birth transition and newborn periods. Moreover, given the relative lack of studies on the role that gasotransmitters play in the newborn, particularly that of H2S and CO, important gaps in knowledge are highlighted throughout the review.
Collapse
Affiliation(s)
- Taiming Liu
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - George T Mukosera
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Arlin B Blood
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
45
|
Marcolongo JP, Venâncio MF, Rocha WR, Doctorovich F, Olabe JA. NO/H2S “Crosstalk” Reactions. The Role of Thionitrites (SNO–) and Perthionitrites (SSNO–). Inorg Chem 2019; 58:14981-14997. [DOI: 10.1021/acs.inorgchem.9b01978] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juan P. Marcolongo
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE−UBA−CONICET), Pabellón 2, 3er piso, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Mateus F. Venâncio
- Laboratório de Estudos Computacionais em Sistemas Moleculares, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Willian R. Rocha
- Laboratório de Estudos Computacionais em Sistemas Moleculares, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE−UBA−CONICET), Pabellón 2, 3er piso, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - José A. Olabe
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE−UBA−CONICET), Pabellón 2, 3er piso, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
46
|
Almeida LEF, Kamimura S, de Souza Batista CM, Spornick N, Nettleton MY, Walek E, Smith ML, Finkel JC, Darbari DS, Wakim P, Quezado ZMN. Sickle cell disease subjects and mouse models have elevated nitrite and cGMP levels in blood compartments. Nitric Oxide 2019; 94:79-91. [PMID: 31689491 DOI: 10.1016/j.niox.2019.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/20/2019] [Accepted: 10/30/2019] [Indexed: 11/26/2022]
Abstract
The hypothesis of decreased nitric oxide (NO) bioavailability in sickle cell disease (SCD) proposes that multiple factors leading to decreased NO production and increased consumption contributes to vaso-occlusion, pulmonary hypertension, and pain. The anion nitrite is central to NO physiology as it is an end product of NO metabolism and serves as a reservoir for NO formation. However, there is little data on nitrite levels in SCD patients and its relationship to pain phenotype. We measured nitrite in SCD subjects and examined its relationship to SCD pain. In SCD subjects, median whole blood, red blood cell and plasma nitrite levels were higher than in controls, and were not associated with pain burden. Similarly, Townes and BERK homozygous SCD mice had elevated blood nitrite. Additionally, in red blood cells and plasma from SCD subjects and in blood and kidney from Townes homozygous mice, levels of cyclic guanosine monophosphate (cGMP) were higher compared to controls. In vitro, hemoglobin concentration, rather than sickle hemoglobin, was responsible for nitrite metabolism rate. In vivo, inhibition of NO synthases and xanthine oxidoreductase decreased nitrite levels in homozygotes but not in control mice. Long-term nitrite treatment in SCD mice further elevated blood nitrite and cGMP, worsened anemia, decreased platelets, and did not change pain response. These data suggest that SCD in humans and animals is associated with increased nitrite/NO availability, which is unrelated to pain phenotype. These findings might explain why multiple clinical trials aimed at increasing NO availability in SCD patients failed to improve pain outcomes.
Collapse
Affiliation(s)
- Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Nicholas Spornick
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Margaret Y Nettleton
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elizabeth Walek
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20010, USA
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia C Finkel
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20010, USA
| | - Deepika S Darbari
- Division of Hematology, Center for Cancer and Blood Disorders, Children's National Hospital, Department of Pediatrics, George Washington University School of Medicine, Washington, DC, 20010, USA
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, Bethesda, MD, 20892, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
47
|
Rafikova O, Al Ghouleh I, Rafikov R. Focus on Early Events: Pathogenesis of Pulmonary Arterial Hypertension Development. Antioxid Redox Signal 2019; 31:933-953. [PMID: 31169021 PMCID: PMC6765063 DOI: 10.1089/ars.2018.7673] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022]
Abstract
Significance: Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vasculature characterized by the proliferation of all vascular wall cell types, including endothelial, smooth muscle, and fibroblasts. The disease rapidly advances into a form with extensive pulmonary vascular remodeling, leading to a rapid increase in pulmonary vascular resistance, which results in right heart failure. Recent Advances: Most current research in the PAH field has been focused on the late stage of the disease, largely due to an urgent need for patient treatment options in clinics. Further, the pathobiology of PAH is multifaceted in the advanced disease, and there has been promising recent progress in identifying various pathological pathways related to the late clinical picture. Critical Issues: Early stage PAH still requires additional attention from the scientific community, and although the survival of patients with early diagnosis is comparatively higher, the disease develops in patients asymptomatically, making it difficult to identify and treat early. Future Directions: There are several reasons to focus on the early stage of PAH. First, the complexity of late stage disease, owing to multiple pathways being activated in a complex system with intra- and intercellular signaling, leads to an unclear picture of the key contributors to the pathobiology. Second, an understanding of early pathophysiological events can increase the ability to identify PAH patients earlier than what is currently possible. Third, the prompt diagnosis of PAH would allow for the therapy to start earlier, which has proved to be a more successful strategy, and it ensures better survival in PAH patients.
Collapse
Affiliation(s)
- Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Imad Al Ghouleh
- Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
48
|
Möller MN, Rios N, Trujillo M, Radi R, Denicola A, Alvarez B. Detection and quantification of nitric oxide-derived oxidants in biological systems. J Biol Chem 2019; 294:14776-14802. [PMID: 31409645 PMCID: PMC6779446 DOI: 10.1074/jbc.rev119.006136] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The free radical nitric oxide (NO•) exerts biological effects through the direct and reversible interaction with specific targets (e.g. soluble guanylate cyclase) or through the generation of secondary species, many of which can oxidize, nitrosate or nitrate biomolecules. The NO•-derived reactive species are typically short-lived, and their preferential fates depend on kinetic and compartmentalization aspects. Their detection and quantification are technically challenging. In general, the strategies employed are based either on the detection of relatively stable end products or on the use of synthetic probes, and they are not always selective for a particular species. In this study, we describe the biologically relevant characteristics of the reactive species formed downstream from NO•, and we discuss the approaches currently available for the analysis of NO•, nitrogen dioxide (NO2•), dinitrogen trioxide (N2O3), nitroxyl (HNO), and peroxynitrite (ONOO-/ONOOH), as well as peroxynitrite-derived hydroxyl (HO•) and carbonate anion (CO3•-) radicals. We also discuss the biological origins of and analytical tools for detecting nitrite (NO2-), nitrate (NO3-), nitrosyl-metal complexes, S-nitrosothiols, and 3-nitrotyrosine. Moreover, we highlight state-of-the-art methods, alert readers to caveats of widely used techniques, and encourage retirement of approaches that have been supplanted by more reliable and selective tools for detecting and measuring NO•-derived oxidants. We emphasize that the use of appropriate analytical methods needs to be strongly grounded in a chemical and biochemical understanding of the species and mechanistic pathways involved.
Collapse
Affiliation(s)
- Matías N Möller
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Natalia Rios
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| |
Collapse
|
49
|
A Single Dose of Beetroot Juice Does Not Change Blood Pressure Response Mediated by Acute Aerobic Exercise in Hypertensive Postmenopausal Women. Nutrients 2019; 11:nu11061327. [PMID: 31200505 PMCID: PMC6627101 DOI: 10.3390/nu11061327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To verify if acute intake of beetroot juice potentiates post-exercise hypotension (PEH) in hypertensive postmenopausal women. METHODS Thirteen hypertensive postmenopausal women (58.1 ± 4.62 years and 27.4 ± 4.25 kg/m²) were recruited to participate in three experimental sessions, taking three different beverages: Beetroot juice (BJ), placebo nitrate-depleted BJ (PLA), and orange flavored non-caloric drink (OFD). The participants performed moderate aerobic exercise training on a treadmill, at 65-70% of heart rate reserve (HRR), for 40 min. After an overnight fast, the protocol started at 07h when the first resting blood pressure (BP) was measured. The beverage was ingested at 07h30 and BP was monitored until the exercise training started, at 09h30. After the end of the exercise session, BP was measured every 15 min over a 90-min period. Saliva samples were collected at rest, immediately before and after exercise, and 90 min after exercise for nitrite (NO2-) analysis. RESULTS There was an increase in salivary NO2- with BJ intake when compared to OFD and PLA. A slight increase in salivary NO2- was observed with PLA when compared to OFD (p < 0.05), however, PLA resulted in lower salivary NO2- when compared to BJ (p < 0.001). There were no changes in salivary NO2- with the OFD. Systolic and diastolic BP decreased (p < 0.001) on all post exercise time points after all interventions, with no difference between the three beverages. CONCLUSION Acute BJ intake does not change PEH responses in hypertensive postmenopausal women, even though there is an increase in salivary NO2-.
Collapse
|
50
|
Walker MA, Bailey TG, McIlvenna L, Allen JD, Green DJ, Askew CD. Acute Dietary Nitrate Supplementation Improves Flow Mediated Dilatation of the Superficial Femoral Artery in Healthy Older Males. Nutrients 2019; 11:E954. [PMID: 31035478 PMCID: PMC6566150 DOI: 10.3390/nu11050954] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Aging is often associated with reduced leg blood flow, increased arterial stiffness, and endothelial dysfunction, all of which are related to declining nitric oxide (NO) bioavailability. Flow mediated dilatation (FMD) and passive leg movement (PLM) hyperaemia are two techniques used to measure NO-dependent vascular function. We hypothesised that acute dietary nitrate (NO3-) supplementation would improve NO bioavailability, leg FMD, and PLM hyperaemia. Fifteen healthy older men (69 ± 4 years) attended two experiment sessions and consumed either 140 mL of concentrated beetroot juice (800 mg NO3-) or placebo (NO3--depleted beetroot juice) in a randomised, double blind, cross-over design study. Plasma nitrite (NO2-) and NO3-, blood pressure (BP), augmentation index (AIx75), pulse wave velocity (PWV), FMD of the superficial femoral artery, and PLM hyperaemia were measured immediately before and 2.5 h after consuming NO3- and placebo. Placebo had no effect but NO3- led to an 8.6-fold increase in plasma NO2-, which was accompanied by an increase in FMD (NO3-: +1.18 ± 0.94% vs. placebo: 0.23 ± 1.13%, p = 0.002), and a reduction in AIx75 (NO3-: -8.7 ± 11.6% vs. placebo: -4.6 ± 5.5%, p = 0.027). PLM hyperaemia, BP, and PWV were unchanged during both trials. This study showed that a dose of dietary NO3- improved NO bioavailability and enhanced endothelial function as measured by femoral artery FMD. These findings provide insight into the specific central and peripheral vascular responses to dietary NO3- supplementation in older adults.
Collapse
Affiliation(s)
- Meegan A Walker
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.
| | - Tom G Bailey
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.
- School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Luke McIlvenna
- Institute for Health and Sport, College of Sport and Exercise Science, Victoria University, Melbourne, VIC 3031, Australia.
| | - Jason D Allen
- Institute for Health and Sport, College of Sport and Exercise Science, Victoria University, Melbourne, VIC 3031, Australia.
- Department of Kinesiology, University of Virginia, Charlottesville, VA 22903, USA.
| | - Daniel J Green
- School of Sport Sciences, Exercise and Health, University of Western Australia, West Perth, WA 6872, Australia.
| | - Christopher D Askew
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, QLD 4575, Australia.
| |
Collapse
|