1
|
Sabbagh S, Rayatpishe P, Goudarzi M, Behvandi MM, Norouzirad R. Protective effect of beta-carotene on hepato-nephrotoxicity of gentamicin in male Wistar rats. Tissue Cell 2024; 91:102613. [PMID: 39522182 DOI: 10.1016/j.tice.2024.102613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Despite causing significant tissue damage at the molecular and cellular levels, partly due to its induction of oxidative stress, it remains of interest in medical applications. Beta-carotene, found in fruits and vegetables, is being studied for its antioxidant properties. This study aimed to explore beta-carotene's protective effects against gentamicin-induced hepatorenal toxicity. METHOD Thirty male Wistar-rats were divided into five groups. Control group received normal-saline, while the canola group received canola oil (beta-carotene solvent). Gentamicin group received 100 mg/kg gentamicin injections for seven days. Beta-carotene groups were treated with beta-carotene at doses of 10 and 20 mg/kg for 10 days, along with gentamicin from the fourth day for 7 days. Serum and tissue hepatorenal function tests were performed at the end of the study. RESULTS Gentamicin resulted in hepatorenal damage. Beta-carotene alongside gentamicin significantly decreased serum SGOT (152.3 ± 12.7 vs. 264.8 ± 9.3 IU/L), SGPT (65.7 ± 2.5 vs. 98.0 ± 4.8 IU/L), creatinine (0.74 ± 0.0 vs. 1.5 ± 0.1 mg/dL), and urea (78.1 ± 10.7 vs. 207.4 ± 23.6 mg/dL) in comparison to gentamicin alone (p < 0.05). Beta-carotene caused a significant decrease in vacuolar degeneration, interstitial nephritis and infiltration of lymphocytes in kidney, and cell necrosis, vacuolar degeneration and infiltration of leukocytes compared to the gentamicin group; additionally, beta-carotene prevented increase in oxidative stress in gentamicin group. CONCLUSION Administration of gentamicin alone resulted in hepatorenal toxicity, whereas beta-carotene could prevent gentamicin-induced oxidative stress imbalance and tissue damage. Therefore, beta-carotene could serve as an adjunctive therapy to mitigate hepatorenal toxicity in patients undergoing gentamicin treatment.
Collapse
Affiliation(s)
- Susan Sabbagh
- Department of Anatomical Science, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Parisa Rayatpishe
- School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Reza Norouzirad
- Department of Biochemistry, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran.
| |
Collapse
|
2
|
Alhalabi B, Joseph A, Kumar D. The Impact of Red Beetroot Products on Glycemic Profiles: A Systematic Review of Human Evidence. Curr Nutr Rep 2024; 13:598-610. [PMID: 38760619 DOI: 10.1007/s13668-024-00546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
PURPOSE OF REVIEW Low-glycemic diets are crucial, particularly for individuals with diet-related diseases such as obesity and diabetes. Therefore, observing the impact of multiple forms of red beetroot-based products on the glycemic profiles of humans under various health conditions has arguably become significant due to beetroot's high fiber content, antioxidants, inorganic nitrates, etc., which this review aims to summarize. RECENT FINDINGS The relevant articles published between 2000 and 2022 were obtained from PubMed, Scopus, and ScienceDirect by following the PRISMA-P 2020 statement. This systematic review included 18 randomized controlled trials (RCTs), one non-randomized clinical trial (non-RCT), and one quasi-experimental (QE) study, and they covered different health conditions, e.g., type-2 diabetes mellitus (T2DM), obesity, hypertension, etc. The studies produced conflicting results, likely due to differences in the study design, dosage, duration, and population. The risk of bias in most of the RCTs and QE studies included in the review was assessed as low or moderate, and only one non-RCT was assessed as having a high risk of bias. Red beetroot may help maintain the blood sugar levels of humans under different health conditions. However, the existing results on beetroot's potential for glycemic management are unclear due to varied outcomes across studies. Further intervention studies with standardized protocols and diverse participant groups are necessary to assess the role of beetroot products in regulating blood sugar levels before making a definitive judgment.
Collapse
Affiliation(s)
- Baidaa Alhalabi
- School of Public Health, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
- Department of Nutrition, Faculty of Health Sciences, Al-Baath University, Homs, Syria.
| | - Alex Joseph
- School of Public Health, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| | - Dhasarathi Kumar
- School of Public Health, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
3
|
Pinheiro VDS, Junior OJFR, Ortmann CF, Pande A, Conte-Junior CA, Alvares TS. Evaluation of 12-Week Standardized Beetroot Extract Supplementation in Older Participants: A Preliminary Study of Human Health Safety. Nutrients 2024; 16:1942. [PMID: 38931296 PMCID: PMC11206266 DOI: 10.3390/nu16121942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, there has been a notable surge in the popularity of beetroot-based dietary supplements, driven by their rich nitrate composition. Several types of beetroot-based dietary supplements can be found in markets worldwide; however, ensuring the safety of dietary supplements is a crucial consideration, as there is limited evidence on their safety, especially for older populations. Therefore, the purpose of the current study was to evaluate the safety and tolerability of a nitrate-rich beetroot extract in older participants taking supplements over 12 weeks. The participants were randomly assigned to receive 20 g daily of beetroot extract or a matching placebo. The safety and tolerability of the supplementation were evaluated as the occurrence of adverse events and anthropometric, biochemical, and hemodynamic parameters were measured. No serious adverse events were reported in any group. Anthropometric, biochemical, and hemodynamic parameter changes between the baseline and the end of the study were not statistically significant in either group. However, interestingly, the group receiving beetroot extract supplementation exhibited a notable increase in plasma nitrate levels (p = 0.076, f = 0.50) and showed a decrease in insulin levels (p = 0.026, f = 0.59). In conclusion, we found that 20 g of beetroot extract supplementation for 12 weeks was safe and well tolerated in older participants.
Collapse
Affiliation(s)
- Vivian dos Santos Pinheiro
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center, Nutrition Institute, Federal University of Rio de Janeiro, Macaé 27971-525, RJ, Brazil; (V.d.S.P.); (O.J.F.R.J.)
- Postgraduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil;
| | - Olavo João Frederico Ramos Junior
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center, Nutrition Institute, Federal University of Rio de Janeiro, Macaé 27971-525, RJ, Brazil; (V.d.S.P.); (O.J.F.R.J.)
- Multicenter Postgraduate Program in Physiological Sciences, Federal University of Rio de Janeiro, Macaé 27965-045, RJ, Brazil
| | | | - Anurag Pande
- Sabinsa Corporation, 20 Lake Drive, East Windsor, NJ 08520, USA;
| | - Carlos Adam Conte-Junior
- Postgraduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil;
| | - Thiago Silveira Alvares
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center, Nutrition Institute, Federal University of Rio de Janeiro, Macaé 27971-525, RJ, Brazil; (V.d.S.P.); (O.J.F.R.J.)
- Multicenter Postgraduate Program in Physiological Sciences, Federal University of Rio de Janeiro, Macaé 27965-045, RJ, Brazil
- Multidisciplinary Center, Food and Nutrition Institute, Federal University of Rio de Janeiro, Macaé 27930-560, RJ, Brazil
| |
Collapse
|
4
|
Bondonno CP, Zhong L, Bondonno NP, Sim M, Blekkenhorst LC, Liu A, Rajendra A, Pokharel P, Erichsen DW, Neubauer O, Croft KD, Hodgson JM. Nitrate: The Dr. Jekyll and Mr. Hyde of human health? Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Jiang W, Zhang J, Yang R, Sun X, Wu H, Zhang J, Liu S, Sun C, Ma L, Han T, Wei W. Association of urinary nitrate with diabetes complication and disease-specific mortality among adults with hyperglycemia. J Clin Endocrinol Metab 2022; 108:1318-1329. [PMID: 36576885 DOI: 10.1210/clinem/dgac741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND The hyperglycemia condition disrupts the metabolism of nitrate/nitrite and nitric oxide, and dietary nitrate intake can restore nitric oxide homeostasis. This study aims to examine whether urinary nitrate is associated with diabetes complications and long-term survival among people with hyperglycemia. METHODS A total of 6208 people with hyperglycemia who participated in the National Health and Nutrition Examination Survey from 2005 to 2014 were enrolled. Diabetes complications included congestive heart failure, coronary heart disease, angina, stroke, myocardial infarction, diabetic retinopathy, and nephropathy. Mortality wasobtained from the National Death Index until 2015. Urinary nitrate was measured by ion chromatography coupled with electrospray tandem mass spectrometry, which was log-transformed and categized into tertiles. Logistic regression models and cox proportional hazards models were respectively performed to assess the association of urinary nitrate with the risk of diabetes complications and disease-specific mortalities. RESULTS After adjustment for potential confounders including urinary perchlorate and thiocyanate, compared with the participants in the lowest tertile of nitrate, the participants in the highest tertile had lower risks of congestive heart failure(odd-ratio[OR] = 0.41, 95%CI:0.27-0.60) and diabetic nephropathy(OR = 0.50, 95%CI: 0.41-0.62). Meanwhile, during a total follow-up of 41,463 person-year, the participants in the highest tertile had lower mortality risk of all-cause(hazard-ratio[HR] = 0.78, 95%CI:0.62-0.97), cardiovascular disease(CVD)(HR = 0.56, 95%CI:0.37-0.84) and diabetes(HR = 0.47, 95%CI:0.24-0.90), which showed dose-dependent linear relationships(P for non-linearity > 0.05). Moreover, no association between nitrate and cancer mortality was observed(HR = 1.13, 95%CI:0.71-1.80). CONCLUSIONS Higher urinary nitrate is associated with lower risk of congestive heart failure and diabetic nephropathy, and lower risk of all-cause, CVD, and diabetes mortalities. These findings indicated that inorganic nitrate supplementation can be considered as a supplementary treatment for people with hyperglycemia.
Collapse
Affiliation(s)
- Wenbo Jiang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Zhang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
| | - Ruiming Yang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
| | - Xinyi Sun
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
| | - Huanyu Wu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
| | - Jiacheng Zhang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
| | - Siyao Liu
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
| | - Lifang Ma
- Department of Pharmacology, College of Pharmacy Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, P. R.China
| | - Tianshu Han
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
| | - Wei Wei
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R.China
| |
Collapse
|
6
|
Bock JM, Hanson BE, Miller KA, Seaberg NT, Ueda K, Feider AJ, Hanada S, Lira VA, Casey DP. Eight weeks of inorganic nitrate/nitrite supplementation improves aerobic exercise capacity and the gas exchange threshold in patients with type 2 diabetes. J Appl Physiol (1985) 2022; 133:1407-1414. [PMID: 36326473 PMCID: PMC9762960 DOI: 10.1152/japplphysiol.00478.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) have reduced exercise capacity, indexed by lower maximal oxygen consumption (V̇o2max) and achievement of the gas exchange threshold (GET) at a lower % V̇o2max. The ubiquitous signaling molecule nitric oxide (NO) plays a multifaceted role during exercise and, as patients with T2DM have poor endogenous NO production, we investigated if inorganic nitrate/nitrite supplementation (an exogenous source of NO) improves exercise capacity in patients with T2DM. Thirty-six patients with T2DM (10F, 59 ± 9 yr, 32.0 ± 5.1 kg/m2, HbA1c = 7.4 ± 1.4%) consumed beetroot juice containing either inorganic nitrate/nitrite (4.03 mmol/0.29 mmol) or a placebo (0.8 mmol/0.00 mmol) for 8 wk. A maximal exercise test was completed before and after both interventions. V̇o2max was determined by averaging 15-s data, whereas the GET was identified using the V-slope method and breath-by-breath data. Inorganic nitrate/nitrite increased both absolute (1.96 ± 0.67 to 2.07 ± 0.75 L/min) and relative (20.7 ± 7.0 to 21.9 ± 7.4 mL/kg/min, P < 0.05 for both) V̇o2max, whereas no changes were observed following placebo (1.94 ± 0.40 to 1.90 ± 0.39 L/min, P = 0.33; 20.0 ± 4.2 to 19.7 ± 4.6 mL/kg/min, P = 0.39). Maximal workload was also increased following inorganic nitrate/nitrite supplementation (134 ± 47 to 140 ± 51 W, P < 0.05) but not placebo (138 ± 32 to 138 ± 32 W, P = 0.98). V̇o2 at the GET (1.11 ± 0.27 to 1.27 ± 0.38L/min) and the %V̇o2max in which GET occurred (56 ± 8 to 61 ± 7%, P < 0.05 for both) increased following inorganic nitrate/nitrite supplementation but not placebo (1.10 ± 0.23 to 1.08 ± 0.21 L/min, P = 0.60; 57 ± 9 to 57 ± 8%, P = 0.90) although the workload at GET did not achieve statistical significance (group-by-time P = 0.06). Combined inorganic nitrate/nitrite consumption improves exercise capacity, maximal workload, and promotes a rightward shift in the GET in patients with T2DM. This manuscript reports data from a registered Clinical Trial at ClinicalTrials.gov ID: NCT02804932.NEW & NOTEWORTHY We report that increasing nitric oxide bioavailability via 8 wk of inorganic nitrate/nitrite supplementation improves maximal aerobic exercise capacity in patients with type 2 diabetes mellitus. Similarly, we observed a rightward shift in the gas exchange threshold. Taken together, these data indicate inorganic nitrate/nitrite may serve as a means to improve fitness in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Brady E Hanson
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Kayla A Miller
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Nathanael T Seaberg
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Kenichi Ueda
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Andrew J Feider
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Satoshi Hanada
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Vitor A Lira
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
7
|
Karimzadeh L, Behrouz V, Sohrab G, Hedayati M, Emami G. A randomized clinical trial of beetroot juice consumption on inflammatory markers and oxidative stress in patients with type 2 diabetes. J Food Sci 2022; 87:5430-5441. [DOI: 10.1111/1750-3841.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Laleh Karimzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Vahideh Behrouz
- Department of Nutrition, Faculty of Public Health Kerman University of Medical Sciences Kerman Iran
| | - Golbon Sohrab
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences TehranIran
| | - Golpar Emami
- Health Deputy Mazandaran University of Medical Sciences Sari Iran
| |
Collapse
|
8
|
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185:2853-2878. [DOI: 10.1016/j.cell.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/16/2022]
|
9
|
karimzadeh L, Sohrab G, Hedayati M, Ebrahimof S, Emami G, Razavion T. Effects of concentrated beetroot juice consumption on glycemic control, blood pressure, and lipid profile in type 2 diabetes patients: randomized clinical trial study. Ir J Med Sci 2022:10.1007/s11845-022-03090-y. [PMID: 35869311 PMCID: PMC9307292 DOI: 10.1007/s11845-022-03090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
Background While the prevalence of type 2 diabetes (T2D) is growing worldwide, dietary intake plays a remarkable role in the management of disease complications. Evidence suggests that beetroot has health-promoting potentials, including anti-inflammatory, antioxidant, and antidiabetic properties. Therefore, the present clinical trial aimed to investigate the effects of concentrated beetroot juice (BJ) supplementation on anthropometric measures, glycemic control, blood pressure (BP), and lipid profile in T2D patients. Methods In the simply randomized, parallel-group, controlled, and open-label trial, forty-six patients with T2D were randomly allocated to either the intervention group (BJ group), who consumed 24 ml concentrated BJ daily for 12 weeks, or the control group without any intervention. Anthropometric measurements, physical activity, dietary intakes, glycemic measures, lipid profile, and blood pressure were assessed at the baseline and the end of the study. Results Plasma nitric oxide (NO) in the intervention group had a higher nonsignificant increase after 12 weeks compared with the control group (8.57 ± 23.93 vs. 2.31 ± 15.98, P = 0.128). Compared with the baseline, significant reductions in plasma insulin (14.55 ± 7.85 vs. 10.62 ± 6.96, P = 0.014) and homeostasis model assessment of β-cell function (HOMA-B) (3.96 ± 0.83 vs. 3.63 ± 0.75, P = 0.038), as well as a marginally significant reduction in high-density lipoprotein cholesterol (HDL-C) (70.81 ± 11.24 vs. 65.44 ± 6.46, P = 0.058) were observed in the control group after 12 weeks. Diastolic blood pressure (DBP) was significantly reduced in the BJ group compared with the baseline (74.73 ± 16.78 vs. 72.36 ± 16.09, P = 0.046). After adjusting for baseline values, no significant effect on the levels of fasting plasma glucose (FPG), insulin, hemoglobin A1c (HgA1c), HOMA-β, homeostatic model assessment for insulin resistance (HOMA-IR), total cholesterol (TC), low-density lipoprotein (LDL), HDL, triglycerides (TG), and blood pressure (BP) was observed. Conclusions Our study showed that daily consumption of 24 ml concentrated BJ did not affect the levels of glycemic measures, blood pressure, and lipid profile. More studies are necessary to confirm these findings. Trial Registration This present clinical trial has been registered in the Iranian Registry of Clinical Trials with registration number IRCT20150815023617N5.
Collapse
Affiliation(s)
- Laleh karimzadeh
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golbon Sohrab
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Ebrahimof
- Department of Nutrition Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institutle, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golpar Emami
- Health Deputy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Taraneh Razavion
- Department of Medical Parasitology and Mycology of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Bahadoran Z, Mirmiran P, Carlström M, Ghasemi A. Inorganic nitrate: A potential prebiotic for oral microbiota dysbiosis associated with type 2 diabetes. Nitric Oxide 2021; 116:38-46. [PMID: 34506950 DOI: 10.1016/j.niox.2021.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 09/05/2021] [Indexed: 11/29/2022]
Abstract
Oral microbiota dysbiosis, concomitant with decreased abundance of nitrate (NO3-)-reducing bacteria, oral net nitrite (NO2-) production, and reduced nitric oxide (·NO) bioactivity, is associated with the development of cardiometabolic disorders. Therefore, restoring the oral microbiome to a health-associated state is suggested as a therapeutic approach to potentiate the NO3--NO2--·NO pathway and provide a backup resource for insufficient NO production in conditions including cardiovascular disease and type 2 diabetes mellitus (T2DM). The current review discusses how inorganic NO3- can improve the oral microbial community in patients with T2DM and act as a prebiotic. Both animal and human experiments indicated that inorganic NO3- modulates the oral microbiome by increasing the abundance of health-associated NO3--reducing bacteria (e.g., Neisseria and Rothia) and decreasing the plenty of species Prevotella and Veillonella, leading to oral NO2- accumulation and improved systemic ·NO availability. Supplementation with NO3- reduces caries- and periodontitis-associated bacteria and the pathogenic genus related to insulin resistance and glucose intolerance. In addition, inorganic NO3- may provide a more optimal environment for NO3- reductase activity in the oral cavity, as it increases salivary flow rate and prevents decreased pH by inhibiting acid-producing bacteria.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Human Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, Stockholm, SE-171 76, Sweden
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Bock JM, Ueda K, Feider AJ, Hanada S, Casey DP. Combined inorganic nitrate/nitrite supplementation blunts α-mediated vasoconstriction during exercise in patients with type 2 diabetes. Nitric Oxide 2021; 118:17-25. [PMID: 34718145 DOI: 10.1016/j.niox.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
AIMS Patients with type 2 diabetes mellitus (T2DM) have reduced vasodilatory responses during exercise partially attributable to low nitric oxide (NO) levels. Low NO contributes to greater α-adrenergic mediated vasoconstriction in contracting skeletal muscle. We hypothesized boosting NO bioavailability via 8wks of active beetroot juice (BRA, 4.03 mmol nitrate, 0.29 mmol nitrite, n = 19) improves hyperemia, via reduced α-mediated vasoconstriction, during handgrip exercise relative to nitrate/nitrite-depleted beetroot juice (BRP, n = 18) in patients with T2DM. METHODS Forearm blood flow (FBF) and vascular conductance (FVC) were calculated at rest and during handgrip exercise (20%max, 20contractions·min-1). Phenylephrine (α1-agonist) and dexmedetomidine (α2-agonist) were infused intra-arterially during independent trials to determine the influence of α-mediated vasoconstriction on exercise hyperemia. Vasoconstriction was quantified as the percent-reduction in FVC during α-agonist infusion, relative to pre-infusion, as well as the absolute change in %FVC during exercise relative to the respective rest trial (magnitude of sympatholysis). RESULTS ΔFBF (156 ± 69 to 175 ± 73 ml min-1) and ΔFVC (130 ± 54 to 156 ± 63 ml min-1·100 mmHg-1, both P < 0.05) during exercise were augmented following BRA, but not BRP (P = 0.96 and 0.51). Phenylephrine-induced vasoconstriction during exercise was blunted following BRA (-17.1 ± 5.9 to -12.6 ± 3.1%, P < 0.01), but not BRP (P = 0.58) supplementation; the magnitude of sympatholysis was unchanged by either (beverage-by-time P = 0.15). BRA supplementation reduced dexmedetomidine-induced vasoconstriction during exercise (-23.3 ± 6.7 to -19.7 ± 5.2%) and improved the corresponding magnitude of sympatholysis (25.3 ± 11.4 to 34.4 ± 15.5%, both P < 0.05). CONCLUSIONS BRA supplementation improves the hyperemic and vasodilatory responses to exercise in patients with T2DM which appears to be attributable to reduced α-adrenergic mediated vasoconstriction in contracting skeletal muscle.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, USA
| | - Andrew J Feider
- Department of Anesthesia, Carver College of Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, USA
| | - Satoshi Hanada
- Department of Anesthesia, Carver College of Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, USA
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Abboud Cardiovascular Research Center, University of Iowa, 285 Newton Rd, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 169 Newton Rd, IA, USA.
| |
Collapse
|
12
|
Mirmiran P, Bahadoran Z, Gaeini Z. Common Limitations and Challenges of Dietary Clinical Trials for Translation into Clinical Practices. Int J Endocrinol Metab 2021; 19:e108170. [PMID: 34567133 PMCID: PMC8453651 DOI: 10.5812/ijem.108170] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/01/2021] [Accepted: 03/29/2021] [Indexed: 01/31/2023] Open
Abstract
The progressive development of clinical and public health nutrition has long relied on dietary clinical trials (DCTs), investigating the causal relationship between diet and multiple risk factors of non-communicable and chronic diseases. DCTs are also hallmarks for establishing dietary requirements and promoting overall nutritional health among the population. Despite their critical importance in translation into public health strategies and practices, DCTs have several limitations and challenges for study design, implementation and finding interpretation. The complex nature of nutrition interventions, collinearity between diet components, multi-target effects of the interventions, diverse dietary behaviors, and food culture are the most challenging issues. Furthermore, baseline exposure and dietary status, appropriate control groups, blinding, randomization, and poor adherence undermine the effectiveness of DCTs in translation into practices. Disruptive factors will be minimized if researchers are committed to following good clinical practice (GCP) standards available for common designs of clinical trials. Planning DCTs, however, needs careful considerations for hypothesis generation, study design development, the definition of primary and secondary outcome measures, and target population.
Collapse
Affiliation(s)
- Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P. O. Box: 1985717413, Tehran, Iran. Tel: +98-2122432500,
| | - Zahra Gaeini
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Lost-in-Translation of Metabolic Effects of Inorganic Nitrate in Type 2 Diabetes: Is Ascorbic Acid the Answer? Int J Mol Sci 2021; 22:4735. [PMID: 33947005 PMCID: PMC8124635 DOI: 10.3390/ijms22094735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Beneficial metabolic effects of inorganic nitrate (NO3-) and nitrite (NO2-) in type 2 diabetes mellitus (T2DM) have been documented in animal experiments; however, this is not the case for humans. Although it has remained an open question, the redox environment affecting the conversion of NO3- to NO2- and then to NO is suggested as a potential reason for this lost-in-translation. Ascorbic acid (AA) has a critical role in the gastric conversion of NO2- to NO following ingestion of NO3-. In contrast to AA-synthesizing species like rats, the lack of ability to synthesize AA and a lower AA body pool and plasma concentrations may partly explain why humans with T2DM do not benefit from NO3-/NO2- supplementation. Rats also have higher AA concentrations in their stomach tissue and gastric juice that can significantly potentiate gastric NO2--to-NO conversion. Here, we hypothesized that the lack of beneficial metabolic effects of inorganic NO3- in patients with T2DM may be at least in part attributed to species differences in AA metabolism and also abnormal metabolism of AA in patients with T2DM. If this hypothesis is proved to be correct, then patients with T2DM may need supplementation of AA to attain the beneficial metabolic effects of inorganic NO3- therapy.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; (Z.B.); (P.M.)
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; (Z.B.); (P.M.)
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran
| |
Collapse
|
14
|
Abstract
The prevalence of cardiovascular and metabolic disease coupled with kidney dysfunction is increasing worldwide. This triad of disorders is associated with considerable morbidity and mortality as well as a substantial economic burden. Further understanding of the underlying pathophysiological mechanisms is important to develop novel preventive or therapeutic approaches. Among the proposed mechanisms, compromised nitric oxide (NO) bioactivity associated with oxidative stress is considered to be important. NO is a short-lived diatomic signalling molecule that exerts numerous effects on the kidneys, heart and vasculature as well as on peripheral metabolically active organs. The enzymatic L-arginine-dependent NO synthase (NOS) pathway is classically viewed as the main source of endogenous NO formation. However, the function of the NOS system is often compromised in various pathologies including kidney, cardiovascular and metabolic diseases. An alternative pathway, the nitrate-nitrite-NO pathway, enables endogenous or dietary-derived inorganic nitrate and nitrite to be recycled via serial reduction to form bioactive nitrogen species, including NO, independent of the NOS system. Signalling via these nitrogen species is linked with cGMP-dependent and independent mechanisms. Novel approaches to restoring NO homeostasis during NOS deficiency and oxidative stress have potential therapeutic applications in kidney, cardiovascular and metabolic disorders.
Collapse
|