1
|
Toval A, Garrigos D, Kutsenko Y, Popović M, Do-Couto BR, Morales-Delgado N, Tseng KY, Ferran JL. Dopaminergic Modulation of Forced Running Performance in Adolescent Rats: Role of Striatal D1 and Extra-striatal D2 Dopamine Receptors. Mol Neurobiol 2021; 58:1782-1791. [PMID: 33394335 PMCID: PMC7932989 DOI: 10.1007/s12035-020-02252-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022]
Abstract
Improving exercise capacity during adolescence impacts positively on cognitive and motor functions. However, the neural mechanisms contributing to enhance physical performance during this sensitive period remain poorly understood. Such knowledge could help to optimize exercise programs and promote a healthy physical and cognitive development in youth athletes. The central dopamine system is of great interest because of its role in regulating motor behavior through the activation of D1 and D2 receptors. Thus, the aim of the present study is to determine whether D1 or D2 receptor signaling contributes to modulate the exercise capacity during adolescence and if this modulation takes place through the striatum. To test this, we used a rodent model of forced running wheel that we implemented recently to assess the exercise capacity. Briefly, rats were exposed to an 8-day period of habituation in the running wheel before assessing their locomotor performance in response to an incremental exercise test, in which the speed was gradually increased until exhaustion. We found that systemic administration of D1-like (SCH23390) and/or D2-like (raclopride) receptor antagonists prior to the incremental test reduced the duration of forced running in a dose-dependent manner. Similarly, locomotor activity in the open field was decreased by the dopamine antagonists. Interestingly, this was not the case following intrastriatal infusion of an effective dose of SCH23390, which decreased motor performance during the incremental test without disrupting the behavioral response in the open field. Surprisingly, intrastriatal delivery of raclopride failed to impact the duration of forced running. Altogether, these results indicate that the level of locomotor response to incremental loads of forced running in adolescent rats is dopamine dependent and mechanistically linked to the activation of striatal D1 and extra-striatal D2 receptors.
Collapse
Affiliation(s)
- Angel Toval
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Daniel Garrigos
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Yevheniy Kutsenko
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Miroljub Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Bruno Ribeiro Do-Couto
- Department of Human Anatomy and Psychobiology, Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Nicanor Morales-Delgado
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Department of Histology and Anatomy, Faculty of Medicine, University Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.
| |
Collapse
|
2
|
Nasehi M, Hasanvand S, Khakpai F, Zarrindast MR. The effect of CA1 dopaminergic system on amnesia induced by harmane in mice. Acta Neurol Belg 2019; 119:369-377. [PMID: 29767374 DOI: 10.1007/s13760-018-0926-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022]
Abstract
In the present study, the effects of bilateral injections of dopaminergic drugs into the hippocampal CA1 regions (intra-CA1) on harmane-induced amnesia were examined in mice. We used a single-trial step-down inhibitory avoidance task for the assessment of memory acquisition in adult male mice. Our data indicated that pre-training intra-peritoneal (i.p.) administration of harmane (12 mg/kg) impaired memory acquisition. Moreover, intra-CA1 administration of dopamine D1 receptor agonist, SKF38393 (0.25 µg/mouse), dopamine D1 receptor antagonist, SCH23390 (0.25 µg/mouse), dopamine D2 receptor agonist, quinpirole (0.125 and 0.25 µg/mouse) and dopamine D2 receptor antagonist, sulpiride (0.2 and 0.4 µg/mouse) decreased the learning of a single-trial inhibitory avoidance task. Furthermore, pre-training intra-CA1 injection of sub-threshold doses of SKF38393 (0.0625 µg/mouse) or sulpiride (0.1 µg/mouse) increased pre-training harmane (4 and 8 mg/kg, i.p.)-induced amnesia. On the other hand, pre-training intra-CA1 injection of a sub-threshold dose of SCH23390 (0.0625 µg/mouse) reversed amnesia induced by an effective dose of harmane (12 mg/kg; i.p.). In addition, Pre-training intra-CA1 injection of quinpirole (0.0625 µg/mouse) had no effect on memory impairment induced by harmane. These findings indicate the involvement of CA1 dopaminergic system on harmane-induced impairment of memory acquisition.
Collapse
|
3
|
Ogura Y, Izumi T, Yoshioka M, Matsushima T. Dissociation of the neural substrates of foraging effort and its social facilitation in the domestic chick. Behav Brain Res 2015; 294:162-76. [DOI: 10.1016/j.bbr.2015.07.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/04/2015] [Accepted: 07/27/2015] [Indexed: 02/05/2023]
|
4
|
Péczely L, Ollmann T, László K, Kovács A, Gálosi R, Szabó Á, Karádi Z, Lénárd L. Role of D1 dopamine receptors of the ventral pallidum in inhibitory avoidance learning. Behav Brain Res 2014; 270:131-6. [DOI: 10.1016/j.bbr.2014.04.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
|
5
|
Ferguson SM, Phillips PEM, Roth BL, Wess J, Neumaier JF. Direct-pathway striatal neurons regulate the retention of decision-making strategies. J Neurosci 2013; 33:11668-76. [PMID: 23843534 PMCID: PMC3724555 DOI: 10.1523/jneurosci.4783-12.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 01/06/2023] Open
Abstract
The dorsal striatum has been implicated in reward-based decision making, but the role played by specific striatal circuits in these processes is essentially unknown. Using cell phenotype-specific viral vectors to express engineered G-protein-coupled DREADD (designer receptors exclusively activated by designer drugs) receptors, we enhanced Gi/o- or Gs-protein-mediated signaling selectively in direct-pathway (striatonigral) neurons of the dorsomedial striatum in Long-Evans rats during discrete periods of training of a high versus low reward-discrimination task. Surprisingly, these perturbations had no impact on reward preference, task performance, or improvement of performance during training. However, we found that transiently increasing Gi/o signaling during training significantly impaired the retention of task strategies used to maximize reward obtainment during subsequent preference testing, whereas increasing Gs signaling produced the opposite effect and significantly enhanced the encoding of a high-reward preference in this decision-making task. Thus, the fact that the endurance of this improved performance was significantly altered over time-long after these neurons were manipulated-indicates that it is under bidirectional control of canonical G-protein-mediated signaling in striatonigral neurons during training. These data demonstrate that cAMP-dependent signaling in direct-pathway neurons play a well-defined role in reward-related behavior; that is, they modulate the plasticity required for the retention of task-specific information that is used to improve performance on future renditions of the task.
Collapse
Affiliation(s)
- Susan M. Ferguson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
- Departments of Psychiatry and Behavioral Sciences and
| | - Paul E. M. Phillips
- Departments of Psychiatry and Behavioral Sciences and
- Pharmacology, University of Washington, Seattle, Washington 98195
| | - Bryan L. Roth
- Department of Pharmacology, Division of Chemical Biology and National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina Medical School, Chapel Hill, North Carolina 27599, and
| | - Jürgen Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - John F. Neumaier
- Departments of Psychiatry and Behavioral Sciences and
- Pharmacology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
6
|
Nordquist RE, Zeinstra EC, Rodenburg TB, van der Staay FJ. Effects of maternal care and selection for low mortality on tyrosine hydroxylase concentrations and cell soma size in hippocampus and nidopallium caudolaterale in adult laying hen1. J Anim Sci 2013; 91:137-46. [DOI: 10.2527/jas.2012-5227] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- R. E. Nordquist
- Emotion and Cognition Group, Department of Farm Animal Health, Utrecht University, the Netherlands
- Rudolf Magnus Institute for Neurosciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - E. C. Zeinstra
- Emotion and Cognition Group, Department of Farm Animal Health, Utrecht University, the Netherlands
| | - T. B. Rodenburg
- Animal Breeding and Genomics Centre, Wageningen University, the Netherlands
- Behavioural Ecology Group, Wageningen University, the Netherlands
| | - F. J. van der Staay
- Emotion and Cognition Group, Department of Farm Animal Health, Utrecht University, the Netherlands
- Rudolf Magnus Institute for Neurosciences, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
7
|
Rose J, Schiffer AM, Güntürkün O. Striatal dopamine D1 receptors are involved in the dissociation of learning based on reward-magnitude. Neuroscience 2013; 230:132-8. [DOI: 10.1016/j.neuroscience.2012.10.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/22/2012] [Accepted: 10/25/2012] [Indexed: 11/28/2022]
|
8
|
Roth TC, Gallagher CM, LaDage LD, Pravosudov VV. Variation in brain regions associated with fear and learning in contrasting climates. BRAIN, BEHAVIOR AND EVOLUTION 2012; 79:181-90. [PMID: 22286546 DOI: 10.1159/000335421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/25/2011] [Indexed: 12/25/2022]
Abstract
In environments where resources are difficult to obtain and enhanced cognitive capabilities might be adaptive, brain structures associated with cognitive traits may also be enhanced. In our previous studies, we documented a clear and significant relationship among environmental conditions, memory and hippocampal structure using ten populations of black-capped chickadees (Poecile atricapillus) over a large geographic range. In addition, focusing on just the two populations from the geographical extremes of our large-scale comparison, Alaska and Kansas, we found enhanced problem-solving capabilities and reduced neophobia in a captive-raised population of black-capped chickadees originating from the energetically demanding environment (Alaska) relative to conspecifics from the milder environment (Kansas). Here, we focused on three brain regions, the arcopallium (AP), the nucleus taeniae of the amygdala and the lateral striatum (LSt), that have been implicated to some extent in aspects of these behaviors in order to investigate whether potential differences in these brain areas may be associated with our previously detected differences in cognition. We compared the variation in neuron number and volumes of these regions between these populations, in both wild-caught birds and captive-raised individuals. Consistent with our behavioral observations, wild-caught birds from Kansas had a larger AP volume than their wild-caught conspecifics from Alaska, which possessed a higher density of neurons in the LSt. However, there were no other significant differences between populations in the wild-caught and captive-raised groups. Interestingly, individuals from the wild had larger LSt and AP volumes with more neurons than those raised in captivity. Overall, we provide some evidence that population-related differences in problem solving and neophobia may be associated with differences in volume and neuron numbers of our target brain regions. However, the relationship is not completely clear, and our study raises numerous questions about the relationship between the brain and behavior, especially in captive animals.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Biology, University of Nevada, Reno, Nev., USA.
| | | | | | | |
Collapse
|
9
|
The effect of hypoxia on the functional and structural development of the chick brain. Int J Dev Neurosci 2010; 28:343-50. [DOI: 10.1016/j.ijdevneu.2010.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/28/2010] [Accepted: 02/10/2010] [Indexed: 12/23/2022] Open
|
10
|
He X, Xiao L, Sui N. Effects of SCH23390 and spiperone administered into medial striatum and intermediate medial mesopallium on rewarding effects of morphine in day-old chicks. Eur J Pharmacol 2010; 627:136-41. [DOI: 10.1016/j.ejphar.2009.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 09/23/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
|
11
|
Impairments of probabilistic response reversal and passive avoidance following catecholamine depletion. Neuropsychopharmacology 2009; 34:2691-8. [PMID: 19675538 PMCID: PMC2783713 DOI: 10.1038/npp.2009.95] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Catecholamines, particularly dopamine, have been implicated in various aspects of the reward function including the ability to learn through reinforcement and to modify flexibly responses to changing reinforcement contingencies. We examined the impact of catecholamine depletion (CD) achieved by oral administration of alpha-methyl-paratyrosine (AMPT) on probabilistic reversal learning and passive avoidance (PA) in 15 female subjects with major depressive disorder in full remission (RMDD) and 12 healthy female controls. The CD did not affect significantly the acquisition phase of the reversal learning task. However, CD selectively impaired reversal of the 80-20 contingency pair. In the PA learning task, CD was associated with reduced responding toward rewarding stimuli, although the RMDD and control subjects did not differ regarding these CD-induced changes in reward processing. Interestingly, the performance decrement produced by AMPT on both of these tasks was associated with the level of decreased metabolism in the perigenual anterior cingulate cortex. In an additional examination using the affective Stroop task we found evidence for impaired executive attention as a trait abnormality in MDD. In conclusion, this study showed specific effects of CD on the processing of reward-related stimuli in humans and confirms earlier investigations that show impairments of executive attention as a neuropsychological trait in affective illness.
Collapse
|
12
|
Kubíková L, Výboh P, Kostál L. Kinetics and pharmacology of the D1- and D2-like dopamine receptors in Japanese quail brain. Cell Mol Neurobiol 2009; 29:961-70. [PMID: 19330447 DOI: 10.1007/s10571-009-9382-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
Abstract
Although the avian brain dopamine system and its functions have been studied much less than the mammalian one, there is an increasing interest in the role of dopamine and its receptors in a wide variety of motor, cognitive and emotional functions in birds with implications for basic research, medicine or agriculture. Pharmacological characterisation of the avian dopamine receptors has had little attention. In this paper we characterise the two classes of dopamine receptors in Japanese quail brain by radioligand binding techniques using [(3)H]SCH 23390 (D(1)) and [(3)H]spiperone (D(2)). Association, dissociation and saturation analyses showed that the binding of both radioligands is time- and concentration-dependent, saturable and reversible. Apparent dissociation constants determined for [(3)H]SCH 23390 and [(3)H]spiperone from concentration isotherms were 1.07 and 0.302 nM and the maximum binding capacities were 89.3 and 389.3 fmol per mg of protein, respectively. Using competitive binding studies with a spectrum of dopamine and other neurotransmitter receptor agonists/antagonists, the [(3)H]SCH 23390 and [(3)H]spiperone binding sites were characterised pharmacologically. Pharmacological profiles of quail dopamine receptors showed a high degree of pharmacological homology with other vertebrate dopamine receptors. The data presented extend the knowledge of kinetics and pharmacology of D(1)- and D(2)-like dopamine receptors in birds, provide data for avian psychopharmacological and comparative studies and represent an important complement to studies using cell expression systems.
Collapse
Affiliation(s)
- Lubica Kubíková
- Laboratory of Behavioural Neuroscience, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, 900 28, Ivanka pri Dunaji, Slovakia
| | | | | |
Collapse
|
13
|
Crowe SF, Neath J, Hale MW. The type 4 phosphodiesterase inhibitors rolipram and YM976 facilitate recall of the weak version of the passive avoidance task in the day-old chick. Pharmacol Biochem Behav 2009; 92:224-30. [DOI: 10.1016/j.pbb.2008.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/09/2008] [Accepted: 11/24/2008] [Indexed: 11/26/2022]
|
14
|
The organisation of the basal ganglia in the domestic chick (Gallus domesticus): Anatomical localisation of DARPP-32 in relation to glutamate. Brain Res Bull 2008; 76:183-91. [DOI: 10.1016/j.brainresbull.2008.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 01/10/2008] [Accepted: 02/11/2008] [Indexed: 02/05/2023]
|
15
|
Memory systems in the chick: regional and temporal control by noradrenaline. Brain Res Bull 2008; 76:170-82. [PMID: 18498929 DOI: 10.1016/j.brainresbull.2008.02.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/21/2007] [Accepted: 02/11/2008] [Indexed: 12/30/2022]
Abstract
Learning starts with the information about a situation or experience delivered to different brain areas in terms of visual, olfactory, auditory and tactile inputs. Memory processing occurs in different brain locations in a well-defined temporal sequence of physiologically based stages and biochemical cascades. Using neuropharmacological techniques in one species and a robust bead discrimination task, we have been able to chart the passage of memory from acquisition to consolidation in the chick and to dissect out the multiple roles for noradrenaline in consolidating this memory. Fortunately only a small fraction of sensory input is remembered and it is clear that modulatory neurotransmitters play a key role in determining what is remembered. We have identified roles for noradrenaline in the mesopallium or 'avian cortex', the hippocampus, medial striatum or basal ganglia and teased out the different effects of noradrenaline in each of these areas based on the receptor subtypes activated by the transmitter and the stages on which they act. Noradrenergic input from the locus coeruleus controls memory processing at two critical times after training-acquisition (0-2.5 min after training) and consolidation (25-30 min after training). We have also elucidated some of the cellular mechanisms whereby noradrenaline achieves memory modulation and finds that it has actions on both neurones and astrocytes with particularly important effects on energy metabolism in astrocytes. The memory system of the chick is very similar to that of mammals in terms of brain regions recruited in memory processing and in the ways memory is modulated by noradrenaline.
Collapse
|
16
|
Motor-skill learning in a novel running-wheel task is dependent on D1 dopamine receptors in the striatum. Neuroscience 2008; 153:249-58. [PMID: 18343588 DOI: 10.1016/j.neuroscience.2008.01.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/24/2008] [Accepted: 01/28/2008] [Indexed: 01/19/2023]
Abstract
Evidence indicates that dopamine receptors regulate processes of procedural learning in the sensorimotor striatum. Our previous studies revealed that the indirect dopamine receptor agonist cocaine alters motor-skill learning-associated gene regulation in the sensorimotor striatum. Cocaine-induced gene regulation in the striatum is principally mediated by D1 dopamine receptors. We investigated the effects of cocaine and striatal D1 receptor antagonism on motor-skill learning. Rats were trained on a running wheel (40-60 min, 2-5 days) to learn a new motor skill, that is, the ability to control the movement of the wheel. Immediately before each training session, the animals received an injection of vehicle or cocaine (25 mg/kg, i.p.), and/or the D1 receptor antagonist SCH-23390 (0, 3, 10 microg/kg, i.p., or 0, 0.3, 1 microg, intrastriatal via chronically implanted cannula). The animal's ability to control/balance the moving wheel (wheel skill) was tested before and repeatedly after the training. Normal wheel-skill memory lasted for at least 4 weeks. Cocaine administered before the training tended to attenuate skill learning. Systemic administration of SCH-23390 alone also impaired skill learning. However, cocaine given in conjunction with the lower SCH-23390 dose (3 microg/kg) reversed the inhibition of skill learning produced by the D1 receptor antagonist, enabling intact skill performance during the whole post-training period. In contrast, when cocaine was administered with the higher SCH-23390 dose (10 microg/kg), skill performance was normalized 1-6 days after the training, but these rats lost their improved wheel skill by day 18 after the training. Similar effects were produced by SCH-23390 (0.3-1 microg) infused into the striatum. Our results indicate that cocaine interferes with normal motor-skill learning, which seems to be dependent on optimal D1 receptor signaling. Furthermore, our findings demonstrate that D1 receptors in the striatum are critical for consolidation of long-term skill memory.
Collapse
|
17
|
Rezayof A, Motevasseli T, Rassouli Y, Zarrindast MR. Dorsal hippocampal dopamine receptors are involved in mediating ethanol state-dependent memory. Life Sci 2007; 80:285-92. [PMID: 17046026 DOI: 10.1016/j.lfs.2006.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Revised: 09/11/2006] [Accepted: 09/13/2006] [Indexed: 10/24/2022]
Abstract
In the present study, the effects of bilateral injections of dopaminergic agents into the hippocampal CA1 regions (intra-CA1) on ethanol (EtOH) state-dependent memory were examined in mice. A single-trial step-down passive avoidance task was used for the assessment of memory retention in adult male NMRI mice. Pre-training intra-peritoneal (i.p.) administration of EtOH (0.25, 0.5 and 1 g/kg) dose dependently induced impairment of memory retention. Pre-test administration of EtOH (0.5 g/kg)-induced state-dependent retrieval of the memory acquired under pre-training EtOH (0.5 g/kg) influence. Intra-CA1 administration of the dopamine D(1) receptor agonist, SKF 38393 (0.5, 1 and 2 g/mouse) or the dopamine D(2) receptor agonist, quinpirole (0.25, 0.5 and 1 microg/mouse) alone cannot affect memory retention. While, pre-test intra-CA1 injection of SKF 38393 (2 microg/mouse, intra-CA1) or quinpirole (0.25, 0.5 and 1 microg/mouse, intra-CA1) improved pre-training EtOH (0.5 g/kg)-induced retrieval impairment. Moreover, pre-test administration of SKF 38393 (0.5, 1 and 2 microg/mouse, intra-CA1) or quinpirole (0.5 and 1 microg/mouse, intra-CA1) with an ineffective dose of EtOH (0.25 g/kg) significantly restored the retrieval and induced EtOH state-dependent memory. Furthermore, pre-training injection of the dopamine D(1) receptor antagonist, SCH 23390 (4 microg/mouse), but not the dopamine D(2) receptor antagonist, sulpiride, into the CA1 regions suppressed the learning of a single-trial passive avoidance task. Pre-test intra-CA1 injection of SCH 23390 (2 and 4 microg/mouse, intra-CA1) or sulpiride (2.5 and 5 microg/mouse, intra-CA1) 5 min before the administration of EtOH (0.5 g/kg, i.p.) dose dependently inhibited EtOH state-dependent memory. These findings implicate the involvement of a dorsal hippocampal dopaminergic mechanism in EtOH state-dependent memory and also it can be concluded that there may be a cross-state dependency between EtOH and dopamine.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Avoidance Learning/drug effects
- Central Nervous System Depressants/pharmacology
- Dose-Response Relationship, Drug
- Drug Synergism
- Ethanol/pharmacology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Injections, Intraperitoneal
- Injections, Intraventricular
- Male
- Memory/drug effects
- Mice
- Mice, Inbred Strains
- Quinpirole/pharmacology
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/metabolism
- Sulpiride/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Ameneh Rezayof
- School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | | | | | | |
Collapse
|
18
|
Korsukewitz C, Breitenstein C, Schomacher M, Knecht S. Pharmakologische Zusatzbehandlung in der Aphasietherapie. DER NERVENARZT 2006; 77:403-15. [PMID: 16273340 DOI: 10.1007/s00115-005-2006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aphasia is one of the most frequent and disabling consequences of stroke. Poor spontaneous recovery and the limited success of conventional speech therapy bring up the question of how current treatment approaches can be improved. Besides increasing training frequency-with daily sessions lasting several hours and high repetition rates of language materials ("massed training")-adjuvant drug therapy may help to increase therapy efficacy. In this article, we illuminate the potential of monoaminergic (bromocriptine, levodopa, d-amphetamine) and cholinergic (donepezil) substances for treating aphasia. For a final evaluation of combined massed training and adjuvant pharmacotherapy, randomized, placebo-controlled (multicenter) clinical trials with sufficient numbers of patients are needed. Furthermore, results of experimental animal studies of functional recovery in brain damage raise hopes that neurotrophic factors or stem cells might find a place in recovery from aphasia in the intermediate future.
Collapse
Affiliation(s)
- C Korsukewitz
- Klinik und Poliklinik für Neurologie, Universität Münster.
| | | | | | | |
Collapse
|
19
|
Bhattacharjee AK, Chang L, Lee HJ, Bazinet RP, Seemann R, Rapoport SI. D2 but not D1 dopamine receptor stimulation augments brain signaling involving arachidonic acid in unanesthetized rats. Psychopharmacology (Berl) 2005; 180:735-42. [PMID: 16163535 DOI: 10.1007/s00213-005-2208-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 01/18/2005] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES Signal transduction involving the activation of phospholipase A2 (PLA2) to release arachidonic acid (AA) from membrane phospholipids, when coupled to dopamine D1- and D2-type receptors, can be imaged in rats having a chronic unilateral lesion of the substantia nigra. It is not known, however, if the signaling responses occur in the absence of a lesion. To determine this, we used our in vivo fatty acid method to measure signaling in response to D1 and D2 receptor agonists given acutely to unanesthetized rats. METHODS [1-(14)C]AA was injected intravenously in unanesthetized rats, and incorporation coefficients k* for AA (brain radioactivity/integrated plasma radioactivity) were measured using quantitative autoradiography in 61 brain regions. The animals were administered i.v. the D2 receptor agonist, quinpirole (1 mg kg(-1), i.v.), the D1 receptor agonist SKF-38393 (5 mg kg(-1), i.v.), or vehicle/saline. RESULTS Quinpirole increased k* significantly in multiple brain regions rich in D2-type receptors, whereas SKF-38393 did not change k* significantly in any of the 61 regions examined. CONCLUSIONS In the intact rat brain, D2 but not D1 receptors are coupled to the activation of PLA2 and the release of AA.
Collapse
Affiliation(s)
- Abesh Kumar Bhattacharjee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Room 1S128, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Bálint E, Kitka T, Zachar G, Adám A, Hemmings HC, Csillag A. Abundance and location of DARPP-32 in striato-tegmental circuits of domestic chicks. J Chem Neuroanat 2004; 28:27-36. [PMID: 15363488 DOI: 10.1016/j.jchemneu.2004.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Revised: 05/19/2004] [Accepted: 05/20/2004] [Indexed: 11/28/2022]
Abstract
The striatum is reciprocally connected to the brainstem dopaminergic nuclei and receives a strong dopaminergic input. In the present study the spatial relation between the dopaminergic and dopaminoceptive structures of the avian medial striatum (formerly: lobus parolfactorius) was observed by confocal laser scanning microscope in the domestic chick (Gallus domesticus). We also analysed the connections in the area ventralis tegmentalis and the substantia nigra. To label the dopaminergic structures, anti-tyrosine hydroxylase was used and DARPP-32 (dopamine and cAMP regulated phosphoprotein) was a marker of dopaminoceptive elements. The tyrosine hydroxylase positive fibres formed baskets of juxtapositions around the DARPP-32 containing cells of the medial striatum. However, such baskets were also observed to juxtapose DARPP-32 immunonegative cells. In the tegmentum, DARPP-32 was observed in axons descending from the telencephalon via the ansa lenticularis. These varicose fibers innervated the ventral tegmental area and substantia nigra and were often juxtaposed to dopaminergic neurons and dendrites. Approximately 40% of the striatal projection neurons targeting the ventral tegmentum, and 60% of striatal projection neurons targeting the nigra were immunoreactive to DARPP-32, as revealed by retrograde pathway tracing with Fast Blue. Endogenous dopamine may exert a retrograde synaptic effect on the afferent striato-tegmental fibers, apart from the reported extrasynaptic action. The abundance of juxtapositions observed in the avian brainstem and medial striatum corroborates the possibility of reciprocal striato-tegmental circuits, relevant to the reinforcement of behaviour.
Collapse
Affiliation(s)
- E Bálint
- Department of Anatomy, Semmelweis University, 58 Tuzoltó utca, H-1450 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|