1
|
de Castro CM, Almeida-Santos AF, Mansk LMZ, Jaimes LF, Cammarota M, Pereira GS. BDNF-dependent signaling in the olfactory bulb modulates social recognition memory in mice. Neurobiol Learn Mem 2024; 208:107891. [PMID: 38237799 DOI: 10.1016/j.nlm.2024.107891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
An operative olfactory bulb (OB) is critical to social recognition memory (SRM) in rodents, which involves identifying conspecifics. Furthermore, OB also allocates synaptic plasticity events related to olfactory memories in their intricate neural circuit. Here, we asked whether the OB is a target for brain-derived neurotrophic factor (BDNF), a well-known mediator of plasticity and memory. Adult ICR-CD1 male mice had their SRM evaluated under the inhibition of BDNF-dependent signaling directly in the OB. We also quantified the expression of BDNF in the OB, after SRM acquisition. Our results presented an amnesic effect of anti-BDNF administered 12 h post-training. Although the western blot showed no statistical difference in pro-BDNF and BDNF expression, the analysis of fluorescence intensity in slices suggests SRM acquisition decreases BDNF in the granular cell layer of the OB. Next, to test the ability of BDNF to rescue SRM deficit, we administered the human recombinant BDNF (rBDNF) directly in the OB of socially isolated (SI) mice. Unexpectedly, rBDNF did not rescue SRM in SI mice. Furthermore, BDNF and pro-BDNF expression in the OB was unchanged by SI. Our study reinforces the OB as a plasticity locus in memory-related events. It also adds SRM as another type of memory sensitive to BDNF-dependent signaling.
Collapse
Affiliation(s)
- Caio M de Castro
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Ana F Almeida-Santos
- Departamento de Pesquisa e Desenvolvimento, Fundação Cristiano Varela. Faculdade de Minas- Faminas, Brazil
| | - Lara M Z Mansk
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Laura F Jaimes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Martín Cammarota
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do, Norte, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
2
|
Mohapatra AN, Wagner S. The role of the prefrontal cortex in social interactions of animal models and the implications for autism spectrum disorder. Front Psychiatry 2023; 14:1205199. [PMID: 37409155 PMCID: PMC10318347 DOI: 10.3389/fpsyt.2023.1205199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Social interaction is a complex behavior which requires the individual to integrate various internal processes, such as social motivation, social recognition, salience, reward, and emotional state, as well as external cues informing the individual of others' behavior, emotional state and social rank. This complex phenotype is susceptible to disruption in humans affected by neurodevelopmental and psychiatric disorders, including autism spectrum disorder (ASD). Multiple pieces of convergent evidence collected from studies of humans and rodents suggest that the prefrontal cortex (PFC) plays a pivotal role in social interactions, serving as a hub for motivation, affiliation, empathy, and social hierarchy. Indeed, disruption of the PFC circuitry results in social behavior deficits symptomatic of ASD. Here, we review this evidence and describe various ethologically relevant social behavior tasks which could be employed with rodent models to study the role of the PFC in social interactions. We also discuss the evidence linking the PFC to pathologies associated with ASD. Finally, we address specific questions regarding mechanisms employed by the PFC circuitry that may result in atypical social interactions in rodent models, which future studies should address.
Collapse
Affiliation(s)
- Alok Nath Mohapatra
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | | |
Collapse
|
3
|
Kietzman HW, Gourley SL. How social information impacts action in rodents and humans: the role of the prefrontal cortex and its connections. Neurosci Biobehav Rev 2023; 147:105075. [PMID: 36736847 PMCID: PMC10026261 DOI: 10.1016/j.neubiorev.2023.105075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Day-to-day choices often involve social information and can be influenced by prior social experience. When making a decision in a social context, a subject might need to: 1) recognize the other individual or individuals, 2) infer their intentions and emotions, and 3) weigh the values of all outcomes, social and non-social, prior to selecting an action. These elements of social information processing all rely, to some extent, on the medial prefrontal cortex (mPFC). Patients with neuropsychiatric disorders often have disruptions in prefrontal cortical function, likely contributing to deficits in social reasoning and decision making. To better understand these deficits, researchers have turned to rodents, which have revealed prefrontal cortical mechanisms for contending with the complex information processing demands inherent to making decisions in social contexts. Here, we first review literature regarding social decision making, and the information processing underlying it, in humans and patient populations. We then turn to research in rodents, discussing current procedures for studying social decision making, and underlying neural correlates.
Collapse
Affiliation(s)
- Henry W Kietzman
- Medical Scientist Training Program, Emory University School of Medicine, USA; Department of Pediatrics, Emory University School of Medicine, USA; Department of Psychiatry, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, USA; Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta GA 30329, USA.
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, USA; Department of Psychiatry, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, USA; Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta GA 30329, USA; Children's Healthcare of Atlanta, USA.
| |
Collapse
|
4
|
Hoerner F, Lawrenz A, Oerke AK, Müller DWH, Azogu-Sepe I, Roller M, Damerau K, Preisfeld A. Long-Term Olfactory Memory in African Elephants. Animals (Basel) 2023; 13:ani13040679. [PMID: 36830466 PMCID: PMC9951961 DOI: 10.3390/ani13040679] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
African elephants are capable of discriminating scents up to a single changed molecule and show the largest reported repertoire of olfactory receptor genes. Olfaction plays an important role in family bonding. However, to the best of our knowledge, no empirical data exist on their ability to remember familiar scents long-term. In an ethological experiment, two mother-daughter pairs were presented with feces of absent kin, absent non-kin, and present non-kin. Video recordings showed reactions of elephants recognizing kin after long-term separation but only minor reactions to non-kin. Results give the empirical implication that elephants have an olfactory memory longer than 1 year and up to 12 years and can distinguish between kin and non-kin just by scent. These findings confirm the significance of scent for family bonds in African elephants.
Collapse
Affiliation(s)
- Franziska Hoerner
- Department of Zoology, University of Wuppertal, 42119 Wuppertal, Germany
- Correspondence:
| | | | - Ann-Kathrin Oerke
- Endocrinology Laboratory, German Primate Centre, 37077 Goettingen, Germany
| | | | - Idu Azogu-Sepe
- Serengeti-Park Department of Research, Serengeti-Park Hodenhagen, 29693 Hodenhagen, Germany
| | | | - Karsten Damerau
- Department of Ecology, Europa-Universität Flensburg, 24943 Flensburg, Germany
| | - Angelika Preisfeld
- Department of Zoology, University of Wuppertal, 42119 Wuppertal, Germany
| |
Collapse
|
5
|
Kozlova EV, Valdez MC, Denys ME, Bishay AE, Krum JM, Rabbani KM, Carrillo V, Gonzalez GM, Lampel G, Tran JD, Vazquez BM, Anchondo LM, Uddin SA, Huffman NM, Monarrez E, Olomi DS, Chinthirla BD, Hartman RE, Kodavanti PRS, Chompre G, Phillips AL, Stapleton HM, Henkelmann B, Schramm KW, Curras-Collazo MC. Persistent autism-relevant behavioral phenotype and social neuropeptide alterations in female mice offspring induced by maternal transfer of PBDE congeners in the commercial mixture DE-71. Arch Toxicol 2022; 96:335-365. [PMID: 34687351 PMCID: PMC8536480 DOI: 10.1007/s00204-021-03163-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitous persistent organic pollutants (POPs) that are known neuroendocrine disrupting chemicals with adverse neurodevelopmental effects. PBDEs may act as risk factors for autism spectrum disorders (ASD), characterized by abnormal psychosocial functioning, although direct evidence is currently lacking. Using a translational exposure model, we tested the hypothesis that maternal transfer of a commercial mixture of PBDEs, DE-71, produces ASD-relevant behavioral and neurochemical deficits in female offspring. C57Bl6/N mouse dams (F0) were exposed to DE-71 via oral administration of 0 (VEH/CON), 0.1 (L-DE-71) or 0.4 (H-DE-71) mg/kg bw/d from 3 wk prior to gestation through end of lactation. Mass spectrometry analysis indicated in utero and lactational transfer of PBDEs (in ppb) to F1 female offspring brain tissue at postnatal day (PND) 15 which was reduced by PND 110. Neurobehavioral testing of social novelty preference (SNP) and social recognition memory (SRM) revealed that adult L-DE-71 F1 offspring display deficient short- and long-term SRM, in the absence of reduced sociability, and increased repetitive behavior. These effects were concomitant with reduced olfactory discrimination of social odors. Additionally, L-DE-71 exposure also altered short-term novel object recognition memory but not anxiety or depressive-like behavior. Moreover, F1 L-DE-71 displayed downregulated mRNA transcripts for oxytocin (Oxt) in the bed nucleus of the stria terminalis (BNST) and supraoptic nucleus, and vasopressin (Avp) in the BNST and upregulated Avp1ar in BNST, and Oxtr in the paraventricular nucleus. Our work demonstrates that developmental PBDE exposure produces ASD-relevant neurochemical, olfactory processing and behavioral phenotypes that may result from early neurodevelopmental reprogramming within central social and memory networks.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Matthew C Valdez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Maximillian E Denys
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Anthony E Bishay
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Julia M Krum
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Kayhon M Rabbani
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Valeria Carrillo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Gwendolyn M Gonzalez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Gregory Lampel
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Jasmin D Tran
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Brigitte M Vazquez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Laura M Anchondo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Syed A Uddin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Nicole M Huffman
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Eduardo Monarrez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Duraan S Olomi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Bhuvaneswari D Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Richard E Hartman
- Department of Psychology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Prasada Rao S Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Gladys Chompre
- Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico, 00717-9997, USA
| | - Allison L Phillips
- Duke University, Nicholas School of the Environment, Durham, NC, 27710, USA
| | | | - Bernhard Henkelmann
- Helmholtz Zentrum Munchen, Molecular EXposomics (MEX), German National Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
| | - Karl-Werner Schramm
- Helmholtz Zentrum Munchen, Molecular EXposomics (MEX), German National Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
- Department Für Biowissenschaftliche Grundlagen, TUM, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung Und Umwelt, Weihenstephaner Steig 23, 85350, Freising, Germany
| | | |
Collapse
|
6
|
Morandell J, Schwarz LA, Basilico B, Tasciyan S, Dimchev G, Nicolas A, Sommer C, Kreuzinger C, Dotter CP, Knaus LS, Dobler Z, Cacci E, Schur FKM, Danzl JG, Novarino G. Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development. Nat Commun 2021; 12:3058. [PMID: 34031387 PMCID: PMC8144225 DOI: 10.1038/s41467-021-23123-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/14/2021] [Indexed: 01/03/2023] Open
Abstract
De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 (CUL3) lead to autism spectrum disorder (ASD). In mouse, constitutive Cul3 haploinsufficiency leads to motor coordination deficits as well as ASD-relevant social and cognitive impairments. However, induction of Cul3 haploinsufficiency later in life does not lead to ASD-relevant behaviors, pointing to an important role of Cul3 during a critical developmental window. Here we show that Cul3 is essential to regulate neuronal migration and, therefore, constitutive Cul3 heterozygous mutant mice display cortical lamination abnormalities. At the molecular level, we found that Cul3 controls neuronal migration by tightly regulating the amount of Plastin3 (Pls3), a previously unrecognized player of neural migration. Furthermore, we found that Pls3 cell-autonomously regulates cell migration by regulating actin cytoskeleton organization, and its levels are inversely proportional to neural migration speed. Finally, we provide evidence that cellular phenotypes associated with autism-linked gene haploinsufficiency can be rescued by transcriptional activation of the intact allele in vitro, offering a proof of concept for a potential therapeutic approach for ASDs. De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 (CUL3) lead to autism spectrum disorder (ASD). Here, the authors show that Cul3 is essential to regulate neuronal migration by tightly regulating Plastin3 (Pls3). Pls3 cell-autonomously regulates cell migration by regulating the actin cytoskeleton organization.
Collapse
Affiliation(s)
- Jasmin Morandell
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Lena A Schwarz
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | | | - Saren Tasciyan
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Georgi Dimchev
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Armel Nicolas
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Christoph Sommer
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | | | - Christoph P Dotter
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Lisa S Knaus
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Zoe Dobler
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Emanuele Cacci
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Florian K M Schur
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Johann G Danzl
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria.
| |
Collapse
|
7
|
Suyama H, Egger V, Lukas M. Top-down acetylcholine signaling via olfactory bulb vasopressin cells contributes to social discrimination in rats. Commun Biol 2021; 4:603. [PMID: 34021245 PMCID: PMC8140101 DOI: 10.1038/s42003-021-02129-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/19/2021] [Indexed: 02/04/2023] Open
Abstract
Social discrimination in rats requires activation of the intrinsic bulbar vasopressin system, but it is unclear how this system comes into operation, as olfactory nerve stimulation primarily inhibits bulbar vasopressin cells (VPCs). Here we show that stimulation with a conspecific can activate bulbar VPCs, indicating that VPC activation depends on more than olfactory cues during social interaction. A series of in vitro electrophysiology, pharmacology and immunohistochemistry experiments implies that acetylcholine, probably originating from centrifugal projections, can enable olfactory nerve-evoked action potentials in VPCs. Finally, cholinergic activation of the vasopressin system contributes to vasopressin-dependent social discrimination, since recognition of a known rat was blocked by bulbar infusion of the muscarinic acetylcholine receptor antagonist atropine and rescued by additional bulbar application of vasopressin. Thus, our results implicate that top-down cholinergic modulation of bulbar VPC activity is involved in social discrimination in rats.
Collapse
Affiliation(s)
- Hajime Suyama
- Institute of Zoology, Neurophysiology, University of Regensburg, Regensburg, Germany
| | - Veronica Egger
- Institute of Zoology, Neurophysiology, University of Regensburg, Regensburg, Germany
| | - Michael Lukas
- Institute of Zoology, Neurophysiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
8
|
Lunardi P, Mansk LMZ, Jaimes LF, Pereira GS. On the novel mechanisms for social memory and the emerging role of neurogenesis. Brain Res Bull 2021; 171:56-66. [PMID: 33753208 DOI: 10.1016/j.brainresbull.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 01/25/2023]
Abstract
Social memory (SM) is a key element in social cognition and it encompasses the neural representation of conspecifics, an essential information to guide behavior in a social context. Here we evaluate classical and cutting-edge studies on neurobiology of SM, using as a guiding principle behavioral tasks performed in adult rodents. Our review highlights the relevance of the hippocampus, especially the CA2 region, as a neural substrate for SM and suggest that neural ensembles in the olfactory bulb may also encode SM traces. Compared to other hippocampus-dependent memories, much remains to be done to describe the neurobiological foundations of SM. Nonetheless, we argue that special attention should be paid to neurogenesis. Finally, we pinpoint the remaining open question on whether the hippocampal adult neurogenesis acts through pattern separation to permit the discrimination of highly similar stimuli during behavior.
Collapse
Affiliation(s)
- Paula Lunardi
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lara M Z Mansk
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura F Jaimes
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
9
|
Arakawa H. From Multisensory Assessment to Functional Interpretation of Social Behavioral Phenotype in Transgenic Mouse Models for Autism Spectrum Disorders. Front Psychiatry 2020; 11:592408. [PMID: 33329141 PMCID: PMC7717939 DOI: 10.3389/fpsyt.2020.592408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a common heterogeneous disorder, defined solely by the core behavioral characteristics, including impaired social interaction and restricted and repeated behavior. Although an increasing number of studies have been performed extensively, the neurobiological mechanisms underlying the core symptoms of ASD remain largely unknown. Transgenic mouse models provide a useful tool for evaluating genetic and neuronal mechanisms underlying ASD pathology, which are prerequisites for validating behavioral phenotypes that mimic the core symptoms of human ASD. The purpose of this review is to propose a better strategy for analyzing and interpreting social investigatory behaviors in transgenic mouse models of ASD. Mice are nocturnal, and employ multimodal processing mechanisms for social communicative behaviors, including those that involve olfactory and tactile senses. Most behavioral paradigms that have been developed for measuring a particular ASD-like behavior in mouse models, such as social recognition, preference, and discrimination tests, are based on the evaluation of distance-based investigatory behavior in response to social stimuli. This investigatory behavior in mice is regulated by multimodal processing involving with two different motives: first, an olfactory-based novelty assessment, and second, tactile-based social contact, in a temporally sequential manner. Accurate interpretation of investigatory behavior exhibited by test mice can be achieved by functional analysis of these multimodal, sequential behaviors, which will lead to a better understanding of the specific features of social deficits associated with ASD in transgenic mouse models, at high temporal and spatial resolutions.
Collapse
|
10
|
Hayashi R, Kasahara Y, Hidema S, Fukumitsu S, Nakagawa K, Nishimori K. Oxytocin Ameliorates Impaired Behaviors of High Fat Diet-Induced Obese Mice. Front Endocrinol (Lausanne) 2020; 11:379. [PMID: 32719656 PMCID: PMC7347791 DOI: 10.3389/fendo.2020.00379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Excessive intake of fat is a major risk factor for lifestyle-related diseases such as heart disease and also affects brain function such as object recognition memory, social recognition, anxiety behavior, and depression-like behavior. Although oxytocin (OXT) has been reported to improve object recognition, social recognition, anxiety behavior, and depression-like behavior in specific conditions, previous studies did not explore the impact of OXT in high-fat diet (HFD)-fed mice. Furthermore, it remains unclear whether intake of HFD affects OXT/oxytocin receptor (OXTR) in the brain. Here, we demonstrated that peripheral OXT administration improves not only social recognition but also object recognition and depressive-like behavior in HFD-fed mice. In contrast, peripheral OXT administration to HFD-fed male mice increased fear and anxiety-related behavior. In addition, we observed that intake of HFD decreased OXTR and c-fos mRNA expression in the hippocampus, specifically. Furthermore, peripheral OXT administration increased OXT mRNA expression in the hypothalamus. Altogether, these findings suggest that OXT has the potential to improve various recognition memory processes via peripheral administration but also has side effects that increase fear-related behavior in males.
Collapse
Affiliation(s)
- Ryotaro Hayashi
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Nippon Flour Mills Co., Ltd., Innovation Center, Kanagawa, Japan
| | - Yoshiyuki Kasahara
- Department of Fetal Pathology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shizu Hidema
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Satoshi Fukumitsu
- Nippon Flour Mills Co., Ltd., Innovation Center, Kanagawa, Japan
- Collaborative Graduate School Program, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Department of Obesity and Inflammation Research, Fukushima Medical University School of Medicine, Fukushima, Japan
- *Correspondence: Katsuhiko Nishimori
| |
Collapse
|
11
|
Tzakis N, Holahan MR. Social Memory and the Role of the Hippocampal CA2 Region. Front Behav Neurosci 2019; 13:233. [PMID: 31632251 PMCID: PMC6779725 DOI: 10.3389/fnbeh.2019.00233] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/17/2019] [Indexed: 01/02/2023] Open
Abstract
The CA2 region of the hippocampus is a somewhat obscure area lacking in an understanding of its form and function. Until recently, the CA2 has been thought of as merely an extension of the CA3, with some referring to it as the CA3a region. Recent investigations into this area have not only delineated the CA2, but also defined it as a region distinct from both CA1 and CA3, with a unique set of cortical inputs and outputs and contributions to cognitive processes. One such process that has been shown to depend on the CA2 is the ability to recognize a novel or familiar conspecific, known as social recognition memory. Here, we review these findings and discuss the parallels between CA2 dysfunction and social impairments.
Collapse
Affiliation(s)
- Nikolaos Tzakis
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
12
|
Camats-Perna J, Kalaba P, Ebner K, Sartori SB, Vuyyuru H, Aher NY, Dragačević V, Singewald N, Engelmann M, Lubec G. Differential Effects of Novel Dopamine Reuptake Inhibitors on Interference With Long-Term Social Memory in Mice. Front Behav Neurosci 2019; 13:63. [PMID: 31031603 PMCID: PMC6470289 DOI: 10.3389/fnbeh.2019.00063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
In the laboratory, long-term social recognition memory (SRM) in mice is highly susceptible to proactive and retroactive interference. Here, we investigate the ability of novel designed dopamine (DA) re-uptake inhibitors (rac-CE-123 and S-CE-123) to block retroactive and proactive interference, respectively. Our data show that administration of rac-CE-123 30 min before learning blocks retroactive interference that has been experimentally induced at 3 h, but not at 6 h, post-learning. In contrast, S-CE-123 treatment 30 min before learning blocked the induction of retroactive interference at 6 h, but not 3 h, post-learning. Administration of S-CE-123 failed to interfere with proactive interference at both 3 h and 6 h. Analysis of additional behavioral parameters collected during the memory task implies that the effects of the new DA re-uptake inhibitors on retroactive and proactive interference cannot easily be explained by non-specific effects on the animals’ general social behavior. Furthermore, we assessed the mechanisms of action of drugs using intracerebral in vivo-microdialysis technique. The results revealed that administration of rac-CE-123 and S-CE-123 dose-dependently increased DA release within the nucleus accumbens of freely behaving mice. Thus, the data from the present study suggests that the DA re-uptake inhibitors tested protect the consolidation of long-term social memory against interference for defined durations after learning. In addition, the data implies that DA signaling in distinct brain areas including the nucleus accumbens is involved in the consolidation of SRM in laboratory mice.
Collapse
Affiliation(s)
- Judith Camats-Perna
- AG Neuroendokrinologie und Verhalten, Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Karl Ebner
- Center for Molecular Biosciences Innsbruck (CMBI), Department of Pharmacology and Toxicology, Institute of Pharmacy, Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Simone B Sartori
- Center for Molecular Biosciences Innsbruck (CMBI), Department of Pharmacology and Toxicology, Institute of Pharmacy, Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Harish Vuyyuru
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Nilima Y Aher
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Vladimir Dragačević
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Nicolas Singewald
- Center for Molecular Biosciences Innsbruck (CMBI), Department of Pharmacology and Toxicology, Institute of Pharmacy, Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Mario Engelmann
- AG Neuroendokrinologie und Verhalten, Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
13
|
Toyoshima M, Yamada K, Sugita M, Ichitani Y. Social enrichment improves social recognition memory in male rats. Anim Cogn 2018; 21:345-351. [DOI: 10.1007/s10071-018-1171-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
|
14
|
Donhoffner ME, Al Saleh S, Schink O, Wood RI. Prosocial effects of prolactin in male rats: Social recognition, social approach and social learning. Horm Behav 2017; 96:122-129. [PMID: 28935447 PMCID: PMC5722671 DOI: 10.1016/j.yhbeh.2017.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 11/25/2022]
Abstract
Prolactin (PRL) and oxytocin (OT) are pituitary hormones essential for lactation, but also promote sexual behavior. OT stimulates social behaviors, such as recognition, approach, and learning, but less is known about PRL in these behaviors. Since PRL and OT have complementary functions in reproduction, we hypothesized that PRL increases social recognition, approach, and learning. Male Long-Evans rats received ovine PRL (oPRL; 0.5, 2.0 or 5.0mg/kg), the PRL antagonist bromocriptine (0.1, 3.0 or 5.0mg/kg) or saline 20 mins before testing for recognition of familiar vs. unfamiliar stimulus males. Saline controls preferred the unfamiliar male (p<0.05), while bromocriptine blocked this preference. oPRL did not increase preference. To measure social approach, we determined if PRL restores approach 2h after defeat by an aggressive male. Defeated rats avoided the aggressive male. 2mg/kg oPRL, before or after defeat, restored approach towards the aggressive male (p<0.05). In non-defeated rats, oPRL or 3mg/kg bromocriptine had no effect. To determine if PRL increases social learning, we tested social transmission of food preference. Rats choose between two unfamiliar flavors, one of which they have previously been exposed to through interaction with a demonstrator rat. Vehicle controls preferred chow with the demonstrated flavor over the novel flavor. oPRL-treated rats were similar. Bromocriptine-treated rats failed to show a preference. When tested one week later, only oPRL-treated rats preferred the demonstrated flavor. The results suggest that PRL is required for social recognition and learning, and that increasing PRL enhances social memory and approach, similar to OT.
Collapse
Affiliation(s)
- Mary E Donhoffner
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90033, USA
| | - Samar Al Saleh
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | - Olivia Schink
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | - Ruth I Wood
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
15
|
Estrela FN, Rabelo LM, Vaz BG, de Oliveira Costa DR, Pereira I, de Lima Rodrigues AS, Malafaia G. Short-term social memory deficits in adult female mice exposed to tannery effluent and possible mechanism of action. CHEMOSPHERE 2017; 184:148-158. [PMID: 28586655 DOI: 10.1016/j.chemosphere.2017.05.174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
The accumulated organic residues in tannery-plant courtyards are an eating attraction to small rodents; however, the contact of these animals with these residues may change their social behavior. Thus, the aim of the present study is to investigate whether the exposure to tannery effluent (TE) can damage the social recognition memory of female Swiss mice, as well as to assess whether vitamin C supplementation could provide information about how TE constituents can damage these animals' memory. We have observed that resident females exposed to TE (without vitamin supplementation) did not explore the anogenital region, their body or chased intruding females for shorter time or with lower frequency during the retest session of the social recognition test, fact that indicates social recognition memory deficit in these animals. Such finding is reinforced by the confirmation that there was no change in the animals' olfactory function during the buried food test, or locomotor changes in females exposed to the pollutant. Since no behavioral change was observed in the females exposed to TE and treated with vitamin C (before or after the exposure), it is possible saying that these social cognitive impairments seem to be directly related to the imbalance between the cellular production of reactive oxygen species and the counteracting antioxidant mechanisms (oxidative stress) in female mice exposed to the pollutant (without vitamin supplementation). Therefore, the present study evidences that the direct contact with tannery effluent, even for a short period-of-time, may cause short-term social memory deficits in adult female Swiss mice.
Collapse
Affiliation(s)
- Fernanda Neves Estrela
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, GO, Brazil
| | - Letícia Martins Rabelo
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, GO, Brazil
| | - Boniek Gontijo Vaz
- Programa de Pós-Graduação em Química, Universidade Federal de Goiás - Campus Samambaia, Goiânia, GO, Brazil
| | | | - Igor Pereira
- Programa de Pós-Graduação em Química, Universidade Federal de Goiás - Campus Samambaia, Goiânia, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano - Campus Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, GO, Brazil; Departamento de Ciências Biológicas, Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano - Campus Urutaí, GO, Brazil; Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Goiás - Campus Samambaia, Goiânia, GO, Brazil.
| |
Collapse
|
16
|
Sawangjit A, Kelemen E, Born J, Inostroza M. Sleep Enhances Recognition Memory for Conspecifics as Bound into Spatial Context. Front Behav Neurosci 2017; 11:28. [PMID: 28270755 PMCID: PMC5319304 DOI: 10.3389/fnbeh.2017.00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
Social memory refers to the fundamental ability of social species to recognize their conspecifics in quite different contexts. Sleep has been shown to benefit consolidation, especially of hippocampus-dependent episodic memory whereas effects of sleep on social memory are less well studied. Here, we examined the effect of sleep on memory for conspecifics in rats. To discriminate interactions between the consolidation of social memory and of spatial context during sleep, adult Long Evans rats performed on a social discrimination task in a radial arm maze. The Learning phase comprised three 10-min sampling sessions in which the rats explored a juvenile rat presented at a different arm of the maze in each session. Then the rats were allowed to sleep (n = 18) or stayed awake (n = 18) for 120 min. During the following 10-min Test phase, the familiar juvenile rat (of the Learning phase) was presented along with a novel juvenile rat, each rat at an opposite arm of the maze. Significant social recognition memory, as indicated by preferential exploration of the novel over the familiar conspecific, occurred only after post-learning sleep, but not after wakefulness. Sleep, compared with wakefulness, significantly enhanced social recognition during the first minute of the Test phase. However, memory expression depended on the spatial configuration: Significant social recognition memory emerged only after sleep when the rat encountered the novel conspecific at a place different from that of the familiar juvenile in the last sampling session before sleep. Though unspecific retrieval-related effects cannot entirely be excluded, our findings suggest that sleep, rather than independently enhancing social and spatial aspects of memory, consolidates social memory by acting on an episodic representation that binds the memory of the conspecific together with the spatial context in which it was recently encountered.
Collapse
Affiliation(s)
- Anuck Sawangjit
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Eduard Kelemen
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany; National Institute of Mental HealthKlecany, Czechia
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany; German Center for Diabetes Research (DZD), Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM)Tübingen, Germany; Centre for Integrative Neuroscience, University of TübingenTübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany; Departamento de Psicología, Universidad de ChileSantiago, Chile
| |
Collapse
|
17
|
Müller L, Weinert D. Individual recognition of social rank and social memory performance depends on a functional circadian system. Behav Processes 2016; 132:85-93. [DOI: 10.1016/j.beproc.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/22/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
|
18
|
Matin Sadr N, Haghgoo HA, Samadi SA, Rassafiani M, Bakhshi E. Impact of Air Seat Cushions and Ball Chairs on Classroom Behavior of Students with Autism Spectrum Disorder. JOURNAL OF REHABILITATION 2016. [DOI: 10.21859/jrehab-1702136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
19
|
Takase K, Tsuneoka Y, Oda S, Kuroda M, Funato H. High-fat diet feeding alters olfactory-, social-, and reward-related behaviors of mice independent of obesity. Obesity (Silver Spring) 2016; 24:886-94. [PMID: 26890672 DOI: 10.1002/oby.21441] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/09/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE High-fat diet (HFD) consumption causes obesity, which is associated with well-known increased health risks. Moreover, obesity has been associated with altered sensorimotor and emotional behaviors of humans and mice. This study attempted to dissociate the influence of HFD-induced obesity on behaviors from the influence of HFD consumption itself. METHODS C57BL male mice were randomly allocated to a low-fat diet (LFD) group, an HFD-induced obesity (DIO) group, or a pair-fed HFD-feeding nonobese (HFD) group. A comprehensive behavioral test battery was performed on all three groups to assess sensorimotor functions, anxiety- and depression-like behaviors, reward-related behaviors, social behaviors, and learning/memory functions. RESULTS Both the DIO and HFD groups exhibited disturbed olfaction, blunted ethanol preference, and enhanced social interactions. The DIO group exhibited blunted sucrose preference, shorter latency before falling off during the rotarod test, and a lower response to mechanical stimuli. CONCLUSIONS The HFD-fed nonobese mice showed altered behaviors related to olfaction, social interactions, and rewards that were similar to those of the DIO mice. This finding suggests that HFD consumption alters a variety of behaviors independent of obesity.
Collapse
Affiliation(s)
- Kenkichi Takase
- Department of Anatomy, Toho University School of Medicine, Ota-Ku, Tokyo, Japan
- Laboratory of Psychology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Toho University School of Medicine, Ota-Ku, Tokyo, Japan
| | - Satoko Oda
- Department of Anatomy, Toho University School of Medicine, Ota-Ku, Tokyo, Japan
| | - Masaru Kuroda
- Department of Anatomy, Toho University School of Medicine, Ota-Ku, Tokyo, Japan
| | - Hiromasa Funato
- Department of Anatomy, Toho University School of Medicine, Ota-Ku, Tokyo, Japan
- International Institutes for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
20
|
|
21
|
Bicks LK, Koike H, Akbarian S, Morishita H. Prefrontal Cortex and Social Cognition in Mouse and Man. Front Psychol 2015; 6:1805. [PMID: 26635701 PMCID: PMC4659895 DOI: 10.3389/fpsyg.2015.01805] [Citation(s) in RCA: 327] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/09/2015] [Indexed: 12/15/2022] Open
Abstract
Social cognition is a complex process that requires the integration of a wide variety of behaviors, including salience, reward-seeking, motivation, knowledge of self and others, and flexibly adjusting behavior in social groups. Not surprisingly, social cognition represents a sensitive domain commonly disrupted in the pathology of a variety of psychiatric disorders including Autism Spectrum Disorder (ASD) and Schizophrenia (SCZ). Here, we discuss convergent research from animal models to human disease that implicates the prefrontal cortex (PFC) as a key regulator in social cognition, suggesting that disruptions in prefrontal microcircuitry play an essential role in the pathophysiology of psychiatric disorders with shared social deficits. We take a translational perspective of social cognition, and review three key behaviors that are essential to normal social processing in rodents and humans, including social motivation, social recognition, and dominance hierarchy. A shared prefrontal circuitry may underlie these behaviors. Social cognition deficits in animal models of neurodevelopmental disorders like ASD and SCZ have been linked to an altered balance of excitation and inhibition (E/I ratio) within the cortex generally, and PFC specifically. A clear picture of the mechanisms by which altered E/I ratio in the PFC might lead to disruptions of social cognition across a variety of behaviors is not well understood. Future studies should explore how disrupted developmental trajectory of prefrontal microcircuitry could lead to altered E/I balance and subsequent deficits in the social domain.
Collapse
Affiliation(s)
- Lucy K Bicks
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Hiroyuki Koike
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA
| |
Collapse
|
22
|
Bastakis GG, Savvaki M, Stamatakis A, Vidaki M, Karagogeos D. Tag1 deficiency results in olfactory dysfunction through impaired migration of mitral cells. Development 2015; 142:4318-28. [PMID: 26525675 DOI: 10.1242/dev.123943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 10/22/2015] [Indexed: 01/01/2023]
Abstract
The olfactory system provides mammals with the abilities to investigate, communicate and interact with their environment. These functions are achieved through a finely organized circuit starting from the nasal cavity, passing through the olfactory bulb and ending in various cortical areas. We show that the absence of transient axonal glycoprotein-1 (Tag1)/contactin-2 (Cntn2) in mice results in a significant and selective defect in the number of the main projection neurons in the olfactory bulb, namely the mitral cells. A subpopulation of these projection neurons is reduced in Tag1-deficient mice as a result of impaired migration. We demonstrate that the detected alterations in the number of mitral cells are well correlated with diminished odor discrimination ability and social long-term memory formation. Reduced neuronal activation in the olfactory bulb and the corresponding olfactory cortex suggest that Tag1 is crucial for the olfactory circuit formation in mice. Our results underpin the significance of a numerical defect in the mitral cell layer in the processing and integration of odorant information and subsequently in animal behavior.
Collapse
Affiliation(s)
- George G Bastakis
- Department of Basic Science, Faculty of Medicine, University of Crete and Institute of Molecular Biology and Biotechnology-FoRTH, Vassilika Vouton, Heraklion, Crete 71110, Greece
| | - Maria Savvaki
- Department of Basic Science, Faculty of Medicine, University of Crete and Institute of Molecular Biology and Biotechnology-FoRTH, Vassilika Vouton, Heraklion, Crete 71110, Greece
| | - Antonis Stamatakis
- Laboratory of Biology, Faculty of Nursing, School of Health Sciences, University of Athens, Papadiamantopoulou 123, Athens GR11527, Greece
| | - Marina Vidaki
- Department of Basic Science, Faculty of Medicine, University of Crete and Institute of Molecular Biology and Biotechnology-FoRTH, Vassilika Vouton, Heraklion, Crete 71110, Greece
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete and Institute of Molecular Biology and Biotechnology-FoRTH, Vassilika Vouton, Heraklion, Crete 71110, Greece
| |
Collapse
|
23
|
Toor I, Clement D, Carlson EN, Holmes MM. Olfaction and social cognition in eusocial naked mole-rats, Heterocephalus glaber. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Jacobs S, Wei W, Wang D, Tsien JZ. Importance of the GluN2B carboxy-terminal domain for enhancement of social memories. ACTA ACUST UNITED AC 2015; 22:401-10. [PMID: 26179233 PMCID: PMC4509920 DOI: 10.1101/lm.038521.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/09/2015] [Indexed: 12/18/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptor is known to be necessary for many forms of learning and memory, including social recognition memory. Additionally, the GluN2 subunits are known to modulate multiple forms of memory, with a high GluN2A:GluN2B ratio leading to impairments in long-term memory, while a low GluN2A:GluN2B ratio enhances some forms of long-term memory. Here, we investigate the molecular motif responsible for the differences in social recognition memory and olfactory memory in the forebrain-specific transgenic GluN2A overexpression mice and the forebrain-specific transgenic GluN2B overexpression mice by using two transgenic mouse lines that overexpress chimeric GluN2 subunits. The transgenic chimeric GluN2 subunit mice were tested for their ability to learn and remember fruit scents, male juveniles of the same strain, females of the same strain, male juveniles of another strain, and rodents of another species. The data presented here demonstrate that the GluN2B carboxy-terminal domain is necessary for enhanced social recognition memory in GluN2B transgenic overexpression mice. Furthermore, the GluN2A carboxy-terminal domain is responsible for the impaired long-term olfactory and social memory observed in the GluN2A overexpression mice.
Collapse
Affiliation(s)
- Stephanie Jacobs
- Department of Neurology, Brain and Behavior Discovery Institute, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30907, USA
| | - Wei Wei
- Banna Biomedical Research Institute, Xi-Shuang-Ban-Na Prefecture, Yunnan Province, 666100, China
| | - Deheng Wang
- Banna Biomedical Research Institute, Xi-Shuang-Ban-Na Prefecture, Yunnan Province, 666100, China
| | - Joe Z Tsien
- Department of Neurology, Brain and Behavior Discovery Institute, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30907, USA
| |
Collapse
|
25
|
Perna JC, Wotjak CT, Stork O, Engelmann M. Timing of presentation and nature of stimuli determine retroactive interference with social recognition memory in mice. Physiol Behav 2015; 143:10-4. [DOI: 10.1016/j.physbeh.2015.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 01/09/2015] [Accepted: 02/19/2015] [Indexed: 12/23/2022]
|
26
|
Noack J, Murau R, Engelmann M. Consequences of temporary inhibition of the medial amygdala on social recognition memory performance in mice. Front Neurosci 2015; 9:152. [PMID: 25972782 PMCID: PMC4413668 DOI: 10.3389/fnins.2015.00152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/14/2015] [Indexed: 12/22/2022] Open
Abstract
Different lines of investigation suggest that the medial amygdala is causally involved in the processing of information linked to social behavior in rodents. Here we investigated the consequences of temporary inhibition of the medial amygdala by bilateral injections of lidocaine on long-term social recognition memory as tested in the social discrimination task. Lidocaine or control NaCl solution was infused immediately before learning or before retrieval. Our data show that lidocaine infusion immediately before learning did not affect long-term memory retrieval. However, intra-amygdalar lidocaine infusions immediately before choice interfered with correct memory retrieval. Analysis of the aggressive behavior measured simultaneously during all sessions in the social recognition memory task support the impression that the lidocaine dosage used here was effective as it—at least partially—reduced the aggressive behavior shown by the experimental subjects toward the juveniles. Surprisingly, also infusions of NaCl solution blocked recognition memory at both injection time points. The results are interpreted in the context of the importance of the medial amygdala for the processing of non-volatile odors as a major contributor to the olfactory signature for social recognition memory.
Collapse
Affiliation(s)
- Julia Noack
- Center for Behavioral Brain Sciences, Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität Magdeburg Magdeburg, Germany
| | - Rita Murau
- Center for Behavioral Brain Sciences, Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität Magdeburg Magdeburg, Germany
| | - Mario Engelmann
- Center for Behavioral Brain Sciences, Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität Magdeburg Magdeburg, Germany
| |
Collapse
|
27
|
Jacobs SA, Tsien JZ. Overexpression of the NR2A subunit in the forebrain impairs long-term social recognition and non-social olfactory memory. GENES BRAIN AND BEHAVIOR 2015; 13:376-84. [PMID: 24834524 DOI: 10.1111/gbb.12123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Animals must recognize and remember conspecifics and potential mates, and distinguish these animals from potential heterospecific competitors and predators. Despite its necessity, aged animals are known to exhibit impaired social recognition memory. As the brain ages, the ratio of NR2A:NR2B in the brain increases over time and has been postulated to underlie the cognitive decline observed during the aging process. Here, we test the hypothesis that an increased NR2A:NR2B subunit ratio underlies long-term social recognition memory. Using transgenic overexpression of NR2A in the forebrain regions, we investigated the ability of these mice to learn and remember male and female conspecifics, mice of another strain and animals of another rodent species, the rat. Furthermore, due to the importance of olfaction in social recognition, we tested the olfactory memory in the NR2A transgenic mice. Our series of behavioral experiments revealed significant impairments in the NR2A transgenic mice in long-term social memory of both male and female conspecifics. Additionally, the NR2A transgenic mice are unable to recognize mice of another strain or rats. The NR2A transgenic mice also exhibited long-term memory impairments in the olfactory recognition task. Taken together, our results provide evidence that an increased NR2A:NR2B ratio in the forebrain leads to reduced long-term memory function, including the ethologically important memories such as social recognition and olfactory memory.
Collapse
|
28
|
Abstract
We provide in this chapter a brief overview of the present knowledge about social memory in laboratory rodents with a focus on mice and rats. We discuss in the first part the relevance of the processing of olfactory cues for social recognition in these animals and present information about the brain areas involved in the generation of a long-term social memory including cellular mechanisms thought to underlie memory consolidation. In the second part, we suggest that sensory modalities beyond olfaction may also be important in contributing to the long-term social memory trace including audition and taction (and vision). The exposure to stimuli activating the auditory system and taction is able to produce interference phenomena at defined time points during the consolidation of social memory. This ability of such-nonsocial-stimuli may provide a new approach to dissect the brain processes underlying the generation of the social memory trace in further studies.
Collapse
|
29
|
Ménard C, Gaudreau P, Quirion R. Signaling pathways relevant to cognition-enhancing drug targets. Handb Exp Pharmacol 2015; 228:59-98. [PMID: 25977080 DOI: 10.1007/978-3-319-16522-6_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging is generally associated with a certain cognitive decline. However, individual differences exist. While age-related memory deficits can be observed in humans and rodents in the absence of pathological conditions, some individuals maintain intact cognitive functions up to an advanced age. The mechanisms underlying learning and memory processes involve the recruitment of multiple signaling pathways and gene expression, leading to adaptative neuronal plasticity and long-lasting changes in brain circuitry. This chapter summarizes the current understanding of how these signaling cascades could be modulated by cognition-enhancing agents favoring memory formation and successful aging. It focuses on data obtained in rodents, particularly in the rat as it is the most common animal model studied in this field. First, we will discuss the role of the excitatory neurotransmitter glutamate and its receptors, downstream signaling effectors [e.g., calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), extracellular signal-regulated kinases (ERK), mammalian target of rapamycin (mTOR), cAMP response element-binding protein (CREB)], associated immediate early gene (e.g., Homer 1a, Arc and Zif268), and growth factors [insulin-like growth factors (IGFs) and brain-derived neurotrophic factor (BDNF)] in synaptic plasticity and memory formation. Second, the impact of the cholinergic system and related modulators on memory will be briefly reviewed. Finally, since dynorphin neuropeptides have recently been associated with memory impairments in aging, it is proposed as an attractive target to develop novel cognition-enhancing agents.
Collapse
Affiliation(s)
- Caroline Ménard
- Douglas Mental Health University Institute, McGill University, Perry Pavilion, 6875 LaSalle Boulevard, Montreal, QC, Canada, H4H 1R3
| | | | | |
Collapse
|
30
|
Kraus MM, Prast H, Philippu A. Facilitation of short-term memory by histaminergic neurons in the nucleus accumbens is independent of cholinergic and glutamatergic transmission. Br J Pharmacol 2014; 170:214-21. [PMID: 23750549 DOI: 10.1111/bph.12271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/23/2013] [Accepted: 06/02/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Here, we have investigated whether learning and/or short-term memory was associated with release of ACh and glutamate in the rat nucleus accumbens (NAc). Additionally, neurotransmitter release in the NAc was assessed during facilitation of cognitive processes by antagonists of inhibitory histamine autoreceptors. EXPERIMENTAL APPROACH The olfactory, social memory test was used in combination with push-pull superfusion of the NAc. A male, juvenile rat was exposed twice to an adult male rat at intervals of 60 or 90 min, and release of ACh and glutamate was determined in the NAc of the conscious adult rat. Histamine receptor antagonists were applied i.c.v. KEY RESULTS First exposure of a juvenile rat to an adult rat increased ACh and glutamate release in the NAc of the adult rat. Repetition of exposure after 60 min did not change release of ACh and glutamate, while contact time to recognition (CTR) was shortened. Repetition of exposure after an interval of 90 min prolonged CTR and enhanced accumbal ACh and glutamate release rates. Injection (i.c.v.) of thioperamide (histamine H3 receptor antagonist) together with famotidine (H₂ receptor antagonist), 80 min prior to second exposure, diminished CTR and abolished ACh and glutamate release when second exposure was carried out 90 min after the first one. CONCLUSIONS AND IMPLICATIONS Histaminergic neurons per se facilitated short-term memory, without activation of cholinergic and/or glutamatergic neurons in the NAc of rats. Cholinergic and glutamatergic neurons within the NAc contributed to learning but not to recall of memory.
Collapse
Affiliation(s)
- M M Kraus
- Department of Pharmacology and Toxicology, University of Innsbruck, Austria
| | | | | |
Collapse
|
31
|
A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington's disease CAG knock-in mice. PLoS One 2013; 8:e80923. [PMID: 24278347 PMCID: PMC3838378 DOI: 10.1371/journal.pone.0080923] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/17/2013] [Indexed: 12/29/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing.
Collapse
|
32
|
Toth I, Neumann ID, Slattery DA. Social fear conditioning as an animal model of social anxiety disorder. ACTA ACUST UNITED AC 2013; Chapter 9:Unit9.42. [PMID: 23559308 DOI: 10.1002/0471142301.ns0942s63] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Social fear and avoidance of social situations represent the main behavioral symptoms of social anxiety disorder (SAD), a disorder that is poorly elucidated and has rather unsatisfactory therapeutic options. Therefore, animal models are needed to study the underlying etiology of the disorder and possible novel treatment approaches. However, the current paradigms modeling SAD-like symptoms in rodents are not specific, as they induce numerous other behavioral deficits in addition to social fear and avoidance. Here, we describe the protocol for the social fear conditioning paradigm, an animal model of SAD that specifically induces social fear of unfamiliar con-specifics without potentially confounding alterations in other behavioral measures. Theoretical and practical considerations for performing the social fear conditioning paradigm in both rats and mice, as well as for the analysis and interpretation of the obtained data, are described in detail.
Collapse
Affiliation(s)
- Iulia Toth
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | | | | |
Collapse
|
33
|
Lukas M, Toth I, Veenema AH, Neumann ID. Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: male juvenile versus female adult conspecifics. Psychoneuroendocrinology 2013; 38:916-26. [PMID: 23102690 DOI: 10.1016/j.psyneuen.2012.09.018] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 11/26/2022]
Abstract
Brain oxytocin (OXT) plays an important role in short-term social memory in laboratory rodents. Here we monitored local release of OXT and its functional involvement in the maintenance and retrieval of social memory during the social discrimination test. We further assessed, if the local effects of OXT within the medial amygdala (MeA) and lateral septum (LS) on social discrimination abilities were dependent on the biological relevance of the social stimulus, thus comparing male juvenile versus adult female conspecifics. OXT release was increased in the LS of male rats during the retrieval, but not during the acquisition or maintenance, of social memory for male juvenile stimuli. Blockade of OXT activity by intracerebroventricular (ICV) administration of a specific OXT receptor antagonist (OXTR-A, rats: 0.75 μg/5 μl, mice: 2 μg/2 μl) immediately after acquisition of social memory impaired the maintenance of social memory, and consequently discrimination abilities during retrieval of social memory. In contrast, ICV OXTR-A was without effect when administered 20 min prior to retrieval of social memory in both species. Non-social memory measured in the object discrimination test was not affected by ICV OXTR-A in male mice, indicating that brain OXT is mainly required for memory formation in a social context. The biological relevance of the social stimulus seems to importantly determine social memory abilities, as male rats recognized a previously encountered female adult stimulus for at least 2h (versus 60 min for male juveniles), with a region-dependent contribution of endogenous OXT; while bilateral administration of OXTR-A into the MeA (0.1 μg/1 μl) impaired social memory for adult females only, administration of OXTR-A into the LS via retrodialysis (10 μg/ml, 1.0 μl/min) impaired social memory for both male juveniles and female adults. Overall, these results indicate that brain OXT is a critical mediator of social memory in male rodents and that, depending on the biological relevance of the social stimulus, distinct brain regions are recruited to mediate its effects.
Collapse
Affiliation(s)
- Michael Lukas
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, 93053 Regensburg, Germany
| | | | | | | |
Collapse
|
34
|
Shahar-Gold H, Gur R, Wagner S. Rapid and reversible impairments of short- and long-term social recognition memory are caused by acute isolation of adult rats via distinct mechanisms. PLoS One 2013; 8:e65085. [PMID: 23741464 PMCID: PMC3669127 DOI: 10.1371/journal.pone.0065085] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/22/2013] [Indexed: 11/29/2022] Open
Abstract
Mammalian social organizations require the ability to recognize and remember individual conspecifics. This social recognition memory (SRM) can be examined in rodents using their innate tendency to investigate novel conspecifics more persistently than familiar ones. Here we used the SRM paradigm to examine the influence of housing conditions on the social memory of adult rats. We found that acute social isolation caused within few days a significant impairment in acquisition of short-term SRM of male and female rats. Moreover, SRM consolidation into long-term memory was blocked following only one day of social isolation. Both impairments were reversible, but with different time courses. Furthermore, only the impairment in SRM consolidation was reversed by systemic administration of arginine-vasopressin (AVP). In contrast to SRM, object recognition memory was not affected by social isolation. We conclude that acute social isolation rapidly induces reversible changes in the brain neuronal and molecular mechanisms underlying SRM, which hamper its acquisition and completely block its consolidation. These changes occur via distinct, AVP sensitive and insensitive mechanisms. Thus, acute social isolation of rats swiftly causes changes in their brain and interferes with their normal social behavior.
Collapse
Affiliation(s)
- Hadar Shahar-Gold
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Rotem Gur
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- * E-mail:
| |
Collapse
|
35
|
Social investigation and long-term recognition memory performance in 129S1/SvImJ and C57BL/6JOlaHsd mice and their hybrids. PLoS One 2013; 8:e54427. [PMID: 23342157 PMCID: PMC3546984 DOI: 10.1371/journal.pone.0054427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
When tested for their behavioural performance, the mixed genetic background of transgenic mice is a critical, but often ignored, issue. Such issues can arise because of the significant differences in defined behavioural parameters between embryonic stem cell donor and recipient strains. In this context, the commonly used stem cell donor strain '129' shows 'deficits' in different paradigms for learning and long-term memory. We investigated the long-term social recognition memory performance and the investigative behaviour in commercially available 129S1/SvImJ and C57BL/6JOlaHsd mice and two F1-hybrids (129S1/SvImJ×C57BL/6JOlaHsd) by using the social discrimination procedure and its modification, the volatile fraction cage (VFC). Our data revealed an unimpaired olfactory long-term recognition memory not only in female and male 129S1/SvImJ and C57BL/6JOlaHsd mice but also in the two hybrid lines (129S1/SvImJxC57BL/6JOlaHsd) when the full 'olfactory signature' of the 'to-be-recognized' conspecific was presented. Under these conditions we also failed to detect differences in the long-term recognition memory between male and female mice of the tested strains and revealed that the oestrus cycle did not affect the performance in this memory task. The performance in the VFC, based only on the volatile components of the 'olfactory signature' of the 'to-be-recognized' conspecific, was similar to that observed under direct exposure except that females of one F1 hybrid group failed to show an intact long-term memory. Thus, the social discrimination procedure allowing direct access between the experimental subject and the stimulus animal(s) is highly suitable to investigate the impact of genetic manipulations on long-term memory in male and female mice of the strain 129S1/SvImJ, C57BL/6JOlaHsd and 129S1/SvImJxC57BL/6JOlaHsd hybrids.
Collapse
|
36
|
Bonadonna F, Sanz-Aguilar A. Kin recognition and inbreeding avoidance in wild birds: the first evidence for individual kin-related odour recognition. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.06.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Migdalska AM, van der Weyden L, Ismail O, Rust AG, Rashid M, White JK, Sánchez-Andrade G, Lupski JR, Logan DW, Arends MJ, Adams DJ. Generation of the Sotos syndrome deletion in mice. Mamm Genome 2012; 23:749-57. [PMID: 22926222 PMCID: PMC3510424 DOI: 10.1007/s00335-012-9416-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/16/2012] [Indexed: 11/28/2022]
Abstract
Haploinsufficiency of the human 5q35 region spanning the NSD1 gene results in a rare genomic disorder known as Sotos syndrome (Sotos), with patients displaying a variety of clinical features, including pre- and postnatal overgrowth, intellectual disability, and urinary/renal abnormalities. We used chromosome engineering to generate a segmental monosomy, i.e., mice carrying a heterozygous 1.5-Mb deletion of 36 genes on mouse chromosome 13 (4732471D19Rik-B4galt7), syntenic with 5q35.2–q35.3 in humans (Df(13)Ms2Dja+/− mice). Surprisingly Df(13)Ms2Dja+/− mice were significantly smaller for their gestational age and also showed decreased postnatal growth, in contrast to Sotos patients. Df(13)Ms2Dja+/− mice did, however, display deficits in long-term memory retention and dilation of the pelvicalyceal system, which in part may model the learning difficulties and renal abnormalities observed in Sotos patients. Thus, haploinsufficiency of genes within the mouse 4732471D19Rik–B4galt7 deletion interval play important roles in growth, memory retention, and the development of the renal pelvicalyceal system.
Collapse
Affiliation(s)
- Anna M Migdalska
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
van der Kooij MA, Sandi C. Social memories in rodents: Methods, mechanisms and modulation by stress. Neurosci Biobehav Rev 2012; 36:1763-72. [DOI: 10.1016/j.neubiorev.2011.10.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/20/2011] [Accepted: 10/27/2011] [Indexed: 12/31/2022]
|
39
|
Testing social acoustic memory in rats: effects of stimulus configuration and long-term memory on the induction of social approach behavior by appetitive 50-kHz ultrasonic vocalizations. Neurobiol Learn Mem 2012; 98:154-64. [PMID: 22677211 DOI: 10.1016/j.nlm.2012.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/18/2012] [Accepted: 05/23/2012] [Indexed: 02/03/2023]
Abstract
Rats emit distinct types of ultrasonic vocalizations (USVs), which serve as situation-dependent affective signals. In appetitive situations, such as rough-and-tumble-play, high-frequency 50-kHz USVs occur, whereas low-frequency 22-kHz USVs can be observed in aversive situations, such as social defeat. USVs serve distinct communicative functions and induce call-specific behavioral responses in the receiver. While aversive 22-kHz USVs serve as alarm calls and induce behavioral inhibition, appetitive 50-kHz USVs have a pro-social communicative function and elicit social approach behavior, supporting the notion that they serve as social contact calls to (re)establish or maintain contact among conspecifics. The aim of the present study was to use the rat's ability to communicate in the ultrasonic range via high-frequency 50-kHz USVs in order to develop a test for social acoustic memory in rats with relevance for human verbal memory. Verbal learning and memory is among the seven cognitive domains identified as commonly deficient in human schizophrenia patients, but particularly difficult to model. We therefore tested whether the induction of social approach behavior by playback of appetitive 50-kHz USVs is dependent on (1) acoustic stimulus configuration and (2) social long-term memory, and whether (3) social long-term memory effects can be blocked by the administration of scopolamine, a muscarinic acetylcholine antagonist producing amnesia. Results show that social approach behavior in response to playback of natural 50-kHz USVs depends on acoustic stimulus configuration and occurs only when sound energy is concentrated to a critical frequency band in the ultrasonic range. Social approach behavior was detected during the first exposure to playback of 50-kHz USVs, whereas no such response was observed during the second exposure 1week later, indicating a stable memory trace. In contrast, when memory formation was blocked by i.p. administration of scopolamine (0.5mg/kg or 1.5mg/kg) immediately after the first exposure, rats displayed social approach behavior during the second exposure as well. Induction of social approach behavior in response to repeated playback of natural 50-kHz USVs may therefore provide a new and rather unique approach for testing social acoustic memory in rats with relevance to human verbal memory.
Collapse
|
40
|
Jacobs SA, Tsien JZ. genetic overexpression of NR2B subunit enhances social recognition memory for different strains and species. PLoS One 2012; 7:e36387. [PMID: 22558458 PMCID: PMC3338680 DOI: 10.1371/journal.pone.0036387] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 03/31/2012] [Indexed: 11/25/2022] Open
Abstract
The ability to learn and remember conspecifics is essential for the establishment and maintenance of social groups. Many animals, including humans, primates and rodents, depend on stable social relationships for survival. Social learning and social recognition have become emerging areas of interest for neuroscientists but are still not well understood. It has been established that several hormones play a role in the modulation of social recognition including estrogen, oxytocin and arginine vasopression. Relatively few studies have investigated how social recognition might be improved or enhanced. In this study, we investigate the role of the NMDA receptor in social recognition memory, specifically the consequences of altering the ratio of the NR2B∶NR2A subunits in the forebrain regions in social behavior. We produced transgenic mice in which the NR2B subunit of the NMDA receptor was overexpressed postnatally in the excitatory neurons of the forebrain areas including the cortex, amygdala and hippocampus. We investigated the ability of both our transgenic animals and their wild-type littermate to learn and remember juvenile conspecifics using both 1-hr and 24-hr memory tests. Our experiments show that the wild-type animals and NR2B transgenic mice preformed similarly in the 1-hr test. However, transgenic mice showed better performances in 24-hr tests of recognizing animals of a different strain or animals of a different species. We conclude that NR2B overexpression in the forebrain enhances social recognition memory for different strains and animal species.
Collapse
Affiliation(s)
- Stephanie A. Jacobs
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Joe Z. Tsien
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
41
|
Wacker DW, Ludwig M. Vasopressin, oxytocin, and social odor recognition. Horm Behav 2012; 61:259-65. [PMID: 21920364 DOI: 10.1016/j.yhbeh.2011.08.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 11/30/2022]
Abstract
Central vasopressin and oxytocin, and their homologues, modulate a multitude of social behaviors in a variety of animal taxa. All social behavior requires some level of social (re)cognition, and these neuropeptides exert powerful effects on an animal's ability to recognize and appropriately respond to a conspecific. Social cognition for many mammals, including rodents, begins at the main and accessory olfactory systems. We recently identified vasopressin expressing neurons in the main and accessory olfactory bulb and in the anterior olfactory nucleus, a region of olfactory cortex that transmits and processes information in the main olfactory system. We review this and other work demonstrating that both vasopressin and oxytocin modulate conspecific social recognition at the level of the olfactory system. We also outline recent work on the somato-dendritic release of vasopressin and oxytocin, and propose a model by which the somato-dendritic priming of these neuropeptides in main olfactory regions may facilitate the formation of short-term social odor memories. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- Douglas W Wacker
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | |
Collapse
|
42
|
Broad KD, Keverne EB. The post-natal chemosensory environment induces epigenetic changes in vomeronasal receptor gene expression and a bias in olfactory preference. Behav Genet 2011; 42:461-71. [PMID: 22179772 DOI: 10.1007/s10519-011-9523-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/06/2011] [Indexed: 12/20/2022]
Abstract
Vomeronasal stem cells are generated throughout the life of a mouse and differentiate into neurons that express one vomeronasal type 1 (V1r), one or two vomeronasal type 2 (V2r), or one olfactory receptor. Vomeronasal stem cells can be induced to differentiate into neurons by treatment with lipocalins from mouse urine or by epigenetic modification following treatment with histone deacetylase inhibitors. An important question is, do chemosensory signals, modify the detection capabilities of the vomeronasal organ and affect behaviour. Rearing mice in the presence of urine (and its pheromonal signals) derived from a different mouse strain, affected the behavioural preference for non-kin which were accompanied by changes in vomeronasal receptor expression. Significant changes in the expression of vomeronasal V1r, V2r and olfactory receptors, major urinary proteins, and a number of genes thought to be involved in transcriptional regulation were also observed following urine treatment. These results suggest that modification of a mouse's urinary environment may exert epigenetic effects on developing vomeronasal neurons, which modify the type of vomeronasal receptors that are expressed. This may provide a mechanism by which environmental changes are able to modify the detection capabilities of the vomeronasal organ to respond optimally to the most likely social environment that a mouse will encounter when mature.
Collapse
Affiliation(s)
- Kevin D Broad
- Sub-Dept of Animal Behaviour, University of Cambridge, Madingley, Cambridge, UK.
| | | |
Collapse
|
43
|
Engelmann M, Hädicke J, Noack J. Testing declarative memory in laboratory rats and mice using the nonconditioned social discrimination procedure. Nat Protoc 2011; 6:1152-62. [PMID: 21799485 DOI: 10.1038/nprot.2011.353] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Testing declarative memory in laboratory rodents can provide insights into the fundamental mechanisms underlying this type of learning and memory processing, and these insights are likely to be applicable to humans. Here we provide a detailed description of the social discrimination procedure used to investigate recognition memory in rats and mice, as established during the last 20 years in our laboratory. The test is based on the use of olfactory signals for social communication in rodents; this involves a direct encounter between conspecifics, during which the investigatory behavior of the experimental subject serves as an index for learning and memory performance. The procedure is inexpensive, fast and very reliable, but it requires well-trained human observers. We include recent modifications to the procedure that allow memory extinction to be investigated by retroactive and proactive interference, and that enable the dissociated analysis of the central nervous processing of the volatile fraction of an individual's olfactory signature. Depending on the memory retention interval under study (short-term memory, intermediate-term memory, long-term memory or long-lasting memory), the protocol takes ~10 min or up to several days to complete.
Collapse
Affiliation(s)
- Mario Engelmann
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität, Magdeburg, Germany.
| | | | | |
Collapse
|
44
|
Wacker DW, Engelmann M, Tobin VA, Meddle SL, Ludwig M. Vasopressin and social odor processing in the olfactory bulb and anterior olfactory nucleus. Ann N Y Acad Sci 2011; 1220:106-16. [PMID: 21388408 DOI: 10.1111/j.1749-6632.2010.05885.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Central vasopressin facilitates social recognition and modulates numerous complex social behaviors in mammals, including parental behavior, aggression, affiliation, and pair-bonding. In rodents, social interactions are primarily mediated by the exchange of olfactory information, and there is evidence that vasopressin signaling is important in brain areas where olfactory information is processed. We recently discovered populations of vasopressin neurons in the main and accessory olfactory bulbs and anterior olfactory nucleus that are involved in the processing of social odor cues. In this review, we propose a model of how vasopressin release in these regions, potentially from the dendrites, may act to filter social odor information to facilitate odor-based social recognition. Finally, we discuss recent human research linked to vasopressin signaling and suggest that our model of priming-facilitated vasopressin signaling would be a rewarding target for further studies, as a failure of priming may underlie pathological changes in complex behaviors.
Collapse
Affiliation(s)
- Douglas W Wacker
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
McGowan PO, Hope TA, Meck WH, Kelsoe G, Williams CL. Impaired social recognition memory in recombination activating gene 1-deficient mice. Brain Res 2011; 1383:187-95. [PMID: 21354115 DOI: 10.1016/j.brainres.2011.02.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
The recombination activating genes (RAGs) encode two enzymes that play key roles in the adaptive immune system. RAG1 and RAG2 mediate VDJ recombination, a process necessary for the maturation of B- and T-cells. Interestingly, RAG1 is also expressed in the brain, particularly in areas of high neural density such as the hippocampus, although its function is unknown. We tested evidence that RAG1 plays a role in brain function using a social recognition memory task, an assessment of the acquisition and retention of conspecific identity. In a first experiment, we found that RAG1-deficient mice show impaired social recognition memory compared to mice wildtype for the RAG1 allele. In a second experiment, by breeding to homogenize background genotype, we found that RAG1-deficient mice show impaired social recognition memory relative to heterozygous or RAG2-deficient littermates. Because RAG1 and RAG2 null mice are both immunodeficient, the results suggest that the memory impairment is not an indirect effect of immunological dysfunction. RAG1-deficient mice show normal habituation to non-socially derived odors and habituation to an open-field, indicating that the observed effect is not likely a result of a general deficit in habituation to novelty. These data trace the origin of the impairment in social recognition memory in RAG1-deficient mice to the RAG1 gene locus and implicate RAG1 in memory formation.
Collapse
Affiliation(s)
- Patrick O McGowan
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| | | | | | | | | |
Collapse
|