1
|
Schmidig FJ, Geva-Sagiv M, Falach R, Yakim S, Gat Y, Sharon O, Fried I, Nir Y. A visual paired associate learning (vPAL) paradigm to study memory consolidation during sleep. J Sleep Res 2024; 33:e14151. [PMID: 38286437 DOI: 10.1111/jsr.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/31/2024]
Abstract
Sleep improves the consolidation and long-term stability of newly formed memories and associations. Most research on human declarative memory and its consolidation during sleep uses word-pair associations requiring exhaustive learning. In the present study, we present the visual paired association learning (vPAL) paradigm, in which participants learn new associations between images of celebrities and animals. The vPAL is based on a one-shot exposure that resembles learning in natural conditions. We tested if vPAL can reveal a role for sleep in memory consolidation by assessing the specificity of memory recognition, and the cued recall performance, before and after sleep. We found that a daytime nap improved the stability of recognition memory and discrimination abilities compared to identical intervals of wakefulness. By contrast, cued recall of associations did not exhibit significant sleep-dependent effects. High-density electroencephalography during naps further revealed an association between sleep spindle density and stability of recognition memory. Thus, the vPAL paradigm opens new avenues for future research on sleep and memory consolidation across ages and heterogeneous populations in health and disease.
Collapse
Affiliation(s)
- Flavio Jean Schmidig
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Geva-Sagiv
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
| | - Rotem Falach
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Yakim
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University, Jerusalem, Israel
| | - Yael Gat
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Omer Sharon
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley, USA
| | - Itzhak Fried
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
2
|
Wu J, Kwok SC, Wang H, Wang Z. Effects of post-learning nap in the recognition memory for faces in habitual nappers. Neurobiol Learn Mem 2024; 213:107957. [PMID: 38964599 DOI: 10.1016/j.nlm.2024.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
This study investigated the effects of diurnal nap in the recognition memory for faces in habitual nappers. Thirty volunteers with habitual midday napping (assigned as the sleep group) and 28 non-nappers (assigned as the wake group) participated in this study. Participants were instructed to memorize faces, and subsequently to perform two recognition tasks before and after nap/wakefulness, i.e., an immediate recognition and a delayed recognition. There were three experimental conditions: same faces with the same view angle (S-S condition); same faces with a different view angle (22.5°) (S-D condition); and novel faces (NF condition). A mixed repeated-measures ANOVA revealed that the sleep group exhibited significantly longer reaction times (RT) following their nap compared to those of the wake group; no significant between-group differences were observed in accuracy or sensitivity (d'). Furthermore, both groups were more conservative in the delayed recognition task compared to the immediate recognition task, but the sleep group was more conservative after their nap (vs pre-nap), reflected by the criterion (β, Ohit/Ofalse alarm). Further stepwise regression analysis revealed a positive relationship between duration of stage N3 sleep and normalized RT difference before/after nap on the S-S condition. These findings suggest that an immediate nap following face learning is associated with memory reorganization during N3 sleep in habitual nappers, rendering the memories not readily accessible.
Collapse
Affiliation(s)
- Jue Wu
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics (Ministry of Education), Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Center for Psychological Health Education of College Students, Wuhan University, Wuhan, Hubei Province, China
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics (Ministry of Education), Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China; Phylo-Cognition Laboratory, Division of Natural and Applied Sciences, Data Science Research Center, Duke Kunshan University, Duke Institute for Brain Sciences, Kunshan, Jiangsu, China; Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Huimin Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics (Ministry of Education), Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China.
| | - Zhaoxin Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics (Ministry of Education), Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China; Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.
| |
Collapse
|
3
|
Sharman R, Kyle SD, Espie CA, Tamm S. Associations between self-reported sleep, overnight memory consolidation, and emotion perception: A large-scale online study in the general population. J Sleep Res 2024; 33:e14094. [PMID: 38009410 DOI: 10.1111/jsr.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 11/28/2023]
Abstract
Experimental studies suggest that short or disrupted sleep impairs memory consolidation, mood, and perception of emotional stimuli. However, studies have chiefly relied on laboratory-based study designs and small sample sizes. The aim of this fully online and pre-registered study was to investigate the association between sleep and overnight memory consolidation, emotion perception, and affect in a large, self-selected UK sample. A total of 1646 participants (473 completed) took part in an online study, where they completed a declarative (word-pairs) memory task, emotion perception task (valence ratings of images), and rated their affect within 2 h of bed-time. The following morning, participants reported on their state affect, sleep for the previous night, completed a cued recall task for the previously presented word-pairs, rated the valence of previously viewed images, and completed a surprise recognition task. Demographic data and habitual sleep quality and duration (sleep traits) were also recorded. Habitual sleep traits were associated with immediate recall for the word-pairs task, while self-reported sleep parameters for the specific night were not associated with overnight memory consolidation. Neither habitual sleep traits, nor nightly sleep parameters were associated with unpleasantness ratings to negative stimuli or overnight habituation. Habitual poor sleep was associated with less positive and more negative affect, and morning affect was predicted by the specific night's sleep. This study suggests that overnight emotional processing and declarative memory may not be associated with self-reported sleep across individuals. More work is needed to understand how findings from laboratory-based studies extrapolate to real-world samples and contexts.
Collapse
Affiliation(s)
- Rachel Sharman
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Simon D Kyle
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Colin A Espie
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sandra Tamm
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Ovalle-Fresa R, Martarelli CS. Drawing as an efficient encoding tool in younger but not always older adults: The case of associative memory. Mem Cognit 2024:10.3758/s13421-023-01503-6. [PMID: 38175462 DOI: 10.3758/s13421-023-01503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Episodic memory strongly declines in healthy aging, at least partly because of reduced abilities to create and remember associations (associative memory) and to use efficient memory strategies. Several studies have shown that drawing the to-be-remembered material is a reliable encoding tool to enhance memory of individual items (item memory) because it simultaneously integrates elaborative, pictorial, and motoric processes. These processes in isolation can enhance associative memory in older adults. Nevertheless, their simultaneous impact on associative memory has never been investigated in drawing as an encoding tool. We aimed to investigate whether drawing as an encoding tool not only enhances item memory, but whether its benefit extends to associative memory in younger and older adults. Therefore, we tested 101 older and 100 younger participants in two online experiments and one in-person experiment. Using a memory task for unrelated word-pairs, we compared relational drawing and repeatedly writing (non-relational) as encoding tools and assessed immediate recognition memory of items and associations. In Experiment 2, we additionally assessed recognition memory after 1 week. The findings were consistent across the three experiments: while younger participants benefited from drawing over writing in item and associative memory, older participants benefited in item but not in associative memory. The observed effects remained after 1 week. Thus, we could extend the benefit of drawing to relational drawing in associative memory in younger adults. The lack of benefit in older adults' associative memory might be explained by age-related difficulties in benefiting from memory strategies, and in creating and retrieving associations.
Collapse
Affiliation(s)
- Rebecca Ovalle-Fresa
- Faculty of Psychology, UniDistance Suisse, Schinerstrasse 18, 3900, Brig, Switzerland.
| | - Corinna S Martarelli
- Faculty of Psychology, UniDistance Suisse, Schinerstrasse 18, 3900, Brig, Switzerland
| |
Collapse
|
5
|
Chen P, Hao C, Ma N. Sleep spindles consolidate declarative memory with tags: A meta-analysis of adult data. JOURNAL OF PACIFIC RIM PSYCHOLOGY 2024; 18. [DOI: 10.1177/18344909241226761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Tags are attached to salient information during the wake period, which can preferentially determine what information can be consolidated during sleep. Previous studies demonstrated that spindles during non-rapid eye movement (NREM) sleep give priority to strengthening memory representations with tags, indicating a privileged reactivation of tagged information. The current meta-analysis investigated whether and how spindles can capture different tags to consolidate declarative memory. This study searched the Web of Science, Google Scholar, PubMed, PsycINFO, and OATD databases for studies that spindles consolidate declarative memory with tags. A meta-analysis using a random-effects model was performed. Based on 19 datasets from 18 studies (N = 388), spindles had a medium effect on the consolidation of declarative memory with tags ( r = 0.519). In addition, spindles derived from whole-night sleep and nap studies were positively related to the consolidation of memory representations with tags. These findings reveal the shared mechanism that spindles are actively involved in the prefrontal-hippocampus circuits to consolidate memory with tags.
Collapse
Affiliation(s)
- Peiyao Chen
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Chao Hao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
6
|
Denis D, Cairney SA. Neural reactivation during human sleep. Emerg Top Life Sci 2023; 7:487-498. [PMID: 38054531 PMCID: PMC10754334 DOI: 10.1042/etls20230109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Sleep promotes memory consolidation: the process by which newly acquired memories are stabilised, strengthened, and integrated into long-term storage. Pioneering research in rodents has revealed that memory reactivation in sleep is a primary mechanism underpinning sleep's beneficial effect on memory. In this review, we consider evidence for memory reactivation processes occurring in human sleep. Converging lines of research support the view that memory reactivation occurs during human sleep, and is functionally relevant for consolidation. Electrophysiology studies have shown that memory reactivation is tightly coupled to the cardinal neural oscillations of non-rapid eye movement sleep, namely slow oscillation-spindle events. In addition, functional imaging studies have found that brain regions recruited during learning become reactivated during post-learning sleep. In sum, the current evidence paints a strong case for a mechanistic role of neural reactivation in promoting memory consolidation during human sleep.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York YO10 5DD, U.K
| | - Scott A. Cairney
- Department of Psychology, University of York, York YO10 5DD, U.K
- York Biomedical Research Institute, University of York, York YO10 5DD, U.K
| |
Collapse
|
7
|
Kumral D, Matzerath A, Leonhart R, Schönauer M. Spindle-dependent memory consolidation in healthy adults: A meta-analysis. Neuropsychologia 2023; 189:108661. [PMID: 37597610 DOI: 10.1016/j.neuropsychologia.2023.108661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Accumulating evidence suggests a central role for sleep spindles in the consolidation of new memories. However, no meta-analysis of the association between sleep spindles and memory performance has been conducted so far. Here, we report meta-analytical evidence for spindle-memory associations and investigate how multiple factors, including memory type, spindle type, spindle characteristics, and EEG topography affect this relationship. The literature search yielded 53 studies reporting 1427 effect sizes, resulting in a small to moderate effect for the average association. We further found that spindle-memory associations were significantly stronger for procedural memory than for declarative memory. Neither spindle types nor EEG scalp topography had an impact on the strength of the spindle-memory relation, but we observed a distinct functional role of global and fast sleep spindles, especially for procedural memory. We also found a moderation effect of spindle characteristics, with power showing the largest effect sizes. Collectively, our findings suggest that sleep spindles are involved in learning, thereby representing a general physiological mechanism for memory consolidation.
Collapse
Affiliation(s)
- Deniz Kumral
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Alina Matzerath
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Rainer Leonhart
- Institute of Psychology, Social Psychology and Methodology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Monika Schönauer
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Bernstein Center Freiburg, Freiburg Im Breisgau, Germany
| |
Collapse
|
8
|
Denis D, Bottary R, Cunningham TJ, Tcheukado MC, Payne JD. The influence of encoding strategy on associative memory consolidation across wake and sleep. Learn Mem 2023; 30:185-191. [PMID: 37726141 PMCID: PMC10547373 DOI: 10.1101/lm.053765.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/19/2023] [Indexed: 09/21/2023]
Abstract
Sleep benefits memory consolidation. However, factors present at initial encoding may moderate this effect. Here, we examined the role that encoding strategy plays in subsequent memory consolidation during sleep. Eighty-nine participants encoded pairs of words using two different strategies. Each participant encoded half of the word pairs using an integrative visualization technique, where the two items were imagined in an integrated scene. The other half were encoded nonintegratively, with each word pair item visualized separately. Memory was tested before and after a period of nocturnal sleep (N = 47) or daytime wake (N = 42) via cued recall tests. Immediate memory performance was significantly better for word pairs encoded using the integrative strategy compared with the nonintegrative strategy (P < 0.001). When looking at the change in recall across the delay, there was significantly less forgetting of integrated word pairs across a night of sleep compared with a day spent awake (P < 0.001), with no significant difference in the nonintegrated pairs (P = 0.19). This finding was driven by more forgetting of integrated compared with not-integrated pairs across the wake delay (P < 0.001), whereas forgetting was equivalent across the sleep delay (P = 0.26). Together, these results show that the strategy engaged in during encoding impacts both the immediate retention of memories and their subsequent consolidation across sleep and wake intervals.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
| | - Ryan Bottary
- Institute for Graduate Clinical Psychology, Widener University, Chester, Pennsylvania 19013, USA
| | - Tony J Cunningham
- Center for Sleep and Cognition, Psychiatry Department, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | - Jessica D Payne
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
9
|
Peng Z, Hou Y, Xu L, Wang H, Wu S, Song T, Shao Y, Yang Y. Recovery sleep attenuates impairments in working memory following total sleep deprivation. Front Neurosci 2023; 17:1056788. [PMID: 37144096 PMCID: PMC10151529 DOI: 10.3389/fnins.2023.1056788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction The detrimental effects of sleep deprivation (SD) on cognitive function and quality of life are well known, and sleep disturbances are a major physical and mental health issue worldwide. Working memory plays an important role in many complex cognitive processes. Therefore, it is necessary to identify strategies that can effectively counteract the negative effects of SD on working memory. Methods In the present study, we utilized event-related potentials (ERPs) to investigate the restorative effects of 8 h of recovery sleep (RS) on working memory impairments induced by total sleep deprivation for 36 h. We analyzed ERP data from 42 healthy male participants who were randomly assigned to two groups. The nocturnal sleep (NS) group completed a 2-back working memory task before and after normal sleep for 8 h. The sleep deprivation (SD) group completed a 2-back working memory task before and after 36 h of total sleep deprivation (TSD) and after 8 h of RS. Electroencephalographic data were recorded during each task. Results The N2 and P3 components-which are related to working memory-exhibited low-amplitude and slow-wave characteristics after 36 h of TSD. Additionally, we observed a significant decrease in N2 latency after 8 h of RS. RS also induced significant increases in the amplitude of the P3 component and in the behavioral indicators. Discussion Overall, 8 h of RS attenuated the decrease in working memory performance caused by 36 h of TSD. However, the effects of RS appear to be limited.
Collapse
Affiliation(s)
- Ziyi Peng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yanhong Hou
- Department of Psychology Medical, The 8th Medical Centre of PLA General Hospital, Beijing, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing, China
| | - Haiteng Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Shuqing Wu
- Center of Stress Medicine, East China Institute of Biotechnology, Peking University, Beijing, China
| | - Tao Song
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yan Yang
- Department of Radiology, The 8th Medical Centre of PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Zhang H, Zhang L, Chen C, Zhong X. Association between daytime napping and cognitive impairment among Chinese older population: a cross-sectional study. Environ Health Prev Med 2023; 28:72. [PMID: 37989282 PMCID: PMC10685077 DOI: 10.1265/ehpm.23-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/30/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Both napping and nighttime sleep duration have been reported to be associated with cognitive function in older adults, whereas little is known about the association between daytime napping and cognitive impairment in different nighttime sleep duration subgroups. This study aimed to explore the correlation between daytime napping and cognitive impairment across nighttime sleep duration subgroups. METHODS A cross-sectional study was conducted by using the fourth survey of China Health and Retirement Longitudinal Study (CHARLS). We utilized the Mini-Mental State Examination (MMSE) scale to define cognitive impairment, and the daytime napping and nighttime sleep duration was self-reported by individuals. We applied the Restricted Cubic Spline (RCS) to analysis the dose-response relationships between daytime napping and cognitive impairment. And the multivariate Logistic Regression Model (LRM) was performed to evaluate the association of daytime napping and cognitive impairment. RESULTS A total of 3,052 individuals were included, of which 769 were cognitive impairment. The RCS showed there were non-linear association between daytime napping and cognitive impairment in all participants group and longer nighttime sleep duration subgroup (PNon-linear < 0.05, PDaytime napping < 0.05). The LRM revealed no napping (OR = 1.62, 95%CI 1.14-2.30) and excessive napping (1.64 95%CI 1.09-2.48) were related to cognitive impairment in longer nighttime sleep duration subgroup. CONCLUSIONS Daytime napping had nonlinear association with cognitive impairment in Chinese elderly population. No napping and excessive daytime napping (>90 minutes) were related to cognitive impairment in participants with 7 and more hours nighttime sleep duration.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Lijuan Zhang
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Chen Chen
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoni Zhong
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
11
|
Burdack J, Schöllhorn WI. Cognitive Enhancement through Differential Rope Skipping after Math Lesson. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:205. [PMID: 36612527 PMCID: PMC9819879 DOI: 10.3390/ijerph20010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Numerous studies have shown cognitive enhancement through sport and physical exercise. Despite the variety of studies, the extent to which physical activity before or after a cognitive learning session leads to more effective cognitive enhancement remains largely unresolved. Moreover, little attention has been paid to the dependence of the motor learning approach then applied. In this study, we compare the influence of differential with uniformly rope skipping directly succeeding an acquisition phase in arithmetic mathematics. For three weeks 26 pupils, 14 female, 12 male, and 13.9 ± 0.7 years old, completed nine 15 min exercises in arithmetic math, each followed by 3 min rope skipping with heart rate measurement. Arithmetic performance was tested in a pre-, post- and retention test design. The results showed a statistically significant difference between the differential and the control groups within the development of arithmetic performance, especially in the retention test. There was no statistical difference in heart rate. It is suggested that the results provide evidence for sustainable improvements of cognitive learning performance by means of highly variable rope skipping.
Collapse
|
12
|
Two distinct ways to form long-term object recognition memory during sleep and wakefulness. Proc Natl Acad Sci U S A 2022; 119:e2203165119. [PMID: 35969775 PMCID: PMC9407643 DOI: 10.1073/pnas.2203165119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Memory consolidation is promoted by sleep. However, there is also evidence for consolidation into long-term memory during wakefulness via processes that preferentially affect nonhippocampal representations. We compared, in rats, the effects of 2-h postencoding periods of sleep and wakefulness on the formation of long-term memory for objects and their associated environmental contexts. We employed a novel-object recognition (NOR) task, using object exploration and exploratory rearing as behavioral indicators of these memories. Remote recall testing (after 1 wk) confirmed significant long-term NOR memory under both conditions, with NOR memory after sleep predicted by the occurrence of EEG spindle-slow oscillation coupling. Rats in the sleep group decreased their exploratory rearing at recall testing, revealing successful recall of the environmental context. By contrast, rats that stayed awake after encoding showed equally high levels of rearing upon remote testing as during encoding, indicating that context memory was lost. Disruption of hippocampal function during the postencoding interval (by muscimol administration) suppressed long-term NOR memory together with context memory formation when animals slept, but enhanced NOR memory when they were awake during this interval. Testing remote recall in a context different from that during encoding impaired NOR memory in the sleep condition, while exploratory rearing was increased. By contrast, NOR memory in the wake rats was preserved and actually superior to that after sleep. Our findings indicate two distinct modes of long-term memory formation: Sleep consolidation is hippocampus dependent and implicates event-context binding, whereas wake consolidation is impaired by hippocampal activation and strengthens context-independent representations.
Collapse
|
13
|
Hokett E, Arunmozhi A, Campbell J, Verhaeghen P, Duarte A. A systematic review and meta-analysis of individual differences in naturalistic sleep quality and episodic memory performance in young and older adults. Neurosci Biobehav Rev 2021; 127:675-688. [PMID: 34000349 PMCID: PMC8330880 DOI: 10.1016/j.neubiorev.2021.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 01/20/2023]
Abstract
Better sleep quality has been associated with better episodic memory performance in young adults. However, the strength of sleep-memory associations in aging has not been well characterized. It is also unknown whether factors such as sleep measurement method (e.g., polysomnography, actigraphy, self-report), sleep parameters (e.g., slow wave sleep, sleep duration), or memory task characteristics (e.g., verbal, pictorial) impact the strength of sleep-memory associations. Here, we assessed if the aforementioned factors modulate sleep-memory relationships. Across age groups, sleep-memory associations were similar for sleep measurement methods, however, associations were stronger for PSG than self-report. Age group moderated sleep-memory associations for certain sleep parameters. Specifically, young adults demonstrated stronger positive sleep-memory associations for slow wave sleep than the old, while older adults demonstrated stronger negative associations between greater wake after sleep onset and poorer memory performance than the young. Collectively, these data show that young and older adults maintain similar strength in sleep-memory relationships, but age impacts the specific sleep correlates that contribute to these relationships.
Collapse
|
14
|
Abstract
Purpose of review Napping is a common behavior across age groups. While studies have shown a benefit of overnight sleep on memory consolidation, given differences in nap frequency, composition, and intent, it is important to consider whether naps serve a memory function across development and aging. Recent findings We review studies of the role of naps in declarative, emotional, and motor procedural memory consolidation across age groups. Recent findings in both developmental and aging populations find that naps benefit learning of many tasks but may require additional learning or sleep bouts compared to young adult populations. These studies have also identified variations in nap physiology based on the purpose of the nap, timing of the nap, or age. Summary These studies lend to our understanding of the function of sleep, and the potential for naps as an intervention for those with reduced nighttime sleep or learning impairments.
Collapse
Affiliation(s)
- Bethany J Jones
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts, U.S.A
- Neuroscience & Behavior Program, University of Massachusetts, Amherst, Amherst, Massachusetts, U.S.A
| | - Rebecca M C Spencer
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts, U.S.A
- Neuroscience & Behavior Program, University of Massachusetts, Amherst, Amherst, Massachusetts, U.S.A
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts, U.S.A
| |
Collapse
|
15
|
MacDonald KJ, Cote KA. Contributions of post-learning REM and NREM sleep to memory retrieval. Sleep Med Rev 2021; 59:101453. [PMID: 33588273 DOI: 10.1016/j.smrv.2021.101453] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
It has become clear that sleep after learning has beneficial effects on the later retrieval of newly acquired memories. The neural mechanisms underlying these effects are becoming increasingly clear as well, particularly those of non-REM sleep. However, much is still unknown about the sleep and memory relationship: the sleep state or features of sleep physiology that associate with memory performance often vary by task or experimental design, and the nature of this variability is not entirely clear. This paper describes pertinent features of sleep physiology and provides a detailed review of the scientific literature indicating beneficial effects of post-learning sleep on memory retrieval. This paper additionally introduces a hypothesis which attributes these beneficial effects of post-learning sleep to separable processes of memory reinforcement and memory refinement whereby reinforcement supports one's ability to retrieve a given memory and refinement supports the precision of that memory retrieval in the context of competitive alternatives. It is observed that features of non-REM sleep are involved in a post-learning substantiation of memory representations that benefit memory performance; thus, memory reinforcement is primarily attributed to non-REM sleep. Memory refinement is primarily attributed to REM sleep given evidence of bidirectional synaptic plasticity in REM sleep and findings from studies of selective REM sleep deprivation.
Collapse
|
16
|
Cipolli C, Pizza F, Bellucci C, Mazzetti M, Tuozzi G, Vandi S, Plazzi G. Dream Generation and Recall in Daytime NREM Sleep of Patients With Narcolepsy Type 1. Front Neurosci 2020; 14:608757. [PMID: 33328876 PMCID: PMC7729059 DOI: 10.3389/fnins.2020.608757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/28/2020] [Indexed: 12/02/2022] Open
Abstract
The less rigid architecture of sleep in patients with narcolepsy type 1 (NT1) compared with healthy subjects may provide new insights into some unresolved issues of dream experience (DE), under the assumption that their DE frequencies are comparable. The multiple transition from wakefulness to REM sleep (sleep onset REM period: SOREMP) during the five trials of the Multiple Sleep Latency Test (MSLT) appears of particular interest. In MSLT studies, NT1 patients reported a DE after about 80% of SOREMP naps (as often as after nighttime REM sleep of themselves and healthy subjects), but only after about 30% of NREM naps compared to 60% of daytime and nighttime NREM sleep of healthy subjects. To estimate accurately the “real” DE frequency, we asked participants to report DE (“dream”) after each MSLT nap and, in case of failure, to specify if they were unable to retrieve any content (“white dream”) or DE did not occur (“no-dream”). The proportions of dreams, white dreams, and no dreams and the indicators of structural organization of DEs reported after NREM naps by 17 adult NT1 patients were compared with those reported by 25 subjects with subjective complaints of excessive daytime sleepiness (sc-EDS), who take multiple daytime NREM naps. Findings were consistent with the hypothesis of a failure in recall after awakening rather than in generation during sleep: white dreams were more frequent in NT1 patients than in sc-EDS subjects (42.86 vs 17.64%), while their frequency of dreams plus white dreams were similar (67.86 and 61.78%) and comparable with that of NREM-DEs in healthy subjects. The longer and more complex NREM-DEs of NT1 patients compared with sc-EDS subjects suggest that the difficulty in DE reporting depends on their negative attitude toward recall of contents less vivid and bizarre than those they usually retrieve after daytime SOREMP and nighttime REM sleep. As this attitude may be reversed by some recall training before MSLT, collecting wider amounts of DE reports after NREM naps would cast light on both the across-stage continuity in the functioning of cognitive processes underlying DE and the difference in content and structural organization of SOREM-DEs preceded by N1 or also N2 sleep.
Collapse
Affiliation(s)
- Carlo Cipolli
- Department of Specialty, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico "Istituto delle Scienze Neurologiche" di Bologna, Bologna, Italy
| | - Claudia Bellucci
- Department of Specialty, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy
| | - Michela Mazzetti
- Department of Specialty, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy
| | - Giovanni Tuozzi
- Department of Psychology, University of Bologna, Bologna, Italy
| | - Stefano Vandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico "Istituto delle Scienze Neurologiche" di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
17
|
Wamsley EJ, Summer T. Spontaneous Entry into an “Offline” State during Wakefulness: A Mechanism of Memory Consolidation? J Cogn Neurosci 2020; 32:1714-1734. [DOI: 10.1162/jocn_a_01587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Moments of inattention to our surroundings may be essential to optimal cognitive functioning. Here, we investigated the hypothesis that humans spontaneously switch between two opposing attentional states during wakefulness—one in which we attend to the external environment (an “online” state) and one in which we disengage from the sensory environment to focus our attention internally (an “offline” state). We created a data-driven model of this proposed alternation between “online” and “offline” attentional states in humans, on a seconds-level timescale. Participants (n = 34) completed a sustained attention to response task while undergoing simultaneous high-density EEG and pupillometry recording and intermittently reporting on their subjective experience. “Online” and “offline” attentional states were initially defined using a cluster analysis applied to multimodal measures of (1) EEG spectral power, (2) pupil diameter, (3) RT, and (4) self-reported subjective experience. We then developed a classifier that labeled trials as belonging to the online or offline cluster with >95% accuracy, without requiring subjective experience data. This allowed us to classify all 5-sec trials in this manner, despite the fact that subjective experience was probed on only a small minority of trials. We report evidence of statistically discriminable “online” and “offline” states matching the hypothesized characteristics. Furthermore, the offline state strongly predicted memory retention for one of two verbal learning tasks encoded immediately prior. Together, these observations suggest that seconds-timescale alternation between online and offline states is a fundamental feature of wakefulness and that this may serve a memory processing function.
Collapse
|
18
|
Friedrich M, Mölle M, Friederici AD, Born J. Sleep-dependent memory consolidation in infants protects new episodic memories from existing semantic memories. Nat Commun 2020; 11:1298. [PMID: 32157080 PMCID: PMC7064567 DOI: 10.1038/s41467-020-14850-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/03/2020] [Indexed: 01/22/2023] Open
Abstract
Any experienced event may be encoded and retained in detail as part of our episodic memory, and may also refer and contribute to our generalized knowledge stored in semantic memory. The beginnings of this declarative memory formation are only poorly understood. Even less is known about the interrelation between episodic and semantic memory during the earliest developmental stages. Here, we show that the formation of episodic memories in 14- to 17-month-old infants depends on sleep, subsequent to exposure to novel events. Infant brain responses reveal that, after sleep-dependent consolidation, the newly stored events are not processed semantically, although appropriate lexical-semantic memories are present and accessible by similar events that were not experienced before the nap. We propose that temporarily disabled semantic processing protects precise episodic memories from interference with generalized semantic memories. Selectively restricted semantic access could also trigger semantic refinement, and thus, might even improve semantic memory.
Collapse
Affiliation(s)
- Manuela Friedrich
- Department of Psychology, Humboldt-University of Berlin, Rudower Chaussee 18, D-12489, Berlin, Germany. .,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany.
| | - Matthias Mölle
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Marie-Curie-Straße, D-23562, Lübeck, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, D-72076, Tübingen, Germany
| |
Collapse
|
19
|
Halonen R, Kuula L, Lahti J, Makkonen T, Räikkönen K, Pesonen AK. BDNF Val66Met polymorphism moderates the association between sleep spindles and overnight visual recognition. Behav Brain Res 2019; 375:112157. [DOI: 10.1016/j.bbr.2019.112157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
|
20
|
Abstract
Previous studies have indicated that sleep plays an important role in emotional memory and decision-making. However, very little attention has been given to emotional memory and decision-making in patients with primary insomnia (PI). We investigated whether PI influences the accuracy of emotional memory and social decision-making.We examined 25 patients with PI and 20 healthy controls (HC) using an emotional picture memory task and the Iowa Gambling Task (IGT). In the emotional picture memory task, participants completed two testing sessions: an emotional picture evaluation and a delayed recognition phase. During the emotional picture evaluation phase, participants were presented with 48 pictures with different valence (16 positive, 16 neutral, and 16 negative), which they had to evaluate for emotional valence and arousal. During the recognition phase, participants were asked to make a yes/no memory assessment of a set of pictures, which contained the 48 target pictures intermingled with 48 non-target pictures.The performance of the participants with PI was the same as that of the HC in the emotional picture evaluation task. However, the PI group showed worse recognition of the positive and neutral pictures than did the HC group, although recognition of negative pictures was similar in the 2 groups. In the IGT, participants in the PI group more frequently selected cards from the risky decks as the game progressed and selected more disadvantageous cards than did participants in the HC group after the first block.Our findings suggest that insomnia had different effects on memory, depending on the valence of the memory. Specifically, memory performance was impaired for positive and neutral items, but the recognition of negative stimuli seemed to be more resistant to the effects of insomnia. Our results also suggest that decision-making, which is known to be mediated by the ventromedial prefrontal cortex, including decision-making under conditions of uncertainty, may be vulnerable in PI.
Collapse
Affiliation(s)
- Xi Chunhua
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University
- Neuropsychology Laboratory, Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Ding Jiacui
- Department of Psychiatry Six Ward, Mental Health Center of Anhui Province
| | - Li Xue
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University
| | - Wang Kai
- Neuropsychology Laboratory, Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
21
|
Yonelinas AP, Ranganath C, Ekstrom AD, Wiltgen BJ. A contextual binding theory of episodic memory: systems consolidation reconsidered. Nat Rev Neurosci 2019; 20:364-375. [PMID: 30872808 PMCID: PMC7233541 DOI: 10.1038/s41583-019-0150-4] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Episodic memory reflects the ability to recollect the temporal and spatial context of past experiences. Episodic memories depend on the hippocampus but have been proposed to undergo rapid forgetting unless consolidated during offline periods such as sleep to neocortical areas for long-term storage. Here, we propose an alternative to this standard systems consolidation theory (SSCT) - a contextual binding account - in which the hippocampus binds item-related and context-related information. We compare these accounts in light of behavioural, lesion, neuroimaging and sleep studies of episodic memory and contend that forgetting is largely due to contextual interference, episodic memory remains dependent on the hippocampus across time, contextual drift produces post-encoding activity and sleep benefits memory by reducing contextual interference.
Collapse
Affiliation(s)
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, CA, USA
| | - Arne D Ekstrom
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Brian J Wiltgen
- Center for Neuroscience, University of California, Davis, CA, USA
| |
Collapse
|
22
|
Sleep selectively stabilizes contextual aspects of negative memories. Sci Rep 2018; 8:17861. [PMID: 30552343 PMCID: PMC6294767 DOI: 10.1038/s41598-018-35999-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/08/2018] [Indexed: 11/09/2022] Open
Abstract
Sleep and emotion are both powerful modulators of the long-term stability of episodic memories, but precisely how these factors interact remains unresolved. We assessed changes in item recognition, contextual memory, and affective tone for negative and neutral memories across a 12 h interval containing sleep or wakefulness in 71 human volunteers. Our data indicate a sleep-dependent stabilization of negative contextual memories, in a way not seen for neutral memories, item recognition, or across wakefulness. Furthermore, retention of contextual memories was positively associated with the proportion of time spent in non-rapid eye movement sleep in a valence-independent manner. Finally, while affective responses to previously seen negative stimuli and to both old and new neutral stimuli decreased across an interval of sleep, effects for memorized items did not differ reliably between sleep and wake. These results add to our understanding of the complex interrelations among sleep, memory, and emotion.
Collapse
|
23
|
Lin JF, Li FD, Chen XG, He F, Zhai YJ, Pan XQ, Wang XY, Zhang T, Yu M. Association of postlunch napping duration and night-time sleep duration with cognitive impairment in Chinese elderly: a cross-sectional study. BMJ Open 2018; 8:e023188. [PMID: 30552262 PMCID: PMC6303738 DOI: 10.1136/bmjopen-2018-023188] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To analyse the independent and combined associations of postlunch napping duration and night-time sleep duration with risk of cognitive impairment among Chinese elderly. DESIGN A cross-sectional study. SETTING We analysed the data from Zhejiang Ageing and Health Cohort, a population-based survey of seven counties located in Zhejiang province in eastern China. PARTICIPANTS 10 740 participants aged 60 years or older were included in final analysis. PRIMARY AND SECONDARY OUTCOME MEASURES Cognitive impairment was assessed through Mini-Mental State Examination. Data on sleep-related characteristics was collected in the behavioural habits section within the questionnaire. RESULTS Relative to participants with 1-30 min of postlunch napping, those who did not nap and who napped longer had significantly higher risks for cognitive impairment. OR of cognitive impairment were 1.41 (95% CI 1.14 to 1.75) for participants with longer night-time sleep duration (≥9 hours), compared with those sleeping 7-8.9 hours. In addition, combined effects were further identified. Participants with both longer night-time sleep duration (≥9 hours) and longer postlunch napping duration (>60 min) (OR=2.01, 95% CI 1.30 to 3.13), as well as those with both longer night-time sleep duration (≥9 hours) and appropriate postlunch napping duration (1-30 min) (OR=2.01, 95% CI 1.20 to 3.38), showed significantly higher risk of cognitive impairment than those with sleeping 7-8 hours and napping 1-30 min. Meanwhile, a 34% increase in odds of cognitive impairment was observed in participants with both shorter night-time sleep duration (5-6.9 hours) and no napping. CONCLUSION Both postlunch napping duration and night-time sleep duration were independently and jointly associated with cognitive impairment, which needs verification in prospective studies.
Collapse
Affiliation(s)
- Jun-Fen Lin
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Fu-Dong Li
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xiao-Geng Chen
- Director Office, Jingning Center for Disease Prevention and Control, Lishui, China
| | - Fan He
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yu-Jia Zhai
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xiao-Qing Pan
- Department of Non-Communicable Disease Control and Prevention, Jingning Center for Disease Prevention and Control, Lishui, China
| | - Xin-Yi Wang
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Tao Zhang
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Min Yu
- Director Office, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Effects of early morning nap sleep on associative memory for neutral and emotional stimuli. Brain Res 2018; 1698:29-42. [PMID: 29928870 DOI: 10.1016/j.brainres.2018.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/19/2018] [Accepted: 06/16/2018] [Indexed: 12/15/2022]
Abstract
Emotional events are preferentially retained in episodic memory. This effect is commonly attributed to enhanced consolidation and has been linked specifically to rapid eye movement (REM) sleep physiology. While several studies have demonstrated an enhancing effect of REM sleep on emotional item memory, it has not been thoroughly explored whether this effect extends to the retention of associative memory. Moreover, it is unclear how non-rapid eye movement (NREM) sleep contributes to these effects. The present study thus examined associative recognition of emotional and non-emotional material across an early morning nap (N = 23) and sustained wakefulness (N = 23). Nap group subjects demonstrated enhanced post-sleep associative memory performance, which was evident across both valence categories. Subsequent analyses revealed significant correlations between NREM spindle density and pre-sleep memory performance. Moreover, NREM spindle density was positively correlated with post-sleep neutral associative memory performance but not with post-sleep emotional associative memory. Accordingly, only neutral associative memory, but not emotional associative memory, was significantly correlated with spindle density after an additional night of sleep (+24 h). These results illustrate a temporally persistent relationship between spindle density and memory for neutral associations, whereas post-sleep emotional associative memory appears to be disengaged from NREM-sleep-dependent processes.
Collapse
|
25
|
Schönauer M, Brodt S, Pöhlchen D, Breßmer A, Danek AH, Gais S. Sleep Does Not Promote Solving Classical Insight Problems and Magic Tricks. Front Hum Neurosci 2018; 12:72. [PMID: 29535620 PMCID: PMC5834438 DOI: 10.3389/fnhum.2018.00072] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
During creative problem solving, initial solution attempts often fail because of self-imposed constraints that prevent us from thinking out of the box. In order to solve a problem successfully, the problem representation has to be restructured by combining elements of available knowledge in novel and creative ways. It has been suggested that sleep supports the reorganization of memory representations, ultimately aiding problem solving. In this study, we systematically tested the effect of sleep and time on problem solving, using classical insight tasks and magic tricks. Solving these tasks explicitly requires a restructuring of the problem representation and may be accompanied by a subjective feeling of insight. In two sessions, 77 participants had to solve classical insight problems and magic tricks. The two sessions either occurred consecutively or were spaced 3 h apart, with the time in between spent either sleeping or awake. We found that sleep affected neither general solution rates nor the number of solutions accompanied by sudden subjective insight. Our study thus adds to accumulating evidence that sleep does not provide an environment that facilitates the qualitative restructuring of memory representations and enables problem solving.
Collapse
Affiliation(s)
- Monika Schönauer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Dorothee Pöhlchen
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anja Breßmer
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Amory H. Danek
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Steffen Gais
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Remembering specific features of emotional events across time: The role of REM sleep and prefrontal theta oscillations. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2017; 17:1186-1209. [DOI: 10.3758/s13415-017-0542-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Abstract
Introduction EEG oscillations known as sleep spindles have been linked with various aspects of cognition, but the specific functions they signal remain controversial. Two types of EEG sleep spindles have been distinguished: slow spindles at 11-13.5 Hz and fast spindles at 13.5-16 Hz. Slow spindles exhibit a frontal scalp topography, whereas fast spindles exhibit a posterior scalp topography and have been preferentially linked with memory consolidation during sleep. To advance understanding beyond that provided from correlative studies of spindles, we aimed to develop a new method to systematically manipulate spindles. Aims and Methods We presented repeating bursts of oscillating white noise to people during a 90-min afternoon nap. During stage 2 and slow-wave sleep, oscillations were embedded within contiguous 10-s stimulation intervals, each comprising 2 s of white noise amplitude modulated at 12 Hz (targeting slow spindles), 15 Hz (targeting fast spindles), or 50 Hz followed by 8 s of constant white noise. Results During oscillating stimulation compared to constant stimulation, parietal EEG recordings showed more slow spindles in the 12-Hz condition, more fast spindles in the 15-Hz condition, and no change in the 50-Hz control condition. These effects were topographically selective, and were absent in frontopolar EEG recordings, where slow spindle density was highest. Spindles during stimulation were similar to spontaneous spindles in standard physiological features, including duration and scalp distribution. Conclusions These results define a new method to selectively and noninvasively manipulate spindles through acoustic resonance, while also providing new evidence for functional distinctions between the 2 types of EEG spindles.
Collapse
Affiliation(s)
- James W Antony
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Ken A Paller
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208.,Department of Psychology, Northwestern University, Evanston, IL 60208
| |
Collapse
|
28
|
Studte S, Bridger E, Mecklinger A. Sleep spindles during a nap correlate with post sleep memory performance for highly rewarded word-pairs. BRAIN AND LANGUAGE 2017; 167:28-35. [PMID: 27129616 DOI: 10.1016/j.bandl.2016.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/23/2016] [Accepted: 03/23/2016] [Indexed: 05/02/2023]
Abstract
The consolidation of new associations is thought to depend in part on physiological processes engaged during non-REM (NREM) sleep, such as slow oscillations and sleep spindles. Moreover, NREM sleep is thought to selectively benefit associations that are adaptive for the future. In line with this, the current study investigated whether different reward cues at encoding are associated with changes in sleep physiology and memory retention. Participants' associative memory was tested after learning a list of arbitrarily paired words both before and after taking a 90-min nap. During learning, word-pairs were preceded by a cue indicating either a high or a low reward for correct memory performance at test. The motivation manipulation successfully impacted retention such that memory declined to a greater extent from pre- to post sleep for low rewarded than for high rewarded word-pairs. In line with previous studies, positive correlations between spindle density during NREM sleep and general memory performance pre- and post-sleep were found. In addition to this, however, a selective positive relationship between memory performance for highly rewarded word-pairs at posttest and spindle density during NREM sleep was also observed. These results support the view that motivationally salient memories are preferentially consolidated and that sleep spindles may be an important underlying mechanism for selective consolidation.
Collapse
Affiliation(s)
- Sara Studte
- Experimental Neuropsychology Unit, Saarland University, Germany.
| | - Emma Bridger
- Department of Psychology, Birmingham City University, UK.
| | - Axel Mecklinger
- Experimental Neuropsychology Unit, Saarland University, Germany.
| |
Collapse
|
29
|
The differential effects of emotional salience on direct associative and relational memory during a nap. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2016; 16:1150-1163. [PMID: 27670288 DOI: 10.3758/s13415-016-0460-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Backhaus W, Braaß H, Renné T, Krüger C, Gerloff C, Hummel FC. Daytime sleep has no effect on the time course of motor sequence and visuomotor adaptation learning. Neurobiol Learn Mem 2016; 131:147-54. [PMID: 27021017 DOI: 10.1016/j.nlm.2016.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/17/2016] [Accepted: 03/25/2016] [Indexed: 11/26/2022]
Abstract
Sleep has previously been claimed to be essential for the continued learning processes of declarative information as well as procedural learning. This study was conducted to examine the importance of sleep, especially the effects of midday naps, on motor sequence and visuomotor adaptation learning. Thirty-five (27 females) healthy, young adults aged between 18 and 30years of age participated in the current study. Addressing potential differences in explicit sequence and motor adaptation learning participants were asked to learn both, a nine-element explicit sequence and a motor adaptation task, in a crossover fashion on two consecutive days. Both tasks were performed with their non-dominant left hand. Prior to learning, each participant was randomized to one of three interventions; (1) power nap: 10-20min sleep, (2) long nap: 50-80min sleep or (3) a 45-min wake-condition. Performance of the motor learning task took place prior to and after a midday rest period, as well as after a night of sleep. Both sleep conditions were dominated by Stage N2 sleep with embedded sleep spindles, which have been described to be associated with enhancement of motor performance. Significant performance changes were observed in both tasks across all interventions (sleep and wake) confirming that learning took place. In the present setup, the magnitude of motor learning was not sleep-dependent in young adults - no differences between the intervention groups (short nap, long nap, no nap) could be found. The effect of the following night of sleep was not influenced by the previous midday rest or sleep period. This finding may be related to the selectiveness of the human brain enhancing especially memory being thought of as important in the future. Previous findings on motor learning enhancing effects of sleep, especially of daytime sleep, are challenged.
Collapse
Affiliation(s)
- Winifried Backhaus
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Hanna Braaß
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, SE-171 76 Stockholm, Sweden
| | - Christian Krüger
- University Sleep Medicine Center Hamburg, A Cooperation of the University Medical Center Hamburg-Eppendorf and the Agaplesion Hospital, Falkenried 88, 20251 Hamburg, Germany
| | - Christian Gerloff
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Friedhelm C Hummel
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; University Sleep Medicine Center Hamburg, A Cooperation of the University Medical Center Hamburg-Eppendorf and the Agaplesion Hospital, Falkenried 88, 20251 Hamburg, Germany.
| |
Collapse
|
31
|
|