1
|
Yu K, Beckers T, Tuerlinckx F, Vanpaemel W, Zaman J. The assessment of gender differences in perceptual fear generalization and related processes. Behav Res Ther 2024; 183:104640. [PMID: 39388925 DOI: 10.1016/j.brat.2024.104640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
In this study we aimed to investigate gender differences in fear generalization tendencies in humans and, inspired by recent findings in animal research, examine whether any such differences could stem from differences in memory precision. Forty men and forty women underwent a differential fear conditioning procedure using geometric shapes as cues. Subsequently, generalized fear responses were assessed across a spectrum of perceptually similar shapes. Throughout generalization testing, perceptual memory accuracy was repeatedly probed using a stimulus recreation task. Using statistical and computational modeling, we found strong evidence for the absence of gender differences in fear learning and generalization behavior. The evidence for gender differences in related processes such as perception and memory was inconclusive. Although some of our findings hinted at the possibility that women may be more perceptive of physical differences between stimuli and have more accurate memory than men, those observations were not consistently replicated across experimental conditions and analytical approaches. Our results contribute to the emerging literature on gender differences in perceptual fear generalization in humans and underscore the need for further systematic research to explore the interplay between gender and mechanisms associated with fear generalization across different experimental contexts.
Collapse
Affiliation(s)
- Kenny Yu
- Quantitative Psychology and Individual Differences, KU Leuven, Belgium.
| | - Tom Beckers
- Centre for the Psychology of Learning and Experimental Psychopathology, KU Leuven, Belgium
| | | | - Wolf Vanpaemel
- Quantitative Psychology and Individual Differences, KU Leuven, Belgium
| | - Jonas Zaman
- Centre for the Psychology of Learning and Experimental Psychopathology, KU Leuven, Belgium; REVAL Rehabilitation Research, Faculty of Rehabilitation Sciences, University of Hasselt, Belgium; Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Germany
| |
Collapse
|
2
|
Peterson S, Maheras A, Wu B, Chavira J, Keiflin R. Sex differences in discrimination behavior and orbitofrontal engagement during context-gated reward prediction. eLife 2024; 12:RP93509. [PMID: 39046898 PMCID: PMC11268887 DOI: 10.7554/elife.93509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Animals, including humans, rely on contextual information to interpret ambiguous stimuli. Impaired context processing is a hallmark of several neuropsychiatric disorders, including schizophrenia, autism spectrum disorders, post-traumatic stress disorder, and addiction. While sex differences in the prevalence and manifestations of these disorders are well established, potential sex differences in context processing remain uncertain. Here, we examined sex differences in the contextual control over cue-evoked reward seeking and its neural correlates, in rats. Male and female rats were trained in a bidirectional occasion-setting preparation in which the validity of two auditory reward-predictive cues was informed by the presence, or absence, of a visual contextual feature (LIGHT: X+/DARK: X-/LIGHT: Y-/DARK: Y+). Females were significantly slower to acquire contextual control over cue-evoked reward seeking. However, once established, the contextual control over behavior was more robust in female rats; it showed less within-session variability (less influence of prior reward) and greater resistance to acute stress. This superior contextual control achieved by females was accompanied by an increased activation of the orbitofrontal cortex (OFC) compared to males. Critically, these behavioral and neural sex differences were specific to the contextual modulation process and not observed in simple, context-independent, reward prediction tasks. These results indicate a sex-biased trade-off between the speed of acquisition and the robustness of performance in the contextual modulation of cued reward seeking. The different distribution of sexes along the fast learning ↔ steady performance continuum might reflect different levels of engagement of the OFC, and might have implications for our understanding of sex differences in psychiatric disorders.
Collapse
Affiliation(s)
- Sophie Peterson
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Amanda Maheras
- Department of Molecular, Cellular & Developmental Biology, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Brenda Wu
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Jose Chavira
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Ronald Keiflin
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
- Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
3
|
Schroyens N, Vercammen L, Özcan B, Salazar VAO, Zaman J, De Bundel D, Beckers T, Luyten L. No evidence that post-training dopamine D2 receptor agonism affects fear generalization in male rats. J Psychopharmacol 2024; 38:672-682. [PMID: 39068641 PMCID: PMC7616352 DOI: 10.1177/02698811241261375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
BACKGROUND The neurotransmitter dopamine plays an important role in the processing of emotional memories, and prior research suggests that dopaminergic manipulations immediately after fear learning can affect the retention and generalization of acquired fear. AIMS The current study focuses specifically on the role of dopamine D2 receptors (D2Rs) regarding fear generalization in adult, male Wistar rats, and aims to replicate previous findings in mice. METHODS In a series of five experiments, D2R (ant)agonists were injected systemically, immediately after differential cued fear conditioning (CS+ followed by shock, CS- without shock). All five experiments involved the administration of the D2R agonist quinpirole at different doses versus saline (n = 12, 16, or 44 rats/group). In addition, one of the studies administered the D2R antagonist raclopride (n = 12). One day later, freezing during the CS+ and CS- was assessed. RESULTS We found no indications for an effect of quinpirole or raclopride on fear generalization during this drug-free test. Importantly, and contradicting earlier research in mice, the evidence for the absence of an effect of D2R agonist quinpirole (1 mg/kg) on fear generalization was substantial according to Bayesian analyses and was observed in a highly powered experiment (N = 87). We did find acute behavioral effects in line with the literature, for both quinpirole and raclopride in a locomotor activity test. CONCLUSION In contrast with prior studies in mice, we have obtained evidence against a preventative effect of post-training D2R agonist quinpirole administration on subsequent fear generalization in rats.
Collapse
Affiliation(s)
- Natalie Schroyens
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
| | - Laura Vercammen
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
- KU Leuven, Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3714, 3000Leuven, Belgium
| | - Burcu Özcan
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
| | - Victoria Aurora Ossorio Salazar
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
- KU Leuven, Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3714, 3000Leuven, Belgium
| | - Jonas Zaman
- KU Leuven, Health Psychology, Tiensestraat 102 box 3726, 3000Leuven, Belgium
| | - Dimitri De Bundel
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, 1090Brussel, Belgium
| | - Tom Beckers
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
| | - Laura Luyten
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
| |
Collapse
|
4
|
Bornhoft KN, Prohofsky J, O'Neal TJ, Wolff AR, Saunders BT. Valence ambiguity dynamically shapes striatal dopamine heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594692. [PMID: 38798567 PMCID: PMC11118546 DOI: 10.1101/2024.05.17.594692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Adaptive decision making relies on dynamic updating of learned associations where environmental cues come to predict positive and negatively valenced stimuli, such as food or threat. Flexible cue-guided behaviors depend on a network of brain systems, including dopamine signaling in the striatum, which is critical for learning and maintenance of conditioned behaviors. Critically, it remains unclear how dopamine signaling encodes multi-valent, dynamic learning contexts, where positive and negative associations must be rapidly disambiguated. To understand this, we employed a Pavlovian discrimination paradigm, where cues predicting positive and negative outcomes were intermingled during conditioning sessions, and their meaning was serially reversed across training. We found that rats readily distinguished these cues, and updated their behavior rapidly upon valence reversal. Using fiber photometry, we recorded dopamine signaling in three major striatal subregions -,the dorsolateral striatum (DLS), the nucleus accumbens core, and the nucleus accumbens medial shell - and found heterogeneous responses to positive and negative conditioned cues and their predicted outcomes. Valence ambiguity introduced by cue reversal reshaped striatal dopamine on different timelines: nucleus accumbens core and shell signals updated more readily than those in the DLS. Together, these results suggest that striatal dopamine flexibly encodes multi-valent learning contexts, and these signals are dynamically modulated by changing contingencies to resolve ambiguity about the meaning of environmental cues.
Collapse
|
5
|
Felix-Ortiz AC, Terrell JM, Gonzalez C, Msengi HD, Boggan MB, Ramos AR, Magalhães G, Burgos-Robles A. Prefrontal Regulation of Safety Learning during Ethologically Relevant Thermal Threat. eNeuro 2024; 11:ENEURO.0140-23.2024. [PMID: 38272673 PMCID: PMC10903390 DOI: 10.1523/eneuro.0140-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
Learning and adaptation during sources of threat and safety are critical mechanisms for survival. The prelimbic (PL) and infralimbic (IL) subregions of the medial prefrontal cortex (mPFC) have been broadly implicated in the processing of threat and safety. However, how these regions regulate threat and safety during naturalistic conditions involving thermal challenge still remains elusive. To examine this issue, we developed a novel paradigm in which adult mice learned that a particular zone that was identified with visuospatial cues was associated with either a noxious cold temperature ("threat zone") or a pleasant warm temperature ("safety zone"). This led to the rapid development of avoidance behavior when the zone was paired with cold threat or approach behavior when the zone was paired with warm safety. During a long-term test without further thermal reinforcement, mice continued to exhibit robust avoidance or approach to the zone of interest, indicating that enduring spatial-based memories were formed to represent the thermal threat and thermal safety zones. Optogenetic experiments revealed that neural activity in PL and IL was not essential for establishing the memory for the threat zone. However, PL and IL activity bidirectionally regulated memory formation for the safety zone. While IL activity promoted safety memory during normal conditions, PL activity suppressed safety memory especially after a stress pretreatment. Therefore, a working model is proposed in which balanced activity between PL and IL is favorable for safety memory formation, whereas unbalanced activity between these brain regions is detrimental for safety memory after stress.
Collapse
Affiliation(s)
- Ada C Felix-Ortiz
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Jaelyn M Terrell
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Carolina Gonzalez
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Hope D Msengi
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Miranda B Boggan
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Angelica R Ramos
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Gabrielle Magalhães
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215
| | - Anthony Burgos-Robles
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
6
|
Stubbendorff C, Hale E, Day HLL, Smith J, Alvaro GS, Large CH, Stevenson CW. Pharmacological modulation of Kv3 voltage-gated potassium channels regulates fear discrimination and expression in a response-dependent manner. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110829. [PMID: 37451593 DOI: 10.1016/j.pnpbp.2023.110829] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Various psychiatric diseases are characterized by aberrant cognition and emotional regulation. This includes inappropriately attributing affective salience to innocuous cues, which can be investigated using translationally relevant preclinical models of fear discrimination. Activity in the underpinning corticolimbic circuitry is governed by parvalbumin-expressing GABAergic interneurons, which also regulate fear discrimination. Kv3 voltage-gated potassium channels are highly expressed in these neurons and are important for controlling their activity, suggesting that pharmacological Kv3 modulation may regulate fear discrimination. We determined the effect of the positive Kv3 modulator AUT00206 given systemically to female rats undergoing limited or extended auditory fear discrimination training, which we have previously shown results in more discrimination or generalization, respectively, based on freezing at retrieval. We also characterized darting and other active fear-related responses. We found that limited training resulted in more discrimination based on freezing, which was unaffected by AUT00206. In contrast, extended training resulted in more generalization based on freezing and the emergence of discrimination based on darting during training and, to a lesser extent, at retrieval. Importantly, AUT00206 given before extended training had dissociable effects on fear discrimination and expression at retrieval depending on the response examined. While AUT00206 mitigated generalization without affecting expression based on freezing, it reduced expression without affecting discrimination based on darting, although darting levels were low overall. These results indicate that pharmacological Kv3 modulation regulates fear discrimination and expression in a response-dependent manner. They also raise the possibility that targeting Kv3 channels may ameliorate perturbed cognition and emotional regulation in psychiatric disease.
Collapse
Affiliation(s)
- Christine Stubbendorff
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Ed Hale
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Harriet L L Day
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Jessica Smith
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Giuseppe S Alvaro
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage SG1 2FX, UK
| | - Charles H Large
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage SG1 2FX, UK
| | - Carl W Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
7
|
Olivera-Pasilio V, Dabrowska J. Fear-Conditioning to Unpredictable Threats Reveals Sex and Strain Differences in Rat Fear-Potentiated Startle (FPS). Neuroscience 2023; 530:108-132. [PMID: 37640137 PMCID: PMC10726736 DOI: 10.1016/j.neuroscience.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Fear-potentiated startle (FPS) has been widely used to study fear processing in humans and rodents. Human studies showed higher startle amplitudes and exaggerated fear reactivity to unpredictable vs. predictable threats in individuals suffering from post-traumatic stress disorder (PTSD). Although human FPS studies use both sexes, a surprisingly limited number of rodent FPS studies use females. Here we investigate the effects of signal-threat contingency, signal-threat order and threat predictability on FPS in both sexes. We use a classic fear-conditioning protocol (100% contingency of cue and shock pairings, with forward conditioning such that the cue co-terminates with the shock) and compare it to modified fear-conditioning protocols (70% contingency; backward conditioning; or cue and shock un-paired). Although there are no sex differences in the startle amplitudes when corrected for body weight, females consistently demonstrate higher shock reactivity during fear-conditioning. Both sexes and strains demonstrate comparable levels of cued, non-cued, and contextual fear in the classic FPS and FPS following fear-conditioning with 70% contingency or backward order (cue co-starts with shock). However, in the classic FPS, Sprague-Dawley females show reduced proportion between cued fear and cue-elicited vigilant state than males. Lastly, a prominent sex difference is uncovered following unpredictable fear-conditioning (cue and shock un-paired), with Wistar, but not Sprague-Dawley, females showing significantly higher startle overall during the FPS recall, regardless of trial type, and higher contextual fear than males. This striking sex difference in processing unpredictable threats in rodent FPS might help to understand the mechanisms underlying higher incidence of PTSD in women.
Collapse
Affiliation(s)
- Valentina Olivera-Pasilio
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, USA
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, USA.
| |
Collapse
|
8
|
Fleischer AW, Frick KM. New perspectives on sex differences in learning and memory. Trends Endocrinol Metab 2023; 34:526-538. [PMID: 37500421 PMCID: PMC10617789 DOI: 10.1016/j.tem.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023]
Abstract
Females have historically been disregarded in memory research, including the thousands of studies examining roles for the hippocampus, medial prefrontal cortex, and amygdala in learning and memory. Even when included, females are often judged based on male-centric behavioral and neurobiological standards, generating and perpetuating scientific stereotypes that females exhibit worse memories compared with males in domains such as spatial navigation and fear. Recent research challenges these dogmas by identifying sex-specific strategies in common memory tasks. Here, we discuss rodent data illustrating sex differences in spatial and fear memory, as well as the neural mechanisms underlying memory formation. The influence of sex steroid hormones in both sexes is discussed, as is the importance to basic and translational neuroscience of studying sex differences.
Collapse
Affiliation(s)
- Aaron W Fleischer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| |
Collapse
|
9
|
Olivera-Pasilio V, Dabrowska J. Fear-conditioning to unpredictable threats reveals sex differences in rat fear-potentiated startle (FPS). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531430. [PMID: 36945466 PMCID: PMC10028867 DOI: 10.1101/2023.03.06.531430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Fear-potentiated startle (FPS) has been widely used to study fear processing in humans and rodents. Human studies have shown higher startle amplitudes and exaggerated fear reactivity to unpredictable vs. predictable threats in individuals suffering from post-traumatic stress disorder (PTSD). Although human FPS studies often use both sexes, a surprisingly limited number of rodent FPS studies use females. Here we investigate the effects of signal-threat contingency, signal-threat order and threat predictability on FPS in both sexes. We use a classic fear-conditioning protocol (100% contingency of cue and shock pairings, with forward conditioning such that the cue co-terminates with the shock) and compare it to modified fear-conditioning protocols (70% contingency; backward conditioning; or cue and shock unpaired). Although there are no sex differences in the startle amplitudes when corrected for body weight, females demonstrate higher shock reactivity during fear-conditioning. Both sexes demonstrate comparable levels of cued, non-cued, and contextual fear in the classic FPS but females show reduced fear discrimination vs. males. Fear-conditioning with 70% contingency or backward order (cue co-starts with shock) induces similar levels of cued, non-cued, and contextual fear in both sexes but they differ in contextual fear extinction. Lastly, a prominent sex difference is uncovered following unpredictable fear-conditioning protocol (cue and shock un-paired), with females showing significantly higher startle overall during the FPS recall, regardless of trial type, and higher contextual fear than males. This striking sex difference in processing unpredictable threats in rodent FPS might help to understand the mechanisms underlying higher incidence of PTSD in women. Highlights Male and female rats have comparable startle amplitudes when corrected for body weightFemale rats show higher foot-shock reactivity than males during fear-conditioningFemale rats show reduced fear discrimination vs. males in the classic FPSReversed signal-threat order increases contextual fear in both sexesExposure to unpredictable threats increases startle in general and contextual fear only in females.
Collapse
Affiliation(s)
- Valentina Olivera-Pasilio
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois, USA
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois, USA
| |
Collapse
|
10
|
Fournier ML, Faugere A, Barba-Vila O, Le Moine C. Male and female rats show opiate withdrawal-induced place aversion and extinction in a Y-maze paradigm. Behav Brain Res 2023; 437:114122. [PMID: 36174840 DOI: 10.1016/j.bbr.2022.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022]
Abstract
Gender differences have been observed in the vulnerability to drug abuse and in the different stages of the addictive process. In opiate dependence, differences between sexes have been shown in humans and laboratory animals in various phases of opiate addiction, especially in withdrawal-associated negative affective states. Using a Y-maze conditioned place aversion paradigm, we investigated potential sex differences in the expression and extinction of the aversive memory of precipitated opiate withdrawal state in morphine-dependent rats. No significant difference between sexes was observed in the occurrence of withdrawal signs following naloxone injection during conditioning. Moreover, opiate withdrawal memory expression and extinction following repeated testing was demonstrated in both male and female rats, with no significant differences between sexes. Finally, we report spontaneous recovery following extinction of opiate withdrawal memory. Altogether these data provide further evidence that persistent withdrawal-related memories may be strong drivers of opiate dependence, and demonstrate that both males and females can be used in experimental rodent cohorts to better understand opiate-related effects, reward, aversive state of withdrawal, abstinence and relapse.
Collapse
Affiliation(s)
| | | | - Olga Barba-Vila
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | | |
Collapse
|
11
|
Blanchard DC. Are cognitive aspects of defense a core feature of anxiety and depression? Neurosci Biobehav Rev 2023; 144:104947. [PMID: 36343691 DOI: 10.1016/j.neubiorev.2022.104947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Anxiety and depression are highly prevalent behavior disorders, particularly in women. Recent preclinical work using animal models has been suboptimal in predicting the efficacy of drugs targeted at these conditions, suggesting a potential discrepancy between such models and the human disorders. Notably female animals tend to be equal to, or less responsive than, males in these tasks. A number of analyses suggest that mammalian defense patterns are complex: In addition to relatively discrete and immediate fight, flight, and freezing responses, a risk assessment pattern may occur in response to threat stimuli or situations with ambiguous elements. This pattern combines defensiveness with a number of cognition-linked behaviors such as sensory attention and orientation, approach, contact, and investigation of the potential threat. Studies measuring elements of this pattern suggest that female rats, and perhaps female mice, show higher levels than equivalent males. Higher female involvement may also occur in tasks involving learning/generalization/extinction of defensiveness to conditioned stimuli. Such findings are consonant with recent analyses of "female survival strategies" based on differential adaptiveness of cognitive components of defensiveness in females, due to the necessity of female care of offspring until they are independent. These data suggest the value of additional behavioral and functional analyses of cognitive aspects of defensive behavior; contributing to both an understanding of their underlying mechanisms, and providing more sensitive measures of drug responsivity for use with animal models.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Biosciences Research Center, University of Hawaii, Manoa, Honolulu, HI, USA; Institute of Biomedical Sciences at the University of São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
12
|
Bauer EP. Sex differences in fear responses: Neural circuits. Neuropharmacology 2023; 222:109298. [PMID: 36328063 PMCID: PMC11267399 DOI: 10.1016/j.neuropharm.2022.109298] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/26/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Women have increased vulnerability to PTSD and anxiety disorders compared to men. Understanding the neurobiological underpinnings of these disorders is critical for identifying risk factors and developing appropriate sex-specific interventions. Despite the clear clinical relevance of an examination of sex differences in fear responses, the vast majority of pre-clinical research on fear learning and memory formation has exclusively used male animals. This review highlights sex differences in context and cued fear conditioning, fear extinction and fear generalization with a focus on the neural circuits underlying these behaviors in rodents. There are mixed reports of behavioral sex differences in context and cued fear conditioning paradigms, which can depend upon the behavioral indices of fear. However, there is greater evidence of differential activation of the hippocampus, amygdalar nuclei and the prefrontal cortical regions in male and female rodents during context and cued fear conditioning. The bed nucleus of the stria terminalis (BNST), a sexually dimorphic structure, is of particular interest as it differentially contributes to fear responses in males and females. In addition, while the influence of the estrous cycle on different phases of fear conditioning is delineated, the clearest modulatory effect of estrogen is on fear extinction processes. Examining the variability in neural responses and behavior in both sexes should increase our understanding of how that variability contributes to the neurobiology of affective disorders. This article is part of the Special Issue on 'Fear, anxiety and PTSD'.
Collapse
Affiliation(s)
- Elizabeth P Bauer
- Departments of Biology and Neuroscience & Behavior, Barnard College of Columbia University, 3009 Broadway, New York, NY, 10027, United States.
| |
Collapse
|
13
|
Manion MTC, Glasper ER, Wang KH. A sex difference in mouse dopaminergic projections from the midbrain to basolateral amygdala. Biol Sex Differ 2022; 13:75. [PMID: 36585727 PMCID: PMC9801632 DOI: 10.1186/s13293-022-00486-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dopaminergic circuits play important roles in the motivational control of behavior and dysfunction in dopaminergic circuits have been implicated in several psychiatric disorders, such as schizophrenia and depression. While these disorders exhibit different incidence rates in men and women, the potential sex differences in the underlying neural circuits are not well-understood. Previous anatomical tracing studies in mammalian species have revealed a prominent circuit projection connecting the dopaminergic midbrain ventral tegmental area (VTA) to the basolateral amygdala (BLA), which is involved in emotional processing and associative learning. However, whether there is any sex difference in this anatomical circuit remains unknown. METHODS To study the potential sex differences in the VTA-to-BLA dopaminergic circuit, we injected two viral vectors encoding fluorescent reporters of axons and synaptic boutons (AAV-FLEX-tdTomato and AAV-FLEX-SynaptophysinGFP, respectively) into the VTA of a mouse transgenic driver line (tyrosine hydroxylase promoter-driven Cre, or TH-Cre), which restricts the reporter expression to dopaminergic neurons. We then used confocal fluorescent microscopy to image the distribution and density of dopaminergic axons and synaptic boutons in serial sections of both male and female mouse brain. RESULTS We found that the overall labeling intensity of VTA-to-BLA dopaminergic projections is intermediate among forebrain dopaminergic pathways, significantly higher than the projections to the prefrontal cortex, but lower than the projections to the nucleus accumbens. Within the amygdala areas, dopaminergic axons are concentrated in BLA. Although the size of BLA and the density of dopaminergic axons within BLA are similar between male and female mice, the density of dopaminergic synaptic boutons in BLA is significantly higher in male brain than female brain. CONCLUSIONS Our results demonstrate an anatomical sex difference in mouse dopaminergic innervations from the VTA to BLA. This finding may provide a structural foundation to study neural circuit mechanisms underlying sex differences in motivational and emotional behaviors and related psychiatric dysfunctions.
Collapse
Affiliation(s)
- Matthew T. C. Manion
- grid.416868.50000 0004 0464 0574Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 USA ,grid.164295.d0000 0001 0941 7177Department of Psychology, University of Maryland, College Park, MD 20742 USA ,grid.164295.d0000 0001 0941 7177Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742 USA
| | - Erica R. Glasper
- grid.164295.d0000 0001 0941 7177Department of Psychology, University of Maryland, College Park, MD 20742 USA ,grid.164295.d0000 0001 0941 7177Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742 USA ,grid.261331.40000 0001 2285 7943Department of Neuroscience and Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43235 USA
| | - Kuan Hong Wang
- grid.416868.50000 0004 0464 0574Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 USA ,grid.412750.50000 0004 1936 9166Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY 14642 USA
| |
Collapse
|
14
|
Yagi S, Lee A, Truter N, Galea LAM. Sex differences in contextual pattern separation, neurogenesis, and functional connectivity within the limbic system. Biol Sex Differ 2022; 13:42. [PMID: 35870952 PMCID: PMC9308289 DOI: 10.1186/s13293-022-00450-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/05/2022] [Indexed: 01/04/2023] Open
Abstract
Background Females are more likely to present with anxiety disorders such as post-traumatic stress disorder (PTSD) compared to males, which are associated with disrupted hippocampal integrity. Sex differences in the structure and function of hippocampus exist. Here, we examined sex differences in contextual pattern separation, functional connectivity, and activation of new neurons during fear memory. Methods Two-month-old male and female Sprague-Dawley rats were injected with the DNA synthesis markers, iododeoxyuridine (IdU) and chlorodeoxyuridine (CldU) 3 weeks and 4 weeks before perfusion, respectively. One week after CldU injection, the rats underwent a context discrimination task in which rats were placed in context A (shock) and context A’ (no shock) every day for 12 days. On the test day, rats were placed in the shock context (context A) to measure fear memory and expression of zif268, an immediate early gene across 16 different limbic and reward regions. Repeated-measures or factorial analysis of variance was conducted on our variables of interest. Pearson product-moment calculations and principal component analyses on zif268 expression across regions were also performed. Results We found that females, but not males, showed contextual discrimination during the last days of training. On the test day, both sexes displayed similar levels of freezing, indicating equivalent fear memory for context A. Despite similar fear memory, males showed more positive correlations of zif268 activation between the limbic regions and the striatum, whereas females showed more negative correlations among these regions. Females showed greater activation of the frontal cortex, dorsal CA1, and 3-week-old adult-born dentate granular cells compared to males. Conclusions These results highlight the importance of studying sex differences in fear memory and the contribution of adult neurogenesis to the neuronal network and may contribute to differences in susceptibility to fear-related disorders such as post-traumatic stress disorder. HighlightsFemale rats, but not male rats, show faster discrimination during a contextual pattern separation task. Three-week-old adult-born neurons are more active in response to fear memory in females compared to males. Females had greater neural activation compared to males in the frontal cortex and dorsal CA1 region of the hippocampus in response to fear memory. Males and females show distinct patterns in functional connectivity for fear memory across limbic regions. Males have many positive correlations between activated new neurons of different ages between the dorsal and ventral hippocampus, while females show more correlations between activated new neurons and other limbic regions.
Supplementary Information The online version contains supplementary material available at 10.1186/s13293-022-00450-2.
Collapse
|
15
|
Abstract
Sex and gender differences are seen in cognitive disturbances in a variety of neurological and psychiatry diseases. Men are more likely to have cognitive symptoms in schizophrenia whereas women are more likely to have more severe cognitive symptoms with major depressive disorder and Alzheimer's disease. Thus, it is important to understand sex and gender differences in underlying cognitive abilities with and without disease. Sex differences are noted in performance across various cognitive domains - with males typically outperforming females in spatial tasks and females typically outperforming males in verbal tasks. Furthermore, there are striking sex differences in brain networks that are activated during cognitive tasks and in learning strategies. Although rarely studied, there are also sex differences in the trajectory of cognitive aging. It is important to pay attention to these sex differences as they inform researchers of potential differences in resilience to age-related cognitive decline and underlying mechanisms for both healthy and pathological cognitive aging, depending on sex. We review literature on the progressive neurodegenerative disorder, Alzheimer's disease, as an example of pathological cognitive aging in which human females show greater lifetime risk, neuropathology, and cognitive impairment, compared to human males. Not surprisingly, the relationships between sex and cognition, cognitive aging, and Alzheimer's disease are nuanced and multifaceted. As such, this chapter will end with a discussion of lifestyle factors, like education and diet, as modifiable factors that can alter cognitive aging by sex. Understanding how cognition changes across age and contributing factors, like sex differences, will be essential to improving care for older adults.
Collapse
|
16
|
Riccardi E, Blasi E, Zwergel C, Mai A, Morena M, Campolongo P. Sex-dependent Effects of the Drugs of Abuse Amphetamine and the Smart Drug 3,4-Methylenedioxypyrovalerone on Fear Memory Generalization in Rats. Neuroscience 2021; 497:107-117. [PMID: 34968670 DOI: 10.1016/j.neuroscience.2021.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022]
Abstract
In recent years there has been an increase in the development of new synthetic drugs, among which the "bath salt" 3,4-methylenedioxypyrovalerone (MDPV), a psychostimulant with a mechanism of action similar to those of cocaine and amphetamine, stands out. Drugs of abuse have been consistently shown to affect memory function in male rodents. We have recently shown that amphetamine and MDPV induce generalization of fear memory in an inhibitory avoidance discrimination task in male rats. Although abuse of illicit drugs is more prevalent in men than in women, several studies have demonstrated that females are more vulnerable to the effects of drugs of abuse than males and the effects caused by substance dependence on memory in females are still under-investigated. Thus, we examined the effects of subchronic amphetamine or MDPV administrations on memory in a contextual fear conditioning/generalization paradigm in adult male and female rats. Animals were given daily subchronic injections of the drugs, starting 6 days prior the beginning of the behavioral procedures until the end of the paradigm. On day 1 of the experimental protocol, all rats were exposed to a safe context and, the day after, to a slightly different chamber where they received an unsignaled footshock. Twenty-four and forty-eight hours later, freezing behavior and emission of 22 kHz-ultrasonic vocalizations (USVs) were measured in the two different contexts to assess fear memory retention and generalization. Our results indicate that MDPV treatment altered freezing in both sexes, USVs were affected by amphetamine in males while by MDPV in females.
Collapse
Affiliation(s)
- Eleonora Riccardi
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; European Center for Brain Research (CERC), Santa Lucia Foundation, 00143 Rome, Italy
| | - Eleonora Blasi
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; European Center for Brain Research (CERC), Santa Lucia Foundation, 00143 Rome, Italy
| | - Clemens Zwergel
- Dept. of Drug Chemistry & Technologies, Sapienza University of Rome, 00185 Rome, Italy; Dept. of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Antonello Mai
- Dept. of Drug Chemistry & Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Morena
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; European Center for Brain Research (CERC), Santa Lucia Foundation, 00143 Rome, Italy
| | - Patrizia Campolongo
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; European Center for Brain Research (CERC), Santa Lucia Foundation, 00143 Rome, Italy.
| |
Collapse
|
17
|
Clarkson T, Karvay Y, Quarmley M, Jarcho JM. Sex differences in neural mechanisms of social and non-social threat monitoring. Dev Cogn Neurosci 2021; 52:101038. [PMID: 34814040 PMCID: PMC8608892 DOI: 10.1016/j.dcn.2021.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Adolescent males and females differ in their responses to social threat. Yet, threat processing is often probed in non-social contexts using the error-related negativity (ERN; Flanker EEG Task), which does not yield sex-specific outcomes. fMRI studies show inconsistent patterns of sex-specific neural engagement during threat processing. Thus, the relation between threat processing in non-social and social contexts across sexes and the effects perceived level of threat on brain function are unclear. We tested the interactive effect of non-social threat-vigilance (ERN), sex (N = 69; Male=34; 11–14-year-olds), and perceived social threat on brain function while anticipating feedback from ‘unpredictable’, ‘nice’, or ‘mean’ purported peers (fMRI; Virtual School Paradigm). Whole-brain analyses revealed differential engagement of precentral and inferior frontal gyri, putamen, anterior cingulate cortex, and insula. Among males with more threat-vigilant ERNs, greater social threat was associated with increased activation when anticipating unpredictable feedback. Region of interest analyses revealed this same relation in females in the amygdala and anterior hippocampus when anticipating mean feedback. Thus, non-social threat vigilance relates to neural engagement depending on perceived social threat, but peer-based social contexts and brain regions engaged, differ across sexes. This may partially explain divergent psychosocial outcomes in adolescence. Responses to social threat differ by sex and likely influence peer victimization. Threat processing is often probed in nonsocial contexts and is not sex-specific. Responses to type of social threat differed by sex, but relate to response to non-social threat. Brain regions engaged during social threat differ by sex. Perceived social threat relate to in-vivo peer victimization in both sexes.
Collapse
|
18
|
McNamara TA, Ito R. Relationship between voluntary ethanol drinking and approach-avoidance biases in the face of motivational conflict: novel sex-dependent associations in rats. Psychopharmacology (Berl) 2021; 238:1817-1832. [PMID: 33783557 DOI: 10.1007/s00213-021-05810-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
RATIONALE Aberrant approach-avoidance conflict processing may contribute to compulsive seeking that characterizes addiction. Exploration of the relationship between drugs of abuse and approach-avoidance behavior remains limited, especially with ethanol. OBJECTIVES To investigate the effects of voluntary ethanol consumption on approach-avoidance conflict behavior and to examine the potential approach/avoidance bias to predict drinking in male and female rats. METHODS Long-Evans rats consumed ethanol for 5 weeks under the intermittent access two-bottle choice (IA2BC) paradigm. Approach-avoidance tendencies were assessed before and after IA2BC drinking using a previously established cued approach-avoidance conflict maze task and the elevated plus maze (EPM). RESULTS Female rats displayed higher consumption of and preference for ethanol than males. In the conflict task, males showed greater approach bias towards cues predicting conflict than females. In females only, a median split and regression analysis of cued-conflict preference scores revealed that the more conflict-avoidant group displayed higher intake and preference for ethanol in the first few weeks of drinking. In both sexes, ethanol drinking did not affect cued-conflict preference, but ethanol exposure led to increased time spent in the central hub in the males only. Finally, anxiety levels in EPM predicted subsequent onset of ethanol drinking in males only. CONCLUSIONS Our results highlight sex and individual differences in both drinking and approach-avoidance bias in the face of cued conflict and further suggest that cued-conflict preference should be examined as a potential predictor of ethanol drinking. Ethanol exposure may also affect the timing of decision-making in the face of conflict.
Collapse
Affiliation(s)
- Tanner A McNamara
- Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Rutsuko Ito
- Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada. .,Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
19
|
Clark JW, Daykin H, Metha JA, Allocca G, Hoyer D, Drummond SPA, Jacobson LH. Manipulation of REM sleep via orexin and GABAA receptor modulators differentially affects fear extinction in mice: effect of stable versus disrupted circadian rhythm. Sleep 2021; 44:6171207. [PMID: 33720375 DOI: 10.1093/sleep/zsab068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Sleep disruption, and especially REM sleep disruption, is associated with fear inhibition impairment in animals and humans. The REM sleep-fear inhibition relationship raises concern for individuals with PTSD, whose sleep disturbance is commonly treated with hypnotics which disrupt and/or decrease REM sleep, such as benzodiazepines or 'Z-drugs'. Here, we examined the effects of the Z-drug zolpidem, a GABAA receptor positive allosteric modulator, as well as suvorexant, an orexin receptor antagonist (hypnotics which decrease and increase REM sleep, respectively) in the context of circadian disruption in murine models of fear inhibition-related processes (i.e., fear extinction and safety learning). Adult male C57Bl/6J mice completed fear and safety conditioning before undergoing shifts in the light-dark (LD) cycle or maintaining a consistent LD schedule. Fear extinction and recall of conditioned safety were thereafter tested daily. Immediately prior to onset of the light phase between testing sessions, mice were treated with zolpidem, suvorexant, or vehicle (methylcellulose). EEG/EMG analysis showed temporal distribution of REM sleep was misaligned during LD cycle-shifts, while REM sleep duration was preserved. Suvorexant increased REM sleep and improved fear extinction rate, relative to zolpidem, which decreased REM sleep. Survival analysis demonstrated LD shifted mice treated with suvorexant were faster to achieve complete extinction than vehicle and zolpidem-treated mice in the LD shifted condition. By contrast, retention of conditioned safety memory was not influenced by either treatment. This study thus provides preclinical evidence for the potential clinical utility of hypnotics which increase REM sleep for fear extinction after PTSD-relevant sleep disturbance.
Collapse
Affiliation(s)
- Jacob W Clark
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Heather Daykin
- Department of Pharmacology and Therapeutics, The University of Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Jeremy A Metha
- Department of Pharmacology and Therapeutics, The University of Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,Brain, Mind and Markets Laboratory, Department of Finance, The University of Melbourne, VIC, Australia
| | - Giancarlo Allocca
- Department of Pharmacology and Therapeutics, The University of Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,Somnivore Pty. Ltd., Bacchus Marsh, Victoria, Australia
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, The University of Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,Department of Molecular Medicine, The Scripps Research Institute, CA, The United States of America
| | - Sean P A Drummond
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, VIC, Australia
| | - Laura H Jacobson
- Department of Pharmacology and Therapeutics, The University of Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| |
Collapse
|
20
|
Li S, Liao Y, Dong Y, Li X, Li J, Cheng Y, Cheng J, Yuan Z. Microglial deletion and inhibition alleviate behavior of post-traumatic stress disorder in mice. J Neuroinflammation 2021; 18:7. [PMID: 33402212 PMCID: PMC7786489 DOI: 10.1186/s12974-020-02069-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Background Alteration of immune status in the central nervous system (CNS) has been implicated in the development of post-traumatic stress disorder (PTSD). However, the nature of overall changes in brain immunocyte landscape in PTSD condition remains unclear. Methods We constructed a mouse PTSD model by electric foot-shocks followed by contextual reminders and verified the PTSD-related symptoms by behavior test (including contextual freezing test, open-field test, and elevated plus maze test). We examined the immunocyte panorama in the brains of the naïve or PTSD mice by using single-cell mass cytometry. Microglia number and morphological changes in the hippocampus, prefrontal cortex, and amygdala were analyzed by histopathological methods. The gene expression changes of those microglia were detected by quantitative real-time PCR. Genetic/pharmacological depletion of microglia or minocycline treatment before foot-shocks exposure was performed to study the role of microglia in PTSD development and progress. Results We found microglia are the major brain immune cells that respond to PTSD. The number of microglia and ratio of microglia to immunocytes was significantly increased on the fifth day of foot-shock exposure. Furthermore, morphological analysis and gene expression profiling revealed temporal patterns of microglial activation in the hippocampus of the PTSD brains. Importantly, we found that genetic/pharmacological depletion of microglia or minocycline treatment before foot-shock exposure alleviated PTSD-associated anxiety and contextual fear. Conclusion Our results demonstrated a critical role for microglial activation in PTSD development and a potential therapeutic strategy for the clinical treatment of PTSD in the form of microglial inhibition. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02069-9.
Collapse
Affiliation(s)
- Shuoshuo Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yajin Liao
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xiaoheng Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Jun Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China. .,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
21
|
|
22
|
Montoya ZT, Uhernik AL, Smith JP. Comparison of cannabidiol to citalopram in targeting fear memory in female mice. J Cannabis Res 2020; 2:48. [PMID: 33526146 PMCID: PMC7819293 DOI: 10.1186/s42238-020-00055-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
Background Cannabidiol (CBD) and selective serotonin reuptake inhibitors (SSRIs) are currently used to treat post-traumatic stress disorder (PTSD). However, these drugs are commonly studied after dosing just prior to extinction training, and there are gaps in our understanding of how they affect fear memory formation, their comparative effects on various types of memory, and of sexual dimorphisms in effects. Also, more studies involving female subjects are needed to balance the gender-inequality in the literature. Therefore, the purpose of this study was to directly compare the effects of CBD to citalopram in affecting the formation of auditory cued, contextual, and generalized fear memory, and to evaluate how extinction of these different memories was altered by pre-acquisition treatment in female mice. We also evaluated the impact of the estrous cycle on each of these. Methods Auditory-cued trace fear conditioning was conducted shortly after dosing female C57BL/6 mice, with either CBD or citalopram (10 mg/kg each), by pairing auditory tones with mild foot shocks. Auditory-cued, contextual, and generalized fear memory was assessed by measuring freezing responses, with an automated fear conditioning system, 24 h after conditioning. Each memory type was then evaluated every 24 h, over a 4-day period in total, to create an extinction profile. Freezing outcomes were statistically compared by ANOVA with Tukey HSD post hoc analysis, N = 12 mice per experimental group. Evaluation of sexual dimorphism was by comparison to historical data from male mice. Results Auditory cue-associated fear memory was not affected with CBD or citalopram; however, contextual memory was reduced with CBD by 11%, p < 0.05, but not citalopram, and generalized fear memory was reduced with CBD and citalopram, 20% and 22%, respectively, p < 0.05. Extinction learning was enhanced with CBD and citalopram, but, there was considerable memory-type variability between drug effects, with freezing levels reduced at the end of training by 9 to 17% for CBD, and 10 to 12% with citalopram. The estrous cycle did not affect any outcomes. Conclusions Both drugs are potent modifiers of fear memory formation; however, there is considerable divergence in their targeting of different memory types which, overall, could support the use of CBD as an alternative to SSRIs for treating PTSD in females, but not males. A limitation of the study was that it compared data from experiments done at different times to evaluate sexual dimorphism. Overall, this suggests that more research is necessary to guide any therapeutic approach involving CBD.
Collapse
Affiliation(s)
- Zackary T Montoya
- Colorado State University-Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
| | - Amy L Uhernik
- Colorado State University-Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
| | - Jeffrey P Smith
- Colorado State University-Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA.
| |
Collapse
|
23
|
Krueger JN, Sangha S. On the basis of sex: Differences in safety discrimination vs. conditioned inhibition. Behav Brain Res 2020; 400:113024. [PMID: 33290755 DOI: 10.1016/j.bbr.2020.113024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/19/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023]
Abstract
Inaccurate discrimination between threat and safety cues is a common symptom of anxiety disorders such as Post-Traumatic Stress Disorder (PTSD). Although females experience higher rates of these disorders than males, the body of literature examining sex differences in safety learning is still growing. Learning to discriminate safety cues from threat cues requires downregulating fear to the safety cue while continuing to express fear to the threat cue. However, successful discrimination between safety and threat cues does not necessarily guarantee that the safety cue can effectively reduce fear to the threat cue when they are presented together. The conditioned inhibitory ability of a safety cue to reduce fear in the presence of both safety and threat is most likely dependent on the ability to discriminate between the two. There are relatively few studies exploring conditioned inhibition as a method of safety learning. Adding to this knowledge gap is the general lack of inclusion of female subjects within these studies. In this review, we provide a qualitative review of our current knowledge of sex differences in safety discrimination versus conditioned inhibition in both humans and rodents. Overall, the literature suggests that while females and males perform similarly in discrimination learning, females show deficits in conditioned inhibition compared to males. Furthermore, while estrogen appears to have a protective effect on safety learning in humans, increased estrogen in female rodents appears to be correlated with impaired safety learning performance.
Collapse
Affiliation(s)
- Jamie N Krueger
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA.
| | - Susan Sangha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
24
|
Müller I, Adams DD, Sangha S, Chester JA. Juvenile stress facilitates safety learning in male and female high alcohol preferring mice. Behav Brain Res 2020; 400:113006. [PMID: 33166568 DOI: 10.1016/j.bbr.2020.113006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/18/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Adversities during juvenility increase the risk for stress-related disorders, such as post-traumatic stress disorder (PTSD) and alcohol use disorder. However, stress can also induce coping mechanisms beneficial for later stressful experiences. We reported previously that mice selectively bred for high alcohol preference (HAP) exposed to stress during adolescence (but not during adulthood) showed enhanced fear-conditioned responses in adulthood, as measured by fear-potentiated startle (FPS). However, HAP mice also showed enhanced responding to safety cues predicting the absence of foot shocks in adulthood. Here, we pursue these findings in HAP mice by investigating in further detail how juvenile stress impacts the acquisition of safety and fear learning. HAP mice were subjected to three days of juvenile stress (postnatal days 25, 27, 28) and discriminative safety/fear conditioning in adulthood. FPS was used to assess safety versus fear cue discrimination, fear learning, and fear inhibition by the safety cue. Both stressed and unstressed HAP mice were able to discriminate between both cues as well as learn the fear cue-shock association. Interestingly, it was only the previously stressed mice that were able to inhibit their fear response when the fear cue was co-presented with the safety cue, thus demonstrating safety learning. We also report an incidental finding of alopecia in the juvenile stress groups, a phenotype seen in stress-related disorders. These results in HAP mice may be relevant to understanding the influence of juvenile trauma for individual risk and resilience toward developing PTSD and how individuals might benefit from safety cues in behavioral psychotherapy.
Collapse
Affiliation(s)
- Iris Müller
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| | - Demitra D Adams
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Susan Sangha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| | - Julia A Chester
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
25
|
The infralimbic cortex and mGlu5 mediate the effects of chronic intermittent ethanol exposure on fear learning and memory. Psychopharmacology (Berl) 2020; 237:3417-3433. [PMID: 32767063 PMCID: PMC7572878 DOI: 10.1007/s00213-020-05622-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/27/2020] [Indexed: 01/19/2023]
Abstract
RATIONALE AND OBJECTIVES Alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD) often occur comorbidly. While the incidence of these disorders is increasing, there is little investigation into the interacting neural mechanisms between these disorders. These studies aim to identify cognitive deficits that occur as a consequence of fear and ethanol exposure, implement a novel pharmaceutical intervention, and determine relevant underlying neurocircuitry. Additionally, due to clinical sex differences in PTSD prevalence and alcohol abuse, these studies examine the nature of this relationship in rodent models. METHODS Animals were exposed to a model of PTSD+AUD using auditory fear conditioning followed by chronic intermittent ethanol exposure (CIE). Then, rats received extinction training consisting of multiple conditioned stimulus presentations in absence of the shock. Extinction recall and context-induced freezing were measured in subsequent tests. CDPPB, a metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulator, was used to treat these deficits, and region-specific effects were determined using microinjections. RESULTS These studies determined that CIE exposure led to deficits in fear extinction learning and heightened context-induced freezing while sex differences emerged in fear conditioning and extinction cue recall tests. Furthermore, using CDPPB, these studies found that enhancement of infralimbic (IfL) mGlu5 activity was able to recover CIE-induced deficits in both males and females. CONCLUSIONS These studies show that CIE induces deficits in fear-related behaviors and that enhancement of IfL glutamatergic activity can facilitate learning during extinction. Additionally, we identify novel pharmacological targets for the treatment of individuals who suffer from PTSD and AUD.
Collapse
|
26
|
Abstract
Differences in the prevalence and presentation of psychiatric illnesses in men and women suggest that neurobiological sex differences confer vulnerability or resilience in these disorders. Rodent behavioral models are critical for understanding the mechanisms of these differences. Reward processing and punishment avoidance are fundamental dimensions of the symptoms of psychiatric disorders. Here we explored sex differences along these dimensions using multiple and distinct behavioral paradigms. We found no sex difference in reward-guided associative learning but a faster punishment-avoidance learning in females. After learning, females were more sensitive than males to probabilistic punishment but less sensitive when punishment could be avoided with certainty. No sex differences were found in reward-guided cognitive flexibility. Thus, sex differences in goal-directed behaviors emerged selectively when there was an aversive context. These differences were critically sensitive to whether the punishment was certain or unpredictable. Our findings with these new paradigms provide conceptual and practical tools for investigating brain mechanisms that account for sex differences in susceptibility to anxiety and impulsivity. They may also provide insight for understanding the evolution of sex-specific optimal behavioral strategies in dynamic environments.
Collapse
|
27
|
Angulo R, Bustamante J, Arévalo-Romero CA. Age, sex and pre-exposure effects on acquisition and generalization of conditioned taste aversion in rats. Behav Brain Res 2020; 394:112813. [PMID: 32712137 DOI: 10.1016/j.bbr.2020.112813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/26/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022]
Abstract
The main aim of the present study was to assess the effect of sex and aging in two pre-exposure learning effects, latent inhibition (LI) and perceptual learning (PL), with a conditioned taste aversion paradigm. Young adult (90 days) and aged (more than 18 months) males and females received 8 pre-exposure trials either with stimulus AX (LI conditions) or BX (PL conditions). Then, all animals received a conditioning trial with AX and two test trials, one with AX and other with BX. The level of generalization between AX and BX was assessed by means of the absolute level of consumption of BX and by the difference in consumption between both stimuli. The results showed an attenuation of latent inhibition as well a stronger generalization of conditioned taste aversion in females when generalization is inferred from the BX consumption. A facilitation of conditioning for the aged animals was also found regardless of the pre-exposed stimulus. Pre-exposures to BX resulted in little generalization, but pre-exposures to AX resulted in a very similar consumption of both compounds, indicating a strong generalization between them. Overall, the study provided novel evidence about the effect of sex and aging on taste aversion, raising at the same time some relevant questions about perceptual learning and how such pre-exposure effect has been typically assessed.
Collapse
|
28
|
Neural correlates of safety learning. Behav Brain Res 2020; 396:112884. [PMID: 32871228 DOI: 10.1016/j.bbr.2020.112884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023]
Abstract
Accurate discrimination between safe and dangerous stimuli is essential for survival. Prior research has begun to uncover the neural structures that are necessary for learning this discrimination, but exploration of brain regions involved in this learning process has been mostly limited to males. Recent findings show sex differences in discrimination learning, with reduced fear expression to safe cues in females compared to males. Here, we used male and female Sprague Dawley rats to explore neural activation, as measured by Fos expression, in fear and safety learning related brain regions. Neural activation after fear discrimination (Discrimination) was compared between males and females, as well as with fear conditioned (Fear Only) and stimulus presented (Control) conditions. Correlations of discrimination ability and neural activation were also calculated. We uncovered a correlation between central amygdala (CeA) activation and discrimination abilities in males and females. Anterior medial bed nucleus of the stria terminalis (BNST) was the only region where sex differences in Fos counts were observed in the Discrimination condition, and the only region where neural activation significantly differed between Fear Only and Discrimination conditions. Together, these findings indicate the importance of fear expression circuitry in mediating discrimination responses and generate important questions for future investigation.
Collapse
|
29
|
Day HLL, Stevenson CW. The neurobiological basis of sex differences in learned fear and its inhibition. Eur J Neurosci 2020; 52:2466-2486. [PMID: 31631413 PMCID: PMC7496972 DOI: 10.1111/ejn.14602] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
Learning that certain cues or environments predict threat enhances survival by promoting appropriate fear and the resulting defensive responses. Adapting to changing stimulus contingencies by learning that such cues no longer predict threat, or distinguishing between these threat-related and other innocuous stimuli, also enhances survival by limiting fear responding in an appropriate manner to conserve resources. Importantly, a failure to inhibit fear in response to harmless stimuli is a feature of certain anxiety and trauma-related disorders, which are also associated with dysfunction of the neural circuitry underlying learned fear and its inhibition. Interestingly, these disorders are up to twice as common in women, compared to men. Despite this striking sex difference in disease prevalence, the neurobiological factors involved remain poorly understood. This is due in part to the majority of relevant preclinical studies having neglected to include female subjects alongside males, which has greatly hindered progress in this field. However, more recent studies have begun to redress this imbalance and emerging evidence indicates that there are significant sex differences in the inhibition of learned fear and associated neural circuit function. This paper provides a narrative review on sex differences in learned fear and its inhibition through extinction and discrimination, along with the key gonadal hormone and brain mechanisms involved. Understanding the endocrine and neural basis of sex differences in learned fear inhibition may lead to novel insights on the neurobiological mechanisms underlying the enhanced vulnerability to develop anxiety-related disorders that are observed in women.
Collapse
Affiliation(s)
- Harriet L. L. Day
- School of BiosciencesUniversity of NottinghamLoughboroughUK
- Present address:
RenaSci LtdBioCity, Pennyfoot StreetNottinghamNG1 1GFUK
| | | |
Collapse
|
30
|
The Nucleus Accumbens Core is Necessary to Scale Fear to Degree of Threat. J Neurosci 2020; 40:4750-4760. [PMID: 32381486 DOI: 10.1523/jneurosci.0299-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 11/21/2022] Open
Abstract
Fear is adaptive when the level of the response rapidly scales to degree of threat. Using a discrimination procedure consisting of danger, uncertainty, and safety cues, we have found rapid fear scaling (within 2 s of cue presentation) in male rats. Here, we examined a possible role for the nucleus accumbens core (NAcc) in the acquisition and expression of fear scaling. In experiment 1, male Long-Evans rats received bilateral sham or neurotoxic NAcc lesions, recovered, and underwent fear discrimination. NAcc-lesioned rats were generally impaired in scaling fear to degree of threat, and specifically impaired in rapid uncertainty-safety discrimination. In experiment 2, male Long-Evans rats received NAcc transduction with halorhodopsin (Halo) or a control fluorophore. After fear scaling was established, the NAcc was illuminated during cue or control periods. NAcc-Halo rats receiving cue illumination were specifically impaired in rapid uncertainty-safety discrimination. The results reveal a general role for the NAcc in scaling fear to degree of threat, and a specific role in rapid discrimination of uncertain threat and safety.SIGNIFICANCE STATEMENT Rapidly discriminating cues for threat and safety is essential for survival and impaired threat-safety discrimination is a hallmark of stress and anxiety disorders. In two experiments, we induced nucleus accumbens core (NAcc) dysfunction in rats receiving fear discrimination consisting of cues for danger, uncertainty, and safety. Permanent NAcc dysfunction, via neurotoxic lesion, generally disrupted the ability to scale fear to degree of threat, and specifically impaired one component of scaling: rapid discrimination of uncertain threat and safety. Reversible NAcc dysfunction, via optogenetic inhibition, specifically impaired rapid discrimination of uncertain threat and safety. The results reveal that the NAcc is essential to scale fear to degree of threat, and is a plausible source of dysfunction in stress and anxiety disorders.
Collapse
|
31
|
Sex differences in auditory fear discrimination are associated with altered medial prefrontal cortex function. Sci Rep 2020; 10:6300. [PMID: 32286467 PMCID: PMC7156682 DOI: 10.1038/s41598-020-63405-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/28/2020] [Indexed: 01/05/2023] Open
Abstract
The increased prevalence of post-traumatic stress disorder (PTSD) that is observed in women may involve sex differences in learned fear inhibition and medial prefrontal cortex (mPFC) function. PTSD is characterized by fear overgeneralization involving impaired fear regulation by safety signals. We recently found that males show fear discrimination and females show fear generalization involving reduced safety signalling after extended fear discrimination training. Here we determined if these sex differences involve altered mPFC function. Male and female rats underwent three days of auditory fear discrimination training, where one tone (CS+) was paired with footshock and another tone (CS−) was presented alone. Local field potentials were recorded from prelimbic (PL) and infralimbic (IL) mPFC during retrieval. We found that males discriminated and females generalized based on cue-induced freezing at retrieval. This was accompanied by sex differences in basal theta and gamma oscillations in PL and IL. Importantly, males also showed PL/IL theta activation during safety signalling by the CS− and IL gamma activation in response to the threat-related CS+, both of which were absent in females. These results add to growing evidence indicating that sex differences in learned fear inhibition are associated with altered mPFC function.
Collapse
|
32
|
Threat-sensitivity in affective disorders: A case-control study. J Affect Disord 2020; 266:595-602. [PMID: 32056932 DOI: 10.1016/j.jad.2020.01.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 01/06/2020] [Accepted: 01/19/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anxiety disorders are highly comorbid with major depression but differ in their symptom profiles and pharmacological responses. Threat-sensitivity may explain such differences, yet research on its relationship to specific disorders is lacking. METHODS One-hundred patients (71 women) and 35 healthy controls (23 women) were recruited. Thirty-five had Panic Disorder (PD), 32 had Generalized Anxiety Disorder (GAD) and 33 Major Depressive Disorder (MDD). Threat-sensitivity was measured via behaviour (Joystick Operated Runway Task; JORT) and self-report (Fear Survey Schedule; FSS). RESULTS Behavioural sensitivity to simple threat was higher in females compared to males (p = .03). Self-reported sensitivity to simple threat (FSS Tissue Damage Fear) was higher in PD patients compared to other groups (p ≤ .007) and in GAD patients compared to controls (p = .02). Behavioural sensitivity to complex threat was higher in females than males (p = .03) and a group by sex interaction (p = .01) indicated that this difference was largest in PD patients. Self-reported sensitivity to complex threat (FSS Social Fear) was higher in all patients compared to controls (p ≤ .001). Females scored higher than males on FSS Tissue Damage Fear and FSS Social Fear). CONCLUSIONS Our findings oppose the simple/complex threat dichotomy, instead suggesting elevated sensitivity to physical threat differentiates anxiety disorders from MDD, whereas elevated sensitivity to social threat is associated with both anxiety disorders and MDD.
Collapse
|
33
|
Sangha S, Diehl MM, Bergstrom HC, Drew MR. Know safety, no fear. Neurosci Biobehav Rev 2020; 108:218-230. [PMID: 31738952 PMCID: PMC6981293 DOI: 10.1016/j.neubiorev.2019.11.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 09/27/2019] [Accepted: 11/11/2019] [Indexed: 02/08/2023]
Abstract
Every day we are bombarded by stimuli that must be assessed for their potential for harm or benefit. Once a stimulus is learned to predict harm, it can elicit fear responses. Such learning can last a lifetime but is not always beneficial for an organism. For an organism to thrive in its environment, it must know when to engage in defensive, avoidance behaviors and when to engage in non-defensive, approach behaviors. Fear should be suppressed in situations that are not dangerous: when a novel, innocuous stimulus resembles a feared stimulus, when a feared stimulus no longer predicts harm, or when there is an option to avoid harm. A cardinal feature of anxiety disorders is the inability to suppress fear adaptively. In PTSD, for instance, learned fear is expressed inappropriately in safe situations and is resistant to extinction. In this review, we discuss mechanisms of suppressing fear responses during stimulus discrimination, fear extinction, and active avoidance, focusing on the well-studied tripartite circuit consisting of the amygdala, medial prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Susan Sangha
- Department of Psychological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| | - Maria M Diehl
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA.
| | - Hadley C Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA.
| | - Michael R Drew
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
34
|
Milton AL. Fear not: recent advances in understanding the neural basis of fear memories and implications for treatment development. F1000Res 2019; 8:F1000 Faculty Rev-1948. [PMID: 31824654 PMCID: PMC6880271 DOI: 10.12688/f1000research.20053.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
Fear is a highly adaptive emotion that has evolved to promote survival and reproductive fitness. However, maladaptive expression of fear can lead to debilitating stressor-related and anxiety disorders such as post-traumatic stress disorder. Although the neural basis of fear has been extensively researched for several decades, recent technological advances in pharmacogenetics and optogenetics have allowed greater resolution in understanding the neural circuits that underlie fear. Alongside conceptual advances in the understanding of fear memory, this increased knowledge has clarified mechanisms for some currently available therapies for post-traumatic stress disorder and has identified new potential treatment targets.
Collapse
Affiliation(s)
- Amy L. Milton
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
35
|
Scholl JL, Afzal A, Fox LC, Watt MJ, Forster GL. Sex differences in anxiety-like behaviors in rats. Physiol Behav 2019; 211:112670. [DOI: 10.1016/j.physbeh.2019.112670] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022]
|
36
|
Tronson NC, Keiser AA. A Dynamic Memory Systems Framework for Sex Differences in Fear Memory. Trends Neurosci 2019; 42:680-692. [PMID: 31473031 DOI: 10.1016/j.tins.2019.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/17/2019] [Accepted: 07/29/2019] [Indexed: 01/04/2023]
Abstract
Emerging research demonstrates that a pattern of overlapping but distinct molecular and circuit mechanisms are engaged by males and females during memory tasks. Importantly, sex differences in neural mechanisms and behavioral strategies are evident even when performance on a memory task is similar between females and males. We propose that sex differences in memory may be best understood within a dynamic memory systems framework. Specifically, sex differences in hormonal influences and neural circuit development result in biases in the circuits engaged and the information preferentially stored or retrieved in males and females. By using animal models to understand the neural networks and molecular mechanisms required for memory in both sexes, we can gain crucial insights into sex and gender biases in disorders including post-traumatic stress disorder (PTSD) in humans.
Collapse
Affiliation(s)
- Natalie C Tronson
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ashley A Keiser
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
37
|
Clark JW, Drummond SPA, Hoyer D, Jacobson LH. Sex differences in mouse models of fear inhibition: Fear extinction, safety learning, and fear-safety discrimination. Br J Pharmacol 2019; 176:4149-4158. [PMID: 30710446 DOI: 10.1111/bph.14600] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/26/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Women are overrepresented in post-traumatic stress disorder (PTSD), a mental disorder characterised by ineffective inhibition of fear. The use of male animals dominates preclinical studies, which may contribute to a lack of understanding as to why this disparity exists. Thus, the current study explores sex differences in three mouse models of fear inhibition. EXPERIMENTAL APPROACH All experiments tested male and female C57Bl/6J mice. Experiment 1 employed two fear conditioning protocols, in which tones were paired with footshocks of differing intensity (moderate or intense). Fear recall and extinction were tested subsequently. In Experiment 2, safety learning was investigated. Tones were explicitly unpaired with footshocks during safety conditioning. Recall of safety learning was tested 24 hr later. Experiment 3 assessed a model of fear-safety discrimination. Cued stimuli were paired or never paired with footshocks during fear and safety conditioning, respectively. Discrimination between stimuli was assessed 24 hr later. KEY RESULTS In fear extinction, males, compared to females, responded with greater fear in sessions most proximal to conditioning but subsequently showed a more rapid fear extinction over time. Sex differences were not observed during safety learning. During fear-safety discrimination, both males and females discriminated between stimuli; however, males revealed a greater level of freezing to stimuli. CONCLUSION AND IMPLICATIONS The current study provides evidence that sex differences influence fear but not safety-based behaviour in C57Bl/6J mice. These findings indicate that processing of fear, but not safety, may play a greater role in sex differences observed for PTSD. LINKED ARTICLES This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Jacob W Clark
- Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Notting Hill, VIC, Australia.,Department of Pharmacology and Therapeutics, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Sean P A Drummond
- Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Notting Hill, VIC, Australia
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Laura H Jacobson
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
38
|
Greiner EM, Müller I, Norris MR, Ng KH, Sangha S. Sex differences in fear regulation and reward-seeking behaviors in a fear-safety-reward discrimination task. Behav Brain Res 2019; 368:111903. [PMID: 30981735 DOI: 10.1016/j.bbr.2019.111903] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/27/2022]
Abstract
Reward availability and the potential for danger or safety potently regulate emotion. Despite women being more likely than men to develop emotion dysregulation disorders, there are comparatively few studies investigating fear, safety and reward regulation in females. Here, we show that female Long Evans rats did not suppress conditioned freezing in the presence of a safety cue, nor did they extinguish their freezing response, whereas males did both. Females were also more reward responsive during the reward cue until the first footshock exposure, at which point there were no sex differences in reward seeking to the reward cue. Darting analyses suggest females were able to regulate this behavior in response to the safety cue, suggesting they were able to discriminate between fear and safety cues but did not demonstrate this with conditioned suppression of freezing behavior. However, levels of darting in this study were too low to make any definitive conclusions. In summary, females showed a significantly different behavioral profile than males in a task that tested the ability to discriminate among fear, safety and reward cues. This paradigm offers a great opportunity to test for mechanisms that are generating these behavioral sex differences in learned safety and reward seeking.
Collapse
Affiliation(s)
- Eliza M Greiner
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Iris Müller
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Makenzie R Norris
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Ka H Ng
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Susan Sangha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
39
|
Asok A, Hijazi J, Harvey LR, Kosmidis S, Kandel ER, Rayman JB. Sex Differences in Remote Contextual Fear Generalization in Mice. Front Behav Neurosci 2019; 13:56. [PMID: 30967765 PMCID: PMC6439350 DOI: 10.3389/fnbeh.2019.00056] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
The generalization of fear is adaptive in that it allows an animal to respond appropriately to novel threats that are not identical to previous experiences. In contrast, the overgeneralization of fear is maladaptive and is a hallmark of post-traumatic stress disorder (PTSD), a psychiatric illness that is characterized by chronic symptomatology and a higher incidence in women compared to men. Therefore, understanding the neural basis of fear generalization at remote time-points in female animals is of particular translational relevance. However, our understanding of the neurobiology of fear generalization is largely restricted to studies employing male mice and focusing on recent time-points (i.e., within 24-48 h following conditioning). To address these limitations, we examined how male and female mice generalize contextual fear at remote time intervals (i.e., 3 weeks after conditioning). In agreement with earlier studies of fear generalization at proximal time-points, we find that the test order of training and generalization contexts is a critical determinant of generalization and context discrimination, particularly for female mice. However, tactile elements that are present during fear conditioning are more salient for male mice. Our study highlights long-term sex differences in defensive behavior between male and female mice and may provide insight into sex differences in the processing and retrieval of remote fear memory observed in humans.
Collapse
Affiliation(s)
- Arun Asok
- Department of Neuroscience, Jerome L. Greene Science Center, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Joud Hijazi
- Department of Neuroscience, Jerome L. Greene Science Center, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Lucas R. Harvey
- Department of Neuroscience, Jerome L. Greene Science Center, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Stylianos Kosmidis
- Department of Neuroscience, Jerome L. Greene Science Center, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Eric R. Kandel
- Department of Neuroscience, Jerome L. Greene Science Center, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Howard Hughes Medical Institute, Columbia University, New York, NY, United States
- Kavli Institute for Brain Science, Columbia University, New York, NY, United States
| | - Joseph B. Rayman
- Department of Neuroscience, Jerome L. Greene Science Center, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| |
Collapse
|
40
|
Asok A, Kandel ER, Rayman JB. The Neurobiology of Fear Generalization. Front Behav Neurosci 2019; 12:329. [PMID: 30697153 PMCID: PMC6340999 DOI: 10.3389/fnbeh.2018.00329] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
The generalization of fear memories is an adaptive neurobiological process that promotes survival in complex and dynamic environments. When confronted with a potential threat, an animal must select an appropriate defensive response based on previous experiences that are not identical, weighing cues and contextual information that may predict safety or danger. Like other aspects of fear memory, generalization is mediated by the coordinated actions of prefrontal, hippocampal, amygdalar, and thalamic brain areas. In this review article, we describe the current understanding of the behavioral, neural, genetic, and biochemical mechanisms involved in the generalization of fear. Fear generalization is a hallmark of many anxiety and stress-related disorders, and its emergence, severity, and manifestation are sex-dependent. Therefore, to improve the dialog between human and animal studies as well as to accelerate the development of effective therapeutics, we emphasize the need to examine both sex differences and remote timescales in rodent models.
Collapse
Affiliation(s)
- Arun Asok
- Jerome L. Greene Science Center, Department of Neuroscience, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Eric R. Kandel
- Jerome L. Greene Science Center, Department of Neuroscience, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Howard Hughes Medical Institute (HHMI), Columbia University, New York, NY, United States
- Kavli Institute for Brain Science, Columbia University, New York, NY, United States
| | - Joseph B. Rayman
- Jerome L. Greene Science Center, Department of Neuroscience, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| |
Collapse
|
41
|
Tronson NC. Focus on females: A less biased approach for studying strategies and mechanisms of memory. Curr Opin Behav Sci 2018; 23:92-97. [PMID: 30083579 PMCID: PMC6075684 DOI: 10.1016/j.cobeha.2018.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent work on sex differences in learning and memory has demonstrated that females and males differ in cognitive and behavioral strategies, as well as neural mechanisms required to learn, retrieve and express memory. Although our understanding of the mechanisms of memory is highly sophisticated, this work is based on male animals. As such, the study of female memory is narrowed to a comparison with behavior and mechanisms defined in males, resulting in findings of male-specific mechanisms but little understanding of how females learn and store information. In this paper, we discuss a female-focused framework and experimental approaches to deepen our understanding of the strategies and neural mechanisms engaged by females (and males) in learning, consolidation, and retrieval of memory.
Collapse
|
42
|
REM deprivation but not sleep fragmentation produces a sex-specific impairment in extinction. Physiol Behav 2018; 196:84-94. [PMID: 30144468 DOI: 10.1016/j.physbeh.2018.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/31/2023]
Abstract
REM sleep is essential for learning and memory processes, particularly emotional learning. Manipulations of REM sleep impair learning and memory and sleep architecture is often altered following a learning experience; for example, short term REM deprivation immediately after fear conditioning results in impaired extinction. In light of research demonstrating sex-dependent differences in fear conditioning as well as differences in sleep architecture, the present study investigated the effects of short term REM deprivation on the extinction of conditioned fear in male and female rats. In addition, given evidence that sleep fragmentation, which is a consequence of REM deprivation, can negatively impact learning and memory, this manipulation was compared to REM deprivation and a control condition. Male and female rats were exposed to fear conditioning followed by 6 h of REM deprivation, sleep fragmentation, or a control condition. Two extinction sessions were conducted at 48 h intervals after conditioning. REM deprivation, but not sleep fragmentation or the control condition, impaired extinction of conditioned fear. However, this effect was seen only in male rats. This study is the first to explore the effects of sleep manipulations on memory in female rats and suggests that female rats are more resilient to the deleterious effects of REM deprivation. In addition, it demonstrates that REM deprivation but not fragmentation of sleep is responsible for impairment in extinction of conditioned fear.
Collapse
|
43
|
Fuentes S, Daviu N, Gagliano H, Belda X, Armario A, Nadal R. Early life stress in rats sex-dependently affects remote endocrine rather than behavioral consequences of adult exposure to contextual fear conditioning. Horm Behav 2018; 103:7-18. [PMID: 29802874 DOI: 10.1016/j.yhbeh.2018.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/09/2018] [Accepted: 05/22/2018] [Indexed: 01/07/2023]
Abstract
Exposure to electric foot-shocks can induce in rodents contextual fear conditioning, generalization of fear to other contexts and sensitization of the hypothalamic-pituitary-adrenal (HPA) axis to further stressors. All these aspects are relevant for the study of post-traumatic stress disorder. In the present work we evaluated in rats the sex differences and the role of early life stress (ELS) in fear memories, generalization and sensitization. During the first postnatal days subjects were exposed to restriction of nesting material along with exposure to a "substitute" mother. In the adulthood they were exposed to (i) a contextual fear conditioning to evaluate long-term memory and extinction and (ii) to a novel environment to study cognitive fear generalization and HPA axis heterotypic sensitization. ELS did not alter acquisition, expression or extinction of context fear conditioned behavior (freezing) in either sex, but reduced activity in novel environments only in males. Fear conditioning associated hypoactivity in novel environments (cognitive generalization) was greater in males than females but was not specifically affected by ELS. Although overall females showed greater basal and stress-induced levels of ACTH and corticosterone, an interaction between ELS, shock exposure and sex was found regarding HPA hormones. In males, ELS did not affect ACTH response in any situation, whereas in females, ELS reduced both shock-induced sensitization of ACTH and its conditioned response to the shock context. Also, shock-induced sensitization of corticosterone was only observed in males and ELS specifically reduced corticosterone response to stressors in males but not females. In conclusion, ELS seems to have only a minor impact on shock-induced behavioral conditioning, while affecting the unconditioned and conditioned responses of HPA hormones in a sex-dependent manner.
Collapse
Affiliation(s)
- Sílvia Fuentes
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Núria Daviu
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Spain
| | - Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Spain
| | - Xavier Belda
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain.
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
44
|
Homiack D, O'Cinneide E, Hajmurad S, Dohanich GP, Schrader LA. Effect of acute alarm odor exposure and biological sex on generalized avoidance and glutamatergic signaling in the hippocampus of Wistar rats. Stress 2018; 21:292-303. [PMID: 29916754 DOI: 10.1080/10253890.2018.1484099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is characterized by the development of paradoxical memory disturbances including intrusive memories and amnesia for specific details of the traumatic experience. Despite evidence that women are at higher risk to develop PTSD, most animal research has focused on the processes by which male rodents develop adaptive fear memory. As such, the mechanisms contributing to sex differences in the development of PTSD-like memory disturbances are poorly understood. In this investigation, we exposed adult male and female Wistar rats to the synthetic alarm odor 2,4,5-trimethylthiazole (TMT) to assess development of generalized fear behavior and rapid modulation of glutamate uptake and signaling cascades associated with hippocampus-dependent long-term memory. We report that female Wistar rats exposed to alarm odor exhibit context discrimination impairments relative to TMT-exposed male rats, suggesting the intriguing possibility that females are at greater risk in developing generalized fear memories. Mechanistically, alarm odor exposure rapidly modulated signaling cascades consistent with activation of the CREB shut-off cascade in the male, but not the female hippocampus. Moreover, TMT exposure dampened glutamate uptake and affected expression of the glutamate transporter, GLT-1 in the hippocampus. Taken together, these results provide evidence for rapid sex-dependent modulation of CREB signaling in the hippocampus by alarm odor exposure which may contribute to the development of generalized fear.
Collapse
Affiliation(s)
- Damek Homiack
- a Neuroscience Program, Brain Institute , Tulane University , New Orleans , LA , USA
| | - Emma O'Cinneide
- a Neuroscience Program, Brain Institute , Tulane University , New Orleans , LA , USA
| | - Sema Hajmurad
- b Department of Cell and Molecular Biology , Tulane University , New Orleans , LA , USA
| | - Gary P Dohanich
- a Neuroscience Program, Brain Institute , Tulane University , New Orleans , LA , USA
- c Department of Psychology , Tulane University , New Orleans , LA , USA
| | - Laura A Schrader
- a Neuroscience Program, Brain Institute , Tulane University , New Orleans , LA , USA
- b Department of Cell and Molecular Biology , Tulane University , New Orleans , LA , USA
| |
Collapse
|
45
|
Manzano-Nieves G, Gaillard M, Gallo M, Bath KG. Early life stress impairs contextual threat expression in female, but not male, mice. Behav Neurosci 2018; 132:247-257. [PMID: 29781628 DOI: 10.1037/bne0000248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Early life stress (ELS) is associated with altered processing of threat signals, and increased lifetime risk of anxiety and affective pathology, disorders that disproportionately affect females. We tested the impact of a limited bedding paradigm of ELS (from P4-11) on contextual threat learning, context memory, footshock sensitivity, and anxietylike behavior, in adult male and female mice. To examine contextual threat learning, mice conditioned by context/footshock association were tested 24 hr later for the context memory. To determine the effect of ELS on footshock sensitivity, a separate cohort of mice were exposed to footshocks of increasing intensity (0.06 to 0.40 mA) and behavioral responses (jump and audible vocalization) were assessed by observers blind to treatment condition, sex, and cycle stage. ELS impaired context memory in female, but not male, mice. ELS increased footshock-induced threshold to vocalize, but not to jump, in both sexes. In female mice, this effect was most apparent during estrus. Decreased body weight, indicative of higher stress incurred by an individual mouse, correlated with increased threshold to jump in both sexes reared in ELS, and to audibly vocalize in ELS females. As ELS effects on shock sensitivity were present in both sexes, the contextual recall deficit in females was not likely driven by changes in the salience of aversive footshocks. No effects on anxietylike behavior, as measured in the elevated plus maze (EPM), were observed. More work is needed to better understand the impact of ELS on both somatic and gonadal development, and their potential contribution to threat learning. (PsycINFO Database Record
Collapse
Affiliation(s)
| | | | | | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University
| |
Collapse
|
46
|
Caulfield MD, Myers CE. Post-traumatic stress symptoms are associated with better performance on a delayed match-to-position task. PeerJ 2018; 6:e4701. [PMID: 29736339 PMCID: PMC5936632 DOI: 10.7717/peerj.4701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 04/13/2018] [Indexed: 01/16/2023] Open
Abstract
Many individuals with posttraumatic stress disorder (PTSD) report experiencing frequent intrusive memories of the original traumatic event (e.g., flashbacks). These memories can be triggered by situations or stimuli that reflect aspects of the trauma and may reflect basic processes in learning and memory, such as generalization. It is possible that, through increased generalization, non-threatening stimuli that once evoked normal memories become associated with traumatic memories. Previous research has reported increased generalization in PTSD, but the role of visual discrimination processes has not been examined. To investigate visual discrimination in PTSD, 143 participants (Veterans and civilians) self-assessed for symptom severity were grouped according to the presence of severe PTSD symptoms (PTSS) vs. few/no symptoms (noPTSS). Participants were given a visual match-to-sample pattern separation task that varied trials by spatial separation (Low, Medium, High) and temporal delays (5, 10, 20, 30 s). Unexpectedly, the PTSS group demonstrated better discrimination performance than the noPTSS group at the most difficult spatial trials (Low spatial separation). Further assessment of accuracy and reaction time using diffusion drift modeling indicated that the better performance by the PTSS group on the hardest trials was not explained by slower reaction times, but rather a faster accumulation of evidence during decision making in conjunction with a reduced threshold, indicating a tendency in the PTSS group to decide quickly rather than waiting for additional evidence to support the decision. This result supports the need for future studies examining the precise role of discrimination and generalization in PTSD, and how these cognitive processes might contribute to expression and maintenance of PTSD symptoms.
Collapse
Affiliation(s)
- Meghan D Caulfield
- Department of Psychology, Lafayette College, Easton, PA, United States of America.,Neurobehavioral Research Laboratory, VA New Jersey Health Care System, East Orange, NJ, United States of America
| | - Catherine E Myers
- Neurobehavioral Research Laboratory, VA New Jersey Health Care System, East Orange, NJ, United States of America.,Department of Pharmacology, Physiology & Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ, United States of America
| |
Collapse
|
47
|
Pittig A, Treanor M, LeBeau RT, Craske MG. The role of associative fear and avoidance learning in anxiety disorders: Gaps and directions for future research. Neurosci Biobehav Rev 2018; 88:117-140. [DOI: 10.1016/j.neubiorev.2018.03.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/16/2018] [Accepted: 03/13/2018] [Indexed: 12/25/2022]
|
48
|
Grunfeld IS, Likhtik E. Mixed selectivity encoding and action selection in the prefrontal cortex during threat assessment. Curr Opin Neurobiol 2018; 49:108-115. [PMID: 29454957 PMCID: PMC5889962 DOI: 10.1016/j.conb.2018.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/27/2017] [Accepted: 01/17/2018] [Indexed: 01/18/2023]
Abstract
The medial prefrontal cortex (mPFC) regulates expression of emotional behavior. The mPFC combines multivariate information from its inputs, and depending on the imminence of threat, activates downstream networks that either increase or decrease the expression of anxiety-related motor behavior and autonomic activation. Here, we selectively highlight how subcortical input to the mPFC from two example structures, the amygdala and ventral hippocampus, help shape mixed selectivity encoding and action selection during emotional processing. We outline a model where prefrontal subregions modulate behavior along orthogonal motor dimensions, and exhibit connectivity that selects for expression of one behavioral strategy while inhibiting the other.
Collapse
Affiliation(s)
- Itamar S Grunfeld
- Biology Department, Hunter College, CUNY, United States; Neuroscience Collaborative, The Graduate Center, CUNY, United States
| | - Ekaterina Likhtik
- Biology Department, Hunter College, CUNY, United States; Neuroscience Collaborative, The Graduate Center, CUNY, United States.
| |
Collapse
|
49
|
Stout DM, Acheson DT, Moore TM, Gur RC, Baker DG, Geyer MA, Risbrough VB. Individual variation in working memory is associated with fear extinction performance. Behav Res Ther 2018; 102:52-59. [PMID: 29331727 PMCID: PMC6182776 DOI: 10.1016/j.brat.2018.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 12/08/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022]
Abstract
PTSD has been associated consistently with abnormalities in fear acquisition and extinction learning and retention. Fear acquisition refers to learning to discriminate between threat and safety cues. Extinction learning reflects the formation of a new inhibitory-memory that competes with a previously learned threat-related memory. Adjudicating the competition between threat memory and the new inhibitory memory during extinction may rely, in part, on cognitive processes such as working memory (WM). Despite significant shared neural circuits and signaling pathways the relationship between WM, fear acquisition, and extinction is poorly understood. Here, we analyzed data from a large sample of healthy Marines who underwent an assessment battery including tests of fear acquisition, extinction learning, and WM (N-back). Fear potentiated startle (FPS), fear expectancy ratings, and self-reported anxiety served as the primary dependent variables. High WM ability (N = 192) was associated with greater CS + fear inhibition during the late block of extinction and greater US expectancy change during extinction learning compared to individuals with low WM ability (N = 204). WM ability was not associated with magnitude of fear conditioning/expression. Attention ability was unrelated to fear acquisition or extinction supporting specificity of WM associations with extinction. These results support the conclusion that individual differences in WM may contribute to regulating fear responses.
Collapse
Affiliation(s)
- Daniel M Stout
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA 92161, USA; Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Dean T Acheson
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA 92161, USA; Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Tyler M Moore
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben C Gur
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Philadelphia Veterans Administration Medical Center, Philadelphia, PA 19104, USA
| | - Dewleen G Baker
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA 92161, USA; Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare system, San Diego, CA 92161, USA
| | - Victoria B Risbrough
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA 92161, USA; Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
50
|
Carvalho MC, Veloni AC, Genaro K, Brandão ML. Behavioral sensitization induced by dorsal periaqueductal gray electrical stimulation is counteracted by NK1 receptor antagonism in the ventral hippocampus and central nucleus of the amygdala. Neurobiol Learn Mem 2018. [PMID: 29519453 DOI: 10.1016/j.nlm.2018.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A single threatening experience may change the behavior of an animal in a long-lasting way and elicit generalized behavioral responses to a novel threatening situation that is unrelated to the original aversive experience. Electrical stimulation (ES) of the dorsal periaqueductal gray (dPAG) produces a range of defensive reactions, characterized by freezing, escape, and post-stimulation freezing (PSF). The latter reflects the processing of ascending aversive information to prosencephalic structures, including the central nucleus of the amygdala (CeA), which allows the animal to evaluate the consequences of the aversive situation. This process is modulated by substance P (SP) and its preferred receptor, neurokinin 1 (NK1). The ventral hippocampus (VH) has been associated with the processing of aversive information and expression of emotional reactions with negative valence, but the participation of the VH in the expression of these defensive responses has not been investigated. The VH is rich in NK1 receptor expression and has a high density of SP-containing fibers. The present study examined the role of NK1 receptors in the VH in the expression of defensive responses and behavioral sensitization that were induced by dPAG-ES. Rats were implanted with an electrode in the dPAG for ES, and a cannula was implanted in the VH or CeA for injections of vehicle (phosphate-buffered saline) or the NK1 receptor antagonist spantide (100 pmol/0.2 μL. Spantide reduced the duration of PSF that was evoked by dPAG-ES, without changing the aversive freezing or escape thresholds. One and 7 days later, exploratory behavior was evaluated in independent groups of rats in the elevated plus maze (EPM). dPAG-ES in rats that received vehicle caused higher aversion to the open arms of the EPM compared with rats that did not receive dPAG stimulation at both time intervals. Injections of spantide in the VH or CeA prevented the proaversive effects of dPAG-ES in the EPM only 1 day later. These findings suggest that NK1 receptors are activated in both the VH and CeA during the processing of aversive information that derives from dPAG-ES. As previously shown for the CeA, SP/NK1 receptors in the VH are recruited during PSF that is evoked by dPAG-ES, suggesting that a 24-h time window is susceptible to interventions with NK1 antagonists that block the passage of aversive information from the dPAG to higher brain areas.
Collapse
Affiliation(s)
- M C Carvalho
- Departamento de Psicologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, SP, Brazil; Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, SP, Brazil.
| | - A C Veloni
- Departamento de Psicologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, SP, Brazil; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, SP, Brazil
| | - K Genaro
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, SP, Brazil; Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, SP, Brazil
| | - M L Brandão
- Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, SP, Brazil
| |
Collapse
|