1
|
Featherstone RE, Gifford RL, Crown LM, Amirfathi F, Alaniz JP, Yi J, Tran A, Adomian D, Schwenk A, Melnychenko O, Duval C, Parekh K, Lee DJ, Siegel SJ. Early life social instability stress causes lasting cognitive decrement and elevated hippocampal stress-related gene expression. Exp Neurol 2022; 354:114099. [PMID: 35490720 DOI: 10.1016/j.expneurol.2022.114099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Early life stress may have profound effects on brain health, yielding both short- and long-term cognitive or psychiatric impairment. Early life Social Instability Stress (SIS) in rodents has been used to model the effects of early chronic human stress. While many studies have assessed acute and short-term responses to this stressor, less attention has been paid to the lasting effects of early life stress in rodents. METHODS The current study utilized SIS in young mice to assess the impact of early life adversity over the lifespan. Mice were assessed in adulthood between the ages of 18 to 66 weeks for changes in behaviors associated with anxiety, affect, sociability, aggression, motivation, and recognition memory. Additionally, mice were assessed for changes in glucocorticoid level and hippocampal mRNA expression in a subset of genes that display alterations in humans following exposure to stress (CRHR1, CRHR2, FKBP5, SLC6A4). RESULTS Mice exposed to early SIS showed disrupted memory and increased hippocampal expression of FKBP5, CRHR2 and SLC6A4 mRNA compared to non-stressed mice. Importantly, there was a significant association between increased FKBP5 and CRHR2 with reduced recognition memory. Additionally, mice exposed to SIS showed increased responding on a progressive ratio schedule of reinforcement, indicating that reduction in memory performance was not mediated by decreased effort. CONCLUSIONS Ecologically-relevant social stress in mice causes long-term decrements in recognition memory, possibly mediated by persistent changes in moderators of the stress cascade. Additionally, animals exposed to early life stress showed increased motivation for reward, which may contribute to a host of hedonic seeking behaviors throughout life. These data suggest that SIS can be used to evaluate therapeutic interventions to attenuate or reverse lasting effects of early life adversity.
Collapse
Affiliation(s)
- Robert E Featherstone
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Raymond L Gifford
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Lindsey M Crown
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Felix Amirfathi
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Jon P Alaniz
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Janice Yi
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - AiVi Tran
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Derrick Adomian
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Andrew Schwenk
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Olya Melnychenko
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Christina Duval
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Krishna Parekh
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America
| | - Darrin J Lee
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America; Department of Neurosurgery, Keck School of Medicine, University of Southern California, 1200 North State St., Suite 3300, Los Angeles, CA 90033, United States of America
| | - Steven J Siegel
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, United States of America.
| |
Collapse
|
2
|
Vitale EM, Smith AS. Neurobiology of Loneliness, Isolation, and Loss: Integrating Human and Animal Perspectives. Front Behav Neurosci 2022; 16:846315. [PMID: 35464141 PMCID: PMC9029604 DOI: 10.3389/fnbeh.2022.846315] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/30/2022] Open
Abstract
In social species such as humans, non-human primates, and even many rodent species, social interaction and the maintenance of social bonds are necessary for mental and physical health and wellbeing. In humans, perceived isolation, or loneliness, is not only characterized by physical isolation from peers or loved ones, but also involves negative perceptions about social interactions and connectedness that reinforce the feelings of isolation and anxiety. As a complex behavioral state, it is no surprise that loneliness and isolation are associated with dysfunction within the ventral striatum and the limbic system - brain regions that regulate motivation and stress responsiveness, respectively. Accompanying these neural changes are physiological symptoms such as increased plasma and urinary cortisol levels and an increase in stress responsivity. Although studies using animal models are not perfectly analogous to the uniquely human state of loneliness, studies on the effects of social isolation in animals have observed similar physiological symptoms such as increased corticosterone, the rodent analog to human cortisol, and also display altered motivation, increased stress responsiveness, and dysregulation of the mesocortical dopamine and limbic systems. This review will discuss behavioral and neuropsychological components of loneliness in humans, social isolation in rodent models, and the neurochemical regulators of these behavioral phenotypes with a neuroanatomical focus on the corticostriatal and limbic systems. We will also discuss social loss as a unique form of social isolation, and the consequences of bond disruption on stress-related behavior and neurophysiology.
Collapse
Affiliation(s)
- Erika M. Vitale
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Adam S. Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
3
|
Grippo AJ, McNeal N, Normann MC, Colburn W, Dagner A, Woodbury M. Behavioral and neuroendocrine consequences of disrupting a long-term monogamous social bond in aging prairie voles. Stress 2021; 24:239-250. [PMID: 32820956 PMCID: PMC7914264 DOI: 10.1080/10253890.2020.1812058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Social support from a spouse, long-term partner, or someone who provides emotional or instrumental support may protect against consequences of aging, including mediating behavioral stress reactivity and altering neurobiological process that underlie short-term stress responses. Therefore, long-term social bonding may have behavioral and neurobiological benefits. The socially monogamous prairie vole provides a valuable experimental model for investigating the benefits of long-term social bonds on short-term stress reactivity in aging animals, given their unique social structure of forming enduring opposite-sex bonds, living in family groups, and bi-parental rearing strategies. Male-female pairs of long-term, cohabitating prairie voles were investigated for short-term behavioral and neuroendocrine stress reactivity following either long-term social pairing (control), or a period of social isolation. In Experiment 1, social isolation was associated with altered behavioral reactivity to an acute swim stressor, and greater neural activation in the hypothalamic paraventricular nucleus, as well as specifically the parvocellular region, following the swim stressor (vs. control). In Experiment 2, social isolation was associated with greater corticosterone reactivity following an acute restraint stressor (vs. control). No sex differences were observed. Exploratory correlation and subgroup analyses revealed systematic relationships among various demographic variables (such as age of the subjects, amount of time the pair cohabitated together, and number of litters the pair reared together) and the behavioral and neuroendocrine outcome measures. These findings may inform our understanding of the benefits of long-term social bonding on modulating short-term behavioral and neuroendocrine responses to stress.LAY SUMMARYReceiving social support from a long-term spouse or partner, or having a strong support network from friends, may have important health benefits as people age. In aging monogamous prairie voles, social isolation from a long-term social partner disrupted behaviors and short-term stress responses, whereas living with a long-term partner protected against these disruptions. This research is important for our understanding of the benefits of social support on stress responses as we age.
Collapse
Affiliation(s)
- Angela J Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Neal McNeal
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Marigny C Normann
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - William Colburn
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Ashley Dagner
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Matthew Woodbury
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
4
|
Le TM, Wang W, Zhornitsky S, Dhingra I, Chen Y, Zhang S, Li CSR. The Neural Processes Interlinking Social Isolation, Social Support, and Problem Alcohol Use. Int J Neuropsychopharmacol 2020; 24:333-343. [PMID: 33211853 PMCID: PMC8059487 DOI: 10.1093/ijnp/pyaa086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Subjective feeling of social isolation, as can be measured by perceived burdensomeness (PB), is a major risk factor for alcohol misuse. Heightened PB is associated with elevated stress response and diminished cognitive control, both of which contribute to problem drinking. Here, we sought to identify the neural substrates underlying the relationship between PB and alcohol misuse. METHODS We employed resting-state functional magnetic resonance imaging data collected from 61 problem drinkers to characterize the functional connectivity of the hypothalamus and ventral striatum (VS) in relation to PB. We specifically examined whether the connectivities of the hypothalamus and VS were differentially influenced by PB to produce contrasting effects on alcohol use. Finally, we evaluated how individual differences in social support modulate the inter-relationships of social isolation, neural connectivity, and the severity of problem drinking. RESULTS Whole-brain multiple regressions show a positive relationship between PB and hypothalamic connectivity with the hippocampus and an inverse pattern for VS connectivity with the middle frontal gyrus. Difference in strength between the 2 connectivities predicted the severity of problem drinking, suggesting an imbalance involving elevated hypothalamic and diminished prefrontal cortical modulation in socially isolated problem drinkers. A path analysis further revealed that the lack of social support was associated with a bias toward low prefrontal connectivity, which in turn increased PB and facilitated problem drinking. CONCLUSIONS Altered hypothalamus and VS connectivity may underlie problem drinking induced by social isolation. The current findings also highlight the important role of social support as a potential protective factor against alcohol misuse.
Collapse
Affiliation(s)
- Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA,Correspondence: Thang M. Le, PhD, Connecticut Mental Health Center, S105, 34 Park Street, New Haven, CT 06519-1109, USA ()
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chiang-Shan R Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Wagner S. Urocortins and their unfolding role in mammalian social behavior. Cell Tissue Res 2018; 375:133-142. [PMID: 30465153 DOI: 10.1007/s00441-018-2962-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/07/2018] [Indexed: 11/26/2022]
Abstract
The corticotropin-releasing factor (CRF) system is well known for its major role in coordinating the endocrine, autonomic and behavioral responses to stress. These functions have been shown to be mediated mainly by the binding of the CRF neuropeptide to its specific receptor CRFR1. Yet, the CRF system comprises several more neuropeptides, including the three urocortins, UCN1, UCN2 and UCN3, of which the latter two bind specifically to a distinct receptor-CRFR2. Unlike the brain-wide abundant expression of CRF and CRFR1, the brain expression of the urocortins and CRFR2 is rather restricted and seems to be focused in limbic areas associated with social behavior. Here, we will review accumulating evidence from recent studies that unfold the role of UCN2 and UCN3 in regulating mammalian social behavior, via activation of CRFR2.
Collapse
Affiliation(s)
- Shlomo Wagner
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBR), Faculty of Natural Sciences, University of Haifa, Mt. Carmel, 3498838, Haifa, Israel.
| |
Collapse
|
6
|
Al-Naimi OAS, Delvalle JR, Carryl SS, Rodriguez NA, Aliou F, Cambi M, Bamshad M. Socio-Ecological Disruptions at Critical Periods During Development Alter Stress Responses and Hippocampal Dendritic Morphology of Prairie Voles: Implications for Social Monogamy. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Akladious A, Azzam S, Hu Y, Feng P. Bmal1 knockdown suppresses wake and increases immobility without altering orexin A, corticotrophin-releasing hormone, or glutamate decarboxylase. CNS Neurosci Ther 2018; 24:549-563. [PMID: 29446232 DOI: 10.1111/cns.12815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To determine the effect of Bmal1 knockdown (KD) on sleep, activity, immobility, hypothalamic levels of orexin, corticotrophin-releasing hormone (CRH), and GABAergic glutamate decarboxylase (GAD). METHODS We used Bmal1 siRNA, or control siRNA intracerebroventricular (ICV) injection to knock down Bmal1 in C57BL/6 mice. Sleep polysomnography, wheel-running activity, and tail suspension test were performed. Polysomnographic (PSG) recordings in both groups were preceded by ICV injection made during both the light phase and the dark phase. We also measured brain orexin A and CRH using an ELISA and measured GAD using immunoblotting. RESULTS Compared with control group, Bmal1 KD group had reduced wheel activity and increased immobility. Compared with control, the Bmal1 KD group had reduced wheel activity and increased immobility. During the first 24 hours after treatment, we observed that control siRNA induced a much greater increase in sleep during the dark phase, which was associated with lower orexin levels. However, beginning 24 hours after treatment, we observed an increase in sleep and a decrease in time spent awake during the dark phase in the Bmal1 KD group. These changes were not associated with changes in brain levels of orexin A, CRH, or GAD. CONCLUSION Bmal1 KD led to reduced activity, increased immobility, and dramatic reduction in time spent awake as well as an increase in sleep during the dark phase. Early after injection, there was a slight change in sleep but brain levels of orexin, CRH, and GAD remain unchanged. Control siRNA also affected sleep associated with changes in orexin levels.
Collapse
Affiliation(s)
- Afaf Akladious
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Sausan Azzam
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yufen Hu
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Pingfu Feng
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
8
|
Alcántara-Alonso V, Amaya MI, Matamoros-Trejo G, de Gortari P. Altered functionality of the corticotrophin-releasing hormone receptor-2 in the hypothalamic paraventricular nucleus of hyperphagic maternally separated rats. Neuropeptides 2017; 63:75-82. [PMID: 28162848 DOI: 10.1016/j.npep.2017.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 11/28/2022]
Abstract
Early-life stress induces endocrine and metabolic alterations that increase food intake and overweight in adulthood. The stress response activates the corticotropin-releasing hormone (CRH) and urocortins' (Ucns) system in the hypothalamic paraventricular nucleus (PVN). These peptides induce anorexic effects through CRH-R2 receptor activation; however, chronic stressed animals develop hyperphagia despite of high PVN CRH expression. We analyzed this paradoxical behavior in adult rats subjected to maternal separation (MS) for 180min/daily during post-natal days 2-14, evaluating their body weight gain, food intake, serum corticosterone and vasopressin concentrations, PVN mRNA expression of CRH-R1, CRH-R2, CRH, Ucn2, Ucn3, vasopressin and CRH-R2 protein levels. MS adults increased their feeding, weight gain as well as circulating corticosterone and vasopressin levels, evincing chronic hyperactivity of the stress system. MS induced higher PVN CRH, Ucn2 and CRH-R2 mRNA expression and protein levels of CRH-R2 showed a tendency to decrease in the cellular membrane fraction. An intra-PVN injection of the CRH-R2 antagonist antisauvagine-30 in control adults increased receptor's mRNA expression, mimicking the observed PVN receptor's up-regulation of early-life MS adults. An injection of Ucn-2 directly into the PVN reduced food intake and increased PVN pCREB/CREB ratio in control animals; in contrast, Ucn-2 was unable to reduce food intake and enhance phosphorylated-CREB levels in PVN of MS rats. In conclusion, the chronic hyperactivity of the stress axis and PVN CRH-R2 resistance to Ucn2 effects, supported impaired receptor functionality in MS animals, probably due to its chronic stimulation by CRH or Ucn2, induced by early-life stress.
Collapse
Affiliation(s)
- V Alcántara-Alonso
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - M I Amaya
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - G Matamoros-Trejo
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - P de Gortari
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico.
| |
Collapse
|
9
|
McNeal N, Anderson EM, Moenk D, Trahanas D, Matuszewich L, Grippo AJ. Social isolation alters central nervous system monoamine content in prairie voles following acute restraint. Soc Neurosci 2017; 13:173-183. [PMID: 28008793 DOI: 10.1080/17470919.2016.1276473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Animal models have shown that social isolation and other forms of social stress lead to depressive- and anxiety-relevant behaviors, as well as neuroendocrine and physiological dysfunction. The goal of this study was to investigate the effects of prior social isolation on neurotransmitter content following acute restraint in prairie voles. Animals were either paired with a same-sex sibling or isolated for 4 weeks. Plasma adrenal hormones and ex vivo tissue concentrations of monoamine neurotransmitters and their metabolites were measured following an acute restraint stressor in all animals. Isolated prairie voles displayed significantly increased circulating adrenocorticotropic hormone levels, as well as elevated serotonin and dopamine levels in the hypothalamus, and potentially decreased levels of serotonin in the frontal cortex. However, no group differences in monoamine levels were observed in the hippocampus or raphe. The results suggest that social stress may bias monoamine neurotransmission and stress hormone function to subsequent acute stressors, such as restraint. These findings improve our understanding of the neurobiological mechanisms underlying the consequences of social stress.
Collapse
Affiliation(s)
- Neal McNeal
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Eden M Anderson
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Deirdre Moenk
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Diane Trahanas
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Leslie Matuszewich
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Angela J Grippo
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| |
Collapse
|
10
|
Sandi C, Haller J. Stress and the social brain: behavioural effects and neurobiological mechanisms. Nat Rev Neurosci 2015; 16:290-304. [PMID: 25891510 DOI: 10.1038/nrn3918] [Citation(s) in RCA: 389] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stress often affects our social lives. When undergoing high-level or persistent stress, individuals frequently retract from social interactions and become irritable and hostile. Predisposition to antisocial behaviours - including social detachment and violence - is also modulated by early life adversity; however, the effects of early life stress depend on the timing of exposure and genetic factors. Research in animals and humans has revealed some of the structural, functional and molecular changes in the brain that underlie the effects of stress on social behaviour. Findings in this emerging field will have implications both for the clinic and for society.
Collapse
Affiliation(s)
- Carmen Sandi
- Brain Mind Institute, School of Life Sciences, École Polytechnique Federale de Lausanne (EPFL), Lausanne CH-1050, Switzerland
| | - József Haller
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1450, Hungary
| |
Collapse
|
11
|
Madularu D, Athanassiou M, Yee JR, Kenkel WM, Carter CS, Mumby DG. Oxytocin and object preferences in the male prairie vole. Peptides 2014; 61:88-92. [PMID: 25219944 DOI: 10.1016/j.peptides.2014.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
The neuropeptide oxytocin has been previously associated with social attachment behaviors in various species. Studies in socially monogamous prairie voles (Microtus ochrogaster) and other species have implicated oxytocin in partner preferences and other social behaviors. In the present study male prairie voles were injected intraperitoneally with either oxytocin or the selective oxytocin antagonist, L-368,899, and were assessed for object preference (for small inanimate toys) 30-min after injection. Object preferences were assessed in animals tested alone or in the presence of their sibling cage mate. Saline-treated controls displayed preferences for the novel object, both when tested alone and in pairs, while oxytocin-treated voles did not demonstrate an object preference, regardless of whether tested alone or in pairs. Finally, oxytocin antagonist treated voles showed preference for the novel object, but only when tested in pairs. These data support a possible involvement of oxytocin and oxytocin receptors in object preference.
Collapse
Affiliation(s)
| | | | - Jason R Yee
- Northeastern University, MA 02115, United States.
| | | | - C Sue Carter
- University of North Carolina, Chapel Hill 27599, United States.
| | | |
Collapse
|
12
|
Fodor A, Pintér O, Domokos A, Langnaese K, Barna I, Engelmann M, Zelena D. Blunted HPA axis response in lactating, vasopressin-deficient Brattleboro rats. J Endocrinol 2013; 219:89-100. [PMID: 23943883 DOI: 10.1530/joe-13-0224] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Adaptation to stress is a basic phenomenon in mammalian life that is mandatorily associated with the activity of the hypothalamic-pituitary-adrenal (HPA) axis. An increased resting activity of the HPA axis can be measured during pregnancy and lactation, suggesting that these reproductive states lead to chronic load in females. In this study, we examined the consequences of the congenital lack of vasopressin on the activity of the HPA axis during lactation using vasopressin-deficient Brattleboro rats. Virgin and lactating, homozygous vasopressin-deficient rats were compared with control, heterozygous rats. In control dams compared with virgins, physiological changes similar to those observed in a chronic stress state (thymus involution, adrenal gland hyperplasia, elevation of proopiomelanocortin mRNA levels in the adenohypophysis, and resting plasma corticosterone levels) were observed. In vasopressin-deficient dams, adrenal gland hyperplasia and resting corticosterone level elevations were not observed. Corticotropin-releasing hormone (Crh) mRNA levels in the hypothalamic paraventricular nucleus were elevated in only the control dams, while oxytocin (OT) mRNA levels were higher in vasopressin-deficient virgins and lactation induced a further increase in both the genotypes. Suckling-induced ACTH and corticosterone level elevations were blunted in vasopressin-deficient dams. Anaphylactoid reaction (i.v. egg white) and insulin-induced hypoglycemia stimulated the HPA axis, which were blunted in lactating rats compared with the virgins and in vasopressin-deficient rats compared with the controls without interaction of the two factors. Vasopressin seems to contribute to the physiological changes observed during lactation mimicking a chronic stress state, but its role in acute HPA axis regulation during lactation seems to be similar to that observed in virgins. If vasopressin is congenitally absent, OT, but not the CRH, compensates for the missing vasopressin; however, the functional restitution remains incomplete.
Collapse
Affiliation(s)
- Anna Fodor
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony 43, 1083 Budapest, Hungary Institut für Biochemie and Zellbiologie, Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany Centre for Behavioral Brain Sciences, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Smith AS, Lieberwirth C, Wang Z. Behavioral and physiological responses of female prairie voles (Microtus ochrogaster) to various stressful conditions. Stress 2013; 16:531-9. [PMID: 23647082 PMCID: PMC3947756 DOI: 10.3109/10253890.2013.794449] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stressful life events elicit hypothalamic-pituitary-adrenal (HPA) axis activation, which may alter psychological states or behavioral routines. Therefore, the current study focused on the HPA axis response to better understand such manifestations in female prairie voles (Microtus ochrogaster). In Experiment 1, females were stressed for 1 h via one of the four stressors: exposure to a novel environment, immobilization ("plastic mesh"), brief social defeat, or prolonged social defeat. Following a 30-min recovery, the females received a 5-min elevated plus maze (EPM) test and, subsequently, blood was collected to measure plasma corticosterone concentrations. Only immobilization stress induced an anxiety-like behavioral response in the EPM test and elevated plasma corticosterone levels compared to the control groups. Corticosterone concentrations were also significantly elevated following exposure to prolonged social defeat compared to the control conditions, but not after novel environment stress or short social defeat. In Experiment 2, females were exposed to immobilization stress over 1, 3, or 7 days in a daily (predictable; pIMO) or irregular (unpredictable; uIMO) schedule. The biobehavioral stress response in females exposed to pIMO for 3 or 7 days did not differ significantly from controls, suggesting these females habituated. By comparison, females exposed to uIMO over 3 or 7 days did not habituate behaviorally or physiologically, even producing augmented corticosterone levels. In both experiments, positive correlations were found between corticosterone levels and anxiety-like behaviors in the EPM test. Together, our data suggest that the stress response by female prairie voles is dependent on stress intensity, source, previous experience, and predictability. Furthermore, the HPA axis response, as evident by corticosterone levels, is associated with the impact that these factors have on behavioral routine.
Collapse
Affiliation(s)
- Adam S Smith
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| | | | | |
Collapse
|
14
|
Backström T, Winberg S. Central corticotropin releasing factor and social stress. Front Neurosci 2013; 7:117. [PMID: 23847465 PMCID: PMC3705187 DOI: 10.3389/fnins.2013.00117] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/19/2013] [Indexed: 12/23/2022] Open
Abstract
Social interactions are a main source of stress in vertebrates. Social stressors, as well as other stressors, activate the hypothalamic–pituitary–adrenal (HPA) axis resulting in glucocorticoid release. One of the main components of the HPA axis is corticotropin releasing factor (CRF). The neuropeptide CRF is part of a peptide family including CRF, urocortin 1–3, urotensin 1–3, and sauvagine. The actions of the CRF family are mediated by at least two different receptors with different anatomical distribution and affinities for the peptides. The CRF peptides affect several behavioral and physiological responses to stress including aggression, feeding, and locomotor activity. This review will summarize recent research in vertebrates concerning how social stress interacts with components of the CRF system. Consideration will be taken to the different models used for social stress ranging from social isolation, dyadic interactions, to group dominance hierarchies. Further, the temporal effect of social stressor from acute, intermittent, to chronic will be considered. Finally, strains selected for specific behavior or physiology linked to social stress will also be discussed.
Collapse
Affiliation(s)
- Tobias Backström
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences Umeå, Sweden
| | | |
Collapse
|
15
|
Hostetler CM, Ryabinin AE. The CRF system and social behavior: a review. Front Neurosci 2013; 7:92. [PMID: 23754975 PMCID: PMC3668170 DOI: 10.3389/fnins.2013.00092] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/14/2013] [Indexed: 01/10/2023] Open
Abstract
The corticotropin-releasing factor (CRF) system plays a key role in a diversity of behaviors accompanying stress, anxiety and depression. There is also substantial research on relationships between social behaviors and the CRF system in a variety of taxa including fish, birds, rodents, and primates. Some of these relationships are due to the broad role of CRF and urocortins in stress and anxiety, but these peptides also modulate social behavior specifically. For example, the social interaction (SI) test is often used to measure anxiety-like behavior. Many components of the CRF system including CRF, urocortin1, and the R1 receptor have been implicated in SI, via general effects on anxiety as well as specific effects depending on the brain region. The CRF system is also highly responsive to chronic social stressors such as social defeat and isolation. Animals exposed to these stressors display a number of anxiety- and stress-related behaviors, accompanied by changes in specific components the CRF system. Although the primary focus of CRF research on social behavior has been on the deleterious effects of social stress, there are also insights on a role for CRF and urocortins in prosocial and affiliative behaviors. The CRF system has been implicated in parental care, maternal defense, sexual behavior, and pair bonding. Species differences in the ligands and CRF receptors have been observed in vole and bird species differing in social behavior. Exogenous administration of CRF facilitates partner preference formation in monogamous male prairie voles, and these effects are dependent on both the CRF R1 and R2 receptors. These findings are particularly interesting as studies have also implicated the CRF and urocortins in social memory. With the rapid progress of social neuroscience and in understanding the complex structure of the CRF system, the next challenge is in parsing the exact contribution of individual components of this system to specific social behaviors.
Collapse
Affiliation(s)
- Caroline M Hostetler
- Department of Behavioral Neuroscience, Oregon Health and Science University Portland, OR, USA
| | | |
Collapse
|
16
|
Pournajafi-Nazarloo H, Kenkel W, Mohsenpour SR, Sanzenbacher L, Saadat H, Partoo L, Yee J, Azizi F, Carter CS. Exposure to chronic isolation modulates receptors mRNAs for oxytocin and vasopressin in the hypothalamus and heart. Peptides 2013; 43:20-6. [PMID: 23439320 DOI: 10.1016/j.peptides.2013.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 12/17/2022]
Abstract
The goal of our study was to explore the effect of social isolation stress of varying durations on the plasma oxytocin (OT), messenger ribonucleic acid (mRNA) for oxytocin receptor (OTR), plasma arginine vasopressin (AVP) and mRNA for V1a receptor of AVP (V1aR) expression in the hypothalamus and heart of socially monogamous female and male prairie voles (Microtus ochrogaster). Continuous isolation for 4 weeks (chronic isolation) increased plasma OT level in females, but not in males. One hour of isolation every day for 4 weeks (repeated isolation) was followed by a significant increase in plasma AVP level. Chronic isolation, but not repeated isolation, significantly decreased OTR mRNA in the hypothalamus and heart in both sexes. Chronic isolation significantly decreased cardiac V1aR mRNA, but no effect on hypothalamic V1aR mRNA expression. We did not find a gender difference within repeated social isolation groups. The results of the present study reveal that although chronic social isolation can down-regulate gene expression for the OTR in both sexes, the release of the OT peptide was increased after chronic isolation only in females, possibly somewhat protecting females from the negative consequences of isolation. In both sexes repeated, but not chronic, isolation increased plasma AVP, which could be permissive for mobilization and thus adaptive in response to a repeated stressor. The differential effects of isolation on OT and AVP systems may help in understanding mechanisms through social interactions can be protective against emotional and cardiovascular disorders.
Collapse
|
17
|
Hostetler C, Bales K. DeltaFosB is increased in the nucleus accumbens by amphetamine but not social housing or isolation in the prairie vole. Neuroscience 2012; 210:266-74. [DOI: 10.1016/j.neuroscience.2012.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 11/24/2022]
|
18
|
Little things on which happiness depends: microRNAs as novel therapeutic targets for the treatment of anxiety and depression. Mol Psychiatry 2012; 17:359-76. [PMID: 22182940 DOI: 10.1038/mp.2011.162] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Anxiety and depression are devastating mental illnesses that are a significant public health concern. Selective serotonin-reuptake inhibitors are the first-line treatment strategy for these disorders, which despite being a significant advantage over older treatments, are hampered by a limited efficacy in a significant subset of patients, delayed onset of action and side effects that affect compliance. Thus, there is much impetus to develop novel therapeutic strategies. However, this goal can only be rationally realised with a better understanding of the molecular pathophysiology of these disorders. MicroRNAs (miRNAs) are a newly discovered class of gene-expression regulators that may represent a novel class of therapeutic targets to treat a variety of disorders including psychiatric diseases. miRNAs are heavily involved in regulating many physiological processes including those fundamental to the functioning of the central nervous system. Evidence collected to date has already demonstrated that miRNA-expression levels are altered in patients suffering from depression and anxiety and in pre-clinical models of psychological stress. Furthermore, increasing evidence suggests that psychoactive agents including antidepressants and mood stabilisers utilise miRNAs as downstream effectors. Altering miRNA levels has been shown to alter behaviour in a therapeutically desirable manner in pre-clinical models. This review aims to outline the evidence collected to date demonstrating miRNAs role in anxiety and depression, the potential advantages of targeting these small RNA molecules as well as some of the hurdles that will have to be overcome to fully exploit their therapeutic potential.
Collapse
|
19
|
Smith AS, Wang Z. Salubrious effects of oxytocin on social stress-induced deficits. Horm Behav 2012; 61:320-30. [PMID: 22178036 PMCID: PMC3350103 DOI: 10.1016/j.yhbeh.2011.11.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/19/2011] [Accepted: 11/21/2011] [Indexed: 12/29/2022]
Abstract
Social relationships are a fundamental aspect of life, affecting social, psychological, physiological, and behavioral functions. While positive social interactions can attenuate stress and promote health, the social environment can also be a major source of stress when it includes social disruption, confrontation, isolation, or neglect. Social stress can impair the basal function and stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis, impairing function of multiple biological systems and posing a risk to mental and physical health. In contrast, social support can ameliorate stress-induced physiological and immunological deficits, reducing the risk of subsequent psychological distress and improving an individual's overall well-being. For better clinical treatment of these physiological and mental pathologies, it is necessary to understand the regulatory mechanisms of stress-induced pathologies as well as determine the underlying biological mechanisms that regulate social buffering of the stress system. A number of ethologically relevant animal models of social stress and species that form strong adult social bonds have been utilized to study the etiology, treatment, and prevention of stress-related disorders. While undoubtedly a number of biological pathways contribute to the social buffering of the stress response, the convergence of evidence denotes the regulatory effects of oxytocin in facilitating social bond-promoting behaviors and their effect on the stress response. Thus, oxytocin may be perceived as a common regulatory element of the social environment, stress response, and stress-induced risks on mental and physical health. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- Adam S Smith
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA.
| | | |
Collapse
|
20
|
Pournajafi-Nazarloo H, Partoo L, Yee J, Stevenson J, Sanzenbacher L, Kenkel W, Mohsenpour SR, Hashimoto K, Carter CS. Effects of social isolation on mRNA expression for corticotrophin-releasing hormone receptors in prairie voles. Psychoneuroendocrinology 2011; 36:780-9. [PMID: 21095063 PMCID: PMC3104077 DOI: 10.1016/j.psyneuen.2010.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
Abstract
Previous studies have demonstrated that various type of stressors modulate messenger ribonucleic acid (mRNA) for type 1 corticotropin-releasing hormone (CRH) receptor (CRH-R1 mRNA) and type 2 CRH receptor (CRH-R2 mRNA). The purpose of this study was to explore the effect of social isolation stress of varying durations on the CRH, CRH-R1 and CRH-R2 mRNAs expression in the hypothalamus, hippocampus and pituitary of socially monogamous female and male prairie voles (Microtus ochrogaster). Isolation for 1h (single isolation) or 1h of isolation every day for 4 weeks (repeated isolation) was followed by a significant increase in plasma corticosterone levels. Single or repeated isolation increased hypothalamic CRH mRNA expression, but no changes in CRH-R1 mRNA in the hypothalamus were observed. Continuous isolation for 4 weeks (chronic isolation) showed no effect on hypothalamic CRH or CRH-R1 mRNAs in female or male animals. However, hypothalamic CRH-R2 mRNA was significantly reduced in voles exposed to chronic isolation. Single or repeated isolation, but not chronic isolation, significantly increased CRH-R1 mRNA and decreased CRH-R2 mRNA in the pituitary. Despite elevated CRH mRNA expression, CRH-R1 and CRH-R2 mRNAs were not modulated in the hippocampus following single or repeated isolation. Although, chronic isolation did not affect hippocampal CRH or CRH-R1 mRNAs, it did increase CRH-R2 mRNA expression in females and males. The results of the present study in prairie voles suggest that social isolation has receptor subtype and species-specific consequences for the modulation of gene expression for CRH and its receptors in brain and pituitary. Previous studies have revealed a female-biased increase in oxytocin in response to chronic isolation; however, we did not find a sex difference in CRH or its receptors following single, repeated or chronic social isolation, suggesting that sexually dimorphic processes beyond the CRH system, possibly involving vasopressin, might explain this difference.
Collapse
Affiliation(s)
- Hossein Pournajafi-Nazarloo
- Brain-Body Center, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee RS, Tamashiro KLK, Yang X, Purcell RH, Harvey A, Willour VL, Huo Y, Rongione M, Wand GS, Potash JB. Chronic corticosterone exposure increases expression and decreases deoxyribonucleic acid methylation of Fkbp5 in mice. Endocrinology 2010; 151:4332-43. [PMID: 20668026 PMCID: PMC2940504 DOI: 10.1210/en.2010-0225] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is evidence for hypercortisolemia playing a role in the generation of psychiatric symptoms and for epigenetic variation within hypothalamic-pituitary-adrenal (HPA) axis genes mediating behavioral changes. We tested the hypothesis that expression changes would be induced in Fkbp5 and other HPA axis genes by chronic exposure to corticosterone and that these changes would occur through the epigenetic mechanism of loss or gain of DNA methylation (DNAm). We administered corticosterone (CORT) to C57BL/6J mice via their drinking water for 4 wk and tested for behavioral and physiological changes and changes in gene expression levels using RNA extracted from hippocampus, hypothalamus, and blood for the following HPA genes: Fkbp5, Nr3c1, Hsp90, Crh, and Crhr1. The CORT mice exhibited anxiety-like behavior in the elevated plus maze test. Chronic exposure to CORT also caused a significant decrease in the hippocampal and blood mRNA levels of Nr3c1 and a decrease in Hsp90 in blood and caused an increase in Fkbp5 for all tissues. Differences were seen in Fkbp5 methylation in hippocampus and hypothalamus. To isolate a single-cell type, we followed up with an HT-22 mouse hippocampal neuronal cell line exposed to CORT. After 7 d, we observed a 2.4-fold increase in Fkbp5 expression and a decrease in DNAm. In the CORT-treated mice, we also observed changes in blood DNAm in Fkbp5. Our results suggest DNAm plays a role in mediating effects of glucocorticoid exposure on Fkbp5 function, with potential consequences for behavior.
Collapse
Affiliation(s)
- Richard S Lee
- Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21287-7419, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Grippo AJ, Sgoifo A, Mastorci F, McNeal N, Trahanas DM. Cardiac dysfunction and hypothalamic activation during a social crowding stressor in prairie voles. Auton Neurosci 2010; 156:44-50. [PMID: 20347401 PMCID: PMC2914185 DOI: 10.1016/j.autneu.2010.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/02/2010] [Accepted: 03/04/2010] [Indexed: 01/15/2023]
Abstract
Negative social interactions produce several detrimental consequences in humans and non-human animals; and conversely, positive social interactions may have stress-buffering effects on both behavior and physiology. However, the mechanisms underlying specific stressor-responsiveness in the context of the social environment are not well understood. The present study investigated the integration of behavior, cardiac function, and Fos-immunoreactivity in the hypothalamic paraventricular nucleus during an acute social stressor in female, socially monogamous prairie voles exposed to previous long-term pairing (control conditions) or isolation. Animals previously exposed to social isolation displayed increased heart rate, attenuated heart rate variability, and increased incidence of cardiac arrhythmias during an acute crowding stressor versus animals previously exposed to social pairing; these cardiac alterations were not secondary to behavioral changes during the crowding stressor. Furthermore, social isolation was associated with increased c-Fos-immunoreactivity in the hypothalamic paraventricular nucleus following the crowding stressor, versus social pairing. The prairie vole provides a useful model for understanding how the social environment contributes to changes in behavior, cardiac function, and central stress-regulatory processes in humans.
Collapse
Affiliation(s)
- Angela J Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA.
| | | | | | | | | |
Collapse
|
23
|
Gresack J, Powell S, Geyer M, Poore MS, Coste S, Risbrough V. CRF2 null mutation increases sensitivity to isolation rearing effects on locomotor activity in mice. Neuropeptides 2010; 44:349-53. [PMID: 20466421 PMCID: PMC2888500 DOI: 10.1016/j.npep.2010.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/15/2010] [Accepted: 04/17/2010] [Indexed: 01/05/2023]
Abstract
BACKGROUND Developmental stressors are consistently reported to increase risk for certain neuropsychiatric disorders including schizophrenia, depression, and post-traumatic stress disorder. Recent clinical evidence supports a "double-hit" hypothesis of genetic vulnerability interacting with developmental challenges to modulate this risk. Early life stressor effects on behavior may be modulated in part by alterations in corticotropin releasing factor (CRF) signaling via two known receptors, CRF(1) and CRF(2). One extant hypothesis is that CRF(2) activation may modulate long-term adaptive responses after homeostatic challenge. As such, loss of CRF(2) activity via genetic variance may increase sensitivity to the long-term effects of developmental stress. METHODS We tested the hypothesis that CRF(2) function may mitigate the behavioral effects of isolation rearing, predicting that loss of CRF(2) function increases sensitivity to this developmental challenge. Using the behavioral pattern monitor (BPM), we examined exploratory behavior and locomotor patterns in adult CRF(2) wild-type (WT) and gene knockout (KO) mice reared socially or in isolation. RESULTS Isolation housing produced robust increases in the amount of locomotor activity and investigatory holepoking, and altered the temporal distribution of activity in CRF(2) KO but not CRF(2) WT mice. Isolation housing significantly increased rearing behavior and altered spatial patterns of locomotor activity regardless of genotype. CONCLUSIONS Loss of CRF(2) function increased sensitivity to the effects of chronic social isolation on exploratory locomotor behavior. Thus, CRF(2) activation appears to mitigate isolation rearing effects on exploratory behavior. Further research assessing the interaction between CRF(2) function and developmental challenges is warranted.
Collapse
Affiliation(s)
- Jodi Gresack
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093-0804, USA
| | | | | | | | | | | |
Collapse
|