1
|
Fei S, Chen Z, Liu H, Jin J, Yang Y, Han D, Zhu X, Xie S. Dietary carbohydrate to lipid ratio affects growth, reproductive performance and health of female yellow catfish ( Pelteobagrus fulvidragrus): A lipidomics analysis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:429-441. [PMID: 39640551 PMCID: PMC11617697 DOI: 10.1016/j.aninu.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 12/07/2024]
Abstract
This study aimed to examine the impact of dietary carbohydrate to lipid (CHO/L) ratio on the growth, reproductive, and offspring performance of broodstock yellow catfish, and to elucidate the metabolic differences between mothers and offspring using lipidomics. Five isonitrogenous and isoenergetic diets with varying CHO/L ratios (0.65, 1.44, 2.11, 3.13, and 5.36) were fed to five groups of female broodfish with three replicates per group and 35 female broodfish per replocate in a pond-cage culture system. After an eight-week feeding trial, the dietary CHO/L ratio had a significant impact on the growth and reproductive performance of female yellow catfish. The weight gain ratio (WGR) and specific growth rate (SGR) in the CHO/L0.65 and CHO/L2.11 groups were significantly higher than those in the CHO/L5.36 group (P < 0.05). The fertilization and hatching rates were the highest when the dietary CHO/L ratio was 0.65 and 2.11, respectively. When the dietary CHO/L ratio was 3.13 and 5.36, the plasma contents of testosterone (T) was significantly lower than those of other groups (P = 0.013), and the plasma vitellogenin (VTG) content was the lowest when the CHO/L ratio was 5.36. The plasma contents of estradiol (E2) significantly decreased with increasing dietary CHO/L ratio (P L = 0.012). Lipidomic analysis revealed that the ovary primarily consisted of five subclasses in terms of lipid composition, namely triglyceride, fatty acyl, sterol, glycerophospholipid, and sphingolipid; however, sphingolipids were not detected in the larvae. The relative expression levels of the ovarian lipid metabolism-related genes sterol regulatory element binding protein 1 (srebp1), acetyl-CoA carboxylase (acc), delta (12)-oleate desaturase (fad2), and elongation of very long chain fatty acids protein 5 (elvol5) significantly increased with increasing dietary CHO/L ratio (P < 0.05). The relative expression levels of lipid metabolism-related genes srebp 1, peroxisome proliferator activated receptor α (pparα), carnitine palmitoyl transferase 1 isoform (cpt), adipose triglyceride lipase (atgl), fad2, and elvol5 in offspring larvae were initially increased and then decreased with increasing dietary CHO/L ratios until reaching a maximum at a ratio of 2.11 (P < 0.05). In conclusion, based on the broken-line regression of the dietary CHO/L ratio and egg diameter, the optimal dietary CHO/L ratio was 1.91 for broodfish yellow catfish. A high CHO/L ratio diet results in increased lipogenesis and hepatic lipid accumulation in maternal organisms, leading to impaired reproductive performance and reduced offspring quality.
Collapse
Affiliation(s)
- Shuzhan Fei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| | - Zheng Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuoqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
2
|
Wang Y, Guan L, Liu X, Fan P, Zhou M, Wu Y, Ma W, Liu R, Bai H. Body mass index-dependent association between cholesteryl ester transfer protein variants and atherometabolic risk factors in gestational diabetes mellitus. J Matern Fetal Neonatal Med 2024; 37:2415375. [PMID: 39428345 DOI: 10.1080/14767058.2024.2415375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE Gestational diabetes mellitus (GDM) is associated with metabolic abnormalities such as an altered serum lipid profile. This study investigated the influence of polymorphisms in the lipid metabolism-related cholesteryl ester transfer protein gene (CETP) on the metabolic parameters of pregnant women with GDM. METHODS This prospective case-control study included 665 women with GDM and 1,044 women with uncomplicated pregnancies. The PCR-restriction fragment length polymorphism method was used to genotype rs708272 and rs1800775 single nucleotide polymorphisms (SNPs). Lipid and glucose metabolic parameters were assessed. Genetic associations with related traits were analyzed. RESULTS Genotype distributions of rs708272 and rs1800775 in patients with GDM were similar to those in normal controls. However, the two CETP SNPs were associated with altered plasma total cholesterol (TC), high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol (LDL-C) concentrations in patients with GDM and in control pregnant women. Additional subgroup analysis demonstrated that the rs708272 polymorphism was associated with variations in triglyceride (TGs), TC, LDL-C, and apolipoprotein B (ApoB) levels in patients with overweight or obesity GDM, whereas both polymorphisms were associated with glucose metabolic traits (plasma insulin, glucose, or insulin) and the insulin resistance index in patients with GDM without obesity. CONCLUSIONS In patients with GDM, the rs708272 polymorphism was associated with atherogenic lipid levels (TG, TC, LDL-C, and ApoB), whereas the rs708272 and rs1800775 polymorphisms were associated with glucose metabolism and insulin resistance parameters, which were influenced by the body mass index. These results suggest that genetic associations with atherogenic metabolic factors may increase the risk of adverse outcomes in mothers with GDM and their offspring.
Collapse
Affiliation(s)
- Yufeng Wang
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Linbo Guan
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ping Fan
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Mi Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yujie Wu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wandi Ma
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Rui Liu
- Division of Peptides Related with Human Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Huai Bai
- Laboratory of Genetic Disease and Perinatal Medicine and Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
3
|
Zhang DW, Zhu YB, Zhou SJ, Chen XH, Li HB, Liu WJ, Wu ZQ, Chen Q, Cao H. Maternal cardiovascular health in early pregnancy and the risk of congenital heart defects in offspring. BMC Pregnancy Childbirth 2024; 24:325. [PMID: 38671408 PMCID: PMC11047036 DOI: 10.1186/s12884-024-06529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is the predominant birth defect. This study aimed to explore the association between maternal cardiovascular health (CVH) and the CHD risk in offspring. METHODS We used the prospective data from the Fujian Birth Cohort Study, collected from March 2019 to December 2022 on pregnant women within 14 weeks of gestation. Overall maternal CVH was assessed by seven CVH metrics (including physical activity, smoking, sleep duration, body mass index, blood pressure, total cholesterol, and fasting plasma glucose), with each metric classified as ideal, intermediate or poor with specific points. Participants were further allocated into high, moderate and low CVH categories based on the cumulative CVH score. The association with offspring CHD was determined with log-binominal regression models. RESULTS A total of 19810 participants aged 29.7 (SD: 3.9) years were included, with 7846 (39.6%) classified as having high CVH, 10949 (55.3%) as having moderate CVH, and 1015 (5.1%) as having low CVH. The average offspring CHD rate was 2.52%, with rates of 2.35%, 2.52% and 3.84% across the high, moderate and low CVH categories, respectively (P = 0.02). Adjusted relative risks (RRs) of having offspring CHD were 0.64 (95% CI: 0.45-0.90, P = 0.001) for high CVH and 0.67 (95% CI: 0.48-0.93, P = 0.02) for moderate CVH compared to low CVH. For individual metrics, only ideal total cholesterol was significantly associated with lower offspring CHD (RR: 0.73, 95% CI: 0.59-0.83, P = 0.002). CONCLUSIONS Pregnant women of high or moderate CVH categories in early pregnancy had reduced risks of CHD in offspring, compared to those of low CVH. It is important to monitor and improve CVH during pre-pregnancy counseling and early prenatal care.
Collapse
Affiliation(s)
- Dan-Wei Zhang
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.966 Hengyu Road, Jinan District, Fuzhou, 350014, People's Republic of China
| | - Yi-Bing Zhu
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People's Republic of China
| | - Si-Jia Zhou
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.966 Hengyu Road, Jinan District, Fuzhou, 350014, People's Republic of China
| | - Xiu-Hua Chen
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.966 Hengyu Road, Jinan District, Fuzhou, 350014, People's Republic of China
| | - Hai-Bo Li
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People's Republic of China
| | - Wen-Juan Liu
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People's Republic of China
- Division of Birth Cohort Study, Fujian Children's Hospital, Fuzhou, People's Republic of China
| | - Zheng-Qin Wu
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People's Republic of China
- Division of Birth Cohort Study, Fujian Obstetrics and Gynecology Hospital, Fuzhou, People's Republic of China
| | - Qiang Chen
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.966 Hengyu Road, Jinan District, Fuzhou, 350014, People's Republic of China.
| | - Hua Cao
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.966 Hengyu Road, Jinan District, Fuzhou, 350014, People's Republic of China.
| |
Collapse
|
4
|
Zhao M, Zhang D, Wang X, Li H, Sun B, Wu Z, Zhu Y, Cao H. Association between lipid profile in early pregnancy and the risk of congenital heart disease in offspring: a prospective cohort study. Sci Rep 2024; 14:3655. [PMID: 38351050 PMCID: PMC10864369 DOI: 10.1038/s41598-024-53876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
This study aimed to investigate the association of lipid profile in early pregnancy and the risk of congenital heart disease (CHD) in offspring. This study was a prospective cohort design based on the Fujian Birth Cohort Study in China. We recruited pregnant women at ≤ 14 weeks of gestation between 2019 and 2022, and all participants in this study filled out the questionnaire about periconceptional exposure. Simultaneously, we collected participants' fasting blood samples to measure their lipid profile by automatic biochemical analyzer. The outcome was defined as offspring with CHD. A multivariable logistic regression model was used to calculate adjusted odds ratio (AOR) risk estimates, which indicate the associations between maternal lipid profiles and CHD in offspring. Restricted cubic splines were used to estimate their nonlinear relationship. A total of 21,425 pregnant women with an average gestational age of 11.3 (± 1.40) weeks were included in the analysis. The higher triglyceride (AOR 1.201, 95% CI [1.036, 1.394]), low-density lipoprotein (AOR 1.216, 95% CI [1.048, 1.410]), apolipoprotein B (Apo B) (AOR 2.107, 95% CI [1.179, 3.763]) levels were correlated with increased odds of CHD in offspring, while high-density lipoprotein (OR 0.672, 95% CI [0.490, 0.920]) related with decreased odds of CHD in offspring. The restricted cubic spline suggested a nonlinear relationship between total cholesterol (TC) levels and the risk of CHD in offspring (P = 0.0048), but no significant nonlinear relationships were found in other lipid profile. Apolipoprotein A was not related to the risk of CHD in offspring as either a continuous variable or a hierarchical variable. Elevated lipid profile in early pregnancy levels are associated with an increased risk of CHD in offspring. Additionally, there is a non-linear relationship between TC levels and the risk of CHD in offspring.
Collapse
Affiliation(s)
- Minli Zhao
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou, 350000, China
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350014, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fujian Medical University, Fuzhou, 350014, China
| | - Danwei Zhang
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350014, China
| | - Xinrui Wang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fujian Medical University, Fuzhou, 350014, China
| | - Haibo Li
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
| | - Bin Sun
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
| | - Zhengqin Wu
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
| | - Yibing Zhu
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China.
| | - Hua Cao
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou, 350000, China.
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350014, China.
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China.
| |
Collapse
|
5
|
Song X, Lin J, Dong X, Li M, Xue X, Hou C, Yao H, Hou Q. The Associations of Maternal Blood Hemoglobin and Serum Triglyceride Levels and the Risk of Preterm Delivery. Horm Metab Res 2023; 55:758-764. [PMID: 37903496 DOI: 10.1055/a-2183-8683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The abnormal hemoglobin (HGB) and serum lipid concentrations during pregnancy will increase the risk of preterm delivery. Our study aimed to explore the correlation between prenatal HGB and serum lipid levels and preterm delivery. We enrolled 215 mother-infant pairs in a pilot cohort study. The logistic regression model and Restricted Cubic Spline model (RCS) were used to investigate the levels of prenatal blood HGB and serum lipid such as triglyceride (TG), total cholesterol, high-density lipoprotein, low density lipoprotein and preterm delivery. The results showed that moderate levels of prenatal blood HGB (OR=0.28; 95%CI: 0.10, 0.75, p-trend=0.018) and high level of serum TG (OR=0.29; 95%CI: 0.10, 0.84, p-trend=0.022) level were negatively associated with the risk of preterm delivery. The joint effect results showed that compared with lower level of prenatal blood HGB (≤123.13 g/l) and TG (≤3.7 mmol/l), we found that high levels prenatal blood HGB and serum TG (OR=0.32, 95%CI: 0.12, 0.89) had a negative association with the risk of preterm delivery. Moreover, prenatal blood HGB and serum TG levels had negative linear dose-effect relationships with the risk of preterm delivery in overall and girl group (p<0.05). Moderate levels of prenatal blood HGB and high level of serum TG were negatively associated with the risk of preterm delivery. The joint effect of high levels prenatal HGB and prenatal serum TG in the normal range were negatively correlated with preterm delivery. Moreover, the underlying mechanisms should be clarified in future studies.
Collapse
Affiliation(s)
- Xia Song
- Gynecology, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Jiujing Lin
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoxiao Dong
- Shandong Provincial Maternal and Child Health Care Hospital, Shandong, Jinan, China
| | - Mengyun Li
- Gynecology, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Xiangsheng Xue
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chenyang Hou
- Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Huichen Yao
- Cardiology Department, The Third Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qingzhi Hou
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
6
|
Huida J, Ojala T, Ilvesvuo J, Surcel HM, Priest JR, Helle E. Maternal first trimester metabolic profile in pregnancies with transposition of the great arteries. Birth Defects Res 2023; 115:517-524. [PMID: 36546574 DOI: 10.1002/bdr2.2139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/12/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Higher maternal body mass index (BMI) and abnormal glucose metabolism during early pregnancy are associated with congenital heart defects in the offspring, but the exact mechanisms are unknown. METHODS We evaluated the association between maternal first trimester metabolic profile and transposition of the great arteries (TGA) in the offspring in a matched case-control study with 100 TGA mothers and 200 controls born in Finland during 2004-2014. Cases and controls were matched by birth year, child sex, and maternal age and BMI. Serum samples collected between 10- and 14-weeks of gestation were analyzed for 73 metabolic measures. Conditional logistic regression was used to assess the risk for TGA in the offspring, and a subgroup analysis among mothers with high BMI was conducted. RESULTS Higher concentrations of four subtypes of extremely large very-low-density lipoprotein (VLDL) particles and one of large VLDL particles were observed in TGA mothers. This finding did not reach statistical significance after multiple testing correction. The pooled odds ratio (OR) of the all metabolic variables was slightly higher in TGA mothers in the subgroup with maternal BMI over 25 (OR 1.25) and significantly higher in the subgroup with maternal BMI over 30 (OR 1.95) compared to the original population (OR 1.18). CONCLUSIONS Our findings indicate that an abnormal maternal early pregnancy metabolic profile might be associated with TGA in the offspring, especially in obese mothers. A trend indicating altered VLDL subtype composition in TGA pregnancies warrants further research.
Collapse
Affiliation(s)
- Johanna Huida
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tiina Ojala
- Pediatric Cardiology, Pediatric Research Center, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Ilvesvuo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heljä-Marja Surcel
- Faculty of Medicine, University of Oulu, Oulu, Finland.,Biobank Borealis of Northern Finland, Oulu, Finland
| | - James R Priest
- Tenaya Therapeutics, South San Francisco, California, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Emmi Helle
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Paediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Lou Y, He P, Jiang H, Xiang L, Gao X. Analysis of the characteristics of blood lipid metabolism in twin pregnancy. J Investig Med 2023; 71:53-57. [PMID: 36137709 DOI: 10.1136/jim-2022-002412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/21/2023]
Abstract
To investigate the characteristics of blood lipid metabolism in twin pregnancy combined with gestational diabetes mellitus (GDM) or pregnancy-induced hypertension (PIH). This study retrospectively analyzed 96 cases of twin pregnancy and 232 cases of full-term singleton pregnancy. General data and blood lipid levels, including triglyceride (TG) and total cholesterol (TC), between twin and singleton pregnancies were compared. Blood lipid levels between GDM (PIH) and non-GDM (non-PIH) groups in twin pregnancy were compared. The TG level for twin pregnancy was higher than that for singleton pregnancy (p<0.05), while there was no significant difference in the TC level between them (p>0.05). The TG level in the GDM group was higher than that in the non-GDM group (p<0.05), while the TC level in the GDM group was not different from that in the non-GDM group (p>0.05). The TG level in the PIH group was higher than that in the non-PIH group (p<0.05), while there was no difference in the TC level between them (p>0.05). Logistic regression analysis showed that age was a risk factor for GDM and PIH in singleton and twin pregnancies. The lipid levels in twin pregnancy increased with the increase of gestational age, and the TG level in twin pregnancy complicated with GDM or PIH was higher than that in twin pregnancy without GDM or PIH, indicating that the blood lipid metabolism was related to the occurrence of GDM and PIH in twin pregnancy to some extent.
Collapse
Affiliation(s)
- Yanqin Lou
- Department of Obstetrics, Wuhan No 1 Hospital, Wuhan, Hubei, China
| | - Pei He
- Department of Obstetrics, Wuhan No 1 Hospital, Wuhan, Hubei, China
| | - Huijun Jiang
- Department of Obstetrics, Wuhan No 1 Hospital, Wuhan, Hubei, China
| | - Li Xiang
- Department of Obstetrics, Wuhan No 1 Hospital, Wuhan, Hubei, China
| | - Xuemei Gao
- Department of Obstetrics, Wuhan No 1 Hospital, Wuhan, Hubei, China
| |
Collapse
|
8
|
Wu L, Li N, Liu Y. Association Between Maternal Factors and Risk of Congenital Heart Disease in Offspring: A Systematic Review and Meta-Analysis. Matern Child Health J 2023; 27:29-48. [PMID: 36344649 PMCID: PMC9867685 DOI: 10.1007/s10995-022-03538-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION This study aimed to summarize the evidence describing the relationship between maternal factors during gestation and risk of congenital heart disease (CHD) in offspring. METHODS PubMed, EMBASE, and the Cochrane Library were searched for potentially relevant reports from inception to May 2021. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) calculated by the random-effects model were used to evaluate the association between maternal factors and CHD risk. RESULTS There was a significant association between CHD risk and obesity in pregnancy (OR 1.29, 95% CI 1.22-1.37; P < 0.001), smoking in pregnancy (OR 1.16, 95% CI 1.07-1.25; P < 0.001), maternal diabetes (OR 2.65, 95% CI 2.20-3.19; P < 0.001), and exposure of pregnant women to organic solvents (OR 1.82, 95% CI 1.23-2.70; P = 0.003). No correlations were revealed between CHD susceptibility and advanced maternal age (OR 1.04, 95% CI 0.96-1.12; P = 0.328), underweight (OR 1.02, 95% CI 0.96-1.08; P = 0.519), alcohol intake in pregnancy (OR 1.08, 95% CI 0.95-1.22; P = 0.251), coffee intake (OR 1.18, 95% CI 0.97-1.44; P = 0.105), and exposure to irradiation (OR 1.80, 95% CI 0.85-3.80; P = 0.125). DISCUSSION Maternal factors including maternal obesity, smoking in pregnancy, maternal diabetes and exposure to organic solvents might predispose the offspring to CHD risk.
Collapse
Affiliation(s)
- Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Na Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Ouidir M, Chatterjee S, Wu J, Tekola-Ayele F. Genomic study of maternal lipid traits in early pregnancy concurs with four known adult lipid loci. J Clin Lipidol 2023; 17:168-180. [PMID: 36443208 PMCID: PMC9974591 DOI: 10.1016/j.jacl.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Blood lipids during pregnancy are associated with cardiovascular diseases and adverse pregnancy outcomes. Genome-wide association studies (GWAS) in predominantly male European ancestry populations have identified genetic loci associated with blood lipid levels. However, the genetic architecture of blood lipids in pregnant women remains poorly understood. OBJECTIVE Our goal was to identify genetic loci associated with blood lipid levels among pregnant women from diverse ancestry groups and to evaluate whether previously known lipid loci in predominantly European adults are transferable to pregnant women. METHODS The trans-ancestry GWAS were conducted on serum levels of total cholesterol, high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL) and triglycerides during first trimester among pregnant women from four population groups (608 European-, 623 African-, 552 Hispanic- and 235 East Asian-Americans) recruited in the NICHD Fetal Growth Studies cohort. The four GWAS summary statistics were combined using trans-ancestry meta-analysis approaches that account for genetic heterogeneity among populations. RESULTS Loci in CELSR2 and APOE were genome-wide significantly associated (p-value < 5×10-8) with total cholesterol and LDL levels. Loci near CETP and ABCA1 approached genome-wide significant association with HDL (p-value = 2.97×10-7 and 9.71×10-8, respectively). Less than 20% of previously known adult lipid loci were transferable to pregnant women. CONCLUSION This trans-ancestry GWAS meta-analysis in pregnant women identified associations that concur with four known adult lipid loci. Limited replication of known lipid-loci from predominantly European study populations to pregnant women underlines the need for genomic studies of lipids in ancestrally diverse pregnant women. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT00912132.
Collapse
Affiliation(s)
- Marion Ouidir
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Suvo Chatterjee
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jing Wu
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Taylor K, McBride N, Zhao J, Oddie S, Azad R, Wright J, Andreassen OA, Stewart ID, Langenberg C, Magnus MC, Borges MC, Caputo M, Lawlor DA. The Relationship of Maternal Gestational Mass Spectrometry-Derived Metabolites with Offspring Congenital Heart Disease: Results from Multivariable and Mendelian Randomization Analyses. J Cardiovasc Dev Dis 2022; 9:237. [PMID: 36005401 PMCID: PMC9410051 DOI: 10.3390/jcdd9080237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Background: It is plausible that maternal pregnancy metabolism influences the risk of offspring congenital heart disease (CHD). We sought to explore this through a systematic approach using different methods and data. Methods: We undertook multivariable logistic regression of the odds of CHD for 923 mass spectrometry (MS)-derived metabolites in a sub-sample of a UK birth cohort (Born in Bradford (BiB); N = 2605, 46 CHD cases). We considered metabolites reaching a p-value threshold <0.05 to be suggestively associated with CHD. We sought validation of our findings, by repeating the multivariable regression analysis within the BiB cohort for any suggestively associated metabolite that was measured by nuclear magnetic resonance (NMR) or clinical chemistry (N = 7296, 87 CHD cases), and by using genetic risk scores (GRS: weighted genetic risk scores of single nucleotide polymorphisms (SNPs) that were associated with any suggestive metabolite) in Mendelian randomization (MR) analyses. The MR analyses were performed in BiB and two additional European birth cohorts (N = 38,662, 319 CHD cases). Results: In the main multivariable analyses, we identified 44 metabolites suggestively associated with CHD, including those from the following super pathways: amino acids, lipids, co-factors and vitamins, xenobiotics, nucleotides, energy, and several unknown molecules. Of these 44, isoleucine and leucine were available in the larger BiB cohort (NMR), and for these the results were validated. The MR analyses were possible for 27/44 metabolites and for 11 there was consistency with the multivariable regression results. Conclusions: In summary, we have used complimentary data sources and statistical techniques to construct layers of evidence. We found that pregnancy amino acid metabolism, androgenic steroid lipids, and levels of succinylcarnitine could be important contributing factors for CHD.
Collapse
Affiliation(s)
- Kurt Taylor
- Population Health Science, Bristol Medical School, Bristol BS8 2PS, UK; (N.M.); (J.Z.); (M.C.M.); (M.C.B.); (D.A.L.)
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Nancy McBride
- Population Health Science, Bristol Medical School, Bristol BS8 2PS, UK; (N.M.); (J.Z.); (M.C.M.); (M.C.B.); (D.A.L.)
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Jian Zhao
- Population Health Science, Bristol Medical School, Bristol BS8 2PS, UK; (N.M.); (J.Z.); (M.C.M.); (M.C.B.); (D.A.L.)
- The Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sam Oddie
- The Hull York Medical School, University of York, Heslington YO10 5DD, UK;
| | - Rafaq Azad
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service Foundation Trust, Bradford BD9 6RJ, UK; (R.A.); (J.W.)
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service Foundation Trust, Bradford BD9 6RJ, UK; (R.A.); (J.W.)
| | - Ole A. Andreassen
- NORMENT Centre, Institute of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, 0315 Oslo, Norway;
- KG Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Isobel D. Stewart
- MRC Epidemiology Unit, University of Cambridge, Cambridge CB2 0SL, UK; (I.D.S.); (C.L.)
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge CB2 0SL, UK; (I.D.S.); (C.L.)
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB10 1SA, UK
- Computational Medicine, Berlin Institute of Health (BIH), Charité University Medicine, 10178 Berlin, Germany
| | - Maria Christine Magnus
- Population Health Science, Bristol Medical School, Bristol BS8 2PS, UK; (N.M.); (J.Z.); (M.C.M.); (M.C.B.); (D.A.L.)
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Centre for Fertility and Health, Norwegian Institute of Public Health, 0473 Oslo, Norway
| | - Maria Carolina Borges
- Population Health Science, Bristol Medical School, Bristol BS8 2PS, UK; (N.M.); (J.Z.); (M.C.M.); (M.C.B.); (D.A.L.)
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Massimo Caputo
- National Institute for Health Research Bristol Biomedical Centre, University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol BS8 2BN, UK;
- Translational Science, Bristol Medical School, Bristol BS2 8HW, UK
| | - Deborah A. Lawlor
- Population Health Science, Bristol Medical School, Bristol BS8 2PS, UK; (N.M.); (J.Z.); (M.C.M.); (M.C.B.); (D.A.L.)
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- National Institute for Health Research Bristol Biomedical Centre, University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol BS8 2BN, UK;
| |
Collapse
|
11
|
Munabi NCO, Mikhail S, Toubat O, Webb M, Auslander A, Sanchez-Lara PA, Manojlovic Z, Schmidt RJ, Craig D, Magee WP, Kumar SR. High prevalence of deleterious mutations in concomitant nonsyndromic cleft and outflow tract heart defects. Am J Med Genet A 2022; 188:2082-2095. [PMID: 35385219 PMCID: PMC9197864 DOI: 10.1002/ajmg.a.62748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/26/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
Our previous work demonstrating enrichment of outflow tract (OFT) congenital heart disease (CHD) in children with cleft lip and/or palate (CL/P) suggests derangements in common underlying developmental pathways. The current pilot study examines the underlying genetics of concomitant nonsyndromic CL/P and OFT CHD phenotype. Of 575 patients who underwent CL/P surgery at Children's Hospital Los Angeles, seven with OFT CHD, negative chromosomal microarray analysis, and no recognizable syndromic association were recruited with their parents (as available). Whole genome sequencing of blood samples paired with whole‐blood‐based RNA sequencing for probands was performed. A pathogenic or potentially pathogenic variant was identified in 6/7 (85.7%) probands. A total of seven candidate genes were mutated (CHD7, SMARCA4, MED12, APOB, RNF213, SETX, and JAG1). Gene ontology analysis of variants predicted involvement in binding (100%), regulation of transcription (42.9%), and helicase activity (42.9%). Four patients (57.1%) expressed gene variants (CHD7, SMARCA4, MED12, and RNF213) previously involved in the Wnt signaling pathway. Our pilot analysis of a small cohort of patients with combined CL/P and OFT CHD phenotype suggests a potentially significant prevalence of deleterious mutations. In our cohort, an overrepresentation of mutations in molecules associated with Wnt‐signaling was found. These variants may represent an expanded phenotypic heterogeneity within known monogenic disease genes or provide novel evidence of shared developmental pathways. The mechanistic implications of these mutations and subsequent developmental derangements resulting in the CL/P and OFT CHD phenotype require further analysis in a larger cohort of patients.
Collapse
Affiliation(s)
- Naikhoba C O Munabi
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | | | - Omar Toubat
- Division of Cardiac Surgery, Department of Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Michelle Webb
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, California, USA
| | | | - Pedro A Sanchez-Lara
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zarko Manojlovic
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Ryan J Schmidt
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Pathology, Keck School of Medicine of USC, Los Angeles, California, USA
| | - David Craig
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, California, USA
| | - William P Magee
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Plastic Surgery, Shriners Hospital for Children, Los Angeles, California, USA
| | - Subramanyan Ram Kumar
- Division of Cardiac Surgery, Department of Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Heart Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| |
Collapse
|
12
|
Boyd R, McMullen H, Beqaj H, Kalfa D. Environmental Exposures and Congenital Heart Disease. Pediatrics 2022; 149:183839. [PMID: 34972224 DOI: 10.1542/peds.2021-052151] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Congenital heart disease (CHD) is the most common congenital abnormality worldwide, affecting 8 to 12 infants per 1000 births globally and causing >40% of prenatal deaths. However, its causes remain mainly unknown, with only up to 15% of CHD cases having a determined genetic cause. Exploring the complex relationship between genetics and environmental exposures is key in understanding the multifactorial nature of the development of CHD. Multiple population-level association studies have been conducted on maternal environmental exposures and their association with CHD, including evaluating the effect of maternal disease, medication exposure, environmental pollution, and tobacco and alcohol use on the incidence of CHD. However, these studies have been done in a siloed manner, with few examining the interplay between multiple environmental exposures. Here, we broadly and qualitatively review the current literature on maternal and paternal prenatal exposures and their association with CHD. We propose using the framework of the emerging field of the exposome, the environmental complement to the genome, to review all internal and external prenatal environmental exposures and identify potentiating or alleviating synergy between exposures. Finally, we propose mechanistic pathways through which susceptibility to development of CHD may be induced via the totality of prenatal environmental exposures, including the interplay between placental and cardiac development and the internal vasculature and placental morphology in early stages of pregnancy.
Collapse
|
13
|
Ferreira BD, Barros T, Moleiro ML, Guedes-Martins L. Preeclampsia and Fetal Congenital Heart Defects. Curr Cardiol Rev 2022; 18:80-91. [PMID: 35430980 PMCID: PMC9896419 DOI: 10.2174/1573403x18666220415150943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/01/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022] Open
Abstract
Endothelial dysfunction, impaired implantation and placental insufficiency have been identified as mechanisms behind the development of pre-eclampsia, resulting in angiogenic factors' alteration. Angiogenic imbalance is also associated with congenital heart defects, and this common physiologic pathway may explain the association between them and pre-eclampsia. This review aims to understand the physiology shared by these two entities and whether women with pre-eclampsia have an increased risk of fetal congenital heart defects (or the opposite). The present research has highlighted multiple vasculogenic pathways associated with heart defects and preeclampsia, but also epigenetic and environmental factors, contributing both. It is also known that fetuses with a prenatal diagnosis of congenital heart disease have an increased risk of several comorbidities, including intrauterine growth restriction. Moreover, the impact of pre-eclampsia goes beyond pregnancy as it increases the risk for following pregnancies and for diseases later in life in both offspring and mothers. Given the morbidity and mortality associated with these conditions, it is of foremost importance to understand how they are related and its causative mechanisms. This knowledge may allow earlier diagnosis, an adequate surveillance or even the implementation of preventive strategies.
Collapse
Affiliation(s)
| | - Tânia Barros
- Address correspondence to this author at the Instituto de Ciências Biomédicas Abel Salazar, University of Porto, P.O. Box: 4050-313, Porto, Portugal; Tel/Fax: +351917518938; E-mail:
| | | | | |
Collapse
|
14
|
Choudhury TZ, Majumdar U, Basu M, Garg V. Impact of maternal hyperglycemia on cardiac development: Insights from animal models. Genesis 2021; 59:e23449. [PMID: 34498806 PMCID: PMC8599640 DOI: 10.1002/dvg.23449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Congenital heart disease (CHD) is the leading cause of birth defect-related death in infants and is a global pediatric health concern. While the genetic causes of CHD have become increasingly recognized with advances in genome sequencing technologies, the etiology for the majority of cases of CHD is unknown. The maternal environment during embryogenesis has a profound impact on cardiac development, and numerous environmental factors are associated with an elevated risk of CHD. Maternal diabetes mellitus (matDM) is associated with up to a fivefold increased risk of having an infant with CHD. The rising prevalence of diabetes mellitus has led to a growing interest in the use of experimental diabetic models to elucidate mechanisms underlying this associated risk for CHD. The purpose of this review is to provide a comprehensive summary of rodent models that are being used to investigate alterations in cardiac developmental pathways when exposed to a maternal diabetic setting and to summarize the key findings from these models. The majority of studies in the field have utilized the chemically induced model of matDM, but recent advances have also been made using diet based and genetic models. Each model provides an opportunity to investigate unique aspects of matDM and is invaluable for a comprehensive understanding of the molecular and cellular mechanisms underlying matDM-associated CHD.
Collapse
Affiliation(s)
- Talita Z. Choudhury
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Uddalak Majumdar
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
| | - Madhumita Basu
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, United States
| | - Vidu Garg
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
15
|
Cao L, Du Y, Zhang M, Wang F, Zhao JY, Ren YY, Gui YH. High maternal blood lipid levels during early pregnancy are associated with increased risk of congenital heart disease in offspring. Acta Obstet Gynecol Scand 2021; 100:1806-1813. [PMID: 34346055 PMCID: PMC8518762 DOI: 10.1111/aogs.14225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/28/2022]
Abstract
Introduction This study aimed to investigate whether maternal blood lipid levels during early pregnancy are associated with the occurrence of congenital heart disease (CHD) in their offspring. Material and methods In this single‐center case–control study, mothers of offspring with CHD (n = 230) and without CHD (n = 381) were included. Maternal lipid levels were determined on fasting blood samples taken in the first trimester. Relevant demographic and clinical data were extracted from the medical records. Maternal lipid profile was compared between the two groups, and regression analysis was performed to evaluate the association between lipid profile and CHD risk in offspring. Results Compared with the control group, levels of triglyceride, apolipoprotein‐A1, and apolipoprotein‐B in early pregnancy were significantly higher in the CHD group. Multivariate analyses showed that triglyceride (odds ratio [OR] 2.46, 95% CI 1.62–3.73, p < 0.01), total/high‐density lipoprotein cholesterol (OR 2.10, 95% CI 1.07–4.13, p = 0.03), and apolipoprotein‐A1 (OR 2.73, 95% CI 1.16–6.40, p = 0.02) were positively associated with CHD risk in offspring. Conclusions Elevated maternal lipid profile was associated with increased risk of CHD in offspring.
Collapse
Affiliation(s)
- Li Cao
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China.,Ultrasound Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yan Du
- Office of Clinical Epidemiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Mo Zhang
- Office of Clinical Epidemiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Feng Wang
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jian-Yuan Zhao
- State Key Lab of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| | - Yun-Yun Ren
- Ultrasound Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yong-Hao Gui
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
16
|
Asbaghi O, Ashtary-Larky D, Bagheri R, Nazarian B, Pourmirzaei Olyaei H, Rezaei Kelishadi M, Nordvall M, Wong A, Dutheil F, Naeini AA. Beneficial effects of folic acid supplementation on lipid markers in adults: A GRADE-assessed systematic review and dose-response meta-analysis of data from 21,787 participants in 34 randomized controlled trials. Crit Rev Food Sci Nutr 2021; 62:8435-8453. [PMID: 34002661 DOI: 10.1080/10408398.2021.1928598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Folic acid supplementation has received considerable attention in the literature, yet there is a large discrepancy in its effects on lipid markers in adults. Therefore, this systematic review and meta-analysis of 38 randomized controlled trials (RCTs) evaluated the effects of folic acid supplementation on triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) cholesterol concentrations in a cohort of 21,787 participants. A systematic search current as of March 2021 was performed in PubMed/Medline, Scopus, Web of Science, and Embase using relevant keywords to identify eligible studies. A fix or random-effects model was used to estimate the weighted mean difference (WMD) and 95% confidence intervals (CIs). Thirty-four RCTs were included in this meta-analysis. The pooled analysis revealed that serum TG (WMD: -9.78 mg/dL; 95% CI: -15.5 to -4.00; p = 0.001, I2=0.0%, p = 0.965) and TC (WMD: -3.96 mg/dL; 95% CI: -6.71 to -1.21; p = 0.005, I2=46.9%, p = 0.001) concentrations were significantly reduced following folic acid supplementation compared to placebo. However, folic acid supplementation did not affect serum concentrations of LDL (WMD: -0.97 mg/dL; 95% CI: -6.82 to 4.89; p = 0.746, I2=60.6%, p < 0.001) or HDL cholesterol (WMD: 0.44 mg/dL; 95% CI: -0.53 to 1.41; p = 0.378, I2= 0.0%, p = 0.831). A significant dose-response relationship was observed between the dose of folic acid supplementation and serum concentrations of HDL cholesterols (r = 2.22, p = 0.047). Folic acid supplementation reduced serum concentrations of TG and TC without affecting LDL or HDL cholesterols. Future large RCTs on various populations are needed to show further beneficial effects of folic acid supplementation on lipid profile.
Collapse
Affiliation(s)
- Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Behzad Nazarian
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael Nordvall
- Department of Health and Human Performance, Marymount University, Arlington, Virginia, USA
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, Virginia, USA
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, Clermont-Ferrand, France
| | - Amirmansour Alavi Naeini
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Bo Y, Zhu Y, Tao Y, Li X, Zhai D, Bu Y, Wan Z, Wang L, Wang Y, Yu Z. Association Between Folate and Health Outcomes: An Umbrella Review of Meta-Analyses. Front Public Health 2020; 8:550753. [PMID: 33384976 PMCID: PMC7770110 DOI: 10.3389/fpubh.2020.550753] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background: There is no study that has systematically investigated the breadth and validity of the associations of folate and multiple health outcomes. We aimed to evaluate the quantity, validity, and credibility of evidence regarding associations between folate and multiple health outcomes by using umbrella review of meta-analysis. Methods: We searched the MEDLINE, EMBASE, and Cochrane Library databases from inception to May 20, 2018, to identify potential meta-analyses that examined the association of folate with any health outcome. For each included meta-analysis, we estimated the summary effect size and their 95% confidence interval using the DerSimonian and Laird random-effects model. We used the AMSTAR 2 (A Measurement Tool to Assess Systematic Reviews) to assess methodological quality and the GRADE (Grading of Recommendations, Assessment, Development, and Evaluation working group classification) to assess the quality of evidence for each outcome included in the umbrella review. Results: Overall, 108 articles reporting 133 meta-analyses of observational studies and 154 meta-analyses of randomized controlled trials (RCTs) were included in the study. Among them, 108 unique exposure-outcome-population triplets (referred to as unique meta-analyses hereafter) of RCTs and 87 unique meta-analyses of observational studies were reanalyzed. Beneficial effects of folate were observed in the all-cause mortality rate and in a number of chronic diseases, including several birth/pregnancy outcomes, several cancers, cardiovascular disease and metabolic-related outcomes, neurological conditions, and several other diseases. However, adverse effects of folate were observed for prostate cancer, colorectal adenomatous lesions, asthma or wheezing, and wheezing as an isolated symptom and depression. Conclusions: Current evidence allows for the conclusion that folate is associated with decreased risk of all-cause mortality and a wide range of chronic diseases. However, folate may be associated with an increased risk of prostate cancer. Further research is warranted to improve the certainty of the estimates.
Collapse
Affiliation(s)
- Yacong Bo
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yongjian Zhu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuchang Tao
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xue Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China.,Centre for Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Desheng Zhai
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yongjun Bu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Zhongxiao Wan
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ling Wang
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuming Wang
- Department of Administration, Henan University People's Hospital, Zhengzhou, China
| | - Zengli Yu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
18
|
Zhang R, Guo L, Zhao D, Qu P, Dang S, Yan H. Maternal B-vitamin intake and B-vitamin supplementation during pregnancy in relation to neonatal congenital heart defects: a case-control study with propensity score matching. Eur J Clin Nutr 2020; 75:782-791. [PMID: 33199851 DOI: 10.1038/s41430-020-00804-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/09/2020] [Accepted: 10/31/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/OBJECTIVES The effect of dietary folate intake or folic acid (FA) supplementation during pregnancy on neonatal congenital heart defects (CHDs) remains inconclusive. There are limited data about non-folate-B-vitamin intake and the risk of CHDs. Furthermore, few studies have investigated dietary B-vitamin intake and B-vitamin supplement use simultaneously in relation to the risk of CHDs. This study aimed to explore the associations between maternal folate, vitamin B6, and vitamin B12 intake (dietary intake, total intake from diet and supplements); B-vitamin supplement use during pregnancy; and the risk of CHDs using the propensity score matching (PSM) method. METHODS We conducted a case-control study and included 760 cases and 1600 controls in Shaanxi Province, China. Diet, supplement use and other information were collected through a questionnaire interview. By using the 1:2 ratio PSM method, 396 cases were matched with 792 controls. Conditional logistic regression was used to investigate the associations between maternal B-vitamin intake and supplement use during pregnancy and CHDs. RESULTS Higher maternal dietary and total intake of folate and vitamin B12 were associated with reduced risk of CHDs, and the tests for linear trend were significant. Compared with non-users, maternal FA + VB6 + VB12 containing supplement use during pregnancy (OR 0.61, 95%CI 0.40-0.94), FA supplement use during pregnancy (OR 0.70, 95%CI 0.50-0.98) and in the first trimester (OR 0.62, 95%CI 0.46-0.85) were associated with a lower risk of CHDs. CONCLUSIONS The findings of this study suggest that a higher intake of folate and vitamin B12 during pregnancy reduces the risk of CHDs.
Collapse
Affiliation(s)
- Ruo Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, China
| | - Leqian Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Doudou Zhao
- Translational Medicine Center, Northwest Women's and Children's Hospital of Xi'an Jiaotong University Health Science Center, 1616 Yanxiang Road, Xi'an, 710061, Shaanxi Province, China
| | - Pengfei Qu
- Translational Medicine Center, Northwest Women's and Children's Hospital of Xi'an Jiaotong University Health Science Center, 1616 Yanxiang Road, Xi'an, 710061, Shaanxi Province, China
| | - Shaonong Dang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi Province, China. .,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi Province, China.
| | - Hong Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi Province, China. .,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi Province, China. .,Nutrition and Food Safety Engineering Research Center of Shaanxi Province, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
19
|
Collins RT, Yang W, Carmichael SL, Bolin EH, Nembhard WN, Shaw GM. Maternal dietary fat intake and the risk of congenital heart defects in offspring. Pediatr Res 2020; 88:804-809. [PMID: 32120376 PMCID: PMC7483164 DOI: 10.1038/s41390-020-0813-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fatty acids are crucial in embryologic development, including cardiogenesis. The impact of maternal periconceptional dietary fat intake on the risk of congenital heart defects (CHDs) has not been clearly elucidated. We hypothesized that maternal dietary fat intake during pregnancy is associated with risk of CHDs in offspring. METHODS We analyzed CHD cases and nonmalformed controls from the National Birth Defects Prevention Study, a case-control, multicenter population-based study of birth defects. We used multivariable logistic regression to analyze the association between maternal periconceptional dietary fat intake and occurrence of CHDs. RESULTS We examined 11,393 infants with CHDs (cases) and 11,029 infants without birth defects (controls). Multivariable analysis of maternal dietary fat intake adjusted for maternal energy intake demonstrated modest change in risk for 2 of the 25 CHDs analyzed; otherwise there was no association. Maternal dietary fat intake unadjusted for total energy was associated with increased risk for several CHDs. CONCLUSIONS After adjusting for total energy intake, maternal periconceptional dietary fat intake has a modest association with risk of a few specific CHDs. If maternal dietary fat intake does impact CHD risk, the effect is minimal. IMPACT In this large, case-control study, after adjusting for total caloric intake, maternal periconceptional dietary fat intake was not associated with increased odds of congenital heart defects. This study investigates the hypothesis that women's periconceptional fat intake alters the risk of congenital heart defects in offspring. Our results raise questions about the role maternal fat intake may play in cardiogenesis and risk of congenital heart defects. Additionally, they raise the question about whether maternal lipid metabolism, as opposed to fat intake, may influence cardiac development.
Collapse
Affiliation(s)
- R Thomas Collins
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
- Division of Cardiovascular Medicine, Department of Internal Medicine, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Wei Yang
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Suzan L Carmichael
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
- Division of Maternal-Fetal Medicine and Obstetrics, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Elijah H Bolin
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Wendy N Nembhard
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gary M Shaw
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
20
|
Taylor K, Ferreira DLS, West J, Yang T, Caputo M, Lawlor DA. Differences in Pregnancy Metabolic Profiles and Their Determinants between White European and South Asian Women: Findings from the Born in Bradford Cohort. Metabolites 2019; 9:metabo9090190. [PMID: 31540515 PMCID: PMC6780545 DOI: 10.3390/metabo9090190] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
There is widespread metabolic disruption in women upon becoming pregnant. South Asians (SA) compared to White Europeans (WE) have more fat mass and are more insulin-resistant at a given body mass index (BMI). Whether these are reflected in other gestational metabolomic differences is unclear. Our aim was to compare gestational metabolic profiles and their determinants between WE and SA women. We used data from a United Kingdom (UK) cohort to compare metabolic profiles and associations of maternal age, education, parity, height, BMI, tricep skinfold thickness, gestational diabetes (GD), pre-eclampsia, and gestational hypertension with 156 metabolic measurements in WE (n = 4072) and SA (n = 4702) women. Metabolic profiles, measured in fasting serum taken between 26–28 weeks gestation, were quantified by nuclear magnetic resonance. Distributions of most metabolic measures differed by ethnicity. WE women had higher levels of most lipoprotein subclasses, cholesterol, glycerides and phospholipids, monosaturated fatty acids, and creatinine but lower levels of glucose, linoleic acid, omega-6 and polyunsaturated fatty acids, and most amino acids. Higher BMI and having GD were associated with higher levels of several lipoprotein subclasses, triglycerides, and other metabolites, mostly with stronger associations in WEs. We have shown differences in gestational metabolic profiles between WE and SA women and demonstrated that associations of exposures with these metabolites differ by ethnicity.
Collapse
Affiliation(s)
- Kurt Taylor
- Population Health Science, Bristol Medical School, Bristol BS8 2BN, UK.
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2PS, UK.
| | - Diana L Santos Ferreira
- Population Health Science, Bristol Medical School, Bristol BS8 2BN, UK.
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2PS, UK.
| | - Jane West
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford BD9 6RJ, UK.
| | - Tiffany Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford BD9 6RJ, UK.
| | - Massimo Caputo
- Translational Science, Bristol Medical School, Bristol BS2 8DZ, UK.
- Bristol NIHR Biomedical Research Center, Bristol BS1 2NT, UK.
| | - Deborah A Lawlor
- Population Health Science, Bristol Medical School, Bristol BS8 2BN, UK.
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2PS, UK.
- Bristol NIHR Biomedical Research Center, Bristol BS1 2NT, UK.
| |
Collapse
|
21
|
Kaplinski M, Taylor D, Mitchell LE, Hammond DA, Goldmuntz E, Agopian AJ. The association of elevated maternal genetic risk scores for hypertension, type 2 diabetes and obesity and having a child with a congenital heart defect. PLoS One 2019; 14:e0216477. [PMID: 31141530 PMCID: PMC6541344 DOI: 10.1371/journal.pone.0216477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/22/2019] [Indexed: 12/22/2022] Open
Abstract
Background Maternal hypertension, type 2 diabetes (T2D) and obesity are associated with an increased risk of having offspring with conotruncal heart defects (CTDs). Prior studies have identified sets of single nucleotide polymorphisms (SNPs) that are associated with risk for each of these three adult phenotypes. We hypothesized that these same SNPs are associated with maternal risk of CTDs in offspring. Methods and results We evaluated the parents of children with a CTD ascertained from the Children’s Hospital of Philadelphia (n = 466) and by the Pediatric Cardiac Genomic Consortium (n = 255). We used a family-based design to assess the association between CTDs and the maternal genotype for individual hypertension, T2D, and obesity-related SNPs and found no association between CTDs and the maternal genotype for any individual SNP. In addition, we calculated genetic risk scores (GRS) for hypertension, T2D, and obesity using previously published GRS formulas. When comparing the GRS of mothers to fathers, there were no statistically significant differences in the mean for the combined GRS or the GRS for each individual condition. However, when we categorized the mothers and fathers of cases with CTDs as having high (>95th percentile) or low (≤95th percentile) scores, compared to fathers, mothers had almost two times the odds of having a high GRS for hypertension (OR 1.7, 95% CI 1.0, 2.8) and T2D (OR 1.8, 95% CI 1.1, 3.1). Conclusions Our results support a link between maternal genetic risk for hypertension/T2D and CTDs in their offspring. These associations might be independent of maternal phenotype at conception.
Collapse
MESH Headings
- Adult
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Female
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Heart Defects, Congenital/physiopathology
- Humans
- Hypertension/genetics
- Hypertension/pathology
- Hypertension/physiopathology
- Male
- Obesity, Maternal/genetics
- Obesity, Maternal/pathology
- Obesity, Maternal/physiopathology
- Polymorphism, Single Nucleotide
- Pregnancy
- Pregnancy Complications, Cardiovascular/genetics
- Pregnancy Complications, Cardiovascular/pathology
- Pregnancy Complications, Cardiovascular/physiopathology
- Pregnancy in Diabetics/genetics
- Pregnancy in Diabetics/pathology
- Pregnancy in Diabetics/physiopathology
- Risk Factors
Collapse
Affiliation(s)
- Michelle Kaplinski
- Department of Pediatrics, Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Deanne Taylor
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Laura E. Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, United States of America
| | - Dorothy A. Hammond
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth Goldmuntz
- Department of Pediatrics, Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - A. J. Agopian
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, United States of America
- * E-mail:
| | | |
Collapse
|
22
|
Courtney JA, Cnota JF, Jones HN. The Role of Abnormal Placentation in Congenital Heart Disease; Cause, Correlate, or Consequence? Front Physiol 2018; 9:1045. [PMID: 30131711 PMCID: PMC6091057 DOI: 10.3389/fphys.2018.01045] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/13/2018] [Indexed: 01/11/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect, affecting ~1% of all live births (van der Linde et al., 2011). Despite improvements in clinical care, it is the leading cause of infant mortality related to birth defects (Yang et al., 2006) and burdens survivors with significant morbidity (Gilboa et al., 2016). Furthermore, CHD accounts for the largest proportion (26.7%) of birth defect-associated hospitalization costs—up to $6.1 billion in 2013 (Arth et al., 2017). Yet after decades of research with a primary focus on genetic etiology, the underlying cause of these defects remains unknown in the majority of cases (Zaidi and Brueckner, 2017). Unexplained CHD may be secondary to undiscovered roles of noncoding genetic, epigenetic, and environmental factors, among others (Russell et al., 2018). Population studies have recently demonstrated that pregnancies complicated by CHD also carry a higher risk of developing pathologies associated with an abnormal placenta including growth disturbances (Puri et al., 2017), preeclampsia (Auger et al., 2015; Brodwall et al., 2016), preterm birth (Laas et al., 2012), and stillbirth (Jorgensen et al., 2014). Both the heart and placenta are vascular organs and develop concurrently; therefore, shared pathways almost certainly direct the development of both. The involvement of placental abnormalities in congenital heart disease, whether causal, commensurate or reactive, is under investigated and given the common developmental window and shared developmental pathways of the heart and placenta and concurrent vasculature development, we propose that further investigation combining clinical data, in vitro, in vivo, and computer modeling is fundamental to our understanding and the potential to develop therapeutics.
Collapse
Affiliation(s)
- Jennifer A Courtney
- Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of General Pediatric and Thoracic Surgery, Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - James F Cnota
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Helen N Jones
- Division of General Pediatric and Thoracic Surgery, Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
23
|
Wong P, Denburg A, Dave M, Levin L, Morinis JO, Suleman S, Wong J, Ford-Jones E, Moore AM. Early life environment and social determinants of cardiac health in children with congenital heart disease. Paediatr Child Health 2018; 23:92-95. [PMID: 29686491 PMCID: PMC5905484 DOI: 10.1093/pch/pxx146] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Congenital heart disease is a significant cause of infant mortality. Epidemiology and social context play a crucial role in conditioning disease burden and modulating outcomes, while diagnosis and treatment remain resource intensive. This review will address the role of social demographics, environmental exposure, epigenetics and nutrition in the aetiology of congenital heart disease. We then discuss the determinant effect of social factors on the provision and outcomes of care for congenital heart disease and implications for practice. It is our hope that enhanced knowledge of the intersection of social determinants of health and congenital heart disease will facilitate effective preventative strategies at the individual and population levels to optimize heart health outcomes across the life course.
Collapse
Affiliation(s)
- Peter Wong
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario
| | | | - Malini Dave
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario
| | - Leo Levin
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario
| | - Julia Orkin Morinis
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario
| | - Shazeen Suleman
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario
| | - Jonathan Wong
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario
| | - Elizabeth Ford-Jones
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario
| | - Aideen M Moore
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario
| |
Collapse
|
24
|
A compromised maternal vitamin D status is associated with congenital heart defects in offspring. Early Hum Dev 2018; 117:50-56. [PMID: 29287191 DOI: 10.1016/j.earlhumdev.2017.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Interactions between genetic and environmental factors, including modifiable maternal nutrition and lifestyle, play a significant role in the pathogenesis of most congenital heart defects (CHD). The aim of this study was to investigate associations between periconceptional maternal vitamin D status and the prevalence of CHD in offspring. METHODS A case-control study was performed in 345 mothers of a child with CHD and 432 mothers of a child without CHD from four tertiary hospitals in the Netherlands between 2003 and 2005. Approximately 15months after pregnancy mothers filled out questionnaires regarding general characteristics and periconceptional lifestyle. Maternal blood was obtained to determine serum 25-hydroxyvitamin D and lipid concentrations. The 25-hydroxyvitamin D concentration was stratified into a deficient <50nmol/l, moderate 50-75nmol/l and adequate >75nmol/l status. Logistic regression was performed to study associations between vitamin D status and CHD risk, adjusted for maternal age, body mass index, ethnicity, smoking and total cholesterol concentration. RESULTS Case mothers less often had an adequate vitamin D status compared with controls (27% vs. 38%; p=0.002). The use of multivitamin supplements, ethnicity, season and body mass index were associated with vitamin D concentrations. A moderate (odds ratio 1.58, [95%CI 1.08, 2.32]) and deficient (odds ratio 2.15, [95%CI 1.44-3.19]) vitamin D status were associated with CHD in offspring. CONCLUSION A compromised maternal vitamin D status is associated with an approximately two-fold increased prevalence of CHD in offspring. Therefore, improvement of the periconceptional maternal vitamin D status is recommended.
Collapse
|
25
|
Zwier MV, Baardman ME, van Dijk TH, Jurdzinski A, Wisse LJ, Bloks VW, Berger RMF, DeRuiter MC, Groen AK, Plösch T. Maternal-fetal cholesterol transport in the second half of mouse pregnancy does not involve LDL receptor-related protein 2. Acta Physiol (Oxf) 2017; 220:471-485. [PMID: 28024118 DOI: 10.1111/apha.12845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/25/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
Abstract
AIM LDL receptor-related protein type 2 (LRP2) is highly expressed on both yolk sac and placenta. Mutations in the corresponding gene are associated with severe birth defects in humans, known as Donnai-Barrow syndrome. We here characterized the contribution of LRP2 and maternal plasma cholesterol availability to maternal-fetal cholesterol transport and fetal cholesterol levels in utero in mice. METHODS Lrp2+/- mice were mated heterozygously to yield fetuses of all three genotypes. Half of the dams received a 0.5% probucol-enriched diet during gestation to decrease maternal HDL cholesterol. At E13.5, the dams received an injection of D7-labelled cholesterol and were provided with 1-13 C acetate-supplemented drinking water. At E16.5, fetal tissues were collected and maternal cholesterol transport and fetal synthesis quantified by isotope enrichments in fetal tissues by GC-MS. RESULTS The Lrp2 genotype did not influence maternal-fetal cholesterol transport and fetal cholesterol. However, lowering of maternal plasma cholesterol levels by probucol significantly reduced maternal-fetal cholesterol transport. In the fetal liver, this was associated with increased cholesterol synthesis rates. No indications were found for an interaction between the Lrp2 genotype and maternal probucol treatment. CONCLUSION Maternal-fetal cholesterol transport and endogenous fetal cholesterol synthesis depend on maternal cholesterol concentrations but do not involve LRP2 in the second half of murine pregnancy. Our results suggest that the mouse fetus can compensate for decreased maternal cholesterol levels. It remains a relevant question how the delicate system of cholesterol transport and synthesis is regulated in the human fetus and placenta.
Collapse
Affiliation(s)
- M. V. Zwier
- Department of Pediatrics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - M. E. Baardman
- Department of Genetics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - T. H. van Dijk
- Department of Pediatrics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
- Department of Laboratory Medicine; University of Groningen, University Medical Center Groningen; Groningen the Netherlands
| | - A. Jurdzinski
- Department of Pediatrics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - L. J. Wisse
- Department of Anatomy and Embryology; Leiden University Medical Center; Leiden the Netherlands
| | - V. W. Bloks
- Department of Pediatrics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - R. M. F. Berger
- Center for Congenital Heart Diseases; Beatrix Children's Hospital; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - M. C. DeRuiter
- Department of Anatomy and Embryology; Leiden University Medical Center; Leiden the Netherlands
| | - A. K. Groen
- Department of Pediatrics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - T. Plösch
- Department of Obstetrics and Gynaecology; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| |
Collapse
|
26
|
Nie M, Wang Y, Li W, Ping F, Liu J, Wu X, Mao J, Wang X, Ma L. The association between six genetic variants and blood lipid levels in pregnant Chinese Han women. J Clin Lipidol 2017; 11:938-944. [DOI: 10.1016/j.jacl.2017.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/23/2017] [Accepted: 06/06/2017] [Indexed: 11/30/2022]
|
27
|
Xu A, Cao X, Lu Y, Li H, Zhu Q, Chen X, Jiang H, Li X. A Meta-Analysis of the Relationship Between Maternal Folic Acid Supplementation and the Risk of Congenital Heart Defects. Int Heart J 2016; 57:725-728. [PMID: 27829639 DOI: 10.1536/ihj.16-054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Controversial opinions exist with respect to the relationship between maternal folic acid (FA) supplementation and birth prevalence of congenital heart defects (CHDs).Eligible articles were retrieved by searching databases, including PubMed, Cochrane library, EMBASE, CNKI, and WanFang up to September 2015. A meta-analysis was performed to evaluate the effects of FA on CHDs. Odds ratios (ORs) and 95% confidence interval (CIs) were merged using STATA 12.0. Meta-regression analysis was used to explore the possible sources of heterogeneity. Subgroup analysis according to the selected sources was also performed. Publication bias was assessed by Egger's test.Twenty studies were included in the meta-analysis. The overall analysis showed that FA supplementation was significantly associated with decreased risk of CHDs. The meta-regression analysis showed that geographical area could be an important source of heterogeneity. The subgroup analysis based on the geographical area revealed that FA supplementation during pregnancy was a protective factor against CHDs in Chinese and European patients, but not in American patients. Subgroup analysis according to literature quality also displayed positive associations between FA supplementation and the decreased risk of CHDs of China.FA supplementation during pregnancy significantly decreases the risk of CHDs in newborns in China and Europe.
Collapse
Affiliation(s)
- Aiping Xu
- Prenatal Screening Diagnosis Center, Nantong Maternal and Child Health Hospital
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Han M, Evsikov AV, Zhang L, Lastra-Vicente R, Linask KK. Embryonic exposures of lithium and homocysteine and folate protection affect lipid metabolism during mouse cardiogenesis and placentation. Reprod Toxicol 2016; 61:82-96. [DOI: 10.1016/j.reprotox.2016.03.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 02/09/2023]
|
29
|
Abstract
OBJECTIVES This study tested whether mothers with maternal hypothyroidism have increased odds of CHD in their offspring, and examined the relationship between CHD, maternal thyroid function, and nausea and vomiting in pregnancy. BACKGROUND Maternal hypothyroidism increases the risk for foetal demise and prematurity and can have a negative impact on neurodevelopment. Prior studies have postulated a relationship between maternal thyroid function, CHD, and maternal nausea and vomiting in pregnancy. METHODS A cross-sectional case-control study was conducted over a 17-month period to obtain a history of maternal thyroid status and nausea and vomiting in pregnancy. Paediatric echocardiograms were evaluated for CHD by a blinded paediatric cardiologist. Logistic regression analysis was performed to examine the association between CHD and maternal hypothyroidism. RESULTS Of the 998 maternal-child pairs, 10% (98/998) of the mothers reported a history of prenatal hypothyroidism. The overall prevalence of CHD in the study sample was 63% (630/998). Mothers with a history of hypothyroidism were significantly more likely to have offspring with CHD compared with mothers without a history of hypothyroidism (72 versus 62%; p=0.04). The adjusted odds ratio (95% confidence interval) of CHD in offspring associated with reported maternal hypothyroidism was 1.68 (1.02-2.78). CONCLUSION This study suggests that maternal hypothyroidism is a risk factor for the development of CHD. Further prospective investigations are necessary to confirm this association and delineate pathogenic mechanisms.
Collapse
|
30
|
Nederlof M, de Walle HEK, van Poppel MNM, Vrijkotte TGM, Gademan MGJ. Deviant early pregnancy maternal triglyceride levels and increased risk of congenital anomalies: a prospective community-based cohort study. BJOG 2015; 122:1176-83. [DOI: 10.1111/1471-0528.13393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2015] [Indexed: 02/04/2023]
Affiliation(s)
- M Nederlof
- Department of Public Health; Academic Medical Centre - University of Amsterdam; Amsterdam the Netherlands
| | - HEK de Walle
- Department of Genetics; University of Groningen; University Medical Centre Groningen; Eurocat Registration Northern Netherlands; Groningen the Netherlands
| | - MNM van Poppel
- Department of Public and Occupational Health; EMGO Institute - VU University Medical Centre; Amsterdam the Netherlands
| | - TGM Vrijkotte
- Department of Public Health; Academic Medical Centre - University of Amsterdam; Amsterdam the Netherlands
| | - MGJ Gademan
- Department of Public Health; Academic Medical Centre - University of Amsterdam; Amsterdam the Netherlands
| |
Collapse
|
31
|
Cardiovascular diseases in grandparents and the risk of congenital heart diseases in grandchildren. J Dev Orig Health Dis 2015; 5:152-8. [PMID: 24847701 DOI: 10.1017/s2040174414000026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hyperglycemia, dyslipidemia and hyperhomocysteinemia are associated with both adult cardiovascular disease (CVD) and having a child with a congenital heart disease (CHD). We investigated associations between CVD in grandparents and the risk of CHD in grandchildren. In a case-control family study, we obtained detailed questionnaire information on CVD and CHD in 247 families with a CHD child and 203 families without a CHD child. Grandparents with CVD or intermittent claudication (IC) were significantly associated with an increased risk for CHD in grandchildren [OR 1.39 (95% CI 1.03-1.89) and OR 2.77 (95% CI 1.02-7.56), respectively]. The risk of CHD grandchildren was particularly increased in paternal grandfathers with CVD [OR 1.85 (95% CI 1.01-3.37)]. Overall, having a grandparent with CVD increased the risk for CHD in the grandchild by 1.65 (95% CI 1.12-2.41). After adjustment for potential maternal confounders, this risk was 1.44 (95% CI 0.94-2.21). Having two or more grandparents with CVD was associated with an approximately threefold risk for CHD grandchildren [OR adjusted 2.72 (95% CI 1.08-6.89)]. Our data suggest that CVD and IC in grandparents are associated with an increased risk of having a CHD grandchild. These first findings may be explained by shared causality of derangements in metabolic pathways and are in line with the fetal origins of health and disease.
Collapse
|
32
|
Feng Y, Yu D, Chen T, Liu J, Tong X, Yang L, Da M, Shen S, Fan C, Wang S, Mo X. Maternal parity and the risk of congenital heart defects in offspring: a dose-response meta-analysis of epidemiological observational studies. PLoS One 2014; 9:e108944. [PMID: 25295723 PMCID: PMC4189919 DOI: 10.1371/journal.pone.0108944] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/27/2014] [Indexed: 01/28/2023] Open
Abstract
Background Epidemiological studies have reported conflicting results regarding maternal parity and the risk of congenital heart defects (CHDs). However, a meta-analysis of the association between maternal parity and CHDs in offspring has not been conducted. Methods We searched MEDLINE and EMBASE for articles catalogued between their inception and March 8, 2014; we identified relevant published studies that assessed the association between maternal parity and CHD risk. Two authors independently assessed the eligibility of the retrieved articles and extracted data from them. Study-specific relative risk estimates were pooled by random-effects or fixed-effects models. From the 11272 references, a total of 16 case-control studies and 3 cohort studies were enrolled in this meta-analysis. Results The overall relative risk of CHD in parous versus nulliparous women was 1.01 (95% CI, 0.97–1.06; Q = 32.34; P = 0.006; I2 = 53.6%). Furthermore, we observed a significant association between the highest versus lowest parity number, with an overall RR = 1.20 (95% CI, 1.10–1.31; (Q = 74.61, P<0.001, I2 = 82.6%). A dose–response analysis also indicated a positive effect of maternal parity on CHD risk, and the overall increase in relative risk per one live birth was 1.06 (95% CI, 1.02–1.09); Q = 68.09; P<0.001; I2 = 80.9%). We conducted stratified and meta-regression analyses to identify the origin of the heterogeneity among studies. A Galbraith plot was created to graphically assess the sources of heterogeneity. Conclusion In summary, this meta-analysis provided a robust estimate of the positive association between maternal parity and risk of CHD.
Collapse
Affiliation(s)
- Yu Feng
- Department of Cardiothoracic Surgery, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Di Yu
- Department of Cardiothoracic Surgery, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing Tong
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Yang
- Department of Cardiothoracic Surgery, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Da
- Department of Cardiothoracic Surgery, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shutong Shen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changfeng Fan
- Department of Cardiothoracic Surgery, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Song Wang
- Department of Cardiothoracic Surgery, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
33
|
Hanson MA, Gluckman PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev 2014; 94:1027-76. [PMID: 25287859 PMCID: PMC4187033 DOI: 10.1152/physrev.00029.2013] [Citation(s) in RCA: 741] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Extensive experimental animal studies and epidemiological observations have shown that environmental influences during early development affect the risk of later pathophysiological processes associated with chronic, especially noncommunicable, disease (NCD). This field is recognized as the developmental origins of health and disease (DOHaD). We discuss the extent to which DOHaD represents the result of the physiological processes of developmental plasticity, which may have potential adverse consequences in terms of NCD risk later, or whether it is the manifestation of pathophysiological processes acting in early life but only becoming apparent as disease later. We argue that the evidence suggests the former, through the operation of conditioning processes induced across the normal range of developmental environments, and we summarize current knowledge of the physiological processes involved. The adaptive pathway to later risk accords with current concepts in evolutionary developmental biology, especially those concerning parental effects. Outside the normal range, effects on development can result in nonadaptive processes, and we review their underlying mechanisms and consequences. New concepts concerning the underlying epigenetic and other mechanisms involved in both disruptive and nondisruptive pathways to disease are reviewed, including the evidence for transgenerational passage of risk from both maternal and paternal lines. These concepts have wider implications for understanding the causes and possible prevention of NCDs such as type 2 diabetes and cardiovascular disease, for broader social policy and for the increasing attention paid in public health to the lifecourse approach to NCD prevention.
Collapse
Affiliation(s)
- M A Hanson
- Academic Unit of Human Development and Health, University of Southampton, and NIHR Nutrition Biomedical Research Centre, University Hospital, Southampton, United Kingdom; and Liggins Institute and Gravida (National Centre for Growth and Development), University of Auckland, Auckland, New Zealand
| | - P D Gluckman
- Academic Unit of Human Development and Health, University of Southampton, and NIHR Nutrition Biomedical Research Centre, University Hospital, Southampton, United Kingdom; and Liggins Institute and Gravida (National Centre for Growth and Development), University of Auckland, Auckland, New Zealand
| |
Collapse
|
34
|
Affiliation(s)
- Wulf Palinski
- From the Department of Medicine, University of California San Diego, La Jolla, CA.
| |
Collapse
|
35
|
Patel SS, Burns TL. Nongenetic risk factors and congenital heart defects. Pediatr Cardiol 2013; 34:1535-55. [PMID: 23963188 DOI: 10.1007/s00246-013-0775-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/31/2013] [Indexed: 11/25/2022]
Abstract
Advances have been made in identifying genetic etiologies of congenital heart defects. Through this knowledge, preventive strategies have been designed and instituted, and prospective parents are counseled regarding their risk of having an affected child. Great strides have been made in genetic variant identification, and genetic susceptibility to environmental exposures has been hypothesized as an etiology for congenital heart defects. Unfortunately, similar advances in understanding have not been made regarding strategies to prevent nongenetic risk factors. Less information is available regarding the potential adverse effect of modifiable risk factors on the fetal heart. This review summarizes the available literature on these modifiable exposures that may alter the risk for congenital heart disease. Information regarding paternal characteristics and conditions, maternal therapeutic drug exposures, parental nontherapeutic drug exposures, and parental environmental exposures are presented. Factors are presented in terms of risk for congenital heart defects as a group. These factors also are broken down by specific defect type. Although additional investigations are needed in this area, many of the discussed risk factors present an opportunity for prevention of potential disease.
Collapse
Affiliation(s)
- Sonali S Patel
- Department of Pediatrics, Division of Pediatric Cardiology, Carver College of Medicine, University of Iowa, Children's Hospital, 200 Hawkins Drive, Iowa City, IA, 52242, USA,
| | | |
Collapse
|
36
|
Abstract
Congenital heart disease (CHD) is the most common congenital anomaly in newborn babies. Cardiac malformations have been produced in multiple experimental animal models, by perturbing selected molecules that function in the developmental pathways involved in myocyte specification, differentiation, or cardiac morphogenesis. In contrast, the precise genetic, epigenetic, or environmental basis for these perturbations in humans remains poorly understood. Over the past few decades, researchers have tried to bridge this knowledge gap through conventional genome-wide analyses of rare Mendelian CHD families, and by sequencing candidate genes in CHD cohorts. Although yielding few, usually highly penetrant, disease gene mutations, these discoveries provided 3 notable insights. First, human CHD mutations impact a heterogeneous set of molecules that orchestrate cardiac development. Second, CHD mutations often alter gene/protein dosage. Third, identical pathogenic CHD mutations cause a variety of distinct malformations, implying that higher order interactions account for particular CHD phenotypes. The advent of contemporary genomic technologies including single nucleotide polymorphism arrays, next-generation sequencing, and copy number variant platforms are accelerating the discovery of genetic causes of CHD. Importantly, these approaches enable study of sporadic cases, the most common presentation of CHD. Emerging results from ongoing genomic efforts have validated earlier observations learned from the monogenic CHD families. In this review, we explore how continued use of these technologies and integration of systems biology is expected to expand our understanding of the genetic architecture of CHD.
Collapse
Affiliation(s)
- Akl C Fahed
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|