1
|
Ding S, Kim YJ, Huang KY, Um D, Jung Y, Kong H. Delivery-mediated exosomal therapeutics in ischemia-reperfusion injury: advances, mechanisms, and future directions. NANO CONVERGENCE 2024; 11:18. [PMID: 38689075 PMCID: PMC11061094 DOI: 10.1186/s40580-024-00423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Ischemia-reperfusion injury (IRI) poses significant challenges across various organ systems, including the heart, brain, and kidneys. Exosomes have shown great potentials and applications in mitigating IRI-induced cell and tissue damage through modulating inflammatory responses, enhancing angiogenesis, and promoting tissue repair. Despite these advances, a more systematic understanding of exosomes from different sources and their biotransport is critical for optimizing therapeutic efficacy and accelerating the clinical adoption of exosomes for IRI therapies. Therefore, this review article overviews the administration routes of exosomes from different sources, such as mesenchymal stem cells and other somatic cells, in the context of IRI treatment. Furthermore, this article covers how the delivered exosomes modulate molecular pathways of recipient cells, aiding in the prevention of cell death and the promotions of regeneration in IRI models. In the end, this article discusses the ongoing research efforts and propose future research directions of exosome-based therapies.
Collapse
Affiliation(s)
- Shengzhe Ding
- Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Yu-Jin Kim
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kai-Yu Huang
- Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Daniel Um
- Bioengineering, University of Illinois, Urbana, IL, 61801, USA
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyunjoon Kong
- Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA.
- Bioengineering, University of Illinois, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.
- Chan Zuckerberg Biohub-Chicago, Chicago, USA.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Acosta CH, Clemons GA, Citadin CT, Carr WC, Udo MSB, Tesic V, Sanicola HW, Freelin AH, Toms JB, Jordan JD, Guthikonda B, Rodgers KM, Wu CYC, Lee RHC, Lin HW. PRMT7 can prevent neurovascular uncoupling, blood-brain barrier permeability, and mitochondrial dysfunction in repetitive and mild traumatic brain injury. Exp Neurol 2023; 366:114445. [PMID: 37196697 PMCID: PMC10960645 DOI: 10.1016/j.expneurol.2023.114445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Mild traumatic brain injury (TBI) comprises the largest percentage of TBI-related injuries, with pathophysiological and functional deficits that persist in a subset of TBI patients. In our three-hit paradigm of repetitive and mild traumatic brain injury (rmTBI), we observed neurovascular uncoupling via decreased red blood cell velocity, microvessel diameter, and leukocyte rolling velocity 3 days post-rmTBI via intra-vital two-photon laser scanning microscopy. Furthermore, our data suggest increased blood-brain barrier (BBB) permeability (leakage), with corresponding decrease in junctional protein expression post-rmTBI. Mitochondrial oxygen consumption rates (measured via Seahorse XFe24) were also altered 3 days post-rmTBI, along with disrupted mitochondrial dynamics of fission and fusion. Overall, these pathophysiological findings correlated with decreased protein arginine methyltransferase 7 (PRMT7) protein levels and activity post-rmTBI. Here, we increased PRMT7 levels in vivo to assess the role of the neurovasculature and mitochondria post-rmTBI. In vivo overexpression of PRMT7 using a neuronal specific AAV vector led to restoration of neurovascular coupling, prevented BBB leakage, and promoted mitochondrial respiration, altogether to suggest a protective and functional role of PRMT7 in rmTBI.
Collapse
Affiliation(s)
- Christina H Acosta
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Garrett A Clemons
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Cristiane T Citadin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - William C Carr
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Mariana Sayuri Berto Udo
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Vesna Tesic
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Henry W Sanicola
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America; Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Anne H Freelin
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Jamie B Toms
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - J Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Bharat Guthikonda
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Krista M Rodgers
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America; Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America.
| |
Collapse
|
3
|
Kumosa LS. Commonly Overlooked Factors in Biocompatibility Studies of Neural Implants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205095. [PMID: 36596702 PMCID: PMC9951391 DOI: 10.1002/advs.202205095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Biocompatibility of cutting-edge neural implants, surgical tools and techniques, and therapeutic technologies is a challenging concept that can be easily misjudged. For example, neural interfaces are routinely gauged on how effectively they determine active neurons near their recording sites. Tissue integration and toxicity of neural interfaces are frequently assessed histologically in animal models to determine tissue morphological and cellular changes in response to surgical implantation and chronic presence. A disconnect between histological and efficacious biocompatibility exists, however, as neuronal numbers frequently observed near electrodes do not match recorded neuronal spiking activity. The downstream effects of the myriad surgical and experimental factors involved in such studies are rarely examined when deciding whether a technology or surgical process is biocompatible. Such surgical factors as anesthesia, temperature excursions, bleed incidence, mechanical forces generated, and metabolic conditions are known to have strong systemic and thus local cellular and extracellular consequences. Many tissue markers are extremely sensitive to the physiological state of cells and tissues, thus significantly impacting histological accuracy. This review aims to shed light on commonly overlooked factors that can have a strong impact on the assessment of neural biocompatibility and to address the mismatch between results stemming from functional and histological methods.
Collapse
Affiliation(s)
- Lucas S. Kumosa
- Neuronano Research CenterDepartment of Experimental Medical ScienceMedical FacultyLund UniversityMedicon Village, Byggnad 404 A2, Scheelevägen 8Lund223 81Sweden
| |
Collapse
|
4
|
Sangaletti R, Tamames I, Yahn SL, Choi JS, Lee JK, King C, Rajguru SM. Mild therapeutic hypothermia protects against inflammatory and proapoptotic processes in the rat model of cochlear implant trauma. Hear Res 2023; 428:108680. [PMID: 36586170 PMCID: PMC9840707 DOI: 10.1016/j.heares.2022.108680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Mild therapeutic hypothermia (MTH) has been demonstrated to prevent residual hearing loss from surgical trauma associated with cochlear implant (CI) insertion. Here, we aimed to characterize the mechanisms of MTH-induced hearing preservation in CI in a well-established preclinical rodent model. APPROACH Rats were divided into four experimental conditions: MTH-treated and implanted cochleae, cochleae implanted under normothermic conditions, MTH only cochleae and un-operated cochleae (controls). Auditory brainstem responses (ABRs) were recorded at different time points (up to 84 days) to confirm long-term protection and safety of MTH locally applied to the cochlea for 20 min before and after implantation. Transcriptome sequencing profiling was performed on cochleae harvested 24 h post CI and MTH treatment to investigate the potential beneficial effects and underlying active gene expression pathways targeted by the temperature management. RESULTS MTH treatment preserved residual hearing up to 3 months following CI when compared to the normothermic CI group. In addition, MTH applied locally to the cochleae using our surgical approach was safe and did not affect hearing in the long-term. Results of RNA sequencing analysis highlight positive modulation of signaling pathways and gene expression associated with an activation of cellular inflammatory and immune responses against the mechanical damage caused by electrode insertion. SIGNIFICANCE These data suggest that multiple and possibly independent molecular pathways play a role in the protection of residual hearing provided by MTH against the trauma of cochlear implantation.
Collapse
Affiliation(s)
- Rachele Sangaletti
- Department of Otolaryngology, University of Miami, Miami, FL, 33136, USA
| | - Ilmar Tamames
- Department of Biomedical Engineering, University of Miami, Miami, FL, 33136, USA
| | - Stephanie Lynn Yahn
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - James Seungyeon Choi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | | | - Suhrud M Rajguru
- Department of Otolaryngology, University of Miami, Miami, FL, 33136, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
5
|
Zhou Z, Huang C, Fu P, Huang H, Zhang Q, Wu X, Yu Q, Sun Y. Prediction of in-hospital hypokalemia using machine learning and first hospitalization day records in patients with traumatic brain injury. CNS Neurosci Ther 2022; 29:181-191. [PMID: 36258296 PMCID: PMC9804086 DOI: 10.1111/cns.13993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS Hypokalemia is a common complication following traumatic brain injury, which may complicate treatment and lead to unfavorable outcomes. Identifying patients at risk of hypokalemia on the first day of admission helps to implement prophylactic treatment, reduce complications, and improve prognosis. METHODS This multicenter retrospective study was performed between January 2017 and December 2020 using the electronic medical records of patients admitted due to traumatic brain injury. A propensity score matching approach was adopted with a ratio of 1:1 to overcome overfitting and data imbalance during subgroup analyses. Five machine learning algorithms were applied to generate a best-performed prediction model for in-hospital hypokalemia. The internal fivefold cross-validation and external validation were performed to demonstrate the interpretability and generalizability. RESULTS A total of 4445 TBI patients were recruited for analysis and model generation. Hypokalemia occurred in 46.55% of recruited patients and the incidences of mild, moderate, and severe hypokalemia were 32.06%, 12.69%, and 1.80%, respectively. Hypokalemia was associated with increased mortality, while severe hypokalemia cast greater impacts. The logistic regression algorithm had the best performance in predicting decreased serum potassium and moderate-to-severe hypokalemia, with an AUC of 0.73 ± 0.011 and 0.74 ± 0.019, respectively. The prediction model was further verified using two external datasets, including our previous published data and the open-assessed Medical Information Mart for Intensive Care database. Linearized calibration curves showed no statistical difference (p > 0.05) with perfect predictions. CONCLUSIONS The occurrence of hypokalemia following traumatic brain injury can be predicted by first hospitalization day records and machine learning algorithms. The logistic regression algorithm showed an optimal predicting performance verified by both internal and external validation.
Collapse
Affiliation(s)
- Zhengyu Zhou
- Department of Anesthesia, Huashan HospitalFudan UniversityShanghaiChina
| | - Chiungwei Huang
- Health Consultation and Physical Examination Center, Zhongshan HospitalFudan UniversityShanghaiChina,Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Pengfei Fu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Hong Huang
- Information Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Qi Zhang
- Information Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina,National Center for Neurological DisordersShanghaiChina,Shanghai Key Laboratory of Brain Function Restoration and Neural RegenerationShanghaiChina,Neurosurgical Institute of Fudan UniversityShanghaiChina,Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Qiong Yu
- Department of Anesthesia, Huashan HospitalFudan UniversityShanghaiChina
| | - Yirui Sun
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina,National Center for Neurological DisordersShanghaiChina,Shanghai Key Laboratory of Brain Function Restoration and Neural RegenerationShanghaiChina,Neurosurgical Institute of Fudan UniversityShanghaiChina,Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| |
Collapse
|
6
|
The utility of therapeutic hypothermia on cerebral autoregulation. JOURNAL OF INTENSIVE MEDICINE 2022; 3:27-37. [PMID: 36789361 PMCID: PMC9924009 DOI: 10.1016/j.jointm.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/07/2022]
Abstract
Cerebral autoregulation (CA) dysfunction is a strong predictor of clinical outcome in patients with acute brain injury (ABI). CA dysfunction is a potential pathologic defect that may lead to secondary injury and worse functional outcomes. Early therapeutic hypothermia (TH) in patients with ABI is controversial. Many factors, including patient selection, timing, treatment depth, duration, and rewarming strategy, impact its clinical efficacy. Therefore, optimizing the benefit of TH is an important issue. This paper reviews the state of current research on the impact of TH on CA function, which may provide the basis and direction for CA-oriented target temperature management.
Collapse
|
7
|
Baker TS, Zannou AL, Cruz D, Khadka N, Kellner C, Tyc R, Bikson M, Costa A. Development and Clinical Validation of a Finite Element Method Model Mapping Focal Intracranial Cooling. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2168-2174. [PMID: 35316187 PMCID: PMC9533256 DOI: 10.1109/tnsre.2022.3161085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Therapeutic hypothermia (TH) is a common and effective technique to reduce inflammation and induce neuroprotection across a variety of diseases. Focal TH of the brain can avoid the side effects of systemic cooling. The degree and extent of focal TH are a function of cooling probe design and local brain thermoregulation processes. To refine focal TH probe design, with application-specific optimization, we develop precise computational models of brain thermodynamics under intense local cooling. Here, we present a novel multiphysics in silico model that can accurately predict brain response to focal cooling. The model was parameterized from previously described values of metabolic activity, thermal conductivity, and temperature-dependent cerebral perfusion. The model was validated experimentally using data from clinical cases where local cooling was induced intracranially and brain temperatures monitored in real-time with MR thermometry. The validated model was then used to identify optimal design probe parameters to maximize volumetric TH, including considering three stratifications of cooling (mild, moderate, and profound) to produce Volume of Tissue Cooled (VOTC) maps. We report cooling radius increases in a nearly linear fashion with probe length and decreasing probe surface temperature.
Collapse
|
8
|
Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 2022; 36:612-662. [PMID: 35118714 DOI: 10.1111/fcp.12767] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of permanent physical and cognitive disabilities. TBI pathology results from primary insults and a multi-mechanistic biochemical process, termed as secondary brain injury. Currently, there are no pharmacological agents for definitive treatment of patients with TBI. This article is presented with the purpose of reviewing molecular mechanisms of TBI pathology, as well as potential strategies and agents against pathological pathways. In this review article, materials were obtained by searching PubMed, Scopus, Elsevier, Web of Science, and Google Scholar. This search was considered without time limitation. Evidence indicates that oxidative stress and mitochondrial dysfunction are two key mediators of the secondary injury cascade in TBI pathology. TBI-induced oxidative damage results in the structural and functional impairments of cellular and subcellular components, such as mitochondria. Impairments of mitochondrial electron transfer chain and mitochondrial membrane potential result in a vicious cycle of free radical formation and cell apoptosis. The results of some preclinical and clinical studies, evaluating mitochondria-targeted therapies, such as mitochondria-targeted antioxidants and compounds with pleiotropic effects after TBI, are promising. As a proposed strategy in recent years, mitochondria-targeted multipotential therapy is a new hope, waiting to be confirmed. Moreover, based on the available findings, biologics, such as stem cell-based therapy and transplantation of mitochondria are novel potential strategies for the treatment of TBI; however, more studies are needed to clearly confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Kocheril PA, Moore SC, Lenz KD, Mukundan H, Lilley LM. Progress Toward a Multiomic Understanding of Traumatic Brain Injury: A Review. Biomark Insights 2022; 17:11772719221105145. [PMID: 35719705 PMCID: PMC9201320 DOI: 10.1177/11772719221105145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is not a single disease state but describes an array
of conditions associated with insult or injury to the brain. While some
individuals with TBI recover within a few days or months, others present with
persistent symptoms that can cause disability, neuropsychological trauma, and
even death. Understanding, diagnosing, and treating TBI is extremely complex for
many reasons, including the variable biomechanics of head impact, differences in
severity and location of injury, and individual patient characteristics. Because
of these confounding factors, the development of reliable diagnostics and
targeted treatments for brain injury remains elusive. We argue that the
development of effective diagnostic and therapeutic strategies for TBI requires
a deep understanding of human neurophysiology at the molecular level and that
the framework of multiomics may provide some effective solutions for the
diagnosis and treatment of this challenging condition. To this end, we present
here a comprehensive review of TBI biomarker candidates from across the
multiomic disciplines and compare them with known signatures associated with
other neuropsychological conditions, including Alzheimer’s disease and
Parkinson’s disease. We believe that this integrated view will facilitate a
deeper understanding of the pathophysiology of TBI and its potential links to
other neurological diseases.
Collapse
Affiliation(s)
- Philip A Kocheril
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shepard C Moore
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kiersten D Lenz
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Laura M Lilley
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
10
|
Lee C, Crouch A, Jha A, Adapa A, Diaz J, Pandey A, Greve J, Pipe K. Extravascular Cooling of Blood Using a Concentrated Thermoelectric Cooling Probe. J Med Device 2022. [DOI: 10.1115/1.4054003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
Thermal therapies have strong potential for improving outcomes for patients suffering from cardiac arrest, neonatal hypoxic-ischemic encephalopathy, or medically refractory intracranial hypertension. We propose a novel tool to manipulate blood temperature through extravascular thermoelectric heat exchange of blood vessel walls and flowing blood. This tool is a concentrated cooling probe with several thermoelectric units combined to focus cooling at the application site. Using this tool, we aim to achieve desired levels of temperature control and potentially reduce complications associated with traditional intravascular or systemic thermal therapies. Leveraging the feedback control, speed, and reversible operation of thermoelectric cooling modules, the device can adapt to cool or heat as desired. Pre-clinical testing on rodent models confirmed rapid, significant reduction of intravenous jugular blood temperature when a prototype device was brought in contact with the left carotid artery (change in blood temperature of -4.74 ± 2.9 °C/hr and -4.29 ± 1.64 °C/hr for 0 °C and -5 °C cooling trials respectively). Declines in rectal temperature were also noted, but at lesser magnitudes than for jugular blood (0 °C: -3.09 ± 1.29 °C/hr; -5 °C: -2.04 ± 1.08), indicating proof-of-concept of thermoelectric extravascular blood cooling within a relatively localized region of the body. With further improvements in the technique, there is potential for selective organ cooling via reduction in flowing blood temperature.
Collapse
Affiliation(s)
- Connie Lee
- Mechanical Engineering, University of Michigan, Ann Arbor, MI, 2350 Hayward St, Ann Arbor, MI 48109-2125
| | - Anna Crouch
- Mechanical Engineering, University of Michigan, Ann Arbor, MI, 2350 Hayward St, Ann Arbor, MI 48109-2125; Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 1506 Middle Drive, 312 Perkins Hall, Knoxville, TN 37996
| | - Aman Jha
- Mechanical Engineering, University of Michigan, Ann Arbor, MI; 2350 Hayward St, Ann Arbor, MI 48109-2125
| | - Arjun Adapa
- University of Michigan Medical School, Ann Arbor, MI; 1500 E Medical Center Dr, #5338, Ann Arbor, MI 48109
| | - Jose Diaz
- Division of Surgical Research, Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN; Medical Center North, Nashville, TN 37232
| | - Aditya Pandey
- Neurosurgery, University of Michigan, Ann Arbor, MI; 1500 E Medical Center Dr, #5338, Ann Arbor, MI 48109
| | - Joan Greve
- Biomedical Engineering, University of Michigan, Ann Arbor, MI; Democracy II, Suite 200, 6707 Democracy Blvd., Bethesda, MD 20817
| | - Kevin Pipe
- Mechanical Engineering, University of Michigan, Ann Arbor, MI; Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI; 2350 Hayward St, Ann Arbor, MI 48109-2125
| |
Collapse
|
11
|
Kuo LT, Lu HY, Huang APH. Prognostic Value of Circadian Rhythm of Brain Temperature in Traumatic Brain Injury. J Pers Med 2021; 11:jpm11070620. [PMID: 34208924 PMCID: PMC8307466 DOI: 10.3390/jpm11070620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Hypothermia has been used in postoperative management of traumatic brain injury (TBI); however, the rhythmic variation and prognostic value of brain temperature after TBI have never been studied. This study describes diurnal brain temperature patterns in comatose patients with TBI. Mesors of brain temperature, amplitude, and acrophase were estimated from recorded temperature measurements using cosinor analysis. The association of these patterns with clinical parameters, mortality, and functional outcomes in a 12-month follow-up was examined. According to the cosinor analysis, 59.3% of patients presented with circadian rhythms of brain temperature in the first 72 h postoperatively. The rhythm-adjusted mesor of brain temperature was 37.39 ± 1.21 °C, with a diminished mean amplitude of 0.28 (±0.25) °C; a shift of temperature acrophase was also observed. Multivariate logistic regression analysis revealed that initial Glasgow coma scale score, age, elevated blood glucose level, and circadian rhythm of brain temperature seemed to be predictive and prognostic factors of patients' functional outcomes. For the prediction of survival status, younger patients or those patients with mesor within the middle 50% of brain temperature were more likely to survive. The analysis of brain temperature rhythms in patients with moderate and severe TBI provided additional predictive information related to mortality and functional outcomes.
Collapse
Affiliation(s)
- Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No. 7 Chung San South Road, Taipei 100, Taiwan;
| | - Hsueh-Yi Lu
- Department of Industrial Engineering and Management, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan;
| | - Abel Po-Hao Huang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No. 7 Chung San South Road, Taipei 100, Taiwan;
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-2-2312-3456
| |
Collapse
|
12
|
Wasserman J, McGuire LS, Sick T, Bramlett HM, Dietrich WD. An Exploratory Report on Electrographic Changes in the Cerebral Cortex Following Mild Traumatic Brain Injury with Hyperthermia in the Rat. Ther Hypothermia Temp Manag 2021; 11:10-18. [PMID: 32366168 PMCID: PMC7910421 DOI: 10.1089/ther.2020.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) has the potential to perturb perception by disrupting electrical propagation within and between the thalamus and cerebral cortex. Moderate and severe TBI may result in posttraumatic epilepsy, a condition characterized by convulsive tonic-clonic seizures. Spike/wave discharges (SWDs) of generalized nonconvulsive seizures, also called absence seizures, may also occur as a consequence of brain trauma. As mild hyperthermia has been reported to exacerbate histopathological and behavioral outcomes, we used an unbiased algorithm to detect periodic increases in power across different frequency bands following single or double closed head injury (CHI) under normothermia and hyperthermia conditions. We demonstrated that mild TBI did not significantly alter the occurrence of events containing increases in power between the delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta1 (12-20 Hz) frequency bands in the Sprague Dawley rat 12 weeks after injury. However, when hyperthermia (39°C) was induced before and after CHI, electrographic events containing a similar waveform and harmonic frequency to SWDs were observed in a subset of animals. Further experiments utilizing chronic recordings will need to be performed to determine if these trends lead to absence seizures.
Collapse
Affiliation(s)
- Joseph Wasserman
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Laura Stone McGuire
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Thomas Sick
- Department of Neurology and Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Helen M. Bramlett
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Bruce W. Carter Department of Veterans Affairs, Miami, Florida, USA
| | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Neurology and Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
13
|
Rymaszewska J, Lion KM, Stańczykiewicz B, Rymaszewska JE, Trypka E, Pawlik-Sobecka L, Kokot I, Płaczkowska S, Zabłocka A, Szcześniak D. The improvement of cognitive deficits after whole-body cryotherapy - A randomised controlled trial. Exp Gerontol 2021; 146:111237. [PMID: 33454354 DOI: 10.1016/j.exger.2021.111237] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Whole-body cryotherapy (WBC) - a repetitive, short-term exposure to extremely low temperatures - may become an effective early intervention for mild cognitive impairment (MCI). It is a heterogeneous group of symptoms associated with cognitive dysfunction which is estimated to transform into dementia in 50% cases. STUDY DESIGN The prospective randomised double-blind sham-controlled study aimed to determine the efficacy of WBC on cognitive functioning and biological mechanisms. The study was registered with Australian New Zealand Clinical Trials Registry (ACTRN12619001627145). METHODS Participants with MCI (n = 62; (20<MoCA>26) were randomly allocated to cryogenic temperatures (-110 °C till -160 °C) (EG, n = 33) or placebo-controlled group (CG, n = 29). Cognitive functions were measured at baseline (T1), after the 10th WBC session (T2) and after 2 week-break (T3) with DemTect, SLUMS and Test Your Memory (TYM). Secondary outcome measures included quality of life (WHOQoL-BREF), self-reported well-being (VAS) and depressive symptoms (GDS). Whole blood samples (10 ml) were collected at T1 and T2 to evaluate levels of cytokines, neurotrophins, NO and biochemical parameters CRP total cholesterol, prolactin). RESULTS There were significant differences between groups measured at T2 in immediate recall (DemTect) and in orientation (TYM) in favour of WBC group. Improvement in mood was detected in self-reported depressive symptoms level (WHOQoL-26; T2 p = 0.04; VAS mood T2 p = 0.02; T3 p = 0.07). The significant reduction of BDNF level was observed (p < 0.05). CONCLUSIONS WBC may increase the performance of cognitive functions. It seems promising to combine WBC with existing behavioural and cognitive trainings in the future studies investigating early interventions methods in MCI.
Collapse
Affiliation(s)
| | - Katarzyna M Lion
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland; Menzies Health Institute Queensland, Griffith University, Australia.
| | | | - Julia E Rymaszewska
- Student Scientific Association at Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Elżbieta Trypka
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Lilla Pawlik-Sobecka
- Department of Nervous System Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Izabela Kokot
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Sylwia Płaczkowska
- Department of Laboratory Diagnostics, Diagnostics Laboratory for Teaching and Research, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Zabłocka
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dorota Szcześniak
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
14
|
The Effects of On-Field Heat Index and Altitude on Concussion Assessments and Recovery Among NCAA Athletes. Sports Med 2020; 51:825-835. [PMID: 33332015 DOI: 10.1007/s40279-020-01395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Recent literature has indicated altitude may be a protective factor for concussion but it is unknown whether altitude or heat index affects recovery. OBJECTIVE To examine whether on-field heat index and altitude at the time of injury alter acute (< 48 h) concussion assessments, days-to-asymptomatic, and days-to-return-to-play in collegiate athletes following concussion. METHODS Collegiate athletes (n = 187; age = 19.7 ± 1.4 years; male = 70.6%) underwent baseline assessments across 30 universities and experienced a concussion in this retrospective cohort study. Altitude (m) and heat index (°C) at the time and location of injury were determined using valid online database tools. Acute concussion assessments included the Sport Concussion Assessment Tool (SCAT) symptom inventory, Balance Error Scoring System (BESS), and the Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT). We used multiple linear regression models to determine whether heat index and altitude predicted each acute assessment outcome, days-to-asymptomatic, and days-to-return-to-play. RESULTS Collegiate athletes were concussed at a 181.1 m (range - 0.6 to 2201.9 m) median altitude and 17.8 °C (range - 6.1 to 35.6 °C) median heat index. Altitude did not predict (p ≥ 0.265) any outcomes. Every one-degree increase in heat index reduced days-to-asymptomatic (p = 0.047; R2 = 0.06) and days-to-return-to-play (p = 0.006; R2 = 0.09) by 0.05 and 0.14 days, respectively. Heat index and altitude did not explain significant variance in SCAT, BESS, and ImPACT composite scores (p's = 0.20-0.922). CONCLUSION Our findings suggest that on-field altitude and heat index at the time of injury do not contribute to clinically meaningful changes on acute assessments or concussion recovery. On-field altitude and heat index do not appear to significantly alter assessment outcomes or clinical recovery, suggesting that environmental factors at altitudes below < 2500 m are negligible outcomes for researchers and clinicians to consider post-concussion.
Collapse
|
15
|
Hirst TC, Klasen MG, Rhodes JK, Macleod MR, Andrews PJD. A Systematic Review and Meta-Analysis of Hypothermia in Experimental Traumatic Brain Injury: Why Have Promising Animal Studies Not Been Replicated in Pragmatic Clinical Trials? J Neurotrauma 2020; 37:2057-2068. [PMID: 32394804 DOI: 10.1089/neu.2019.6923] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Therapeutic hypothermia was a mainstay of severe traumatic brain injury (TBI) management for half a century. Recent trials have suggested that its effect on long-term functional outcome is neutral or negative, despite apparently promising pre-clinical data. Systematic review and meta-analysis is a useful tool to collate experimental data and investigate the basis of its conclusions. We searched three online databases to identify studies testing systemic hypothermia as monotherapy for treatment of animals subjected to a TBI. Data pertaining to TBI paradigm, animal subjects, and hypothermia management were extracted as well as those relating to risk of bias. We pooled outcome data where sufficient numbers allowed and investigated heterogeneity in neurobehavioral outcomes using multi-variate meta-regression. We identified 90 publications reporting 272 experiments testing hypothermia in animals subject to TBI. The subjects were mostly small animals, with well-established models predominating. Target temperature was comparable to clinical trial data but treatment was initiated very early. Study quality was low and there was some evidence of publication bias. Delay to treatment, comorbidity, and blinded outcome assessment appeared to predict neurobehavioral outcome on multi-variate meta-regression. Therapeutic hypothermia appears to be an efficacious treatment in experimental TBI, which differs from the clinical evidence. The pre-clinical literature showed limitations in quality and design and these both appeared to affect neurobehavioral experiment outcome. These should be acknowledged when designing and interpreting pre-clinical TBI studies in the future.
Collapse
Affiliation(s)
- Theodore C Hirst
- Centre for Clinical Brain Sciences, Anesthesia and Pain Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Department of Neurosurgery, Royal Victoria Hospital, Belfast, United Kingdom
| | | | - Jonathan K Rhodes
- Department of Critical Care, Anesthesia and Pain Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Malcolm R Macleod
- Centre for Clinical Brain Sciences, Anesthesia and Pain Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter J D Andrews
- Centre for Clinical Brain Sciences, Anesthesia and Pain Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Perez E, Viziano A, Al-Zaghal Z, Telischi FF, Sangaletti R, Jiang W, Dietrich WD, King C, Hoffer ME, Rajguru SM. Anatomical Correlates and Surgical Considerations for Localized Therapeutic Hypothermia Application in Cochlear Implantation Surgery. Otol Neurotol 2020; 40:1167-1177. [PMID: 31318786 PMCID: PMC6750193 DOI: 10.1097/mao.0000000000002373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Application of localized, mild therapeutic hypothermia during cochlear implantation (CI) surgery is feasible for residual hearing preservation.
Collapse
Affiliation(s)
| | - Andrea Viziano
- Department of Otolaryngology.,Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | - Weitao Jiang
- Department of Biomedical Engineering, University of Miami, Miami, Florida
| | - William Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, Florida
| | | | | | - Suhrud M Rajguru
- Department of Otolaryngology.,Department of Biomedical Engineering, University of Miami, Miami, Florida
| |
Collapse
|
17
|
Dugan EA, Bennett C, Tamames I, Dietrich WD, King CS, Prasad A, Rajguru SM. Therapeutic hypothermia reduces cortical inflammation associated with utah array implants. J Neural Eng 2020; 17:026035. [PMID: 32240985 DOI: 10.1088/1741-2552/ab85d2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Neuroprosthetics hold tremendous promise to restore function through brain-computer interfaced devices. However, clinical applications of implantable microelectrodes remain limited given the challenges of maintaining neuronal signals for extended periods of time and with multiple biological mechanisms negatively affecting electrode performance. Acute and chronic inflammation, oxidative stress, and blood brain barrier disruption contribute to inconsistent electrode performance. We hypothesized that therapeutic hypothermia (TH) applied at the microelectrode insertion site will positively modulate both inflammatory and apoptotic pathways, promoting neuroprotection and improved performance in the long-term. APPROACH A custom device and thermoelectric system were designed to deliver controlled TH locally to the cortical implant site at the time of microelectrode array insertion and immediately following surgery. The TH paradigm was derived from in vivo cortical temperature measurements and finite element modeling of temperature distribution profiles in the cortex. Male Sprague-Dawley rats were implanted with non-functional Utah microelectrodes arrays (UMEA) consisting of 4 × 4 grid of 1.5 mm long parylene-coated silicon shanks. In one group, TH was applied to the implant site for two hours following the UMEA implantation, while the other group was implanted under normothermic conditions without treatment. At 48 h, 72 h, 7 d and 14 d post-implantation, mRNA expression levels for genes associated with inflammation and apoptosis were compared between normothermic and hypothermia-treated groups. MAIN RESULTS The custom system delivered controlled TH to the cortical implant site and the numerical models confirmed that the temperature decrease was confined locally. Furthermore, a one-time application of TH post UMEA insertion significantly reduced the acute inflammatory response with a reduction in the expression of inflammatory regulating cytokines and chemokines. SIGNIFICANCE This work provides evidence that acutely applied hypothermia is effective in significantly reducing acute inflammation post intracortical electrode implantation.
Collapse
Affiliation(s)
- Elizabeth A Dugan
- Department of Biomedical Engineering, University of Miami, FL, United States of America
| | | | | | | | | | | | | |
Collapse
|
18
|
Singh J, Barrett J, Sangaletti R, Dietrich WD, Rajguru SM. Additive Protective Effects of Delayed Mild Therapeutic Hypothermia and Antioxidants on PC12 Cells Exposed to Oxidative Stress. Ther Hypothermia Temp Manag 2020; 11:77-87. [PMID: 32302519 DOI: 10.1089/ther.2019.0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mild therapeutic hypothermia is protective against several cellular stresses, but the mechanisms underlying this protection are not completely resolved. In the present study, we used an in vitro model to investigate whether therapeutic hypothermia at 33°C applied following a peroxide-induced oxidative stress would protect PC12 cells. A 1-hour exposure to tert-butyl peroxide increased cell death measured 24 hours later. This cell death was dose-dependent in the range of 100-1000 μM tert-butyl peroxide with ∼50% cell death observed at 24 hours from 500 μM peroxide exposure. Cell survival/death was measured with an alamarBlue viability assay, and propidium iodide/Hoechst imaging for counts of living and dead cells. Therapeutic hypothermia at 33°C applied for 2 hours postperoxide exposure significantly increased cell survival measured 24 hours postperoxide-induced stress. This protection was present even when delayed hypothermia, 15 minutes after the peroxide washout, was applied. Addition of any of the three FDA-approved antioxidants (Tempol, EUK134, Edaravone at 100 μM) in combination with hypothermia improved cell survival. With the therapeutic hypothermia treatment, a significant downregulation of caspases-3 and -8 and tumor necrosis factor-α was observed at 3 and 24 hours poststress. Consistent with this, a cell-permeable pan-caspase inhibitor Z-VAD-FMK applied in combination with hypothermia significantly increased cell survival. Overall, these results suggest that the antioxidants quenching of reactive oxygen species likely works with hypothermia to reduce mitochondrial damage and/or apoptotic mechanisms. Further studies are required to confirm and extend these results to other cell types, including neuronal cells, and other forms of oxidative stress as well as to optimize the critical parameters of hypothermia treatment such as target temperature and duration.
Collapse
Affiliation(s)
- Jayanti Singh
- Department of Otolaryngology, University of Miami, Miami, Florida, USA
| | - John Barrett
- Department of Physiology and Biophysics, University of Miami, Miami, Florida, USA
| | | | - W Dalton Dietrich
- Department of Biomedical Engineering, University of Miami, Miami, Florida, USA.,Department of Neurological Surgery, University of Miami, Miami, Florida, USA
| | - Suhrud M Rajguru
- Department of Otolaryngology, University of Miami, Miami, Florida, USA.,Department of Biomedical Engineering, University of Miami, Miami, Florida, USA
| |
Collapse
|
19
|
Reuter-Rice K, Christoferson E. Critical Update on the Third Edition of the Guidelines for Managing Severe Traumatic Brain Injury in Children. Am J Crit Care 2020; 29:e13-e18. [PMID: 31968082 DOI: 10.4037/ajcc2020228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Severe traumatic brain injury (TBI) is associated with high rates of death and disability. As a result, the revised guidelines for the management of pediatric severe TBI address some of the previous gaps in pediatric TBI evidence and management strategies targeted to promote overall health outcomes. OBJECTIVES To provide highlights of the most important updates featured in the third edition of the guidelines for the management of pediatric severe TBI. These highlights can help critical care providers apply the most current and appropriate therapies for children with severe TBI. METHODS AND RESULTS After a brief overview of the process behind identifying the evidence to support the third edition guidelines, both relevant and new recommendations from the guidelines are outlined to provide critical care providers with the most current management approaches needed for children with severe TBI. Recommendations for neuroimaging, hyperosmolar therapy, analgesics and sedatives, seizure prophylaxis, ventilation therapies, temperature control/hypothermia, nutrition, and corticosteroids are provided. In addition, the complete guideline document and its accompanying algorithm for recommended therapies are available electronically and are referenced within this article. CONCLUSIONS The evidence base for treating pediatric TBI is increasing and provides the basis for high-quality care. This article provides critical care providers with a quick reference to the current evidence when caring for a child with a severe TBI. In addition, it provides direct access links to the comprehensive guideline document and algorithms developed to support critical care providers.
Collapse
Affiliation(s)
- Karin Reuter-Rice
- Karin Reuter-Rice is an associate professor, Duke University School of Nursing, Duke University School of Medicine Department of Pediatrics, and Duke Institute for Brain Sciences, Durham, North Carolina
| | - Elise Christoferson
- Elise Christoferson is an accelerated BSN student at Duke University School of Nursing
| |
Collapse
|
20
|
Chen H, Wu F, Yang P, Shao J, Chen Q, Zheng R. A meta-analysis of the effects of therapeutic hypothermia in adult patients with traumatic brain injury. Crit Care 2019; 23:396. [PMID: 31806001 PMCID: PMC6896404 DOI: 10.1186/s13054-019-2667-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/12/2019] [Indexed: 11/10/2022] Open
Abstract
Purpose Therapeutic hypothermia management remains controversial in patients with traumatic brain injury. We conducted a meta-analysis to evaluate the risks and benefits of therapeutic hypothermia management in patients with traumatic brain injury. Methods We searched the Web of Science, PubMed, Embase, Cochrane (Central) and Clinical Trials databases from inception to January 17, 2019. Eligible studies were randomised controlled trials that investigated therapeutic hypothermia management versus normothermia management in patients with traumatic brain injury. We collected the individual data of the patients from each included study. Meta-analyses were performed for 6-month mortality, unfavourable functional outcome and pneumonia morbidity. The risk of bias was evaluated using the Cochrane Risk of Bias tool. Results Twenty-three trials involving a total of 2796 patients were included. The randomised controlled trials with a high quality show significantly more mortality in the therapeutic hypothermia group [risk ratio (RR) 1.26, 95% confidence interval (CI) 1.04 to 1.53, p = 0.02]. Lower mortality in the therapeutic hypothermia group occurred when therapeutic hypothermia was received within 24 h (RR 0.83, 95% CI 0.71 to 0.96, p = 0.01), when hypothermia was received for treatment (RR 0.66, 95% CI 0.49 to 0.88, p = 0.006) or when hypothermia was combined with post-craniectomy measures (RR 0.69, 95% CI 0.48 to 1.00, p = 0.05). The risk of unfavourable functional outcome following therapeutic hypothermia management appeared to be significantly reduced (RR 0.78, 95% CI 0.67 to 0.91, p = 0.001). The meta-analysis suggested that there was a significant increase in the risk of pneumonia with therapeutic hypothermia management (RR 1.48, 95% CI 1.11 to 1.97, p = 0.007). Conclusions Our meta-analysis demonstrated that therapeutic hypothermia did not reduce but might increase the mortality rate of patients with traumatic brain injury in some high-quality studies. However, traumatic brain injury patients with elevated intracranial hypertension could benefit from hypothermia in therapeutic management instead of prophylaxis when initiated within 24 h.
Collapse
Affiliation(s)
- Hanbing Chen
- Graduate School of Dalian Medical University; Department of Critical Care Medicine, Northern Jiangsu People's Hospital; Clinical Medical College, Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu, China
| | - Fei Wu
- Department of Intensive Care Unit, Affiliated Hospital of Yangzhou University, Clinical Medical College, Yangzhou University, No.368 Hanjiangzhonglu Road, Yangzhou, 225001, Jiangsu, China
| | - Penglei Yang
- Graduate School of Dalian Medical University; Department of Critical Care Medicine, Northern Jiangsu People's Hospital; Clinical Medical College, Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu, China
| | - Jun Shao
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital; Clinical Medical College, Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu, China
| | - Qihong Chen
- Department of Critical Care Medicine, Jiangdu People's Hospital of Yangzhou, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, No 9 Dongfanghong Road of Jiangdu District, Yangzhou, 225001, Jiangsu, China.
| | - Ruiqiang Zheng
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital; Clinical Medical College, Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu, China
| |
Collapse
|
21
|
Lyden P, Anderson A, Rajput P. Therapeutic hypothermia and Type II errors: Do not throw out the baby with the ice water. Brain Circ 2019; 5:203-210. [PMID: 31950096 PMCID: PMC6950510 DOI: 10.4103/bc.bc_53_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 11/04/2022] Open
Abstract
After initial enthusiasm for mild therapeutic hypothermia (TH) treatment after brain injuries, including global cerebral ischemia after cardiac arrest, subsequent trials suggested similar benefit using only targeted temperature management (TTM), with fewer side effects. Globally, effective treatment of brain ischemia with TH has declined. Recent data suggest, however, that TH to 33°C may be superior to TTM. We review the background and rationale underlying TH and TTM. We present previously published data from our own laboratory that confirms TH to 33°C provides superior brain cytoprotection, compared to 35°C or 37°C, over a range of delays to treatment and several durations of TH. We illustrate that the treatment effect size of either or 35 is superior to 37, but the effect size difference between 33 and 35, although significant, is small. We estimate that to demonstrate the superiority of TTM over TH, a clinical trial would need between 3,000 and 9,000 patients depending on the desired treatment effect size. Our review and our own data suggest that TH to 33°C is superior to TTM to 36°C, but an extremely large clinical trial would be needed to demonstrate the difference.
Collapse
Affiliation(s)
- Patrick Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ariana Anderson
- Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA, USA.,Department of Statistics, UCLA, Los Angeles, CA, USA
| | - Padmesh Rajput
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
22
|
Walsh JJ, Huang Y, Simmons JW, Goodrich JA, McHugh B, Rothman DL, Elefteriades JA, Hyder F, Coman D. Dynamic Thermal Mapping of Localized Therapeutic Hypothermia in the Brain. J Neurotrauma 2019; 37:55-65. [PMID: 31311414 DOI: 10.1089/neu.2019.6485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although whole body cooling is used widely to provide therapeutic hypothermia for the brain, there are undesirable clinical side effects. Selective brain cooling may allow for rapid and controllable neuroprotection while mitigating these undesirable side effects. We evaluated an innovative cerebrospinal fluid (CSF) cooling platform that utilizes chilled saline pumped through surgically implanted intraventricular catheters to induce hypothermia. Magnetic resonance thermal imaging of the healthy sheep brain (n = 4) at 7.0T provided dynamic temperature measurements from the whole brain. Global brain temperature was 38.5 ± 0.8°C at baseline (body temperature of 39.2 ± 0.4°C), and decreased by 3.1 ± 0.3°C over ∼30 min of cooling (p < 0.0001). Significant cooling was achieved in all defined regions across both the ipsilateral and contralateral hemispheres relative to catheter placement. On cooling cessation, global brain temperature increased by 3.1 ± 0.2°C over ∼20 min (p < 0.0001). Rapid and synchronized temperature fall/rise on cooling onset/offset was observed reproducibly with rates ranging from 0.06-0.21°C/min, where rewarming was faster than cooling (p < 0.0001) signifying the importance of thermoregulation in the brain. Although core regions (including the subcortex, midbrain, olfactory tract, temporal lobe, occipital lobe, and parahippocampal cortex) had slightly warmer (∼0.2°C) baseline temperatures, after cooling, temperatures reached the same level as the non-core regions (35.6 ± 0.2°C), indicating the cooling effectiveness of the CSF-based cooling device. In summary, CSF-based intraventricular cooling reliably reduces temperature in all identified brain regions to levels known to be neuroprotective, while maintaining overall systemic normothermia. Dynamic thermal mapping provides high spatiotemporal temperature measurements that can aid in optimizing selective neuroprotective protocols.
Collapse
Affiliation(s)
- John J Walsh
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Yuegao Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | | | - James A Goodrich
- Department of Comparative Medicine, Yale University, New Haven, Connecticut
| | - Brian McHugh
- Department of Neurosurgery, Yale University, New Haven, Connecticut.,Inova Medical Group Neurosurgery, Fairfax, Virginia
| | - Douglas L Rothman
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.,Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | | | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.,Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| |
Collapse
|
23
|
Therapeutic hypothermia in children: Which indications remain in 2018? Arch Pediatr 2019; 26:308-311. [PMID: 31278022 DOI: 10.1016/j.arcped.2019.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 04/04/2019] [Accepted: 05/30/2019] [Indexed: 11/24/2022]
Abstract
Experimental studies on therapeutic hypothermia in acute brain injury reported positive outcomes and identified two potential benefits, namely, reduction in seizure incidence and in intracranial pressure. Translating this evidence to humans is challenging, especially for conditions in pediatric patients, such as cardiac arrest, traumatic brain injury, and status epilepticus, among others. This narrative review aimed to discuss the current indications and benefits of therapeutic hypothermia in acute brain injury in the pediatric population (i.e., beyond the neonatal period) by analyzing the neurologic outcome and mortality data obtained from previous studies.
Collapse
|
24
|
Jorge A, Fish EJ, Dixon CE, Hamilton KD, Balzer J, Thirumala P. The Effect of Prophylactic Hypothermia on Neurophysiological and Functional Measures in the Setting of Iatrogenic Spinal Cord Impact Injury. World Neurosurg 2019; 129:e607-e613. [PMID: 31158549 DOI: 10.1016/j.wneu.2019.05.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Iatrogenic spinal cord injury (iSCI) during spinal corrective surgery can result in devastating complications, such as paraplegia or paraparesis. Perioperatively, iSCI often occurs as a direct injury during spinal cord instrumentation placement. Currently, treatment of iSCI remains limited to posttraumatic hypothermia, which has demonstrated some value in recent clinical trials. Here we report the outcomes of preinjury hypothermia initiated preprocedurally and maintained for a considerable time after iSCI. METHODS Twenty-six female Sprague-Dawley rats were assigned at random to either a normothermic group (36 °C) or a hypothermic group (32 °C) and then underwent a laminectomy procedure at the T8 level. Each group was further divided at random to receive a 200-kdyn force contusive spinal cord injury or a sham impact. Hypothermic rats were then rewarmed after 2 hours of hypothermic treatment. Behavioral scores, temperature profiles, weights, and somatosensory evoked potentials were obtained at baseline and at specified time points after the procedure. RESULTS The median survival was 42 days for the iSCI hypothermic group and 11 days for the iSCI normothermic group (hazard ratio, 3.82; 95% confidence interval, 1.52-9.57). The probability of survival was significantly higher in the iSCI hypothermic group compared with the iSCI normothermic group (χ2 = 4.18; P = 0.040). The hypothermic group exhibited a higher Basso, Beattie and Bresnahan (BBB) locomotor rating scale score (17 vs. 14; P < 0.01), lower normalized latencies (1.06 ± 0.16 seconds vs. 1.34 ± 0.17 seconds; P = 0.04), and higher peak-to-peak amplitudes (0.32 ± 0.10 μV vs. 0.12 ± 0.09 μV; P = 0.005). CONCLUSIONS The use of prophylactic hypothermia before iSCI was significantly associated with an increased survival rate, higher BBB scores, and improved neurophysiological measures.
Collapse
Affiliation(s)
- Ahmed Jorge
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | - Erika J Fish
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - C Edward Dixon
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kojo D Hamilton
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jeffrey Balzer
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Parthasarathy Thirumala
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Theoretical Evaluation and Experimental Validation of Localized Therapeutic Hypothermia Application to Preserve Residual Hearing After Cochlear Implantation. Ear Hear 2019; 39:712-719. [PMID: 29240567 DOI: 10.1097/aud.0000000000000529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cochlear implantation surgery has been shown to result in trauma to inner ear sensory structures, resulting in loss of residual hearing. Localized therapeutic hypothermia has been shown in clinical care to be a neuroprotective intervention. Previously, we have shown in an experimental model that localized hypothermia protects cochlear hair cells and residual hearing function against surgical and cochlear implantation trauma. Using experimental temperature measurements carried out in human cadaver temporal bones and a finite element model of the inner ear, the present study examined the temperature distribution of a custom-designed hypothermia delivery system in the human inner ear organs. DESIGN The efficacy of the hypothermia probe and resulting heat distribution across human cochlea and surrounding tissues were modeled in three-dimensional in COMSOL. The geometry and dimensions of inner ear and temporal bones were derived from computed tomographic and magnetic resonance imaging images. Model predictions were compared with experimental observations from five human temporal bones. RESULTS In both the modeling and experimental studies, the cochlear temperature was lowered by 4 to 6 °C on the round window from a baseline of 37 °C within 16 to 18 minutes. The model simulations showed uniformly distributed cooling across the cochlea. This study provides insight for design, operation, and protocols for efficacious delivery of mild therapeutic hypothermia to the human cochlea that may significantly benefit patients undergoing surgical cochlear implantation by preserving residual hearing. CONCLUSION There was a close correlation between the results of the numerical simulations and experimental observations in this study. Our custom-designed system is capable of effectively providing mild therapeutic hypothermia locally to the human cochlea. When combined with results from in vivo animal experiments, the present study suggests that the application of localized therapeutic hypothermia may hold potential for patients with an aim to preserve residual hearing after cochlear implantation.
Collapse
|
26
|
Guidelines for the Management of Pediatric Severe Traumatic Brain Injury, Third Edition: Update of the Brain Trauma Foundation Guidelines. Pediatr Crit Care Med 2019; 20:S1-S82. [PMID: 30829890 DOI: 10.1097/pcc.0000000000001735] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Inducing therapeutic hypothermia via selective brain cooling: a finite element modeling analysis. Med Biol Eng Comput 2019; 57:1313-1322. [PMID: 30756230 DOI: 10.1007/s11517-019-01962-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Therapeutic hypothermia is a treatment method to reduce brain injuries after stroke, especially for cerebral ischemia. This study investigates in the temperature distribution of the head within selective brain cooling (SBC). Anatomically accurate geometries based on CT images of head and neck regions are used to develop the 3D geometry and physical model for the finite element modeling. Two cooling methods, the direct head surface cooling strategy and the combination cooling strategy of both head and neck, are evaluated to analyze the inducing hypothermia. The results show that for direct head surface cooling, the scalp and skull temperatures decrease significantly as the blood perfusion rate is constrained, but it is hard to affect the brain core temperature. To achieve a lower cerebral temperature, combination cooling strategy of both head and neck is an effective method in improving deep brain cooling. In normal condition, the cerebral temperature is reduced by about 0.12 °C in 60 min of hypothermia, while the temperature drop is approximately 0.98 °C in ischemic condition. Graphical abstract In this study, the 3D geometry of the head and carotid artery model based on the computed tomography (CT) were derived separately and the corresponding investigations were conducted to validate the reliability of the model. Direct head surface cooling strategy and the combination cooling strategy of both the head and neck were numerically researched.
Collapse
|
28
|
Abstract
Multiple trauma (MT) associated with hemorrhagic shock (HS) might lead to cerebral hypoperfusion and brain damage. We investigated cerebral alterations using a new porcine MT/HS model without traumatic brain injury (TBI) and assessed the neuroprotective properties of mild therapeutic hypothermia. Male pigs underwent standardized MT with HS (45% or 50% loss of blood volume) and resuscitation after 90/120 min (T90/T120). In additional groups (TH90/TH120) mild hypothermia (33°C) was induced following resuscitation. Normothermic or hypothermic sham animals served as controls. Intracranial pressure, cerebral perfusion pressure (CPP), and cerebral oxygenation (PtiO2) were recorded up to 48.5 h. Serum protein S-100B and neuron-specific enolase (NSE) were measured by ELISA. Cerebral inflammation was quantified on hematoxylin and eosin -stained brain slices; Iba1, S100, and inducible nitric oxide synthase (iNOS) expression was assessed using immunohistochemistry. Directly after MT/HS, CPP and PtiO2 were significantly lower in T90/T120 groups compared with sham. After resuscitation both parameters showed a gradual recovery. Serum protein S-100B and NSE increased temporarily as a result of MT/HS in T90 and T90/T120 groups, respectively. Cerebral inflammation was found in all groups. Iba1-staining showed significant microgliosis in T90 and T120 animals. iNOS-staining indicated a M1 polarization. Mild hypothermia reduced cerebral inflammation in the TH90 group, but resulted in increased iNOS activation. In this porcine long-term model, we did not find evidence of gross cerebral damage when resuscitation was initiated within 120 min after MT/HS without TBI. However, trauma-related microglia activation and M1 microglia polarization might be a consequence of temporary hypoxia/ischemia and further research is warranted to detail underlying mechanisms. Interestingly, mild hypothermia did not exhibit neuroprotective properties when initiated in a delayed fashion.
Collapse
|
29
|
Kurisu K, Kim JY, You J, Yenari MA. Therapeutic Hypothermia and Neuroprotection in Acute Neurological Disease. Curr Med Chem 2019; 26:5430-5455. [PMID: 31057103 PMCID: PMC6913523 DOI: 10.2174/0929867326666190506124836] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/24/2018] [Accepted: 04/11/2019] [Indexed: 01/07/2023]
Abstract
Therapeutic hypothermia has consistently been shown to be a robust neuroprotectant in many labs studying different models of neurological disease. Although this therapy has shown great promise, there are still challenges at the clinical level that limit the ability to apply this routinely to each pathological condition. In order to overcome issues involved in hypothermia therapy, understanding of this attractive therapy is needed. We review methodological concerns surrounding therapeutic hypothermia, introduce the current status of therapeutic cooling in various acute brain insults, and review the literature surrounding the many underlying molecular mechanisms of hypothermic neuroprotection. Because recent work has shown that body temperature can be safely lowered using pharmacological approaches, this method may be an especially attractive option for many clinical applications. Since hypothermia can affect multiple aspects of brain pathophysiology, therapeutic hypothermia could also be considered a neuroprotection model in basic research, which would be used to identify potential therapeutic targets. We discuss how research in this area carries the potential to improve outcome from various acute neurological disorders.
Collapse
Affiliation(s)
- Kota Kurisu
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | - Jong Youl Kim
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
- Departments of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jesung You
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
| |
Collapse
|
30
|
León-Espinosa G, Antón-Fernández A, Tapia-González S, DeFelipe J, Muñoz A. Modifications of the axon initial segment during the hibernation of the Syrian hamster. Brain Struct Funct 2018; 223:4307-4321. [PMID: 30219944 DOI: 10.1007/s00429-018-1753-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
Abstract
Mammalian hibernation is a natural process in which the brain undergoes profound adaptive changes that appear to protect the brain from extreme hypoxia and hypothermia. In addition to a virtual cessation of neural and metabolic activity, these changes include a decrease in adult neurogenesis; the retraction of neuronal dendritic trees; changes in dendritic spines and synaptic connections; fragmentation of the Golgi apparatus; and the phosphorylation of the microtubule-associated protein tau. Furthermore, alterations of microglial cells also occur in torpor. Importantly, all of these changes are rapidly and fully reversed when the animals arouse from torpor state, with no apparent brain damage occurring. Thus, hibernating animals are excellent natural models to study different aspects of brain plasticity. The axon initial segment (AIS) is critical for the initiation of action potentials in neurons and is an efficient site for the regulation of neural activity. This specialized structure-characterized by the expression of different types of ion channels and adhesion, scaffolding and cytoskeleton proteins-is subjected to morpho-functional plastic changes upon variations in neural activity or in pathological conditions. Here, we used immunocytochemistry and 3D confocal microscopy reconstruction techniques to measure the possible morphological differences in the AIS of neocortical (layers II-III and V) and hippocampal (CA1) neurons during the hibernation of the Syrian hamster. Our results indicate that the general integrity of the AIS is resistant to the ischemia/hypoxia conditions that are characteristic of the torpor phase of hibernation. In addition, the length of the AIS significantly increased in all the regions studied-by about 16-20% in torpor animals compared to controls, suggesting the existence of compensatory mechanisms in response to a decrease in neuronal activity during the torpor phase of hibernation. Furthermore, in double-labeling experiment, we found that the AIS in layer V of torpid animals was longer in neurons expressing phospho-tau than in those not labeled for phospho-tau. This suggests that AIS plastic changes were more marked in phospho-tau accumulating neurons. Overall, the results further emphasize that mammalian hibernation is a good physiological model to study AIS plasticity mechanisms in non-pathological conditions.
Collapse
Affiliation(s)
- Gonzalo León-Espinosa
- Instituto Cajal, CSIC, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.,Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| | - Alejandro Antón-Fernández
- Instituto Cajal, CSIC, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Silvia Tapia-González
- Instituto Cajal, CSIC, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Javier DeFelipe
- Instituto Cajal, CSIC, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Alberto Muñoz
- Instituto Cajal, CSIC, Madrid, Spain. .,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain. .,Departamento de Biología Celular, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
31
|
Leung LY, Cardiff K, Yang X, Srambical Wilfred B, Gilsdorf J, Shear D. Selective Brain Cooling Reduces Motor Deficits Induced by Combined Traumatic Brain Injury, Hypoxemia and Hemorrhagic Shock. Front Neurol 2018; 9:612. [PMID: 30123177 PMCID: PMC6085442 DOI: 10.3389/fneur.2018.00612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/09/2018] [Indexed: 11/13/2022] Open
Abstract
Selective brain cooling (SBC) can potentially maximize the neuroprotective benefits of hypothermia for traumatic brain injury (TBI) patients without the complications of whole body cooling. We have previously developed a method that involved extraluminal cooling of common carotid arteries, and demonstrated the feasibility, safety and efficacy for treating isolated TBI in rats. The present study evaluated the neuroprotective effects of 4-h SBC in a rat model of penetrating ballistic-like brain injury (PBBI) combined with hypoxemic and hypotensive insults (polytrauma). Rats were randomly assigned into two groups: PBBI+polytrauma without SBC (PHH) and PBBI+polytrauma with SBC treatment (PHH+SBC). All animals received unilateral PBBI, followed by 30-min hypoxemia (fraction of inspired oxygen = 0.1) and then 30-min hemorrhagic hypotension (mean arterial pressure = 40 mmHg). Fluid resuscitation was given immediately following hypotension. SBC was initiated 15 min after fluid resuscitation and brain temperature was maintained at 32-33°C (core temperature at ~36.5°C) for 4 h under isoflurane anesthesia. The PHH group received the same procedures minus the cooling. At 7, 10, and 21 days post-injury, motor function was assessed using the rotarod task. Cognitive function was assessed using the Morris water maze at 13-17 days post-injury. At 21 days post-injury, blood samples were collected and the animals were transcardially perfused for subsequent histological analyses. SBC transiently augmented cardiovascular function, as indicated by the increase in mean arterial pressure and heart rate during cooling. Significant improvement in motor functions were detected in SBC-treated polytrauma animals at 7, 10, and 21 days post-injury compared to the control group (p < 0.05). However, no significant beneficial effects were detected on cognitive measures following SBC treatment in the polytrauma animals. In addition, the blood serum and plasma levels of cytokines interleukin-1 and -10 were comparable between the two groups. Histological results also did not reveal any between-group differences in subacute neurodegeneration and astrocyte/ microglial activation. In summary, 4-h SBC delivered through extraluminal cooling of the common carotid arteries effectively ameliorated motor deficits induced by PBBI and polytrauma. Improving cognitive function or mitigating subacute neurodegeneration and neuroinflammation might require a different cooling regimen such as extended cooling, a slow rewarming period and a lower temperature.
Collapse
Affiliation(s)
- Lai Yee Leung
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Katherine Cardiff
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Xiaofang Yang
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Bernard Srambical Wilfred
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Therapeutic hypothermia (i.e. induced body core temperature ≈ 33-35°C) in neurological patients with cerebrovascular disease and traumatic brain injury is a controversially discussed issue in the literature. In this review, we have included the most recently published research covering the use of therapeutic hypothermia and targeted temperature management in neurologic diseases and translated the results into a clinical decision support for the professional healthcare community. RECENT FINDINGS Recent findings from large multicenter studies investigating therapeutic hypothermia in patients with various acute neurologic diseases have revealed that although short-term and long-term temperature modulation on different temperature levels is feasible with the latest device technology, the effect on outcome is controversial. SUMMARY There is overwhelming evidence that fever is an independent predictor of morbidity and mortality in patients with acute severe neurologic diseases. Although therapeutic hypothermia has been proven to be a potent neuroprotective measure acting on various levels in animal models, many questions such as optimal depth of target temperature, speed of rewarming, duration of cooling and management of side-effects accompanying therapeutic hypothermia are unresolved in human. Therefore, the application of therapeutic hypothermia outside of strictly supervised clinical trials must be carefully considered.
Collapse
|
33
|
NLRs as Helpline in the Brain: Mechanisms and Therapeutic Implications. Mol Neurobiol 2018; 55:8154-8178. [DOI: 10.1007/s12035-018-0957-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
|
34
|
Yang GS, Zhou XY, An XF, Liu XJ, Zhang YJ, Yu D. mTOR is involved in stroke-induced seizures and the anti-seizure effect of mild hypothermia. Mol Med Rep 2018; 17:5821-5829. [PMID: 29484389 PMCID: PMC5866026 DOI: 10.3892/mmr.2018.8629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/05/2017] [Indexed: 01/29/2023] Open
Abstract
Stroke is considered an underlying etiology of the development of seizures. Stroke leads to glucose and oxygen deficiency in neurons, resulting in brain dysfunction and injury. Mild hypothermia is a therapeutic strategy to inhibit stroke‑induced seizures, which may be associated with the regulation of energy metabolism of the brain. Mammalian target of rapamycin (mTOR) signaling and solute carrier family 2, facilitated glucose transporter member (GLUT)‑1 are critical for energy metabolism. Furthermore, mTOR overactivation and GLUT‑1 deficiency are associated with genetically acquired seizures. It has been hypothesized that mTOR and GLUT‑1 may additionally be involved in seizures elicited by stroke. The present study established global cerebral ischemia (GCI) models of rats. Convulsive seizure behaviors frequently occurred during the first and the second days following GCI, which were accompanied with seizure discharge reflected in the EEG monitor. Expression of phosphor (p)‑mTOR and GLUT‑1 were upregulated in the cerebral cortex and hippocampus, as evidenced by immunohistochemistry and western blot analyses. Mild hypothermia and/or rapamycin (mTOR inhibitor) treatments reduced the number of epileptic attacks, seizure severity scores and seizure discharges, thereby alleviating seizures induced by GCI. Mild hypothermia and/or rapamycin treatments reduced phosphorylation levels of mTOR and the downstream effecter p70S6 in neurons, and the amount of GLUT‑1 in the cytomembrane of neurons. The present study revealed that mTOR is involved in stroke‑induced seizures and the anti‑seizure effect of mild hypothermia. The role of GLUT‑1 in stroke‑elicited seizures appears to be different from the role in seizures induced by other reasons. Further studies are necessary in order to elucidate the exact function of GLUT-1 in stroke‑elicited seizures.
Collapse
Affiliation(s)
- Guo-Shuai Yang
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, Hainan 570208, P.R. China
| | - Xiao-Yan Zhou
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, Hainan 570208, P.R. China
| | - Xue-Fang An
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, Hainan 570208, P.R. China
| | - Xuan-Jun Liu
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, Hainan 570208, P.R. China
| | - Yan-Jun Zhang
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, Hainan 570208, P.R. China
| | - Dan Yu
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, Hainan 570208, P.R. China
| |
Collapse
|
35
|
Dietrich WD, Bramlett HM. Therapeutic hypothermia and targeted temperature management for traumatic brain injury: Experimental and clinical experience. Brain Circ 2017; 3:186-198. [PMID: 30276324 PMCID: PMC6057704 DOI: 10.4103/bc.bc_28_17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a worldwide medical problem, and currently, there are few therapeutic interventions that can protect the brain and improve functional outcomes in patients. Over the last several decades, experimental studies have investigated the pathophysiology of TBI and tested various pharmacological treatment interventions targeting specific mechanisms of secondary damage. Although many preclinical treatment studies have been encouraging, there remains a lack of successful translation to the clinic and no therapeutic treatments have shown benefit in phase 3 multicenter trials. Therapeutic hypothermia and targeted temperature management protocols over the last several decades have demonstrated successful reduction of secondary injury mechanisms and, in some selective cases, improved outcomes in specific TBI patient populations. However, the benefits of therapeutic hypothermia have not been demonstrated in multicenter randomized trials to significantly improve neurological outcomes. Although the exact reasons underlying the inability to translate therapeutic hypothermia into a larger clinical population are unknown, this failure may reflect the suboptimal use of this potentially powerful therapeutic in potentially treatable severe trauma patients. It is known that multiple factors including patient recruitment, clinical treatment variables, and cooling methodologies are all important in yielding beneficial effects. High-quality multicenter randomized controlled trials that incorporate these factors are required to maximize the benefits of this experimental therapy. This article therefore summarizes several factors that are important in enhancing the beneficial effects of therapeutic hypothermia in TBI. The current failures of hypothermic TBI clinical trials in terms of clinical protocol design, patient section, and other considerations are discussed and future directions are emphasized.
Collapse
Affiliation(s)
- W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
36
|
Atkins CM, Bramlett HM, Dietrich WD. Is temperature an important variable in recovery after mild traumatic brain injury? F1000Res 2017; 6:2031. [PMID: 29188026 PMCID: PMC5698917 DOI: 10.12688/f1000research.12025.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 12/03/2022] Open
Abstract
With nearly 42 million mild traumatic brain injuries (mTBIs) occurring worldwide every year, understanding the factors that may adversely influence recovery after mTBI is important for developing guidelines in mTBI management. Extensive clinical evidence exists documenting the detrimental effects of elevated temperature levels on recovery after moderate to severe TBI. However, whether elevated temperature alters recovery after mTBI or concussion is an active area of investigation. Individuals engaged in exercise and competitive sports regularly experience body and brain temperature increases to hyperthermic levels and these temperature increases are prolonged in hot and humid ambient environments. Thus, there is a strong potential for hyperthermia to alter recovery after mTBI in a subset of individuals at risk for mTBI. Preclinical mTBI studies have found that elevating brain temperature to 39°C before mTBI significantly increases neuronal death within the cortex and hippocampus and also worsens cognitive deficits. This review summarizes the pathology and behavioral problems of mTBI that are exacerbated by hyperthermia and discusses whether hyperthermia is a variable that should be considered after concussion and mTBI. Finally, underlying pathophysiological mechanisms responsible for hyperthermia-induced altered responses to mTBI and potential gender considerations are discussed.
Collapse
Affiliation(s)
- Coleen M Atkins
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Lois Pope LIFE Center, 1095 NW 14th Terrace (R-48), Miami, FL, 33136-1060, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Lois Pope LIFE Center, 1095 NW 14th Terrace (R-48), Miami, FL, 33136-1060, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Lois Pope LIFE Center, 1095 NW 14th Terrace (R-48), Miami, FL, 33136-1060, USA
| |
Collapse
|
37
|
Truettner JS, Bramlett HM, Dietrich WD. Posttraumatic therapeutic hypothermia alters microglial and macrophage polarization toward a beneficial phenotype. J Cereb Blood Flow Metab 2017; 37:2952-2962. [PMID: 27864465 PMCID: PMC5536802 DOI: 10.1177/0271678x16680003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Posttraumatic inflammatory processes contribute to pathological and reparative processes observed after traumatic brain injury (TBI). Recent findings have emphasized that these divergent effects result from subsets of proinflammatory (M1) or anti-inflammatory (M2) microglia and macrophages. Therapeutic hypothermia has been tested in preclinical and clinical models of TBI to limit secondary injury mechanisms including proinflammatory processes. This study evaluated the effects of posttraumatic hypothermia (PTH) on phenotype patterns of microglia/macrophages. Sprague-Dawley rats underwent moderate fluid percussion brain injury with normothermia (37℃) or hypothermia (33℃). Cortical and hippocampal regions were analyzed using flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR) at several periods after injury. Compared to normothermia, PTH attenuated infiltrating cortical macrophages positive for CD11b+ and CD45high. At 24 h, the ratio of iNOS+ (M1) to arginase+ (M2) cells after hypothermia showed a decrease compared to normothermia. RT-PCR of M1-associated genes including iNOS and IL-1β was significantly reduced with hypothermia while M2-associated genes including arginase and CD163 were significantly increased compared to normothermic conditions. The injury-induced increased expression of the chemokine Ccl2 was also reduced with PTH. These studies provide a link between temperature-sensitive alterations in macrophage/microglia activation and polarization toward a M2 phenotype that could be permissive for cell survival and repair.
Collapse
Affiliation(s)
- Jessie S Truettner
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
38
|
Establishment of an ideal time window model in hypothermic-targeted temperature management after traumatic brain injury in rats. Brain Res 2017. [PMID: 28629741 DOI: 10.1016/j.brainres.2017.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although hypothermic-targeted temperature management (HTTM) holds great potential for the treatment of traumatic brain injury (TBI), translation of the efficacy of hypothermia from animal models to TBI patientshas no entire consistency. This study aimed to find an ideal time window model in experimental rats which was more in accordance with clinical practice through the delayed HTTM intervention. Sprague-Dawley rats were subjected to unilateral cortical contusion injury and received therapeutic hypothermia at 15mins, 2 h, 4 h respectively after TBI. The neurological function was evaluated with the modified neurological severity score and Morris water maze test. The brain edema and morphological changes were measured with the water content and H&E staining. Brain sections were immunostained with antibodies against DCX (a neuroblast marker) and GFAP (an astrocyte marker). The apoptosis levels in the ipsilateral hippocampi and cortex were examined with antibodies against the apoptotic proteins Bcl-2, Bax, and cleaved caspase-3 by the immunofluorescence and western blotting. The results indicated that each hypothermia therapy group could improve neurobehavioral and cognitive function, alleviate brain edema and reduce inflammation. Furthermore, we observed that therapeutic hypothermia increased DCX expression, decreased GFAP expression, upregulated Bcl-2 expression and downregulated Bax and cleaved Caspase-3 expression. The above results suggested that HTTM at 2h or even at 4h post-injury revealed beneficial brain protection similarly, despite the best effect at 15min post-injury. These findings may provide relatively ideal time window models, further making the following experimental results more credible and persuasive.
Collapse
|
39
|
Meta-Analysis of Therapeutic Hypothermia for Traumatic Brain Injury in Adult and Pediatric Patients. Crit Care Med 2017; 45:575-583. [PMID: 27941370 DOI: 10.1097/ccm.0000000000002205] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Therapeutic hypothermia has been used to attenuate the effects of traumatic brain injuries. However, the required degree of hypothermia, length of its use, and its timing are uncertain. We undertook a comprehensive meta-analysis to quantify benefits of hypothermia therapy for traumatic brain injuries in adults and children by analyzing mortality rates, neurologic outcomes, and adverse effects. DATA SOURCES Electronic databases PubMed, Google Scholar, Web of Science, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov and manual searches of studies were conducted for relevant publications up until February 2016. STUDY SELECTION Forty-one studies in adults (n = 3,109; age range, 18-81 yr) and eight studies in children (n = 454; age range, 3 mo to 18 yr) met eligibility criteria. DATA EXTRACTION Baseline patient characteristics, enrollment time, methodology of cooling, target temperature, duration of hypothermia, and rewarming protocols were extracted. DATA SYNTHESIS Risk ratios with 95% CIs were calculated. Compared with adults who were kept normothermic, those who underwent therapeutic hypothermia were associated with 18% reduction in mortality (risk ratio, 0.82; 95% CI, 0.70-0.96; p = 0.01) and a 35% improvement in neurologic outcome (risk ratio, 1.35; 95% CI, 1.18-1.54; p < 0.00001). The optimal management strategy for adult patients included cooling patients to a minimum of 33°C for 72 hours, followed by spontaneous, natural rewarming. In contrast, adverse outcomes were observed in children who underwent hypothermic treatment with a 66% increase in mortality (risk ratio, 1.66; 95% CI, 1.06-2.59; p = 0.03) and a marginal deterioration of neurologic outcome (risk ratio, 0.90; 95% CI, 0.80-1.01; p = 0.06). CONCLUSIONS Therapeutic hypothermia is likely a beneficial treatment following traumatic brain injuries in adults but cannot be recommended in children.
Collapse
|
40
|
Zhang HB, Cheng SX, Tu Y, Zhang S, Hou SK, Yang Z. Protective effect of mild-induced hypothermia against moderate traumatic brain injury in rats involved in necroptotic and apoptotic pathways. Brain Inj 2017; 31:406-415. [PMID: 28140659 DOI: 10.1080/02699052.2016.1225984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIM To investigate the protective effect of hypothermia (HT) on brain injury in moderate traumatic brain injury (TBI) rat models and the potential mechanisms, especially the involvement of RIPK1 in apoptosis and necroptosis. METHODS Adult Sprague-Dawley rats were randomized to four groups: sham+normothermia (sham+NT), sham+hypothermia (sham+HT), moderate TBI+normothermia (TBI+NT) and moderate TBI+hypothermia (TBI+HT). The sham+HT and TBI+HT groups were submitted to 32°C for 6 hours. The regional cerebral blood flow (rCBF) was assessed 24 hours after TBI; 24 and 48 hours after TBI, the modified neurological severity score (mNSS) was assessed. Immediately after behavioural tests, rats were sacrificed to harvest the brain tissues. RESULTS mNSS scores were lower in the TBI+HT group compared with the TBI+NT group (p < 0.01) and cerebral blood flow was better (p < 0.01). H&E staining of the cortex and ipsilateral hippocampus showed pyknotic and irregularly shaped neurons in TBI+NT rats, which were less frequent in TBI+HT rats. The TBI+NT and TBI+HT groups showed higher TNF-α, TRAIL, FasL, FADD, caspase-3, caspase-8, PARP-1, RIPK-1 and RIPK-3 levels than the sham+NT group (all p < 0.05), but the levels of these proteins were all lower in the TBI+HT group compared with the TBI+NT group (all p < 0.01). CONCLUSION HT treatment significantly reduced RIPK-1 upregulation, which may inhibit necroptosis and apoptosis pathways after moderate TBI.
Collapse
Affiliation(s)
- Hai-Bo Zhang
- a Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience of Chinese People's Armed Police Forces (PAP) , Neurosurgical and Neurological Hospital of PAP , Tianjin , PR China
| | - Shi-Xiang Cheng
- a Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience of Chinese People's Armed Police Forces (PAP) , Neurosurgical and Neurological Hospital of PAP , Tianjin , PR China
| | - Yue Tu
- a Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience of Chinese People's Armed Police Forces (PAP) , Neurosurgical and Neurological Hospital of PAP , Tianjin , PR China
| | - Sai Zhang
- a Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience of Chinese People's Armed Police Forces (PAP) , Neurosurgical and Neurological Hospital of PAP , Tianjin , PR China
| | - Shi-Ke Hou
- a Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience of Chinese People's Armed Police Forces (PAP) , Neurosurgical and Neurological Hospital of PAP , Tianjin , PR China
| | - Zhen Yang
- a Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience of Chinese People's Armed Police Forces (PAP) , Neurosurgical and Neurological Hospital of PAP , Tianjin , PR China
| |
Collapse
|
41
|
Dekmak A, Mantash S, Shaito A, Toutonji A, Ramadan N, Ghazale H, Kassem N, Darwish H, Zibara K. Stem cells and combination therapy for the treatment of traumatic brain injury. Behav Brain Res 2016; 340:49-62. [PMID: 28043902 DOI: 10.1016/j.bbr.2016.12.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 10/30/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
TBI is a nondegenerative, noncongenital insult to the brain from an external mechanical force; for instance a violent blow in a car accident. It is a complex injury with a broad spectrum of symptoms and has become a major cause of death and disability in addition to being a burden on public health and societies worldwide. As such, finding a therapy for TBI has become a major health concern for many countries, which has led to the emergence of many monotherapies that have shown promising effects in animal models of TBI, but have not yet proven any significant efficacy in clinical trials. In this paper, we will review existing and novel TBI treatment options. We will first shed light on the complex pathophysiology and molecular mechanisms of this disorder, understanding of which is a necessity for launching any treatment option. We will then review most of the currently available treatments for TBI including the recent approaches in the field of stem cell therapy as an optimal solution to treat TBI. Therapy using endogenous stem cells will be reviewed, followed by therapies utilizing exogenous stem cells from embryonic, induced pluripotent, mesenchymal, and neural origin. Combination therapy is also discussed as an emergent novel approach to treat TBI. Two approaches are highlighted, an approach concerning growth factors and another using ROCK inhibitors. These approaches are highlighted with regard to their benefits in minimizing the outcomes of TBI. Finally, we focus on the consequent improvements in motor and cognitive functions after stem cell therapy. Overall, this review will cover existing treatment options and recent advancements in TBI therapy, with a focus on the potential application of these strategies as a solution to improve the functional outcomes of TBI.
Collapse
Affiliation(s)
- AmiraSan Dekmak
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon
| | - Sarah Mantash
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut, Lebanon
| | - Amer Toutonji
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Naify Ramadan
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Hussein Ghazale
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Nouhad Kassem
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon
| | - Hala Darwish
- Faculty of Medicine, Hariri School of Nursing, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Laboratory of Cardiovascular Diseases and Stem Cells, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
42
|
Lee JH, Wei ZZ, Cao W, Won S, Gu X, Winter M, Dix TA, Wei L, Yu SP. Regulation of therapeutic hypothermia on inflammatory cytokines, microglia polarization, migration and functional recovery after ischemic stroke in mice. Neurobiol Dis 2016; 96:248-260. [PMID: 27659107 PMCID: PMC5161414 DOI: 10.1016/j.nbd.2016.09.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/30/2016] [Accepted: 09/17/2016] [Indexed: 01/08/2023] Open
Abstract
Stroke is a leading threat to human life and health in the US and around the globe, while very few effective treatments are available for stroke patients. Preclinical and clinical studies have shown that therapeutic hypothermia (TH) is a potential treatment for stroke. Using novel neurotensin receptor 1 (NTR1) agonists, we have demonstrated pharmacologically induced hypothermia and protective effects against brain damages after ischemic stroke, hemorrhage stroke, and traumatic brain injury (TBI) in rodent models. To further characterize the mechanism of TH-induced brain protection, we examined the effect of TH (at ±33°C for 6h) induced by the NTR1 agonist HPI-201 or physical (ice/cold air) cooling on inflammatory responses after ischemic stroke in mice and oxygen glucose deprivation (OGD) in cortical neuronal cultures. Seven days after focal cortical ischemia, microglia activation in the penumbra reached a peak level, which was significantly attenuated by TH treatments commenced 30min after stroke. The TH treatment decreased the expression of M1 type reactive factors including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-12, IL-23, and inducible nitric oxide synthase (iNOS) measured by RT-PCR and Western blot analyses. Meanwhile, TH treatments increased the expression of M2 type reactive factors including IL-10, Fizz1, Ym1, and arginase-1. In the ischemic brain and in cortical neuronal/BV2 microglia cultures subjected to OGD, TH attenuated the expression of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α), two key chemokines in the regulation of microglia activation and infiltration. Consistently, physical cooling during OGD significantly decreased microglia migration 16h after OGD. Finally, TH improved functional recovery at 1, 3, and 7days after stroke. This study reveals the first evidence for hypothermia mediated regulation on inflammatory factor expression, microglia polarization, migration and indicates that the anti-inflammatory effect is an important mechanism underlying the brain protective effects of a TH therapy.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States
| | - Zheng Z Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States
| | - Wenyuan Cao
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Soonmi Won
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States
| | - Megan Winter
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Thomas A Dix
- JT Pharmaceuticals, Mt. Pleasant, SC 29464, United States; Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29401, United States
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States.
| |
Collapse
|
43
|
Abstract
For over 50 years, clinicians have used hypothermia to manage traumatic brain injury (TBI). In the last two decades numerous trials have assessed whether hypothermia is of benefit in patients. Mild to moderate hypothermia reduces the intracranial pressure (ICP). Randomized control trials for short-term hypothermia indicate no benefit in outcome after severe TBI, whereas longer-term hypothermia could be of benefit by reducing ICP. This article summarises current evidence and gives recommendations based upon the conclusions.
Collapse
Affiliation(s)
- Aminul I Ahmed
- Miami Project to Cure Paralysis, Lois Pope Life Center, University of Miami, 1095 Northwest, 14th Terrace, Miami, FL 33136, USA.
| | - M Ross Bullock
- Miami Project to Cure Paralysis, Lois Pope Life Center, University of Miami, 1095 Northwest, 14th Terrace, Miami, FL 33136, USA
| | - W Dalton Dietrich
- Miami Project to Cure Paralysis, Lois Pope Life Center, University of Miami, 1095 Northwest, 14th Terrace, Miami, FL 33136, USA
| |
Collapse
|
44
|
Tu Y, Miao XM, Yi TL, Chen XY, Sun HT, Cheng SX, Zhang S. Neuroprotective effects of bloodletting at Jing points combined with mild induced hypothermia in acute severe traumatic brain injury. Neural Regen Res 2016; 11:931-6. [PMID: 27482221 PMCID: PMC4962590 DOI: 10.4103/1673-5374.184491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bloodletting at Jing points has been used to treat coma in traditional Chinese medicine. Mild induced hypothermia has also been shown to have neuroprotective effects. However, the therapeutic effects of bloodletting at Jing points and mild induced hypothermia alone are limited. Therefore, we investigated whether combined treatment might have clinical effectiveness for the treatment of acute severe traumatic brain injury. Using a rat model of traumatic brain injury, combined treatment substantially alleviated cerebral edema and blood-brain barrier dysfunction. Furthermore, neurological function was ameliorated, and cellular necrosis and the inflammatory response were lessened. These findings suggest that the combined effects of bloodletting at Jing points (20 μL, twice a day, for 2 days) and mild induced hypothermia (6 hours) are better than their individual effects alone. Their combined application may have marked neuroprotective effects in the clinical treatment of acute severe traumatic brain injury.
Collapse
Affiliation(s)
- Yue Tu
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury & Neuroscience of Chinese People's Armed Police Forces, Neurosurgery & Neurology Hospital, Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Tianjin, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Mei Miao
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury & Neuroscience of Chinese People's Armed Police Forces, Neurosurgery & Neurology Hospital, Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Tianjin, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tai-Long Yi
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury & Neuroscience of Chinese People's Armed Police Forces, Neurosurgery & Neurology Hospital, Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Xu-Yi Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury & Neuroscience of Chinese People's Armed Police Forces, Neurosurgery & Neurology Hospital, Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Hong-Tao Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury & Neuroscience of Chinese People's Armed Police Forces, Neurosurgery & Neurology Hospital, Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Shi-Xiang Cheng
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury & Neuroscience of Chinese People's Armed Police Forces, Neurosurgery & Neurology Hospital, Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Tianjin, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury & Neuroscience of Chinese People's Armed Police Forces, Neurosurgery & Neurology Hospital, Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Tianjin, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
45
|
Khalilov RA, Dzhafarova AM, Dzhabrailova RN, Khizrieva SI. The kinetic and thermodynamic characteristics of lactate dehydrogenase in the rat brain during hypothermia. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416020045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Subdural hematoma decompression model: A model of traumatic brain injury with ischemic-reperfusional pathophysiology: A review of the literature. Behav Brain Res 2016; 340:23-28. [PMID: 27235716 DOI: 10.1016/j.bbr.2016.05.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 11/23/2022]
Abstract
The prognosis for patients with traumatic brain injury (TBI) with subdural hematoma (SDH) remains poor. In accordance with an increasing elderly population, the incidence of geriatric TBI with SDH is rising. An important contributor to the neurological injury associated with SDH is the ischemic damage which is caused by raised intracranial pressure (ICP) producing impaired cerebral perfusion. To control intracranial hypertension, the current management consists of hematoma evacuation with or without decompressive craniotomy. This removal of the SDH results in the immediate reversal of global ischemia accompanied by an abrupt reduction of mass lesion and an ensuing reperfusion injury. Experimental models can play a critical role in improving our understanding of the underlying pathophysiology and in exploring potential treatments for patients with SDH. In this review, we describe the epidemiology, pathophysiology and clinical background of SDH.
Collapse
|
47
|
Therapeutic hypothermia attenuates tissue damage and cytokine expression after traumatic brain injury by inhibiting necroptosis in the rat. Sci Rep 2016; 6:24547. [PMID: 27080932 PMCID: PMC4832230 DOI: 10.1038/srep24547] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/31/2016] [Indexed: 01/09/2023] Open
Abstract
Necroptosis has been shown as an alternative form of cell death in many diseases, but the detailed mechanisms of the neuron loss after traumatic brain injury (TBI) in rodents remain unclear. To investigate whether necroptosis is induced after TBI and gets involved in the neuroprotecton of therapeutic hypothermia on the TBI, we observed the pathological and biochemical change of the necroptosis in the fluid percussion brain injury (FPI) model of the rats. We found that receptor-interacting protein (RIP) 1 and 3, and mixed lineage kinase domain-like protein (MLKL), the critical downstream mediators of necroptosis recently identified in vivo, as well as HMGB1 and the pro-inflammation cytokines TNF-α, IL-6 and IL-18, were increased at an early phase (6 h) in cortex after TBI. Posttraumatic hypothermia (33 °C) led to the decreases in the necroptosis regulators, inflammatory factors and brain tissue damage in rats compared with normothermia-treated TBI animals. Immunohistochemistry studies showed that posttraumatic hypothermia also decreased the necroptosis-associated proteins staining in injured cortex and hippocampal CA1. Therefore, we conclude that the RIP1/RIP3-MLKL-mediated necroptosis occurs after experimental TBI and therapeutic hypothermia may protect the injured central nervous system from tissue damage and the inflammatory responses by targeting the necroptosis signaling after TBI.
Collapse
|
48
|
Wu L, Sun HL, Gao Y, Hui KL, Xu MM, Zhong H, Duan ML. Therapeutic Hypothermia Enhances Cold-Inducible RNA-Binding Protein Expression and Inhibits Mitochondrial Apoptosis in a Rat Model of Cardiac Arrest. Mol Neurobiol 2016; 54:2697-2705. [PMID: 26995407 DOI: 10.1007/s12035-016-9813-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/22/2016] [Indexed: 01/06/2023]
Abstract
Therapeutic hypothermia is well known for its protective effect against brain injury after cardiac arrest, but the exact mechanism remains unclear. Cold-inducible RNA-binding protein (CIRP), a member of cold shock protein, enables mammalian cells to withstand decreased temperature by regulating gene translation. However, the role of CIRP in global cerebral ischemia after therapeutic hypothermia has not been clearly elucidated. In the present study, rats resuscitated from 4 min of cardiac arrest were separately treated with therapeutic hypothermia (immediately after return of spontaneous circulation (ROSC); targeted temperature at 33 °C) and therapeutic normothermia (targeted temperature at 36.8 °C) for 6 h. The hippocampus was harvested at 0 h (baseline), 6 h, 12 h, 1 day, 3 days, and 7 days after ROSC. The expression of CIRP messenger RNA (mRNA) was assessed by real-time PCR. CIRP and mitochondrial apoptosis-associated proteins were tested by Western blot. The histological changes and neurological function were respectively evaluated by hematoxylin-eosin staining and neurological deficit score (NDS). Compared with baseline, rats resuscitated from cardiac arrest showed increased expression of CIRP, Bax, Caspase 9, and Caspase 3 and decreased expression of Bcl-2 in hippocampus (P < 0.05). However, therapeutic hypothermia after ROSC alleviated the alterations of Bax, Caspase 9, Caspase 3, and Bcl-2, while further increased the hippocampal expression of CIRP mRNA and protein, when compared with the normothermia rats (P < 0.05). In addition, compared with the therapeutic normothermia rats, histopathological damage in CA1 zone and NDS were respectively decreased and increased in the hypothermia rats (P < 0.05). Our findings suggest that 32 °C therapeutic hypothermia exerts an important neuroprotective effects by up-regulating CIRP expression and inhibiting mitochondrial apoptosis factor production in the cardiac arrest rat model.
Collapse
Affiliation(s)
- Lin Wu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China.,Jiangsu provincial Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, 221000, China
| | - He-Liang Sun
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Gao
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Kang-Li Hui
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Miao-Miao Xu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Hao Zhong
- Jiangsu provincial Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, 221000, China
| | - Man-Lin Duan
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China. .,Jiangsu provincial Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, 221000, China.
| |
Collapse
|
49
|
Yokobori S, Spurlock MS, Lee SW, Gajavelli S, Bullock RM. Microdialysis as Clinical Evaluation of Therapeutic Hypothermia in Rat Subdural Hematoma Model. Methods Mol Biol 2016; 1462:413-31. [PMID: 27604731 DOI: 10.1007/978-1-4939-3816-2_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cerebral microdialysis (MD) is a fine laboratory technique which has been established for studying physiological, pharmacological, and pathological changes in the experimental studies of traumatic brain injury (TBI). This technique has also been well translated and widely applied to clinical bedside monitoring to provide pathophysiological analysis in severe TBI patients. The MD technique is thus well suited for straightforward translation from basic science to clinical application.In this chapter, we describe our evaluation of MD method in acute subdural hematoma (ASDH) rat model. With 100 kDa cut-off microdialysis membrane, we could measure several biomarkers such as ubiquitin carboxy hydrolase L1 (UCH-L1), a neuronal marker and glial fibrillary acidic protein (GFAP), and a glial marker in extracellular fluid. In this experiment, we could detect that the peak of extracellular UCH-L1 in the early hypothermia group was significantly lower than in the normothermia group. Also, in the late phase of reperfusion (>2.5 h after decompression), extracellular GFAP in the early hypothermia group was lower than in the normothermia. These data thus suggested that early, preoperatively induced hypothermia could mediate the reduction of neuronal and glial damage in the reperfusion phase of ischemia/reperfusion brain injury.Microdialysis allows for the direct measurement of extracellular molecules in an attempt to characterize metabolic derangements before they become clinically relevant. Advancements in technology have allowed for the bedside assay of multiple markers of ischemia and metabolic dysfunction, and the applications for traumatic brain injury have been well established. As clinicians become more comfortable with these tools their widespread use and potential for clinical impact with continue to rise.
Collapse
Affiliation(s)
- Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
| | - Markus S Spurlock
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephanie W Lee
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shyam Gajavelli
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ross M Bullock
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
50
|
Zhu Y, Yin H, Zhang R, Ye X, Wei J. Therapeutic hypothermia versus normothermia in adult patients with traumatic brain injury: a meta-analysis. SPRINGERPLUS 2016; 5:801. [PMID: 27390642 PMCID: PMC4916079 DOI: 10.1186/s40064-016-2391-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/23/2016] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Many single-center studies and meta-analyses demonstrate that therapeutic hypothermia (TH), in which the body temperature is maintained at 32-35°C, exerts significant neuroprotection and attenuates secondary intracranial hypertension after traumatic brain injury (TBI). In 2015, two well-designed multi-center, randomized controlled trials were published that did not show favorable outcomes with the use of TH in adult patients with TBI compared to normothermia treatment (NT). Therefore, we performed an updated meta-analysis to assess the effect of TH in adult patients with TBI. METHODS We reviewed the PubMed, EMbase, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, and Wanfang Databases. We included randomized controlled trials that compared TH and NT in adult patients with TBI. Two reviewers assessed the quality of each study and independently collected the data. We performed the meta-analysis using the Cochrane Collaboration's RevMan 5.3 software. RESULTS We included 18 trials involving 2177 patients with TBI. There was no significant heterogeneity among the studies. TH could not decrease mortality at 3 months post-TBI (RR 0.95; 95 % CI 0.59, 1.55; z = 0.19, P = 0.85) or 6 months post-TBI (RR 0.96; 95 % CI 0.76, 1.23; z = 0.29, P = 0.77). There were no significant differences in unfavorable clinical outcomes when TH was compared to NT at 3 months post-TBI (RR 0.79; 95 % CI 0.56, 1.12; z = 1.31, P = 0.19) or 6 months post-TBI (RR 0.80; 95 % CI 0.63, 1.00; z = 1.92, P = 0.05). TH was associated with a significant increase in pneumonia (RR 1.51; 95 % CI 1.12, 2.03; z = 2.72, P = 0.006) and cardiovascular complications (RR 1.75; 95% CI 1.14, 2.70; z = 2.54, P = 0.01). CONCLUSIONS Therapeutic hypothermia failed to demonstrate a decrease in mortality and unfavorable clinical outcomes at 3 or 6 months post-TBI. Additionally, TH might increase the risk of developing pneumonia and cardiovascular complications.
Collapse
Affiliation(s)
- Youfeng Zhu
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510220 Guangdong China
| | - Haiyan Yin
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510220 Guangdong China
| | - Rui Zhang
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510220 Guangdong China
| | - Xiaoling Ye
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510220 Guangdong China
| | - Jianrui Wei
- Department of Cardiology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Tongfuzhong Road No. 396, Guangzhou, 510220 Guangdong China
| |
Collapse
|