1
|
Liu X, Yu Y, Garcia LA, Au ML, Tran M, Zhang J, Lou A, Liu Y, Wu H. A grape-supplemented diet prevented ultraviolet (UV) radiation-induced cataract by regulating Nrf2 and XIAP pathways. J Nutr Biochem 2024; 129:109636. [PMID: 38561079 PMCID: PMC11107911 DOI: 10.1016/j.jnutbio.2024.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The purpose of this study is to investigate if grape consumption, in the form of grape powder (GP), could protect against ultraviolet (UV)-induced cataract. Mice were fed with the regular diet, sugar placebo diet, or a grape diet (regular diet supplemented with 5%, 10%, and 15% GP) for 3 months. The mice were then exposed to UV radiation to induce cataract. The results showed that the GP diet dose-dependently inhibited UV-induced cataract and preserved glutathione pools. Interestingly, UV-induced Nrf2 activation was abolished in the groups on the GP diet, suggesting GP consumption may improve redox homeostasis in the lens, making Nrf2 activation unnecessary. For molecular target prediction, a total of 471 proteins regulated by GP were identified using Agilent Literature Search (ALS) software. Among these targets, the X-linked inhibitor of apoptosis (XIAP) was correlated with all of the main active ingredients of GP, including resveratrol, catechin, quercetin, and anthocyanins. Our data confirmed that GP prevented UV-induced suppression of XIAP, indicating that XIAP might be one of the critical molecular targets of GP. In conclusion, this study demonstrated that GP protected the lens from UV-induced cataract development in mice. The protective effects of GP may be attributed to its ability to improve redox homeostasis and activate the XIAP-mediated antiapoptotic pathway.
Collapse
Affiliation(s)
- Xiaobin Liu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Yu Yu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Luís Aguilera Garcia
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - My-Lien Au
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Myhoa Tran
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Jinmin Zhang
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Alexander Lou
- The Village School, Houston, Texas, USA; Loyola University Chicago, Chicago, Illinois, USA
| | - Yang Liu
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA.
| |
Collapse
|
2
|
Venanzi AW, Carmy-Bennun T, Marino FS, Ribeiro M, Hackam AS. Context-Dependent Effects of the Ketogenic Diet on Retinal Ganglion Cell Survival and Axonal Regeneration After Optic Nerve Injury. J Ocul Pharmacol Ther 2023; 39:509-518. [PMID: 37172141 PMCID: PMC10616950 DOI: 10.1089/jop.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/06/2023] [Indexed: 05/14/2023] Open
Abstract
Purpose: There is increasing interest in nonpharmacologic approaches to protect retinal ganglion cells (RGCs) after injury and enhance the efficacy of therapeutic molecules. Accumulating evidence demonstrates neuroprotection by the high-fat low-carbohydrate ketogenic diet (KD) in humans and animal models of neurologic diseases. However, no studies to date have examined whether the KD protects RGCs and promotes axonal regrowth after traumatic injury to the optic nerve (ON) or whether it increases efficacy of experimental proregenerative molecules. In this study, we investigated whether the KD promoted RGC survival and axonal regeneration after ON injury in the presence and absence of neuroprotective Wnt3a ligand. Methods: Adult mice were placed on a KD or control diet before ON crush injury and remained on the diet until the end of the experiment. Nutritional ketosis was confirmed by measuring serum beta-hydroxybutyrate levels. Mice were intravitreally injected with Wnt3a ligand or phosphate-buffered saline (PBS), and RGC survival, function, axonal regeneration, and inflammatory responses were measured. Results: Mice fed the KD showed increased RGC survival and reduced inflammatory cells in PBS-injected mice. Also, mice fed the KD had increased RGC functional responses but not increased RGC numbers in the presence of Wnt3a, indicating that the KD did not enhance the prosurvival effect of Wnt3a. The KD did not promote axonal regeneration in the presence or absence of Wnt3a. Conclusions: The KD has a complex protective effect after ON injury and cotreatment with Wnt3a. This work sets the foundation for studies identifying underlying molecular mechanisms.
Collapse
Affiliation(s)
- Alexander W. Venanzi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tal Carmy-Bennun
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Felicia S. Marino
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marcio Ribeiro
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Abigail S. Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
3
|
Hu W, Zheng R, Feng Y, Tan D, Chan Chung-Tsing G, Su X, Kim JE. Impacts of regular consumption of grapes on macular pigment accumulation in Singapore older adults: a randomized controlled trial. Food Funct 2023; 14:8321-8330. [PMID: 37605542 DOI: 10.1039/d3fo02105j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Background: Oxidative stress is a key risk factor for visual impairment and consuming dietary antioxidant-rich foods may help in managing visual impairments. However, a limited number of studies have investigated the effect of dietary antioxidant-rich food including grapes on eye health in older adults. Objectives: To assess the effects on macular pigment accumulation of regular consumption of grapes in Singapore older adults. Methods: This was a 16 week, double-blind, randomized, placebo-controlled trial. Thirty-four Singapore older adults were randomized into regularly consuming either 46 g day-1 of freeze-dried table grape powder (the intervention group) or the same amount of placebo powder (the control group). Macular pigment optical density (MPOD), skin carotenoid status, advanced glycation end product (AGEs) status and dietary lutein intake were assessed every 4 weeks, and plasma lutein concentration, total antioxidant capacity and total phenolic content were measured every 8 weeks. Results: A significant time effect (p = 0.007) was observed for MPOD, and this is largely attributed to the improvement in the MPOD for the intervention group, as a significant increase was observed only in this group (week 0: 0.56 ± 0.04 D.U.; week 16: 0.61 ± 0.04 D.U., p < 0.01). Additionally, a significant increase in plasma total antioxidant capacity (week 0: 0.26 ± 0.13 mM TEAC; week 16: 0.36 ± 0.20 mM TEAC, p < 0.01) and total phenolic content (week 0: 10.50 ± 0.44 mg L-1 GAE; week 16: 12.58 ± 0.55 mg L-1 GAE, p < 0.001) was observed for the intervention group only. In contrast, a significant increase in skin AGE status was observed in the control group (week 0: 2.47 ± 0.24; week 16: 2.99 ± 0.12, p < 0.05) while this was mitigated in the intervention group. There were no differences in dietary lutein intake, plasma lutein concentration and skin carotenoid status between groups throughout the study. Conclusions: Regular intake of grapes may improve eye health in Singapore older adults, specifically in augmenting MPOD, which can be explained by an increase in plasma total antioxidant capacity and phenolic content, and the downregulation of AGEs. This study was registered at clinicatrials.gov as NCT05064865.
Collapse
Affiliation(s)
- Weili Hu
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore.
| | - Ruoxi Zheng
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore.
| | - Yuting Feng
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore.
| | - Denise Tan
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore.
- Science and Technology Department, Nestlé R&D Center (Pte) Ltd, Singapore 618802, Singapore
| | - Gregory Chan Chung-Tsing
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Xinyi Su
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Jung Eun Kim
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
4
|
Asahi MG, Avaylon J, Wallsh J, Gallemore RP. Emerging biological therapies for the treatment of age-related macular degeneration. Expert Opin Emerg Drugs 2021; 26:193-207. [PMID: 34030572 DOI: 10.1080/14728214.2021.1931120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is the leading cause of blindness in individuals over age 50 in developed countries. Current therapy for nonexudative AMD (neAMD) is aimed at modifying risk factors and vitamin supplementation to slow progression, while intravitreal anti-vascular endothelial factor (VEGF) injections are the mainstay for treatment of choroidal neovascularization in exudative AMD (eAMD). AREAS COVERED Over the past decade, promising therapies have emerged that aim to improve the current standard of care for both diseases. Clinical trials for neAMD are investigating targets in the complement cascade, vitamin A metabolism, metformin, and tetracycline, whereas clinical trials for eAMD are aiming to decrease treatment burden through novel port delivery systems, increasing drug half-life, and targeting new sites of the VEGF cascade. Stem cell and gene therapy are also being evaluated for treatment of neAMD and eAMD. EXPERT OPINION With an aging population, the need for effective, long term, low burden treatment options for AMD will be in increasingly high demand. Current investigations aim to address the shortcomings of current treatment options with breakthrough treatment approaches. Therapeutics in the pipeline hold promise for improving the treatment of AMD, and are on track for widespread use within the next decade.
Collapse
Affiliation(s)
- Masumi G Asahi
- Department of Ophthalmology, George Washington University, Washington, DC, USA
| | - Jaycob Avaylon
- California Northstate University, College of Medicine, Elk Grove, CA, USA
| | - Josh Wallsh
- Department of Ophthalmology, Albany Medical College, Albany, NY, USA
| | - Ron P Gallemore
- Retina Macula Institute, Torrance, CA, USA.,Jules Eye Institute, University of California, Los Angeles, Los Angeles, USA
| |
Collapse
|
5
|
Li Y, Cheng Z, Wang K, Zhu X, Ali Y, Shu W, Bao X, Zhu L, Fan X, Murray M, Zhou F. Procyanidin B2 and rutin in Ginkgo biloba extracts protect human retinal pigment epithelial (RPE) cells from oxidative stress by modulating Nrf2 and Erk1/2 signalling. Exp Eye Res 2021; 207:108586. [PMID: 33891955 DOI: 10.1016/j.exer.2021.108586] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/03/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of human retinal diseases. Ginkgo biloba products are widely consumed herbal supplements that contain ingredients with anti-oxidant potentials. However, the active agents in ginkgo biloba extracts (GBE) are unclear. This study assessed the anti-oxidant effects of 19 natural compounds isolated from GBE to provide a rational basis for their use in preventing retinal diseases. The compounds were tested in retinal pigment epithelial (RPE) cells subjected to tert-butyl hydroperoxide (t-BHP)-induced oxidative stress. Cell viability and intracellular reactive oxygen species (ROS) were assessed and flow cytometry was used to delineate the cell death profile. The expression of nuclear factor erythroid 2-related factor-2 (Nrf2) was activated in RPE cells by t-BHP accompanied with an activation of Erk1/2 signaling. GBE-derived rutin and procyanidin B2 ameliorated t-BHP-induced cell death and promoted cell viability by suppressing intracellular ROS generation. These agents also enhanced Nrf2 expression with activating Erk1/2 signaling in RPE cells. In contrast, the other compounds tested were minimally active and did not prevent the loss of cell viability elicited by t-BHP. The present findings suggest that rutin and procyanidin B2 may have potential therapeutic values in the prevention of retinal diseases induced by oxidative damage.
Collapse
Affiliation(s)
- Yue Li
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| | - Zhengqi Cheng
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, 214063, China
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, 214063, China
| | - Youmna Ali
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| | - Wenying Shu
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia; Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong Province, 511400, China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226019, China
| | - Ling Zhu
- The University of Sydney, Save Sight Institute, Sydney, NSW, 2000, Australia
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Michael Murray
- The University of Sydney, Discipline of Pharmacology, Faculty of Medicine and Health, NSW, 2006, Australia
| | - Fanfan Zhou
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia.
| |
Collapse
|
6
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
7
|
Hasona N, Morsi A. Grape Seed Extract Alleviates Dexamethasone-Induced Hyperlipidemia, Lipid Peroxidation, and Hematological Alteration in Rats. Indian J Clin Biochem 2019; 34:213-218. [PMID: 31092996 DOI: 10.1007/s12291-018-0736-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
The ameliorative effects of dietary natural compounds have drawn increasing attention. Dietary antioxidant is considered a common practice adopted in traditional and alternative medicine. The current study was considered to assess the ameliorative effect of grape seed extract on dexamethasone-induced hepatotoxicity in rats. Rats were injected with dexamethasone, (0.1 mg/kg; i.m.), three times per week, for 30 days. The other groups; dexamethasone (0.1 mg/kg) and grape seed extract at a dose of 200 and 400 mg/kg were given orally to rats, respectively. Dexamethasone treatment resulted in a significant elevation in liver function markers activities, lipid profile, and hematological alterations; also, a remarkable increase in hepatic lipid peroxidation marker whereas decreased antioxidant activities in rats. However, administration of grape seed extract resulted in a reversal of dexamethasone-induced lipid peroxidation, antioxidant enzyme activities, liver function markers and lipid profile, and hematological alterations. Moreover, grape seed extract demonstrated preventive action against dexamethasone-induced histopathological changes in rat liver tissues. In conclusion, grape seed extract exhibited a protective effect in rats against oxidative stress, hyperlipidemia and hematological alterations induced by dexamethasone.
Collapse
Affiliation(s)
- Nabil Hasona
- 1Department of Biochemistry, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
- 2Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Abdullah Morsi
- 3Pathology Department, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Berkowitz BA, Podolsky RH, Lins-Childers KM, Li Y, Qian H. Outer Retinal Oxidative Stress Measured In Vivo Using QUEnch-assiSTed (QUEST) OCT. Invest Ophthalmol Vis Sci 2019; 60:1566-1570. [PMID: 30995313 PMCID: PMC6736344 DOI: 10.1167/iovs.18-26164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose To test the hypothesis that oxidative stress in the outer retina (OR = distance from external limiting membrane to the retinal pigment epithelium-choroid boundary) can be detected by using antioxidants (AOs) to correct an impaired light-evoked response as measured by optical coherence tomography (OCT). Methods C57BL/6J mice were maintained in the dark for ∼20 hours and studied by OCT before and after 1 hour of light exposure. OR thickness in dark or light was measured, and the light-dark difference (i.e., the photoresponse) was calculated. Subgroups of mice were given either saline or d-cis-diltiazem (an inducer of transient and nondamaging OR oxidative stress) ± methylene blue (24 hours before examination) and α-lipoic acid (1 hour before examination); one group was kept only in the dark and given only AOs. Results In uninjected or saline-injected control mice, the OR showed a similar and reproducible light-induced expansion; dark-adapted mice given AOs did not increase dark-adapted OR thickness. The d-cis-diltiazem-treated mice had no photoresponse (P > 0.05). The d-cis-diltiazem-treated mice given AOs corrected (P < 0.05) the suppressed OR photoresponse, indicating the presence of oxidative stress. Conclusions QUEnch-assiSTed (QUEST) OCT reproduced results from previous gold standard assays, showing that oxidative stress impairs the OR photoresponse and that d-cis-diltiazem produces OR oxidative stress. We envision future applications of QUEST OCT in a range of oxidative stress-based retinopathies.
Collapse
Affiliation(s)
- Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H. Podolsky
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | | | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
9
|
Berkowitz BA, Podolsky RH, Farrell B, Lee H, Trepanier C, Berri AM, Dernay K, Graffice E, Shafie-Khorassani F, Kern TS, Roberts R. D-cis-Diltiazem Can Produce Oxidative Stress in Healthy Depolarized Rods In Vivo. Invest Ophthalmol Vis Sci 2019; 59:2999-3010. [PMID: 30025125 PMCID: PMC5995482 DOI: 10.1167/iovs.18-23829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose New perspectives are needed to understand decades of contradictory reports on the neuroprotective effects of the Cav1.2 L-type calcium channel blocker d-cis-diltiazem in retinitis pigmentosa (RP) models. Here, we address, in vivo, the following two knowledge gaps regarding d-cis-diltiazem's actions in the murine outer retina: (1) do normal mouse rods contain d-cis-diltiazem-insensitive Cav1.2 L-type calcium channels? (2) Can d-cis-diltiazem modify the normal rod redox environment? Methods First, transretinal Cav1.2 L-type calcium channels were noninvasively mapped with manganese-enhanced magnetic resonance imaging (MRI) following agonist Bay K 8644 in C57BL/6 (B6) and in Cav1.2 L-type calcium channel BAY K 8644-insensitive mutant B6 mice. Second, d-cis-diltiazem-treated oxidative stress-vulnerable (B6) or -resistant [129S6 (S6)] mice were examined in vivo (QUEnch-assiSTed [QUEST] MRI) and in whole retina ex vivo (lucigenin). Retinal thickness was measured using MRI. Results The following results were observed: (1) manganese uptake patterns in BAY K 8644-treated controls and mutant mice identified in vivo Cav1.2 L-type calcium channels in inner and outer retina; and (2) d-cis-diltiazem induced rod oxidative stress in dark-adapted B6 mice but not in light-adapted B6 mice or dark-adapted S6 mice (QUEST MRI). Oxidative stress in vivo was limited to inferior outer retina in dark-adapted B6 mice approximately 1-hour post d-cis-diltiazem. By approximately 4 hours post, only superior outer retina oxidative stress was observed and whole retinal superoxide production was supernormal. All groups had unremarkable retinal thicknesses. Conclusions D-cis-diltiazem's unexpectedly complex spatiotemporal outer retinal oxidative stress pattern in vivo was dependent on genetic background and rod membrane depolarization, but not apparently dependent on Cav1.2 L-type calcium channels, providing a potential rationale for contradictory results in different RP models.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States.,Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Benjamin Farrell
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Hojun Lee
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Christopher Trepanier
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ali M Berri
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kristin Dernay
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Emma Graffice
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Fatema Shafie-Khorassani
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Timothy S Kern
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Robin Roberts
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
10
|
Xu Z, Chu Z, Li W, Sun T, Sun X. Grape seed extracts attenuate retinal Müller cell gliosis in streptozotocin-diabetic rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
11
|
Miller SA, White JA, Chowdhury R, Gales DN, Tameru B, Tiwari AK, Samuel T. Effects of consumption of whole grape powder on basal NF-κB signaling and inflammatory cytokine secretion in a mouse model of inflammation. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2018; 11:1-8. [PMID: 29568797 PMCID: PMC5858739 DOI: 10.1016/j.jnim.2017.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dietary consumption of polyphenol-rich fruits, such as grapes, may reduce inflammation and potentially prevent diseases linked to inflammation. Here, we used a genetically engineered murine model to measure Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity and pro-inflammatory cytokine secretion to test the hypothesis that oral consumption of whole grape formulation reduces inflammatory signaling in the body. NF-κB luciferase reporter mice were divided into two groups, one which was fed an experimental diet formulated with 4% (w/w) whole grape powder (WGP) or another which was fed a control diet formulated with 3.6% glucose/fructose (w/w) combination. Simulated inflammation was induced in the mice by intraperitoneal injection of lipopolysaccharide (LPS). In vivo imaging was used to determine the effect of each diet on NF-κB activity. We found that there were no significant differences in weight gain between the WGP and control diet groups. However, there was a statistically significant (p<0.0001) difference in the progression of basal levels of NF-κB signaling between mice fed on control or WGP diet. There were no significant differences in NF-κB reporter indices between WGP- and control-diet groups after either acute or repeated inflammatory challenge. However, terminal blood collection revealed significantly (p<0.01) lower serum concentrations of the inflammatory cytokines Interleukin-6 (IL-6) and Tumor Necrosis Factor alpha (TNFα) only among WGP diet mice subjected to acute inflammatory challenge. Overall, these data suggest that while diets supplemented with WGP may suppress steady-state low levels of inflammatory signaling, such a supplementation may not alleviate exogenously induced massive NF-κB activation.
Collapse
Affiliation(s)
- Sonni-Ali Miller
- Department of Pathobiology, Tuskegee University, College of Veterinary Medicine, 1200 W. Montgomery Road, Tuskegee AL, 36088
| | - Jason A. White
- Department of Pathobiology, Tuskegee University, College of Veterinary Medicine, 1200 W. Montgomery Road, Tuskegee AL, 36088
| | - Rupak Chowdhury
- Department of Pathobiology, Tuskegee University, College of Veterinary Medicine, 1200 W. Montgomery Road, Tuskegee AL, 36088
| | - Dominique N. Gales
- Department of Pathobiology, Tuskegee University, College of Veterinary Medicine, 1200 W. Montgomery Road, Tuskegee AL, 36088
| | - Berhanu Tameru
- Department of Pathobiology, Tuskegee University, College of Veterinary Medicine, 1200 W. Montgomery Road, Tuskegee AL, 36088
| | | | - Temesgen Samuel
- Department of Pathobiology, Tuskegee University, College of Veterinary Medicine, 1200 W. Montgomery Road, Tuskegee AL, 36088
| |
Collapse
|
12
|
Bonadiman BDSR, Cadoná FC, Assmann CE, Weis GCC, de Oliveira Alves A, Duarte MF, Chaves CM, do Carmo Chaves C, dos Santos Motta KM, Ribeiro EE, Bagatini MD, da Cruz IBM. Guarana (Paullinia cupana): Cytoprotective effects on age-related eye dysfunction. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
13
|
Berkowitz BA, Podolsky RH, Lenning J, Khetarpal N, Tran C, Wu JY, Berri AM, Dernay K, Shafie-Khorassani F, Roberts R. Sodium Iodate Produces a Strain-Dependent Retinal Oxidative Stress Response Measured In Vivo Using QUEST MRI. Invest Ophthalmol Vis Sci 2017; 58:3286-3293. [PMID: 28666279 PMCID: PMC5493331 DOI: 10.1167/iovs.17-21850] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose We identify noninvasive biomarkers that measure the severity of oxidative stress within retina layers in sodium iodate (SI)-atrophy vulnerable (C57BL/6 [B6]) and SI-atrophy resistant (129S6/SvEvTac [S6]) mice. Methods At 24 hours after administering systemic SI to B6 and S6 mice we measured: (1) superoxide production in whole retina ex vivo, (2) excessive free radical production in vivo based on layer-specific 1/T1 values before and after α-lipoic acid (ALA) administration while the animal was inside the magnet (QUEnch-assiSTed MRI [QUEST MRI]), and (3) visual performance (optokinetic tracking) ± antioxidants; control mice were similarly assessed. Retinal layer spacing and thickness in vivo also were evaluated (optical coherence tomography, MRI). Results SI-treated B6 mice retina had a significantly higher superoxide production than SI-treated S6 mice. ALA-injected SI-treated B6 mice had reduced 1/T1 in more retinal layers in vivo than in SI-treated S6 mice. Uninjected and saline-injected SI-treated B6 mice had similar transretinal 1/T1 profiles. Notably, the inner segment layer 1/T1 of SI-treated B6 mice was responsive to ALA but was unresponsive in SI-treated S6 mice. In both SI-treated strains, antioxidants improved contrast sensitivity to similar extents; antioxidants did not change acuity in either group. Retinal thicknesses were normal in both SI-treated strains at 24 hours after treatment. Conclusions QUEST MRI uniquely measured severity of excessive free radical production within retinal layers of the same subject. Identifying the mechanisms underlying genetic vulnerabilities to oxidative stress is expected to help in understanding the pathogenesis of retinal degeneration.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States 2Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Deptarment of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Jacob Lenning
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Nikita Khetarpal
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Catherine Tran
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Johnny Y Wu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ali M Berri
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kristin Dernay
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Fatema Shafie-Khorassani
- Deptarment of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Robin Roberts
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
14
|
Vitis vinifera Extract Ameliorate Hepatic and Renal Dysfunction Induced by Dexamethasone in Albino Rats. TOXICS 2017; 5:toxics5020011. [PMID: 29051443 PMCID: PMC5606666 DOI: 10.3390/toxics5020011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
Abstract
This study was conducted to evaluate the biochemical effects of grape seed extract against dexamethasone-induced hepatic and renal dysfunction in a female albino rat. Twenty-eight adult female rats were divided randomly into four equal groups: Group 1: animals were injected subcutaneously with saline and consider as normal control one. Group 2: animals were injected subcutaneously with dexamethasone in a dose of 0.1 mg/kg body weight. Group 3: animals were injected subcutaneously with 0.1 mg/kg body weight of dexamethasone, and then treated with a grape seed extract in a dose of 200 mg/kg body weight by oral gavage. Group 4: animals were injected subcutaneously with 0.1 mg/kg body weight of dexamethasone, and then treated with a grape seed extract in a dose of 400 mg/kg body weight by oral gavage. After 4 weeks, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) activities, albumin, uric acid, creatinine, and glucose levels were assayed. Hepatic reduced glutathione (GSH), total protein content, and catalase and glucose-6-phosphate dehydrogenase activities were also assayed. Dexamethasone administration caused elevation of serum levels of glucose, uric acid, creatinine, ALT, AST activities, and a decrease in other parameters such as hepatic glutathione, total protein levels, and catalase enzyme activity. Treatment with Vitis vinifera L. seed extract showed a significant increase in the body weight of rats in the group treated with Vitis vinifera L. seed extract orally compared with the dexamethasone control group. An increase in GSH and catalase activity in response to oral treatment with Vitis vinifera L. seed extract was observed after treatment. Grape seed extract positively affects glucocorticoid-induced hepatic and renal alteration in albino rats.
Collapse
|