1
|
Suleman S, Khalifa MS, Fawaz S, Alhaque S, Chinea Y, Themis M. Analysis of HIV-1-Based Lentiviral Vector Particle Composition by PacBio Long-Read Nucleic Acid Sequencing. Hum Gene Ther 2025. [PMID: 39973307 DOI: 10.1089/hum.2024.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Lentivirus (LV) vectors offer permanent delivery of therapeutic genes to the host through an RNA intermediate genome. They are one of the most commonly used vectors for clinical gene therapy of inherited disorders such as immune deficiencies and cancer immunotherapy. One of the most difficult challenges facing their widespread application to patients is the large-scale production of highly pure vector stocks. To improve vector production and downstream purification, there has been a recent investment in the United Kingdom to establish good manufacturing process (GMP)-licensed centers for manufacture and quality control. Other requirements for these vectors include their target cell specificity and tropism, how to regulate gene expression of the therapeutic payload and their potential side effects. Comprehensive detail on the full nucleic acid content of LV is unknown, even though they have entered clinical trials. With potential adverse effects in mind, it is important to identify these contents to assess their safety and purity. In this study, we used highly sensitive PacBio long-distance, next-generation sequencing of reverse-transcribed vector component RNA to investigate the nucleic acid composition of recombinant HIV-1 particles generated by human 293T packaging cells. In this article, we describe our findings of nucleic acids other than the recombinant vector genome that exist, which could potentially be delivered during gene transfer, and suggest that removal of these unwanted components be considered before clinical LV application.
Collapse
Affiliation(s)
- Saqlain Suleman
- Department of Life Sciences, Brunel University London, London, United Kingdom
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, United Kingdom
- Testavec Ltd., Queensgate House, Maidenhead, United Kingdom
| | - Mohammad S Khalifa
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Serena Fawaz
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Sharmin Alhaque
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Yaghoub Chinea
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Michael Themis
- Department of Life Sciences, Brunel University London, London, United Kingdom
- Testavec Ltd., Queensgate House, Maidenhead, United Kingdom
- Division of Ecology and Evolution, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Lalanne JB, Mich JK, Huynh C, Hunker AC, McDiarmid TA, Levi BP, Ting JT, Shendure J. Extensive length and homology dependent chimerism in pool-packaged AAV libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632594. [PMID: 39868341 PMCID: PMC11761685 DOI: 10.1101/2025.01.14.632594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Adeno-associated viruses (AAVs) have emerged as the foremost gene therapy delivery vehicles due to their versatility, durability, and safety profile. Here we demonstrate extensive chimerism, manifesting as pervasive barcode swapping, among complex AAV libraries that are packaged as a pool. The observed chimerism is length- and homology-dependent but capsid-independent, in some cases affecting the majority of packaged AAV genomes. These results have implications for the design and deployment of functional AAV libraries in both research and clinical settings.
Collapse
Affiliation(s)
- Jean-Benoît Lalanne
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - John K. Mich
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Chau Huynh
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | | | - Troy A. McDiarmid
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Boaz P. Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| |
Collapse
|
3
|
Yang R, Tran NT, Chen T, Cui M, Wang Y, Sharma T, Liu Y, Zhang J, Yuan X, Zhang D, Chen C, Shi Z, Wang L, Dai Y, Zaidi H, Liang J, Chen M, Jaijyan D, Hu H, Wang B, Xu C, Hu W, Gao G, Yu D, Tai PWL, Wang Q. AAVone: A Cost-Effective, Single-Plasmid Solution for Efficient AAV Production with Reduced DNA Impurities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631712. [PMID: 39829756 PMCID: PMC11741346 DOI: 10.1101/2025.01.07.631712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Currently, the most common approach for manufacturing GMP-grade adeno-associated virus (AAV) vectors involves transiently transfecting mammalian cells with three plasmids that carry the essential components for production. The requirement for all three plasmids to be transfected into a single cell and the necessity for high quantities of input plasmid DNA, limits AAV production efficiency, introduces variability between production batches, and increases time and labor costs. Here, we developed an all-in-one, single-plasmid AAV production system, called AAVone. In this system, the adenovirus helper genes ( E2A , E4orf6 , and VA RNA ), packaging genes ( rep and cap ), and the vector transgene cassette are consolidated into a single compact plasmid with a 13-kb backbone. The AAVone system achieves a two- to four-fold increase in yields compared to the traditional triple-plasmid system. Furthermore, the AAVone system exhibits low batch-to-batch variation and eliminates the need for fine-tuning the ratios of the three plasmids, simplifying the production process. In terms of vector quality, AAVs generated by the AAVone system show similar in vitro and in vivo transduction efficiency, but a substantial reduction in sequences attributed to plasmid backbones and a marked reduction in non-functional snap-back genomes. In Summary, the AAVone platform is a straightforward, cost-effective, and highly consistent AAV production system - making it particularly suitable for GMP-grade AAV vectors.
Collapse
|
4
|
Doshi J, Couto E, Staiti J, Vandenberghe LH, Zabaleta N. E2A, VA RNA I, and L4-22k adenoviral helper genes are sufficient for AAV production in HEK293 cells. Mol Ther Methods Clin Dev 2024; 32:101376. [PMID: 39670178 PMCID: PMC11635002 DOI: 10.1016/j.omtm.2024.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
The replication-defective adeno-associated virus (AAV) is extensively utilized as a research tool or vector for gene therapy. The production process of AAV remains intricate, expensive, and mechanistically underexplored. With the aim of enhancing AAV manufacturing efficiencies in mammalian cells, we revisited the questions and optimization surrounding the requirement of the various adenoviral helper genes in enabling AAV production. First, we refined the minimal set of adenoviral genes in HEK293 AAV production to E2A, L4-22 K /33 K, and VA RNA I. These findings challenge the previously accepted necessity of adenoviral E4orf6 in AAV production. In addition, we identified L4-22 K genes as crucial helpers for AAV production. Next, a revised minimal adenoviral helper plasmid comprising E2A, L4-22 K, and VA RNA I genes was designed and demonstrated to yield high titer and potent AAV preps in HEK293 transient transfection. Lastly, stable packaging cells harboring inducible E2A and L4-22 K genes were shown to maintain AAV production yields comparable to transient transfection over a culture period of ∼10 weeks. Combined, these findings further our understanding of adenoviral helper function in mammalian AAV production and provide novel plasmid and cell-line reagents with an improved safety profile for potential broad applicability in the research and gene therapy community.
Collapse
Affiliation(s)
- Jiten Doshi
- Schepens Eye Research Institute, Mass Eye and Ear Infirmary, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Emma Couto
- Schepens Eye Research Institute, Mass Eye and Ear Infirmary, Boston, MA, USA
| | - Jillian Staiti
- Schepens Eye Research Institute, Mass Eye and Ear Infirmary, Boston, MA, USA
| | - Luk H. Vandenberghe
- Schepens Eye Research Institute, Mass Eye and Ear Infirmary, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Nerea Zabaleta
- Schepens Eye Research Institute, Mass Eye and Ear Infirmary, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| |
Collapse
|
5
|
Powers TW, Sloan CD, Stano D, Evans B, Liu K, Mariani S, Campbell JA, Lerch TF, Mo JJ. Implementing a robust platform analytical procedure for measuring adeno-associated virus vector genome titer. Mol Ther Methods Clin Dev 2024; 32:101381. [PMID: 39670179 PMCID: PMC11634990 DOI: 10.1016/j.omtm.2024.101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
The vector genome (vg) titer measurement, which is used to control patient dosing and ensure control over drug product manufacturing, is essential for the development of recombinant adeno-associated virus (AAV) gene therapy products. While qPCR and droplet digital PCR technologies are commonly implemented for measuring vg titer, chromatographic techniques with UV detectors represent promising future approaches, in line with traditional biotherapeutics. Here, we introduce a novel vg titer measurement approach using size-exclusion high-performance liquid chromatography with UV detection, which achieves excellent method precision (<2% relative SD), demonstrates linearity across a range of concentrations and varied particle content, is stability indicating, and can be bridged with existing vg titer methods. As there is no bias between this procedure and existing vg titer procedures, such as qPCR, this method can be implemented even at late stages during pharmaceutical development. The procedure was demonstrated to be applicable across serotypes and transgenes, enabling the approach to be used as a platform method for AAV. Given the method performance and criticality of vg titer measurements for AAV, this approach represents a beneficial technology for AAV therapeutics.
Collapse
Affiliation(s)
- Thomas W. Powers
- Pfizer, Analytical Research and Development, 875 Chesterfield Pkwy. West, Chesterfield, MO 63017, USA
| | - Courtney D.K. Sloan
- Pfizer, Analytical Research and Development, 875 Chesterfield Pkwy. West, Chesterfield, MO 63017, USA
| | - Don Stano
- Pfizer, Analytical Research and Development, 875 Chesterfield Pkwy. West, Chesterfield, MO 63017, USA
| | - Brad Evans
- Pfizer, Analytical Research and Development, 875 Chesterfield Pkwy. West, Chesterfield, MO 63017, USA
| | - Kang Liu
- Pfizer, Analytical Research and Development, 875 Chesterfield Pkwy. West, Chesterfield, MO 63017, USA
| | - Shawn Mariani
- Pfizer, Analytical Research and Development, 875 Chesterfield Pkwy. West, Chesterfield, MO 63017, USA
| | - Jessica A. Campbell
- Pfizer, Analytical Research and Development, 875 Chesterfield Pkwy. West, Chesterfield, MO 63017, USA
| | - Thomas F. Lerch
- Pfizer, Analytical Research and Development, 875 Chesterfield Pkwy. West, Chesterfield, MO 63017, USA
| | - Jim J. Mo
- Pfizer, Analytical Research and Development, 875 Chesterfield Pkwy. West, Chesterfield, MO 63017, USA
| |
Collapse
|
6
|
Eisenhut P, Andorfer P, Haid A, Jokl B, Manhartsberger R, Fuchsberger F, Innthaler B, Lengler J, Kraus B, Pletzenauer R, Hernandez Bort JA, Unterthurner S. Orthogonal characterization of rAAV9 reveals unexpected transgene heterogeneity. J Biotechnol 2024; 393:128-139. [PMID: 39106910 DOI: 10.1016/j.jbiotec.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is the most widely used viral vector for in vivo human gene therapy. To ensure safety and efficacy of gene therapy products, a comprehensive analytical profile of the rAAVs is needed, which provides crucial information for therapeutic development and manufacturing. Besides information on rAAV quantities and possible contaminating DNA and protein species, assessing rAAV quality is of utmost importance. In vitro biopotency and methods to determine the full/empty ratio of rAAV capsids are commonly applied, but methods to assess the integrity of the viral genome are still rarely used. Here we describe an orthogonal approach to characterize rAAV quality. Two biologically different rAAV9s from different stages of the bioprocess, generated each with two different transfection reagents, were investigated. In vitro biopotency tests in all cases demonstrated that rAAV9s generated with transfection reagent FectoVIR® possessed a higher biological activity. Mass-based analytical methods, such as sedimentation velocity analytical ultracentrifugation (AUC) and mass photometry, showed a high share of full capsids (>80 %) at late process stages but did not detect any differences in the rAAV9s from the different transfection reagents. Multiplex dPCR and Nanopore long-read sequencing both demonstrated that, also in late-stage process samples, sample heterogeneity was relatively high with a rather small share of full-length transgenes of ∼10-40 %. Intriguingly, both methods detected a higher share of complete transgenes in rAAV9 generated with transfection reagent FectoVIR® instead of Polyethylenimine (PEI), and thereby explain the differences already observed in the biopotency assays. This study therefore emphasizes the necessity to utilize multiple, orthogonal methods to gain a better understanding of recombinantly manufactured AAVs.
Collapse
Affiliation(s)
- Peter Eisenhut
- Gene Therapy Process Development, Baxalta Innovations GmbH, part of Takeda companies, Orth an der Donau, Orth an der Donau 2304, Austria
| | - Peter Andorfer
- Gene Therapy Process Development, Baxalta Innovations GmbH, part of Takeda companies, Orth an der Donau, Orth an der Donau 2304, Austria
| | - Andrea Haid
- Gene Therapy Process Development, Baxalta Innovations GmbH, part of Takeda companies, Orth an der Donau, Orth an der Donau 2304, Austria
| | - Beatrice Jokl
- Gene Therapy Process Development, Baxalta Innovations GmbH, part of Takeda companies, Orth an der Donau, Orth an der Donau 2304, Austria
| | - Raffaela Manhartsberger
- Gene Therapy Process Development, Baxalta Innovations GmbH, part of Takeda companies, Orth an der Donau, Orth an der Donau 2304, Austria
| | - Felix Fuchsberger
- Gene Therapy Process Development, Baxalta Innovations GmbH, part of Takeda companies, Orth an der Donau, Orth an der Donau 2304, Austria
| | - Bernd Innthaler
- Gene Therapy Process Development, Baxalta Innovations GmbH, part of Takeda companies, Orth an der Donau, Orth an der Donau 2304, Austria
| | - Johannes Lengler
- Gene Therapy Process Development, Baxalta Innovations GmbH, part of Takeda companies, Orth an der Donau, Orth an der Donau 2304, Austria
| | - Barbara Kraus
- Gene Therapy Process Development, Baxalta Innovations GmbH, part of Takeda companies, Orth an der Donau, Orth an der Donau 2304, Austria
| | - Robert Pletzenauer
- Gene Therapy Process Development, Baxalta Innovations GmbH, part of Takeda companies, Orth an der Donau, Orth an der Donau 2304, Austria
| | - Juan A Hernandez Bort
- Gene Therapy Process Development, Baxalta Innovations GmbH, part of Takeda companies, Orth an der Donau, Orth an der Donau 2304, Austria; Department of Analytical Chemistry, University of Vienna, Vienna 1090, Austria.
| | - Sabine Unterthurner
- Gene Therapy Process Development, Baxalta Innovations GmbH, part of Takeda companies, Orth an der Donau, Orth an der Donau 2304, Austria.
| |
Collapse
|
7
|
Kontogiannis T, Braybrook J, McElroy C, Foy C, Whale AS, Quaglia M, Smales CM. Characterization of AAV vectors: A review of analytical techniques and critical quality attributes. Mol Ther Methods Clin Dev 2024; 32:101309. [PMID: 39234444 PMCID: PMC11372808 DOI: 10.1016/j.omtm.2024.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Standardized evaluation of adeno-associated virus (AAV) vector products for biotherapeutic application is essential to ensure the safety and efficacy of gene therapies. This includes analyzing the critical quality attributes of the product. However, many of the current analytical techniques used to assess these attributes have limitations, including low throughput, large sample requirements, poorly understood measurement variability, and lack of comparability between methods. To address these challenges, it is essential to establish higher-order reference methods that can be used for comparability measurements, optimization of current assays, and development of reference materials. Highly precise methods are necessary for measuring the empty/partial/full capsid ratios and the titer of AAV vectors. Additionally, it is important to develop methods for the measurement of less-established critical quality attributes, including post-translational modifications, capsid stoichiometry, and methylation profiles. By doing so, we can gain a better understanding of the influence of these attributes on the quality of the product. Moreover, quantification of impurities, such as host-cell proteins and DNA contaminants, is crucial for obtaining regulatory approval. The development and application of refined methodologies will be essential to thoroughly characterize AAV vectors by informing process development and facilitating the generation of reference materials for assay validation and calibration.
Collapse
Affiliation(s)
- Theodoros Kontogiannis
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
- National Measurement Laboratory at LGC, Teddington, Middlesex TW11 0LY, UK
| | - Julian Braybrook
- National Measurement Laboratory at LGC, Teddington, Middlesex TW11 0LY, UK
| | | | - Carole Foy
- National Measurement Laboratory at LGC, Teddington, Middlesex TW11 0LY, UK
| | - Alexandra S Whale
- National Measurement Laboratory at LGC, Teddington, Middlesex TW11 0LY, UK
| | - Milena Quaglia
- Reading Scientific Services Ltd, Reading Science Centre, Whiteknights Campus, Pepper Lane, Reading Berkshire RG6 6LA, UK
| | - C Mark Smales
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
- National Institute for Bioprocessing Research and Training, Blackrock, Co, Foster Avenue, A94 X099 Mount Merrion, Dublin, Ireland
| |
Collapse
|
8
|
Cui M, Su Q, Yip M, McGowan J, Punzo C, Gao G, Tai PWL. The AAV2.7m8 capsid packages a higher degree of heterogeneous vector genomes than AAV2. Gene Ther 2024; 31:489-498. [PMID: 39134629 PMCID: PMC11600122 DOI: 10.1038/s41434-024-00477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
Recombinant adeno-associated virus (rAAV) vectors are currently the only proven vehicles for treating ophthalmological diseases through gene therapy. A wide range of gene therapy programs that target ocular diseases are currently being pursued. Nearly 20 years of research have gone into enhancing the efficacy of targeting retinal tissues and improving transgene delivery to specific cell types. The engineered AAV capsid, AAV2.7m8 is currently among the best capsids for transducing the retina following intravitreal (IVT) injection. However, adverse effects, including intraocular inflammation, have been reported following retinal administration of AAV2.7m8 vectors in clinical trials. Furthermore, we have consistently observed that AAV2.7m8 exhibits low packaging titers irrespective of the vector construct design. In this report, we found that AAV2.7m8 packages vector genomes with a higher degree of heterogeneity than AAV2. We also found that genome-loaded AAV2.7m8 stimulated the infiltration of microglia in mouse retinas following IVT administration, while the response to genome-loaded AAV2 and empty AAV2.7m8 capsids produced much milder responses. This finding suggests that IVT administration of AAV2.7m8 vectors may stimulate retinal immune responses in part because of its penchant to package and deliver non-unit length genomes.
Collapse
Affiliation(s)
- Mengtian Cui
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
| | - Qin Su
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
| | - Mitchell Yip
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
| | - Jackson McGowan
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
| | - Claudio Punzo
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
- Department of Ophthalmology and Visual Sciences, UMass Chan Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA.
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA.
| | - Phillip W L Tai
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA.
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Janc M, Zevnik K, Dolinar A, Jakomin T, Štalekar M, Bačnik K, Kutnjak D, Žnidarič MT, Zentilin L, Fedorov D, Dobnik D. In-Depth Comparison of Adeno-Associated Virus Containing Fractions after CsCl Ultracentrifugation Gradient Separation. Viruses 2024; 16:1235. [PMID: 39205208 PMCID: PMC11360810 DOI: 10.3390/v16081235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) play a pivotal role in the treatment of genetic diseases. However, current production and purification processes yield AAV-based preparations that often contain unwanted empty, partially filled or damaged viral particles and impurities, including residual host cell DNA and proteins, plasmid DNA, and viral aggregates. To precisely understand the composition of AAV preparations, we systematically compared four different single-stranded AAV (ssAAV) and self-complementary (scAAV) fractions extracted from the CsCl ultracentrifugation gradient using established methods (transduction efficiency, analytical ultracentrifugation (AUC), quantitative and digital droplet PCR (qPCR and ddPCR), transmission electron microscopy (TEM) and enzyme-linked immunosorbent assay (ELISA)) alongside newer techniques (multiplex ddPCR, multi-angle light-scattering coupled to size-exclusion chromatography (SEC-MALS), multi-angle dynamic light scattering (MADLS), and high-throughput sequencing (HTS)). Suboptimal particle separation within the fractions resulted in unexpectedly similar infectivity levels. No single technique could simultaneously provide comprehensive insights in the presence of both bioactive particles and contaminants. Notably, multiplex ddPCR revealed distinct vector genome fragmentation patterns, differing between ssAAV and scAAV. This highlights the urgent need for innovative analytical and production approaches to optimize AAV vector production and enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Mojca Janc
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia (D.D.)
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Kaja Zevnik
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia (D.D.)
| | - Ana Dolinar
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia (D.D.)
| | - Tjaša Jakomin
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia (D.D.)
| | - Maja Štalekar
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia (D.D.)
| | - Katarina Bačnik
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia (D.D.)
| | - Denis Kutnjak
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia (D.D.)
| | | | - Lorena Zentilin
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Dmitrii Fedorov
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER) Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - David Dobnik
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia (D.D.)
- Niba Labs d.o.o., Litostrojska cesta 52, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Liu H, Zhang Y, Yip M, Ren L, Liang J, Chen X, Liu N, Du A, Wang J, Chang H, Oh H, Zhou C, Xing R, Xu M, Guo P, Gessler D, Xie J, Tai PW, Gao G, Wang D. Producing high-quantity and high-quality recombinant adeno-associated virus by low-cis triple transfection. Mol Ther Methods Clin Dev 2024; 32:101230. [PMID: 38558570 PMCID: PMC10979107 DOI: 10.1016/j.omtm.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Recombinant adeno-associated virus (rAAV)-based gene therapy is entering clinical and commercial stages at an unprecedented pace. Triple transfection of HEK293 cells is currently the most widely used platform for rAAV manufacturing. Here, we develop low-cis triple transfection that decreases transgene plasmid use by 10- to 100-fold and overcomes several major limitations associated with standard triple transfection. This new method improves packaging of yield-inhibiting transgenes by up to 10-fold, and generates rAAV batches with reduced plasmid backbone contamination that otherwise cannot be eliminated in downstream processing. When tested in mice and compared with rAAV produced by standard triple transfection, low-cis rAAV shows comparable or superior potency and results in diminished plasmid backbone DNA and RNA persistence in tissue. Mechanistically, low-cis triple transfection relies on the extensive replication of transgene cassette (i.e., inverted terminal repeat-flanked vector DNA) in HEK293 cells during production phase. This cost-effective method can be easily implemented and is widely applicable to producing rAAV of high quantity, purity, and potency.
Collapse
Affiliation(s)
- Hao Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yue Zhang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mitchell Yip
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lingzhi Ren
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jialing Liang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Xiupeng Chen
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nan Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ailing Du
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jiaming Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hao Chang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hyejin Oh
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Chen Zhou
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ruxiao Xing
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mengyao Xu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Peiyi Guo
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dominic Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Phillip W.L. Tai
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
11
|
Guo J, Lin LF, Oraskovich SV, Rivera de Jesús JA, Listgarten J, Schaffer DV. Computationally guided AAV engineering for enhanced gene delivery. Trends Biochem Sci 2024; 49:457-469. [PMID: 38531696 PMCID: PMC11456259 DOI: 10.1016/j.tibs.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Gene delivery vehicles based on adeno-associated viruses (AAVs) are enabling increasing success in human clinical trials, and they offer the promise of treating a broad spectrum of both genetic and non-genetic disorders. However, delivery efficiency and targeting must be improved to enable safe and effective therapies. In recent years, considerable effort has been invested in creating AAV variants with improved delivery, and computational approaches have been increasingly harnessed for AAV engineering. In this review, we discuss how computationally designed AAV libraries are enabling directed evolution. Specifically, we highlight approaches that harness sequences outputted by next-generation sequencing (NGS) coupled with machine learning (ML) to generate new functional AAV capsids and related regulatory elements, pushing the frontier of what vector engineering and gene therapy may achieve.
Collapse
Affiliation(s)
- Jingxuan Guo
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Li F Lin
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Sydney V Oraskovich
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
| | - Julio A Rivera de Jesús
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA; Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Jennifer Listgarten
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA
| | - David V Schaffer
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
12
|
Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther 2024; 9:78. [PMID: 38565561 PMCID: PMC10987683 DOI: 10.1038/s41392-024-01780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a pivotal delivery tool in clinical gene therapy owing to its minimal pathogenicity and ability to establish long-term gene expression in different tissues. Recombinant AAV (rAAV) has been engineered for enhanced specificity and developed as a tool for treating various diseases. However, as rAAV is being more widely used as a therapy, the increased demand has created challenges for the existing manufacturing methods. Seven rAAV-based gene therapy products have received regulatory approval, but there continue to be concerns about safely using high-dose viral therapies in humans, including immune responses and adverse effects such as genotoxicity, hepatotoxicity, thrombotic microangiopathy, and neurotoxicity. In this review, we explore AAV biology with an emphasis on current vector engineering strategies and manufacturing technologies. We discuss how rAAVs are being employed in ongoing clinical trials for ocular, neurological, metabolic, hematological, neuromuscular, and cardiovascular diseases as well as cancers. We outline immune responses triggered by rAAV, address associated side effects, and discuss strategies to mitigate these reactions. We hope that discussing recent advancements and current challenges in the field will be a helpful guide for researchers and clinicians navigating the ever-evolving landscape of rAAV-based gene therapy.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
13
|
Zhang J, Yu X, Chrzanowski M, Tian J, Pouchnik D, Guo P, Herzog RW, Xiao W. Thorough molecular configuration analysis of noncanonical AAV genomes in AAV vector preparations. Mol Ther Methods Clin Dev 2024; 32:101215. [PMID: 38463141 PMCID: PMC10924063 DOI: 10.1016/j.omtm.2024.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/16/2024] [Indexed: 03/12/2024]
Abstract
The unique palindromic inverted terminal repeats (ITRs) and single-stranded nature of adeno-associated virus (AAV) DNA are major hurdles to current sequencing technologies. Due to these characteristics, sequencing noncanonical AAV genomes present in AAV vector preparations remains challenging. To address this limitation, we developed thorough molecule configuration analysis of noncanonical AAV genomes (TMCA-AAV-seq). TMCA-AAV-seq takes advantage of the documented AAV packaging mechanism in which encapsidation initiates from its 3' ITR, for AAV-seq library construction. Any AAV genome with a 3' ITR is converted to a template suitable to adapter addition by a Bst DNA polymerase-mediated extension reaction. This extension reaction helps fix ITR heterogeneity in the AAV population and allows efficient adapter addition to even noncanonical AAV genomes. The resulting library maintains the original AAV genome configurations without introducing undesired changes. Subsequently, long-read sequencing can be performed by the Pacific Biosciences (PacBio) single-molecule, real-time (SMRT) sequencing technology platform. Finally, through comprehensive data analysis, we can recover canonical, noncanonical AAV DNA, and non-AAV vector DNA sequences, along with their molecular configurations. Our method is a robust tool for profiling thorough AAV-population genomes. TMCA-AAVseq can be further extended to all parvoviruses and their derivative vectors.
Collapse
Affiliation(s)
- Junping Zhang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | - Jiahe Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Derek Pouchnik
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA
| | - Ping Guo
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Ibreljic N, Draper BE, Lawton CW. Recombinant AAV genome size effect on viral vector production, purification, and thermostability. Mol Ther Methods Clin Dev 2024; 32:101188. [PMID: 38327806 PMCID: PMC10847916 DOI: 10.1016/j.omtm.2024.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Adeno-associated virus (AAV) has shown great promise as a viral vector for gene therapy in clinical applications. The present work studied the effect of genome size on AAV production, purification, and thermostability by producing AAV2-GFP using suspension-adapted HEK293 cells via triple transfection using AAV plasmids containing the same GFP transgene with DNA stuffers for variable-size AAV genomes consisting of 1.9, 3.4, and 4.9 kb (ITR to ITR). Production was performed at the small and large shake flask scales and the results showed that the 4.9 kb GFP genome had significantly reduced encapsidation compared to other genomes. The large shake flask productions were purified by AEX chromatography, and the results suggest that the triple transfection condition significantly affects the AEX retention time and resolution between the full and empty capsid peaks. Charge detection-mass spectrometry was performed on all AEX full-capsid peak samples showing a wide distribution of empty, partial, full length, and copackaged DNA in the capsids. The AEX-purified samples were then analyzed by differential scanning fluorimetry, and the results suggest that sample formulation may improve the thermostability of AAV genome ejection melting temperature regardless of the packaged genome content.
Collapse
Affiliation(s)
- Nermin Ibreljic
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
- Sarepta Therapeutics, 55 Blue Sky Drive, Burlington, MA 01803, USA
| | | | - Carl W. Lawton
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| |
Collapse
|
15
|
Chen Y, Hu S, Lee W, Walsh N, Iozza K, Huang N, Preston G, Drouin LM, Jia N, Deng J, Hebben M, Liao J. A Comprehensive Study of the Effects by Sequence Truncation within Inverted Terminal Repeats (ITRs) on the Productivity, Genome Packaging, and Potency of AAV Vectors. Microorganisms 2024; 12:310. [PMID: 38399714 PMCID: PMC10892565 DOI: 10.3390/microorganisms12020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
One of the primary challenges in working with adeno-associated virus (AAV) lies in the inherent instability of its inverted terminal repeats (ITRs), which play vital roles in AAV replication, encapsidation, and genome integration. ITRs contain a high GC content and palindromic structure, which occasionally results in truncations and mutations during plasmid amplification in bacterial cells. However, there is no thorough study on how these alterations in ITRs impact the ultimate AAV vector characteristics. To close this gap, we designed ITRs with common variations, including a single B, C, or D region deletion at one end, and dual deletions at both ends of the vector genome. These engineered ITR-carrying plasmids were utilized to generate AAV vectors in HEK293 cells. The crude and purified AAV samples were collected and analyzed for yield, capsid DNA-filled percentage, potency, and ITR integrity. The results show that a single deletion had minor impact on AAV productivity, packaging efficiency, and in vivo potency. However, deletions on both ends, except A, showed significant negative effects on the above characteristics. Our work revealed the role of ITR regions, A, B, C, and D for AAV production and DNA replication, and proposes a new strategy for the quality control of ITR-bearing plasmids and final AAV products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jing Liao
- Genomic Medicine, Alexion, AstraZeneca Rare Disease, 65 Hayden Avenue, Lexington, MA 02421, USA; (Y.C.); (S.H.); (W.L.); (N.W.); (K.I.); (N.H.); (G.P.); (L.M.D.); (N.J.); (J.D.); (M.H.)
| |
Collapse
|
16
|
Yuan Y, Higashiyama K, Hashiba N, Masumi-Koizumi K, Yusa K, Uchida K. Concise Analysis of Single-Stranded DNA of Recombinant Adeno-Associated Virus By Automated Electrophoresis System. Hum Gene Ther 2024; 35:104-113. [PMID: 38062752 PMCID: PMC10890949 DOI: 10.1089/hum.2023.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/29/2023] [Indexed: 02/01/2024] Open
Abstract
Recombinant adeno-associated virus (rAAV) is a prominent viral vector currently available for human gene therapy. The diameter of the rAAV capsid is ∼25 nm, and a positive or negative single-stranded DNA is packaged within the vector capsid. In this report, we describe a concise method to examine the extracted rAAV genome using an automated electrophoresis system. The rAAV genome, prepared from vector particles through either heat treatment at 95°C for 10 min or the phenol-chloroform extraction method, was analyzed using an automated electrophoresis system under denaturation conditions. The heat treatment protocol demonstrated a comparable yield with the phenol-chloroform extraction protocol, and the quantified amounts of the rAAV genome obtained using the automated electrophoresis system were consistent with those quantitated by quantitative PCR. Additionally, crude rAAV extractions could also be analyzed by the automated electrophoresis system after DNase I treatment. These results indicated that this simple and quick analysis using automated electrophoresis is highly useful for confirming the purity and integrity of the rAAV genome.
Collapse
Affiliation(s)
- Yuzhe Yuan
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| | - Kiyoko Higashiyama
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| | - Noriko Hashiba
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| | - Kyoko Masumi-Koizumi
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| | - Keisuke Yusa
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| | - Kazuhisa Uchida
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| |
Collapse
|
17
|
Tereshko L, Zhao X, Gagnon J, Lin T, Ewald T, Wang Y, Feschenko M, Mason C. A novel method for quantitation of AAV genome integrity using duplex digital PCR. PLoS One 2023; 18:e0293277. [PMID: 38096204 PMCID: PMC10721069 DOI: 10.1371/journal.pone.0293277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 12/17/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have become a reliable strategy for delivering gene therapies. As rAAV capsid content is known to be heterogeneous, methods for rAAV characterization are critical for assessing the efficacy and safety of drug products. Multiplex digital PCR (dPCR) has emerged as a popular molecular approach for characterizing capsid content due to its high level of throughput, accuracy, and replicability. Despite growing popularity, tools to accurately analyze multiplexed data are scarce. Here, we introduce a novel statistical model to estimate genome integrity from duplex dPCR assays. This work demonstrates that use of a Poisson-multinomial mixture distribution significantly improves the accuracy and quantifiable range of duplex dPCR assays over currently available models.
Collapse
Affiliation(s)
- Lauren Tereshko
- Analytical Development, Biogen, Cambridge, Massachusetts, United States of America
| | - Xiaohui Zhao
- Analytical Development, Biogen, Cambridge, Massachusetts, United States of America
| | - Jake Gagnon
- Biostatistics, Biogen, Cambridge, Massachusetts, United States of America
| | - Tinchi Lin
- Analytics and Data Sciences, Biogen, Cambridge, Massachusetts, United States of America
| | - Trevor Ewald
- Analytical Development, Biogen, Cambridge, Massachusetts, United States of America
| | - Yu Wang
- Analytical Development, Biogen, Cambridge, Massachusetts, United States of America
| | - Marina Feschenko
- Analytical Development, Biogen, Cambridge, Massachusetts, United States of America
| | - Cullen Mason
- Analytical Development, Biogen, Cambridge, Massachusetts, United States of America
| |
Collapse
|
18
|
Tai PWL. Integration of Gene Therapy Vectors: A Risk Factor for Tumorigenesis or Another Commensal Property of Adeno-Associated Viruses That Benefits Long-Term Transgene Expression? Hum Gene Ther 2023; 34:1074-1076. [PMID: 37930948 DOI: 10.1089/hum.2023.29255.pwl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Affiliation(s)
- Phillip W L Tai
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
19
|
Brimble MA, Winston SM, Davidoff AM. Stowaways in the cargo: Contaminating nucleic acids in rAAV preparations for gene therapy. Mol Ther 2023; 31:2826-2838. [PMID: 37533254 PMCID: PMC10556190 DOI: 10.1016/j.ymthe.2023.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Recombinant AAV (rAAV) is the most used delivery vector for clinical gene therapy. However, many issues must be addressed before safer and more widespread implementation can be achieved. At present, efficacies are highly variable across trials and patients, and immune responses after treatment are widely reported. Although rAAV is capable of directly delivering gene-encoded therapeutic sequences, increased scrutiny of viral preparations for translational use have revealed contaminating nucleic acid species packaged within rAAV preparations. The introduction of non-therapeutic nucleic acids into a recipient patient adds to the risk burden, immunogenic or otherwise, of rAAV therapies. DNA from incomplete expression cassettes, portions of plasmids or vectors used to facilitate viral replication, and production cell line genomes all have the potential to be packaged within rAAV. Here, we review what is currently known about the profile, abundance, and post-treatment consequences of nucleic acid impurities within rAAV and cover strategies that have been developed to improve rAAV purity. Furthering our understanding of these aberrantly packaged DNA species will help to ensure the continued safe implementation of rAAV therapies as the number of patients treated with this modality increases.
Collapse
Affiliation(s)
- Mark A Brimble
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Stephen M Winston
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; St. Jude Children's Research Hospital Graduate School of Biomedical Sciences, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
20
|
Whiteley LO. An Overview of Nonclinical and Clinical Liver Toxicity Associated With AAV Gene Therapy. Toxicol Pathol 2023; 51:400-404. [PMID: 37772805 DOI: 10.1177/01926233231201408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
This article reviews the presentation given at the 2023 annual meeting of the Society of Toxicologic Pathology (STP) on liver toxicity observed with adeno-associated viral vector (AAV) gene therapy. After decades as a therapeutic modality largely confined to the academic research environment, gene therapy has emerged in recent years as a rapidly expanding therapeutic approach in the biopharmaceutical industry with AAV as the most commonly used viral vector for gene delivery. This interest in the field of gene therapy by industry has been enhanced by the recent success of approved therapies for curing genetic diseases such as ZOLGENSMA for spinal muscular atrophy and LUXTURNA for Leber congenital amaurosis. However, recently reported clinical and nonclinical toxicities highlight the challenges in safely developing AAV gene therapies that require high dose systemic administration. The presentation reviewed general attributes of AAV as a gene therapy vector, clinical and nonclinical liver toxicity associated with AAV gene therapy and the potential for a multimodal immune suppression strategy that may mitigate toxicities.
Collapse
|
21
|
De BP, Cram S, Lee H, Rosenberg JB, Sondhi D, Crystal RG, Kaminsky SM. Assessment of Residual Full-Length SV40 Large T Antigen in Clinical-Grade Adeno-Associated Virus Vectors Produced in 293T Cells. Hum Gene Ther 2023; 34:697-704. [PMID: 37171121 PMCID: PMC10457653 DOI: 10.1089/hum.2023.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Efficient production of adeno-associated virus (AAV) vectors is a significant challenge. Human embryonic kidney HEK293T cells are widely used in good manufacturing practice facilities, producing higher yield of AAV vectors for clinical applications than HEK293 through the addition of a constitutive expression of SV40 large T antigen (SV40T), which stimulates Rep expression. However, the theoretical potential for tumorigenic consequences of a clinical AAV product containing residual DNA encoding SV40T, which may inhibit p53 growth suppressive functions is a safety concern. Although the risk is theoretical, to assure a low risk/high confidence of safety for clinical drug development, we have established a sensitive assay for assessment of functional full-length transcription competent SV40T DNA in HEK293T cell-produced AAV vectors. Using HEK293T generated 8, 9, and rh.10 serotype AAV vectors, the presence of SV40T in purified vector was assessed in vitro using quantitative polymerase chain reaction (qPCR) targeting a 129 bp amplicon combined with nested PCR targeting full-length SV40T DNA. Although low levels of the smaller amplicon were present in each AAV serotype, the full-length SV40T was undetectable. No transcription competent full-length SV40T DNA was observed by reverse transcription-quantitative polymerase chain reaction using an in vivo amplification of signal in mouse liver administered (2-10 × 1010 gc) 129 bp amplicon-positive AAV vectors. As a control for gene transfer, high levels of expressed transgene mRNAs were observed from each serotype AAV vector, yet, SV40T mRNA was undetectable. In vivo assessment of these three liver-tropic AAV serotypes, each with amplicon-positive qPCR SV40T DNA, demonstrated high transgene mRNA expression but no SV40T mRNA, that is, detection of small segments of SV40T DNA in 293T cell produced AAV inappropriately leads to the conclusion of residuals with the potential to express SV40T. This sensitive assay can be used to assess the level, if any, of SV40T antigen contaminating AAV vectors generated by HEK293T cells. ClinicalTrials.gov identifier: NCT03634007; NCT05302271; NCT01414985; NCT01161576.
Collapse
Affiliation(s)
- Bishnu P. De
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Sara Cram
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Hyunmi Lee
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Stephen M. Kaminsky
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
22
|
Williams JA, Paez PA. Improving cell and gene therapy safety and performance using next-generation Nanoplasmid vectors. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:494-503. [PMID: 37346980 PMCID: PMC10280095 DOI: 10.1016/j.omtn.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The cell and gene therapy industry has employed the same plasmid technology for decades in vaccination, cell and gene therapy, and as a raw material in viral vector and RNA production. While canonical plasmids contain antibiotic resistance markers in bacterial backbones greater than 2,000 base pairs, smaller backbones increase expression level and durability and reduce the cell-transfection-associated toxicity and transgene silencing that can occur with canonical plasmids. Therefore, the small backbone and antibiotic-free selection method of Nanoplasmid vectors have proven to be a transformative replacement in a wide variety of applications, offering a greater safety profile and efficiency than traditional plasmids. This review provides an overview of the Nanoplasmid technology and highlights its specific benefits for various applications with examples from recent publications.
Collapse
Affiliation(s)
- James A. Williams
- Research & Development, Aldevron, 4055 41st Avenue S, Fargo, ND 58104, USA
| | - Patrick A. Paez
- Research & Development, Aldevron, 4055 41st Avenue S, Fargo, ND 58104, USA
| |
Collapse
|
23
|
Mikkelsen NS, Hernandez SS, Jensen TI, Schneller JL, Bak RO. Enrichment of transgene integrations by transient CRISPR activation of a silent reporter gene. Mol Ther Methods Clin Dev 2023; 29:1-16. [PMID: 36922985 PMCID: PMC10009645 DOI: 10.1016/j.omtm.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
CRISPR-Cas-mediated site-specific integration of transgenes by homology-directed repair (HDR) is challenging, especially in primary cells, where inferior editing efficiency may impede the development of gene- and cellular therapies. Various strategies for enrichment of cells with transgene integrations have been developed, but most strategies either generate unwanted genomic scars or rely on permanent integration and expression of a reporter gene used for selection. However, stable expression of a reporter gene may perturb cell homeostasis and function. Here we develop a broadly applicable and versatile enrichment strategy by harnessing the capability of CRISPR activation (CRISPRa) to transiently induce expression of a therapeutically relevant reporter gene used for immunomagnetic enrichment. This strategy is readily adaptable to primary human T cells and CD34+ hematopoietic stem and progenitor cells (HSPCs), where enrichment of 1.8- to 3.3-fold and 3.2- to 3.6-fold was achieved, respectively. Furthermore, chimeric antigen receptor (CAR) T cells were enriched 2.5-fold and demonstrated improved cytotoxicity over non-enriched CAR T cells. Analysis of HDR integrations showed a proportion of cells harboring deletions of the transgene cassette arising either from impartial HDR or truncated adeno-associated virus (AAV) vector genomes. Nonetheless, this novel enrichment strategy expands the possibility to enrich for transgene integrations in research settings and in gene and cellular therapies.
Collapse
Affiliation(s)
| | | | - Trine I Jensen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Jessica L Schneller
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,RNA and Gene Therapies, Novo Nordisk A/S, Maaloev, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
24
|
Yip M, Chen J, Zhi Y, Tran NT, Namkung S, Pastor E, Gao G, Tai PWL. Querying Recombination Junctions of Replication-Competent Adeno-Associated Viruses in Gene Therapy Vector Preparations with Single Molecule, Real-Time Sequencing. Viruses 2023; 15:1228. [PMID: 37376529 DOI: 10.3390/v15061228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Clinical-grade preparations of adeno-associated virus (AAV) vectors used for gene therapy typically undergo a series of diagnostics to determine titer, purity, homogeneity, and the presence of DNA contaminants. One type of contaminant that remains poorly investigated is replication-competent (rc)AAVs. rcAAVs form through recombination of DNA originating from production materials, yielding intact, replicative, and potentially infectious virus-like virions. They can be detected through the serial passaging of lysates from cells transduced by AAV vectors in the presence of wildtype adenovirus. Cellular lysates from the last passage are subjected to qPCR to detect the presence of the rep gene. Unfortunately, the method cannot be used to query the diversity of recombination events, nor can qPCR provide insights into how rcAAVs arise. Thus, the formation of rcAAVs through errant recombination events between ITR-flanked gene of interest (GOI) constructs and expression constructs carrying the rep-cap genes is poorly described. We have used single molecule, real-time sequencing (SMRT) to analyze virus-like genomes expanded from rcAAV-positive vector preparations. We present evidence that sequence-independent and non-homologous recombination between the ITR-bearing transgene and the rep/cap plasmid occurs under several events and rcAAVs spawn from diverse clones.
Collapse
Affiliation(s)
- Mitchell Yip
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Jing Chen
- Spirovant Sciences, Inc., Philadelphia, PA 19104, USA
| | - Yan Zhi
- Spirovant Sciences, Inc., Philadelphia, PA 19104, USA
| | - Ngoc Tam Tran
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Suk Namkung
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Eric Pastor
- Spirovant Sciences, Inc., Philadelphia, PA 19104, USA
| | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute of Rare Diseases Research, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute of Rare Diseases Research, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
25
|
Ersing I, Rego M, Wang C, Zhang Y, DeMaio KH, Tillgren M, Fava A, Clouse G, Patrick M, Guerin K, Fan M. Quality control for Adeno-associated viral vector production. NEUROMETHODS 2023; 195:77-101. [PMID: 38585382 PMCID: PMC10997381 DOI: 10.1007/978-1-0716-2918-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Adeno-associated viral vectors (AAV) are frequently used by neuroscientists to deliver tools, such as biosensors and optogenetic and chemogenetic actuators, in vivo. Despite its widespread use, AAV vector characterization and quality control can vary between labs and viral vector cores leading to variable results and irreproducibility. This protocol describes some of the characterization and quality control assays necessary to confirm an AAV vector's titer, genomic identity, serotype and purity.
Collapse
Affiliation(s)
- Ina Ersing
- Addgene, 490 Arsenal Way, Suite 100, Watertown, MA 02472, USA
| | - Meghan Rego
- Addgene, 490 Arsenal Way, Suite 100, Watertown, MA 02472, USA
| | - Chen Wang
- Addgene, 490 Arsenal Way, Suite 100, Watertown, MA 02472, USA
| | - Yijun Zhang
- Addgene, 490 Arsenal Way, Suite 100, Watertown, MA 02472, USA
| | | | | | - Alanna Fava
- Addgene, 490 Arsenal Way, Suite 100, Watertown, MA 02472, USA
| | | | | | - Karen Guerin
- Vedere Bio II, Inc, 300 Technology square, Cambridge, MA 02139, USA
| | - Melina Fan
- Addgene, 490 Arsenal Way, Suite 100, Watertown, MA 02472, USA
| |
Collapse
|
26
|
Genome concentration, characterization, and integrity analysis of recombinant adeno-associated viral vectors using droplet digital PCR. PLoS One 2023; 18:e0280242. [PMID: 36696399 PMCID: PMC9876284 DOI: 10.1371/journal.pone.0280242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/24/2022] [Indexed: 01/26/2023] Open
Abstract
Precise, reproducible characterization of AAV is critical for comparing preclinical results between laboratories and determining a safe and effective clinical dose for gene therapy applications. In this study, we systematically evaluated numerous parameters to produce a simple and robust ddPCR protocol for AAV characterization. The protocol uses a low ionic strength buffer containing Pluronic-F68 and polyadenylic acid to dilute the AAV into the ddPCR concentration range and a 10-minute thermal capsid lysis prior to assembling ddPCR reactions containing MspI. A critical finding is that the buffer composition affected the ITR concentration of AAV but not the ITR concentration of a double stranded plasmid, which has implications when using a theoretical, stoichiometric conversion factor to obtain the titer based on the ITR concentration. Using this protocol, a more comprehensive analysis of an AAV vector formulation was demonstrated with multiple ddPCR assays distributed throughout the AAV vector genome. These assays amplify the ITR, regulatory elements, and eGFP transgene to provide a more confident estimate of the vector genome concentration and a high-resolution characterization of the vector genome identity. Additionally, we compared two methods of genome integrity analysis for three control sample types at eight different concentrations for each sample. The genome integrity was independent of sample concentration and the expected values were obtained when integrity was determined based on the excess number of positive droplets relative to the number of double positive droplets expected by chance co-encapsulation of two DNA targets. The genome integrity was highly variable and produced unexpected values when the double positive droplet percentage was used to calculate the genome integrity. A protocol using a one-minute thermal capsid lysis prior to assembling ddPCR reactions lacking a restriction enzyme used the non-ITR assays in a duplex ddPCR milepost experiment to determine the genome integrity using linkage analysis.
Collapse
|
27
|
Zhang J, Chrzanowski M, Frabutt DA, Lam AK, Mulcrone PL, Li L, Konkle BA, Miao CH, Xiao W. Cryptic resolution sites in the vector plasmid lead to the heterogeneities in the rAAV vectors. J Med Virol 2023; 95:e28433. [PMID: 36571262 PMCID: PMC10155192 DOI: 10.1002/jmv.28433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
Recombinant adeno-associated virus (rAAV) vectors carry a cassette of interest retaining only the inverted terminal repeats (ITRs) from the wild-type virus. Conventional rAAV production primarily uses a vector plasmid as well as helper genes essential for AAV replication and packaging. Nevertheless, plasmid backbone related contaminants have been a major source of vector heterogeneity. The mechanism driving the contamination phenomenon has yet to be elucidated. Here we identified cryptic resolution sites in the plasmid backbone as a key source for producing snapback genomes, which leads to the increase of vector genome heterogeneity in encapsidated virions. By using a single ITR plasmid as a model molecule and mapping subgenomic particles, we found that there exist a few typical DNA break hotspots in the vector DNA plasmid backbone, for example, on the ampicillin DNA element, called aberrant rescue sites. DNA around these specific breakage sites may assume some typical secondary structures. Similar to normal AAV vectors, plasmid DNA with a single ITR was able to rescue and replicate efficiently. These subgenomic DNA species significantly compete for trans factors required for rAAV rescue, replication, and packaging. The replication of single ITR contaminants during AAV production is independent of size. Packaging of these species is greatly affected by its size. A single ITR and a cryptic resolution site in the plasmid work synergistically, likely causing a source of plasmid backbone contamination.
Collapse
Affiliation(s)
- Junping Zhang
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Matthew Chrzanowski
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Dylan A. Frabutt
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Anh K. Lam
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Patrick L. Mulcrone
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | | | - Carol H. Miao
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
28
|
Gallagher T. Meeting Summary: ESGCT 2022 AAV Safety Plenary Session. Hum Gene Ther 2022; 33:1217-1220. [DOI: 10.1089/hum.2022.29230.tga] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Thomas Gallagher
- Managing Editor, Human Gene Therapy, Mary Ann Liebert, Inc. New Rochelle, New York, USA
| |
Collapse
|
29
|
Weinmann J, Söllner J, Abele S, Zimmermann G, Zuckschwerdt K, Mayer C, Danner-Liskus J, Peltzer A, Schuler M, Lamla T, Strobel B. Identification of Broadly Applicable Adeno-Associated Virus Vectors by Systematic Comparison of Commonly Used Capsid Variants In Vitro. Hum Gene Ther 2022; 33:1197-1212. [PMID: 36097758 PMCID: PMC9700356 DOI: 10.1089/hum.2022.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Adeno-associated viruses (AAVs) represent highly attractive gene therapy vectors and potent research tools for the modulation of gene expression in animal models or difficult-to-transfect cell cultures. Engineered variants, comprising chimeric, mutated, or peptide-inserted capsids, have strongly broadened the utility of AAVs by altering cellular tropism, enabling immune evasion, or increasing transduction efficiency. In this work, the performance of 50 of the most used, predominantly published, AAVs was compared on several primary cells, cell lines, and induced pluripotent stem cell-derived models from different organs, including the adipose tissue, liver, lung, brain, and eyes. To identify the most efficient capsids for each cell type, self-complementary AAVs were standardized by digital polymerase chain reaction, arrayed on 96-well plates, and screened using high-content imaging. To enable best use of the data, all results are also provided in a web app. The utility of one selected AAV variant is further exemplified in a liver fibrosis assay based on primary hepatic stellate cells, where it successfully reversed a small interfering RNA (siRNA)-induced phenotype. Most importantly, our comparative analysis revealed that a subselection of only five AAV variants (AAV2.NN, AAV9-SLRSPPS, AAV6.2, AAV6TM, and AAV1P5) enabled efficient transduction of all tested cell types and markedly outperformed other well-established capsids, such as AAV2-7m8. These findings suggest that a core panel comprising these five capsid variants is a universally applicable and sufficient tool to identify potent AAVs for gene expression modulation in cellular systems.
Collapse
Affiliation(s)
- Jonas Weinmann
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Julia Söllner
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sarah Abele
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gudrun Zimmermann
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kai Zuckschwerdt
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Christine Mayer
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Jenny Danner-Liskus
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Alexander Peltzer
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Michael Schuler
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Thorsten Lamla
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Benjamin Strobel
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany,Correspondence: Dr. Benjamin Strobel, Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riss, Germany.
| |
Collapse
|
30
|
DNA read count calibration for single-molecule, long-read sequencing. Sci Rep 2022; 12:17257. [PMID: 36319642 PMCID: PMC9626564 DOI: 10.1038/s41598-022-21606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
There are many applications in which quantitative information about DNA mixtures with different molecular lengths is important. Gene therapy vectors are much longer than can be sequenced individually via short-read NGS. However, vector preparations may contain smaller DNAs that behave differently during sequencing. We have used two library preparations each for Pacific Biosystems (PacBio) and Oxford Nanopore Technologies NGS to determine their suitability for quantitative assessment of varying sized DNAs. Equimolar length standards were generated from E. coli genomic DNA. Both PacBio library preparations provided a consistent length dependence though with a complex pattern. This method is sufficiently sensitive that differences in genomic copy number between DNA from E. coli grown in exponential and stationary phase conditions could be detected. The transposase-based Oxford Nanopore library preparation provided a predictable length dependence, but the random sequence starts caused the loss of original length information. The ligation-based approach retained length information but read frequency was more variable. Modeling of E. coli versus lambda read frequency via cubic spline smoothing showed that the shorter genome could be used as a suitable internal spike-in for DNAs in the 200 bp to 10 kb range, allowing meaningful QC to be carried out with AAV preparations.
Collapse
|
31
|
Namkung S, Tran NT, Manokaran S, He R, Su Q, Xie J, Gao G, Tai PW. Direct ITR-to-ITR Nanopore Sequencing of AAV Vector Genomes. Hum Gene Ther 2022; 33:1187-1196. [PMID: 36178359 PMCID: PMC9700346 DOI: 10.1089/hum.2022.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/30/2022] [Indexed: 01/06/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) are currently the most prominently investigated vector platform for human gene therapy. The rAAV capsid serves as a potent and efficient vehicle for delivering genetic payloads into the host cell, while the vector genome determines the function and effectiveness of these biotherapies. However, current production schemes yield vectors that may consist of heterogeneous populations, compromising their potencies. The development of next-generation sequencing methods within the past few years have helped investigators profile the diversity and relative abundances of heterogenous species in vector preparations. Specifically, long-read sequencing methods, like single molecule real-time (SMRT) sequencing, have been used to uncover truncations, chimeric genomes, and inverted terminal repeat (ITR) mutations in vectors. Unfortunately, these sequencing platforms may be inaccessible to investigators with limited resources, require large amounts of input material, or may require long wait times for sequencing and analyses. Recent advances with nanopore sequencing have helped to bridge the gap for quick and relatively inexpensive long-read sequencing needs. However, their limitations and sample biases are not well-defined for sequencing rAAV. In this study, we explored the capacity for nanopore sequencing to directly interrogate rAAV content to obtain full-length resolution of encapsidated genomes. We found that the nanopore platform can cover the entirety of rAAV genomes from ITR to ITR without the need for pre-fragmentation. However, the accuracy for base calling was low, resulting in a high degree of miscalled bases and false indels. These false indels led to read-length compression; thus, assessing heterogeneity based on read length is not advisable with current nanopore technologies. Nonetheless, nanopore sequencing was able to correctly identify truncation hotspots in single-strand and self-complementary vectors similar to SMRT sequencing. In summary, nanopore sequencing can serve as a rapid and low-cost alternative for proofing AAV vectors.
Collapse
Affiliation(s)
- Suk Namkung
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Ngoc Tam Tran
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, USA; and
| | - Sangeetha Manokaran
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Ran He
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Qin Su
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Jun Xie
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, USA; and
| | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, USA; and
- Li Weibo Institute of Rare Diseases Research, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Phillip W.L. Tai
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, USA; and
- Li Weibo Institute of Rare Diseases Research, UMass Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
32
|
Ferrari S, Jacob A, Cesana D, Laugel M, Beretta S, Varesi A, Unali G, Conti A, Canarutto D, Albano L, Calabria A, Vavassori V, Cipriani C, Castiello MC, Esposito S, Brombin C, Cugnata F, Adjali O, Ayuso E, Merelli I, Villa A, Di Micco R, Kajaste-Rudnitski A, Montini E, Penaud-Budloo M, Naldini L. Choice of template delivery mitigates the genotoxic risk and adverse impact of editing in human hematopoietic stem cells. Cell Stem Cell 2022; 29:1428-1444.e9. [PMID: 36206730 PMCID: PMC9550218 DOI: 10.1016/j.stem.2022.09.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
Long-range gene editing by homology-directed repair (HDR) in hematopoietic stem/progenitor cells (HSPCs) often relies on viral transduction with recombinant adeno-associated viral vector (AAV) for template delivery. Here, we uncover unexpected load and prolonged persistence of AAV genomes and their fragments, which trigger sustained p53-mediated DNA damage response (DDR) upon recruiting the MRE11-RAD50-NBS1 (MRN) complex on the AAV inverted terminal repeats (ITRs). Accrual of viral DNA in cell-cycle-arrested HSPCs led to its frequent integration, predominantly in the form of transcriptionally competent ITRs, at nuclease on- and off-target sites. Optimized delivery of integrase-defective lentiviral vector (IDLV) induced lower DNA load and less persistent DDR, improving clonogenic capacity and editing efficiency in long-term repopulating HSPCs. Because insertions of viral DNA fragments are less frequent with IDLV, its choice for template delivery mitigates the adverse impact and genotoxic burden of HDR editing and should facilitate its clinical translation in HSPC gene therapy.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Aurelien Jacob
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Daniela Cesana
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marianne Laugel
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes 44200, France
| | - Stefano Beretta
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Angelica Varesi
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giulia Unali
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anastasia Conti
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Daniele Canarutto
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Vita-Salute San Raffaele University, Milan 20132, Italy,Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luisa Albano
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Andrea Calabria
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valentina Vavassori
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Carlo Cipriani
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Maria Carmina Castiello
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Institute for Genetic and Biomedical Research (UOS Milan Unit), National Research Council, Milan 20132, Italy
| | - Simona Esposito
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Federica Cugnata
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Oumeya Adjali
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes 44200, France
| | - Eduard Ayuso
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes 44200, France
| | - Ivan Merelli
- Institute for Biomedical Technologies, National Research Council, Segrate 20090, Italy
| | - Anna Villa
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Institute for Genetic and Biomedical Research (UOS Milan Unit), National Research Council, Milan 20132, Italy
| | - Raffaella Di Micco
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anna Kajaste-Rudnitski
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Eugenio Montini
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | | | - Luigi Naldini
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Vita-Salute San Raffaele University, Milan 20132, Italy,Corresponding author
| |
Collapse
|
33
|
Zhang J, Guo P, Yu X, Frabutt DA, Lam AK, Mulcrone PL, Chrzanowski M, Firrman J, Pouchnik D, Sang N, Diao Y, Herzog RW, Xiao W. Subgenomic particles in rAAV vectors result from DNA lesion/break and non-homologous end joining of vector genomes. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:852-861. [PMID: 36159586 PMCID: PMC9463555 DOI: 10.1016/j.omtn.2022.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022]
Abstract
Recombinant adeno-associated virus (rAAV) vectors have been developed for therapeutic treatment of genetic diseases. Current rAAV vectors administered to affected individuals often contain vector DNA-related contaminants. Here we present a thorough molecular analysis of the configuration of non-standard AAV genomes generated during rAAV production using single-molecule sequencing. In addition to the sub-vector genomic-size particles containing incomplete AAV genomes, our results showed that rAAV preparations were contaminated with multiple categories of subgenomic particles with a snapback genome (SBG) configuration or a vector genome with deletions. Through CRISPR and nuclease-based modeling in tissue culture cells, we identified that a potential mechanism leading to formation of non-canonical genome particles occurred through non-homologous end joining of fragmented vector genomes caused by genome lesions or DNA breaks present in the host cells. The results of this study advance our understanding of AAV vectors and provide new clues for improving vector efficiency and safety profiles for use in human gene therapy.
Collapse
Affiliation(s)
- Junping Zhang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St., R4-121, Indianapolis, IN 46202, USA
| | - Ping Guo
- School of Medicine, Huaqiao University, Fujian Province, Xiamen 361021, China
| | - Xiangping Yu
- School of Medicine, Huaqiao University, Fujian Province, Xiamen 361021, China
| | - Dylan A. Frabutt
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St., R4-121, Indianapolis, IN 46202, USA
| | - Anh K. Lam
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St., R4-121, Indianapolis, IN 46202, USA
| | - Patrick L. Mulcrone
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St., R4-121, Indianapolis, IN 46202, USA
| | - Matthew Chrzanowski
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jenni Firrman
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Derek Pouchnik
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA
| | - Nianli Sang
- Department of Biology, College of Arts and Sciences, Drexel University, Philadelphia, PA 19104, USA
| | - Yong Diao
- School of Medicine, Huaqiao University, Fujian Province, Xiamen 361021, China
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St., R4-121, Indianapolis, IN 46202, USA
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St., R4-121, Indianapolis, IN 46202, USA
| |
Collapse
|
34
|
Sabatino DE, Bushman FD, Chandler RJ, Crystal RG, Davidson BL, Dolmetsch R, Eggan KC, Gao G, Gil-Farina I, Kay MA, McCarty DM, Montini E, Ndu A, Yuan J. Evaluating the state of the science for adeno-associated virus integration: An integrated perspective. Mol Ther 2022; 30:2646-2663. [PMID: 35690906 PMCID: PMC9372310 DOI: 10.1016/j.ymthe.2022.06.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
On August 18, 2021, the American Society of Gene and Cell Therapy (ASGCT) hosted a virtual roundtable on adeno-associated virus (AAV) integration, featuring leading experts in preclinical and clinical AAV gene therapy, to further contextualize and understand this phenomenon. Recombinant AAV (rAAV) vectors are used to develop therapies for many conditions given their ability to transduce multiple cell types, resulting in long-term expression of transgenes. Although most rAAV DNA typically remains episomal, some rAAV DNA becomes integrated into genomic DNA at a low frequency, and rAAV insertional mutagenesis has been shown to lead to tumorigenesis in neonatal mice. Currently, the risk of rAAV-mediated oncogenesis in humans is theoretical because no confirmed genotoxic events have been reported to date. However, because insertional mutagenesis has been reported in a small number of murine studies, there is a need to characterize this genotoxicity to inform research, regulatory needs, and patient care. The purpose of this white paper is to review the evidence of rAAV-related host genome integration in animal models and possible risks of insertional mutagenesis in patients. In addition, technical considerations, regulatory guidance, and bioethics are discussed.
Collapse
Affiliation(s)
- Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randy J Chandler
- National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | | | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adora Ndu
- BridgeBio Pharma, Inc., Palo Alto, CA, USA
| | - Jing Yuan
- Drug Safety Research and Development, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
35
|
Pan X, Yue Y, Boftsi M, Wasala LP, Tran NT, Zhang K, Pintel DJ, Tai PWL, Duan D. Rational engineering of a functional CpG-free ITR for AAV gene therapy. Gene Ther 2022; 29:333-345. [PMID: 34611321 PMCID: PMC8983793 DOI: 10.1038/s41434-021-00296-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Inverted terminal repeats (ITRs) are the only wild-type components retained in the genome of adeno-associated virus (AAV) vectors. To determine whether ITR modification is a viable approach for AAV vector engineering, we rationally deleted all CpG motifs in the ITR and examined whether CpG elimination compromises AAV-vector production and transduction. Modified ITRs were stable in the plasmid and maintained the CpG-free nature in purified vectors. Replacing the wild-type ITR with the CpG-free ITR did not affect vector genome encapsidation. However, the vector yield was decreased by approximately 3-fold due to reduced vector genome replication. To study the biological potency, we made micro-dystrophin (μDys) AAV vectors carrying either the wild-type ITR or the CpG-free ITR. We delivered the CpG-free μDys vector to one side of the tibialis anterior muscle of dystrophin-null mdx mice and the wild-type μDys vector to the contralateral side. Evaluation at four months after injection showed no difference in the vector genome copy number, microdystrophin expression, and muscle histology and force. Our results suggest that the complete elimination of the CpG motif in the ITR does not affect the biological activity of the AAV vector. CpG-free ITRs could be useful in engineering therapeutic AAV vectors.
Collapse
Affiliation(s)
- Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Maria Boftsi
- Pathobiology Area Graduate Program, University of Missouri, Columbia, MO, 65212, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65212, USA
| | - Lakmini P Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
- Pathobiology Area Graduate Program, University of Missouri, Columbia, MO, 65212, USA
| | - Ngoc Tam Tran
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - David J Pintel
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65212, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65212, USA.
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
36
|
Tran NT, Lecomte E, Saleun S, Namkung S, Robin C, Weber K, Devine E, Blouin V, Adjali O, Ayuso E, Gao G, Penaud-Budloo M, Tai PW. Human and Insect Cell-Produced Recombinant Adeno-Associated Viruses Show Differences in Genome Heterogeneity. Hum Gene Ther 2022; 33:371-388. [PMID: 35293222 PMCID: PMC9063199 DOI: 10.1089/hum.2022.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
In the past two decades, adeno-associated virus (AAV) vector manufacturing has made remarkable advancements to meet large-scale production demands for preclinical and clinical trials. In addition, AAV vectors have been extensively studied for their safety and efficacy. In particular, the presence of empty AAV capsids and particles containing "inaccurate" vector genomes in preparations has been a subject of concern. Several methods exist to separate empty capsids from full particles; but thus far, no single technique can produce vectors that are free of empty or partial (non-unit length) capsids. Unfortunately, the exact genome compositions of full, intermediate, and empty capsids remain largely unknown. In this work, we used AAV-genome population sequencing to explore the compositions of DNase-resistant, encapsidated vector genomes produced by two common production pipelines: plasmid transfection in human embryonic kidney cells (pTx/HEK293) and baculovirus expression vectors in Spodoptera frugiperda insect cells (rBV/Sf9). Intriguingly, our results show that vectors originating from the same construct design that were manufactured by the rBV/Sf9 system produced a higher degree of truncated and unresolved species than those generated by pTx/HEK293 production. We also demonstrate that empty particles purified by cesium chloride gradient ultracentrifugation are not truly empty but are instead packaged with genomes composed of a single truncated and/or unresolved inverted terminal repeat (ITR). Our data suggest that the frequency of these "mutated" ITRs correlates with the abundance of inaccurate genomes in all fractions. These surprising findings shed new light on vector efficacy, safety, and how clinical vectors should be quantified and evaluated.
Collapse
Affiliation(s)
- Ngoc Tam Tran
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Emilie Lecomte
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Sylvie Saleun
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Suk Namkung
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Cécile Robin
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | | | - Eric Devine
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Veronique Blouin
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Oumeya Adjali
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Eduard Ayuso
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute of Rare Diseases Research; UMass Chan Medical School, Worcester, Massachusetts, USA
| | | | - Phillip W.L. Tai
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute of Rare Diseases Research; UMass Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
37
|
PCR-Based Analytical Methods for Quantification and Quality Control of Recombinant Adeno-Associated Viral Vector Preparations. Pharmaceuticals (Basel) 2021; 15:ph15010023. [PMID: 35056080 PMCID: PMC8779925 DOI: 10.3390/ph15010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Recombinant adeno-associated viral vectors (rAAV) represent a gene therapy tool of ever-increasing importance. Their utilization as a delivery vehicle for gene replacement, silencing and editing, among other purposes, demonstrate considerable versatility. Emerging vector utilization in various experimental, preclinical and clinical applications establishes the necessity of producing and characterizing a wide variety of rAAV preparations. Critically important characteristics concerning quality control are rAAV titer quantification and the detection of impurities. Differences in rAAV constructs necessitate the development of highly standardized quantification assays to make direct comparisons of different preparations in terms of assembly or purification efficiency, as well as experimental or therapeutic dosages. The development of universal methods for impurities quantification is rather complicated, since variable production platforms are utilized for rAAV assembly. However, general agreements also should be achieved to address this issue. The majority of methods for rAAV quantification and quality control are based on PCR techniques. Despite the progress made, increasing evidence concerning high variability in titration assays indicates poor standardization of the methods undertaken to date. This review summarizes successes in the field of rAAV quality control and emphasizes ongoing challenges in PCR applications for rAAV characterization. General considerations regarding possible solutions are also provided.
Collapse
|
38
|
PALAZZI X, Pardo I, Sirivelu M, Newman L, Kumpf S, Qian J, Franks T, Lopes S, Liu J, Monarski L, Casinghino S, Ritenour C, Ritenour H, Dubois C, Olson J, Graves J, Alexander K, Coskran T, Lanz TA, Brady J, McCarty D, Somanathan S, Whiteley L. Biodistribution and Tolerability of AAV-PHP.B-CBh-SMN1 in Wistar Han Rats and Cynomolgus Macaques Reveal Different Toxicologic Profiles. Hum Gene Ther 2021; 33:175-187. [PMID: 34931542 PMCID: PMC8885435 DOI: 10.1089/hum.2021.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recombinant adeno-associated viruses (AAVs) have emerged as promising vectors for human gene therapy, but some variants have induced severe toxicity in Rhesus monkeys and piglets following high-dose intravenous (IV) administration. To characterize biodistribution, transduction, and toxicity among common preclinical species, an AAV9 neurotropic variant expressing the survival motor neuron 1 (SMN1) transgene (AAV-PHP.B-CBh-SMN1) was administered by IV bolus injection to Wistar Han rats and cynomolgus monkeys at doses of 2 × 1013, 5 × 1013, or 1 × 1014 vg/kg. A dose-dependent degeneration/necrosis of neurons without clinical manifestations occurred in dorsal root ganglia (DRGs) and sympathetic thoracic ganglia in rats, while liver injury was not observed in rats. In monkeys, one male at 5 × 1013 vg/kg was found dead on day 4. Clinical pathology data on days 3 and/or 4 at all doses suggested liver dysfunction and coagulation disorders, which led to study termination. Histologic evaluation of the liver in monkeys showed hepatocyte degeneration and necrosis without inflammatory cell infiltrates or intravascular thrombi, suggesting that hepatocyte injury is a direct effect of the vector following hepatocyte transduction. In situ hybridization demonstrated a dose-dependent expression of SMN1 transgene mRNA in the cytoplasm and DNA in the nucleus of periportal to panlobular hepatocytes, while quantitative polymerase chain reaction confirmed the dose-dependent presence of SMN1 transgene mRNA and DNA in monkeys. Monkeys produced a much greater amount of transgene mRNA compared with rats. In DRGs, neuronal degeneration/necrosis and accompanying findings were observed in monkeys as early as 4 days after test article administration. The present results show sensory neuron toxicity following IV delivery of AAV vectors at high doses with an early onset in Macaca fascicularis and after 1 month in rats, and suggest adding the autonomic system in the watch list for preclinical and clinical studies. Our data also suggest that the rat may be useful for evaluating the potential DRG toxicity of AAV vectors, while acute hepatic toxicity associated with coagulation disorders appears to be highly species-dependent.
Collapse
Affiliation(s)
- Xavier PALAZZI
- Pfizer Global Research and Development, 105623, 1, Eastern Point Road, Groton, Connecticut, United States, 06340
| | - Ingrid Pardo
- Pfizer Global Research and Development, 105623, Groton, Connecticut, United States
| | - Madhu Sirivelu
- Pfizer Worldwide Research Development and Medicine, Drug Safety Research and Development, Cambridge, Massachusetts, United States
| | - Leah Newman
- Pfizer Global Research and Development, 105623, Groton, Connecticut, United States
| | - Steven Kumpf
- Pfizer Global Research and Development, 105623, Groton, Connecticut, United States
| | - Jessie Qian
- Pfizer Global Research and Development, 105623, Groton, Connecticut, United States
| | - Tania Franks
- Pfizer Global Research and Development, 105623, Groton, Connecticut, United States
| | - Sarah Lopes
- Pfizer Global Research and Development, 105623, Groton, Connecticut, United States
| | - June Liu
- Pfizer Global Research and Development, 105623, Groton, Connecticut, United States
| | - Laura Monarski
- Pfizer Global Research and Development, 105623, Groton, Connecticut, United States
| | - Sandra Casinghino
- Pfizer Global Research and Development, 105623, Groton, Connecticut, United States
| | - Casey Ritenour
- Pfizer Global Research and Development, 105623, Groton, Connecticut, United States
| | - Hayley Ritenour
- Pfizer Global Research and Development, 105623, Groton, Connecticut, United States
| | - Christopher Dubois
- Pfizer Global Research and Development, 105623, Groton, Connecticut, United States
| | - Jennifer Olson
- Pfizer Global Research and Development, 105623, Groton, Connecticut, United States
| | - John Graves
- Pfizer Global Research and Development, 105623, Groton, Connecticut, United States
| | - Kristin Alexander
- Pfizer Global Research and Development, 105623, Groton, Connecticut, United States
| | - Timothy Coskran
- Pfizer Global Research and Development, 105623, Groton, Connecticut, United States
| | - Thomas A Lanz
- Pfizer Global Research and Development, 105623, Groton, Connecticut, United States
| | - Joseph Brady
- Pfizer Worldwide Research Development and Medicine, Drug Safety Research and Development, Cambridge, Massachusetts, United States
| | - Douglas McCarty
- Pfizer Worldwide Research Development and Medicine, Drug Safety Research and Development, Cambridge, Massachusetts, United States
| | - Suryanarayan Somanathan
- Pfizer Worldwide Research Development and Medicine, Drug Safety Research and Development, Cambridge, Massachusetts, United States
| | - Laurence Whiteley
- Pfizer Worldwide Research Development and Medicine, Drug Safety Research and Development, Cambridge, Massachusetts, United States
| |
Collapse
|
39
|
Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo. Nat Commun 2021; 12:6267. [PMID: 34725353 PMCID: PMC8560862 DOI: 10.1038/s41467-021-26518-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 10/06/2021] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are important delivery platforms for therapeutic genome editing but are severely constrained by cargo limits. Simultaneous delivery of multiple vectors can limit dose and efficacy and increase safety risks. Here, we describe single-vector, ~4.8-kb AAV platforms that express Nme2Cas9 and either two sgRNAs for segmental deletions, or a single sgRNA with a homology-directed repair (HDR) template. We also use anti-CRISPR proteins to enable production of vectors that self-inactivate via Nme2Cas9 cleavage. We further introduce a nanopore-based sequencing platform that is designed to profile rAAV genomes and serves as a quality control measure for vector homogeneity. We demonstrate that these platforms can effectively treat two disease models [type I hereditary tyrosinemia (HT-I) and mucopolysaccharidosis type I (MPS-I)] in mice by HDR-based correction of the disease allele. These results will enable the engineering of single-vector AAVs that can achieve diverse therapeutic genome editing outcomes. Long-term expression of Cas9 following precision genome editing in vivo may lead to undesirable consequences. Here we show that a single-vector, self-inactivating AAV system containing Cas9 nuclease, guide, and DNA donor can use homology-directed repair to correct disease mutations in vivo.
Collapse
|
40
|
Keiser MS, Ranum PT, Yrigollen CM, Carrell EM, Smith GR, Muehlmatt AL, Chen YH, Stein JM, Wolf RL, Radaelli E, Lucas TJ, Gonzalez-Alegre P, Davidson BL. Toxicity after AAV delivery of RNAi expression constructs into nonhuman primate brain. Nat Med 2021; 27:1982-1989. [PMID: 34663988 DOI: 10.1038/s41591-021-01522-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 08/30/2021] [Indexed: 12/14/2022]
Abstract
RNA interference (RNAi) for spinocerebellar ataxia type 1 can prevent and reverse behavioral deficits and neuropathological readouts in mouse models, with safety and benefit lasting over many months. The RNAi trigger, expressed from adeno-associated virus vectors (AAV.miS1), also corrected misregulated microRNAs (miRNA) such as miR150. Subsequently, we showed that the delivery method was scalable, and that AAV.miS1 was safe in short-term pilot nonhuman primate (NHP) studies. To advance the technology to patients, investigational new drug (IND)-enabling studies in NHPs were initiated. After AAV.miS1 delivery to deep cerebellar nuclei, we unexpectedly observed cerebellar toxicity. Both small-RNA-seq and studies using AAVs devoid of miRNAs showed that this was not a result of saturation of the endogenous miRNA processing machinery. RNA-seq together with sequencing of the AAV product showed that, despite limited amounts of cross-packaged material, there was substantial inverted terminal repeat (ITR) promoter activity that correlated with neuropathologies. ITR promoter activity was reduced by altering the miS1 expression context. The surprising contrast between our rodent and NHP findings highlight the need for extended safety studies in multiple species when assessing new therapeutics for human application.
Collapse
Affiliation(s)
- Megan S Keiser
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Paul T Ranum
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Carolyn M Yrigollen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Ellie M Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Geary R Smith
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Amy L Muehlmatt
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Yong Hong Chen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Joel M Stein
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald L Wolf
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy J Lucas
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pedro Gonzalez-Alegre
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA. .,Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Adachi K, Tomono T, Okada H, Shiozawa Y, Yamamoto M, Miyagawa Y, Okada T. A PCR-amplified transgene fragment flanked by a single copy of a truncated inverted terminal repeat for recombinant adeno-associated virus production prevents unnecessary plasmid DNA packaging. Gene Ther 2021; 29:449-457. [PMID: 34629464 DOI: 10.1038/s41434-021-00299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
The application of recombinant adeno-associated viruses (rAAVs) for gene therapy faces certain challenges, including genome packaging of non-vector sequences. Inverted terminal repeats (ITRs) flanking the rAAV genome, comprising three inverted repeat regions (A, B, and C) and a non-inverted repeat region (D), contribute to non-vector genome packaging. We aimed to circumvent this issue by comparing the properties of rAAV containing DNA plasmids and PCR-amplified transgenes, including a single copy of the AD sequence (rAAV-pAD/L-AD, respectively), which is a truncated form of ITR, with those of wild-type ITR genome (single-stranded and self-complementary AAV; ssAAV and scAAV). The packaging efficiency of rAAV-pAD/L-AD was found to be comparable to that of scAAV, whereas the transduction efficiency of rAAV-pAD/L-AD was lower than that of ss/scAAV. Remarkably, rAAV-L-AD reduced the plasmid backbone packaging contamination compared to ss/scAAV. Furthermore, to confirm the functionality of this system, we generated a rAAV-L-AD harboring a short hairpin RNA targeting ATP5B (rAAV-L-AD-shATP5B) and found that it caused a significant decrease in ATP5B mRNA levels when transduced into HEK293EB cells, suggesting that it was functional. Thus, our system successfully packaged L-AD into capsids with minimal contamination of plasmid DNA, offering a novel functional packaging platform without causing plasmid backbone encapsidation.
Collapse
Affiliation(s)
- Kumi Adachi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Taro Tomono
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan.,Department of Neurology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hironori Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Yusuke Shiozawa
- Laboratory of Molecular Analysis, Nippon Medical School, Tokyo, Japan
| | - Motoko Yamamoto
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Yoshitaka Miyagawa
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan.
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
42
|
Dalwadi DA, Calabria A, Tiyaboonchai A, Posey J, Naugler WE, Montini E, Grompe M. AAV integration in human hepatocytes. Mol Ther 2021; 29:2898-2909. [PMID: 34461297 DOI: 10.1016/j.ymthe.2021.08.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Recombinant adeno-associated viral (rAAV) vectors are considered promising tools for gene therapy directed at the liver. Whereas rAAV is thought to be an episomal vector, its single-stranded DNA genome is prone to intra- and inter-molecular recombination leading to rearrangements and integration into the host cell genome. Here, we ascertained the integration frequency of rAAV in human hepatocytes transduced either ex vivo or in vivo and subsequently expanded in a mouse model of xenogeneic liver regeneration. Chromosomal rAAV integration events and vector integrity were determined using the capture-PacBio sequencing approach, a long-read next-generation sequencing method that has not previously been used for this purpose. Chromosomal integrations were found at a surprisingly high frequency of 1%-3% both in vitro and in vivo. Importantly, most of the inserted rAAV sequences were heavily rearranged and were accompanied by deletions of the host genomic sequence at the integration site.
Collapse
Affiliation(s)
- Dhwanil A Dalwadi
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Amita Tiyaboonchai
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jeffrey Posey
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Willscott E Naugler
- Department of Medicine, Division of Gastroenterology and Hepatology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Markus Grompe
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
43
|
Green EA, Lee KH. Analytical methods to characterize recombinant adeno-associated virus vectors and the benefit of standardization and reference materials. Curr Opin Biotechnol 2021; 71:65-76. [PMID: 34273809 PMCID: PMC8530916 DOI: 10.1016/j.copbio.2021.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022]
Abstract
Recombinant adeno-associated virus (rAAV) is an increasingly important gene therapy vector, but its properties present unique challenges to critical quality attribute (CQA) identification and analytics development. Advances in, and ongoing hurdles to, characterizing rAAV proteins, nucleic acids, and vector potency are discussed in this review. For nucleic acids and vector potency, current analytical techniques for defined CQAs would benefit from further optimization, while for proteins, more complete characterization and mapping of properties to safety and efficacy is needed to finalize CQAs. The benefits of leveraging reference vectors to validate analytics and CQA ranges are also proposed. Once defined, CQA specifications can be used to establish target parameters for and inform the development of next generation rAAV processes.
Collapse
Affiliation(s)
- Erica A Green
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA.
| |
Collapse
|
44
|
Dudek AM, Porteus MH. Answered and Unanswered Questions in Early-Stage Viral Vector Transduction Biology and Innate Primary Cell Toxicity for Ex-Vivo Gene Editing. Front Immunol 2021; 12:660302. [PMID: 34122418 PMCID: PMC8195279 DOI: 10.3389/fimmu.2021.660302] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/04/2021] [Indexed: 01/07/2023] Open
Abstract
Adeno-associated virus is a highly efficient DNA delivery vehicle for genome editing strategies that employ CRISPR/Cas9 and a DNA donor for homology-directed repair. Many groups have used this strategy in development of therapies for blood and immune disorders such as sickle-cell anemia and severe-combined immunodeficiency. However, recent events have called into question the immunogenicity of AAV as a gene therapy vector and the safety profile dictated by the immune response to this vector. The target cells dictating this response and the molecular mechanisms dictating cellular response to AAV are poorly understood. Here, we will investigate the current known AAV capsid and genome interactions with cellular proteins during early stage vector transduction and how these interactions may influence innate cellular responses. We will discuss the current understanding of innate immune activation and DNA damage response to AAV, and the limitations of what is currently known. In particular, we will focus on pathway differences in cell line verses primary cells, with a focus on hematopoietic stem and progenitor cells (HSPCs) in the context of ex-vivo gene editing, and what we can learn from HSPC infection by other parvoviruses. Finally, we will discuss how innate immune and DNA damage response pathway activation in these highly sensitive stem cell populations may impact long-term engraftment and clinical outcomes as these gene-editing strategies move towards the clinic, with the aim to propose pathways relevant for improved hematopoietic stem cell survival and long-term engraftment after AAV-mediated genome editing.
Collapse
Affiliation(s)
- Amanda Mary Dudek
- Department of Pediatrics, Stanford University, Stanford, CA, United States.,Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Matthew Hebden Porteus
- Department of Pediatrics, Stanford University, Stanford, CA, United States.,Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
45
|
Gimpel AL, Katsikis G, Sha S, Maloney AJ, Hong MS, Nguyen TNT, Wolfrum J, Springs SL, Sinskey AJ, Manalis SR, Barone PW, Braatz RD. Analytical methods for process and product characterization of recombinant adeno-associated virus-based gene therapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:740-754. [PMID: 33738328 PMCID: PMC7940698 DOI: 10.1016/j.omtm.2021.02.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The optimization of upstream and downstream processes for production of recombinant adeno-associated virus (rAAV) with consistent quality depends on the ability to rapidly characterize critical quality attributes (CQAs). In the context of rAAV production, the virus titer, capsid content, and aggregation are identified as potential CQAs, affecting the potency, purity, and safety of rAAV-mediated gene therapy products. Analytical methods to measure these attributes commonly suffer from long turnaround times or low throughput for process development, although rapid, high-throughput methods are beginning to be developed and commercialized. These methods are not yet well established in academic or industrial practice, and supportive data are scarce. Here, we review both established and upcoming analytical methods for the quantification of rAAV quality attributes. In assessing each method, we highlight the progress toward rapid, at-line characterization of rAAV. Furthermore, we identify that a key challenge for transitioning from traditional to newer methods is the scarcity of academic and industrial experience with the latter. This literature review serves as a guide for the selection of analytical methods targeting quality attributes for rapid, high-throughput process characterization during process development of rAAV-mediated gene therapies.
Collapse
Affiliation(s)
- Andreas L Gimpel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Georgios Katsikis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sha Sha
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew John Maloney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Moo Sun Hong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tam N T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jacqueline Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacy L Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul W Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
46
|
Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6:53. [PMID: 33558455 PMCID: PMC7868676 DOI: 10.1038/s41392-021-00487-6] [Citation(s) in RCA: 645] [Impact Index Per Article: 161.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023] Open
Abstract
Throughout its 40-year history, the field of gene therapy has been marked by many transitions. It has seen great strides in combating human disease, has given hope to patients and families with limited treatment options, but has also been subject to many setbacks. Treatment of patients with this class of investigational drugs has resulted in severe adverse effects and, even in rare cases, death. At the heart of this dichotomous field are the viral-based vectors, the delivery vehicles that have allowed researchers and clinicians to develop powerful drug platforms, and have radically changed the face of medicine. Within the past 5 years, the gene therapy field has seen a wave of drugs based on viral vectors that have gained regulatory approval that come in a variety of designs and purposes. These modalities range from vector-based cancer therapies, to treating monogenic diseases with life-altering outcomes. At present, the three key vector strategies are based on adenoviruses, adeno-associated viruses, and lentiviruses. They have led the way in preclinical and clinical successes in the past two decades. However, despite these successes, many challenges still limit these approaches from attaining their full potential. To review the viral vector-based gene therapy landscape, we focus on these three highly regarded vector platforms and describe mechanisms of action and their roles in treating human disease.
Collapse
Affiliation(s)
- Jote T Bulcha
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
47
|
Radukic MT, Brandt D, Haak M, Müller KM, Kalinowski J. Nanopore sequencing of native adeno-associated virus (AAV) single-stranded DNA using a transposase-based rapid protocol. NAR Genom Bioinform 2020; 2:lqaa074. [PMID: 33575623 PMCID: PMC7671332 DOI: 10.1093/nargab/lqaa074] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/06/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Next-generation sequencing of single-stranded DNA (ssDNA) enables transgene characterization of gene therapy vectors such as adeno-associated virus (AAV), but current library generation uses complicated and potentially biased second-strand synthesis. We report that libraries for nanopore sequencing of ssDNA can be conveniently created without second-strand synthesis using a transposase-based protocol. We show for bacteriophage M13 ssDNA that the MuA transposase has unexpected residual activity on ssDNA, explained in part by transposase action on transient double-stranded hairpins. In case of AAV, library creation is additionally aided by genome hybridization. We demonstrate the power of direct sequencing combined with nanopore long reads by characterizing AAV vector transgenes. Sequencing yielded reads up to full genome length, including GC-rich inverted terminal repeats. Unlike short-read techniques, single reads covered genome-genome and genome-contaminant fusions and other recombination events, whilst additionally providing information on epigenetic methylation. Single-nucleotide variants across the transgene cassette were revealed and secondary genome packaging signals were readily identified. Moreover, comparison of sequence abundance with quantitative polymerase chain reaction results demonstrated the technique's future potential for quantification of DNA impurities in AAV vector stocks. The findings promote direct nanopore sequencing as a fast and versatile platform for ssDNA characterization, such as AAV ssDNA in research and clinical settings.
Collapse
Affiliation(s)
- Marco T Radukic
- Faculty of Technology, Bielefeld University, D-33501 Bielefeld, Germany
| | - David Brandt
- Center for Biotechnology (CeBiTec), Bielefeld University, D-33501 Bielefeld, Germany
| | - Markus Haak
- Center for Biotechnology (CeBiTec), Bielefeld University, D-33501 Bielefeld, Germany
| | - Kristian M Müller
- Faculty of Technology, Bielefeld University, D-33501 Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, D-33501 Bielefeld, Germany
| |
Collapse
|
48
|
Lecomte E, Saleun S, Bolteau M, Guy-Duché A, Adjali O, Blouin V, Penaud-Budloo M, Ayuso E. The SSV-Seq 2.0 PCR-Free Method Improves the Sequencing of Adeno-Associated Viral Vector Genomes Containing GC-Rich Regions and Homopolymers. Biotechnol J 2020; 16:e2000016. [PMID: 33064875 DOI: 10.1002/biot.202000016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/29/2020] [Indexed: 11/08/2022]
Abstract
Adeno-associated viral vectors (AAV) are efficient engineered tools for delivering genetic material into host cells. The commercialization of AAV-based drugs must be accompanied by the development of appropriate quality control (QC) assays. Given the potential risk of co-transfer of oncogenic or immunogenic sequences with therapeutic vectors, accurate methods to assess the level of residual DNA in AAV vector stocks are particularly important. An assay based on high-throughput sequencing (HTS) to identify and quantify DNA species in recombinant AAV batches is developed. Here, it is shown that PCR amplification of regions that have a local GC content >90% and include successive mononucleotide stretches, such as the CAG promoter, can introduce bias during DNA library preparation, leading to drops in sequencing coverage. To circumvent this problem, SSV-Seq 2.0, a PCR-free protocol for sequencing AAV vector genomes containing such sequences, is developed. The PCR-free protocol improves the evenness of the rAAV genome coverage and consequently leads to a more accurate relative quantification of residual DNA. HTS-based assays provide a more comprehensive assessment of DNA impurities and AAV vector genome integrity than conventional QC tests based on real-time PCR and are useful methods to improve the safety and efficacy of these viral vectors.
Collapse
Affiliation(s)
- Emilie Lecomte
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Sylvie Saleun
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Mathieu Bolteau
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Aurélien Guy-Duché
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Oumeya Adjali
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Véronique Blouin
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Magalie Penaud-Budloo
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Eduard Ayuso
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| |
Collapse
|
49
|
Tran NT, Heiner C, Weber K, Weiand M, Wilmot D, Xie J, Wang D, Brown A, Manokaran S, Su Q, Zapp ML, Gao G, Tai PW. AAV-Genome Population Sequencing of Vectors Packaging CRISPR Components Reveals Design-Influenced Heterogeneity. Mol Ther Methods Clin Dev 2020; 18:639-651. [PMID: 32775498 PMCID: PMC7397707 DOI: 10.1016/j.omtm.2020.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
The gene therapy field has been galvanized by two technologies that have revolutionized treating genetic diseases: vectors based on adeno-associated viruses (AAVs), and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas gene-editing tools. When combined into one platform, these safe and broadly tropic biotherapies can be engineered to target any region in the human genome to correct genetic flaws. Unfortunately, few investigations into the design compatibility of CRISPR components in AAV vectors exist. Using AAV-genome population sequencing (AAV-GPseq), we previously found that self-complementary AAV vector designs with strong DNA secondary structures can cause a high degree of truncation events, impacting production and vector efficacy. We hypothesized that the single-guide RNA (sgRNA) scaffold, which contains several loop regions, may also compromise vector integrity. We have therefore advanced the AAV-GPseq method to also interrogate single-strand AAV vectors to investigate whether vector genomes carrying Cas9-sgRNA cassettes can cause truncation events. We found that on their own, sgRNA sequences do not produce a high degree of truncation events. However, we demonstrate that vector genome designs that carry dual sgRNA expression cassettes in tail-to-tail configurations lead to truncations. In addition, we revealed that heterogeneity in inverted terminal repeat sequences in the form of regional deletions inherent to certain AAV vector plasmids can be interrogated.
Collapse
Affiliation(s)
- Ngoc Tam Tran
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Cheryl Heiner
- Pacific Biosciences, Inc., Menlo Park, CA 94025, USA
| | | | | | - Daniella Wilmot
- Program in Molecular Medicine and Center for AIDS Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Alexander Brown
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Sangeetha Manokaran
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Maria L. Zapp
- Program in Molecular Medicine and Center for AIDS Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Phillip W.L. Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
50
|
Maynard LH, Smith O, Tilmans NP, Tham E, Hosseinzadeh S, Tan W, Leenay R, May AP, Paulk NK. Fast-Seq: A Simple Method for Rapid and Inexpensive Validation of Packaged Single-Stranded Adeno-Associated Viral Genomes in Academic Settings. Hum Gene Ther Methods 2020; 30:195-205. [PMID: 31855083 PMCID: PMC6919253 DOI: 10.1089/hgtb.2019.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Adeno-associated viral (AAV) vectors have shown great promise in gene delivery as evidenced by recent FDA approvals. Despite efforts to optimize manufacturing for good manufacturing practice (GMP) productions, few academic laboratories have the resources to assess vector composition. One critical component of vector quality is packaged genome fidelity. Errors in viral genome replication and packaging can result in the incorporation of faulty genomes with mutations, truncations, or rearrangements, compromising vector potency. Thus, sequence validation of packaged genome composition is an important quality control (QC), even in academic settings. We developed Fast-Seq, an end-to-end method for extraction, purification, sequencing, and data analysis of packaged single-stranded AAV (ssAAV) genomes intended for non-GMP preclinical environments. We validated Fast-Seq on ssAAV vectors with three different genome compositions (CAG-GFP, CAG-tdTomato, EF1α-FLuc), three different genome sizes (2.9, 3.6, 4.4 kb), packaged in four different capsid serotypes (AAV1, AAV2, AAV5, and AAV8), and produced using the two most common production methods (Baculovirus-Sf9 and human HEK293), from both common commercial vendors and academic core facilities supplying academic laboratories. We achieved an average genome coverage of >1,400 × and an average inverted terminal repeat coverage of >280 × , despite the many differences in composition of each ssAAV sample. When compared with other ssAAV next-generation sequencing (NGS) methods for GMP settings, Fast-Seq has several unique advantages: Tn5 transposase-based fragmentation rather than sonication, 125 × less input DNA, simpler adapter ligation, compatibility with commonly available inexpensive sequencing instruments, and free open-source data analysis code in a preassembled customizable Docker container designed for novices. Fast-Seq can be completed in 18 h, is more cost-effective than other NGS methods, and is more accurate than Sanger sequencing, which is generally only applied at 1-2 × sequencing depth. Fast-Seq is a rapid, simple, and inexpensive methodology to validate packaged ssAAV genomes in academic settings.
Collapse
Affiliation(s)
- Lucy H Maynard
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Olivia Smith
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | | | - Eleonore Tham
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Shayan Hosseinzadeh
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Weilun Tan
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Ryan Leenay
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Andrew P May
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Nicole K Paulk
- Genome Engineering, Chan Zuckerberg Biohub, San Francisco, California.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California
| |
Collapse
|