1
|
Hu H, Cheng Y, Cao J, Guo Y, Duan H, Jin Y, Zhang L, Wang Y, Liu B. Development of TaqMan-based real-time PCR based on ψ gene for quantitative detection of CAR-T cells. Anal Biochem 2024; 694:115626. [PMID: 39032527 DOI: 10.1016/j.ab.2024.115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Chimeric-antigen-receptor-T (CAR-T) have heralded a paradigm shift in the landscape of cancer immunotherapy. Retrovirus-mediated gene transfer serves to deliver the specific CAR expressing cassette into T cells across a spectrum of basic research and clinical contests in cancer therapy. However, it is necessary to devise a precise and validated quantitative methodology tailored to the diverse CAR constructs. In the investigation, a TaqMan real-time qPCR method was developed, utilizing primers targeting ψ gene sequence. This method offers a swift, sensitive, reproducible, and accurate tool for evaluating retroviral copy numbers at the integrated DNA level. Importantly, the established qPCR exhibits no cross-reactivity with non-transduced T cells or tissues. The regression equation characterizing TaqMan real-time PCR dynamics is y = -3.3841x + 41.402 (R2 = 0.999), showing an amplification efficiency of 97.47 %. Notably, the established qPCR method achieves a minimum detection of 43.1 copies/μL. Furthermore, both intra- and inter-group discrepancies remain below 4 %, underscoring the good repeatability of the established method. Our in vitro and in vivo results also support its sensitivity, specificity, and stability. Consequently, this method offers researchers with a cost-effective tool to quantify CAR copies both in vitro and in vivo.
Collapse
Affiliation(s)
- Han Hu
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, PR China
| | - Yining Cheng
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, PR China
| | - Jinjin Cao
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, PR China
| | - Yujie Guo
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, PR China
| | - Haixiao Duan
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, PR China
| | - Yuling Jin
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, PR China
| | - Lingfang Zhang
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, PR China
| | - Yang Wang
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, PR China
| | - Binlei Liu
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, PR China; Wuhan Binhui Biopharmaceutical Co., Ltd. Wuhan, 430068, PR China.
| |
Collapse
|
2
|
Stilpeanu RI, Secara BS, Cretu-Stancu M, Bucur O. Oncolytic Viruses as Reliable Adjuvants in CAR-T Cell Therapy for Solid Tumors. Int J Mol Sci 2024; 25:11127. [PMID: 39456909 PMCID: PMC11508774 DOI: 10.3390/ijms252011127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Although impactful scientific advancements have recently been made in cancer therapy, there remains an opportunity for future improvements. Immunotherapy is perhaps one of the most cutting-edge categories of therapies demonstrating potential in the clinical setting. Genetically engineered T cells express chimeric antigen receptors (CARs), which can detect signals expressed by the molecules present on the surface of cancer cells, also called tumor-associated antigens (TAAs). Their effectiveness has been extensively demonstrated in hematological cancers; therefore, these results can establish the groundwork for their applications on a wide range of requirements. However, the application of CAR-T cell technology for solid tumors has several challenges, such as the existence of an immune-suppressing tumor microenvironment and/or inadequate tumor infiltration. Consequently, combining therapies such as CAR-T cell technology with other approaches has been proposed. The effectiveness of combining CAR-T cell with oncolytic virus therapy, with either genetically altered or naturally occurring viruses, to target tumor cells is currently under investigation, with several clinical trials being conducted. This narrative review summarizes the current advancements, opportunities, benefits, and limitations in using each therapy alone and their combination. The use of oncolytic viruses offers an opportunity to address the existing challenges of CAR-T cell therapy, which appear in the process of trying to overcome solid tumors, through the combination of their strengths. Additionally, utilizing oncolytic viruses allows researchers to modify the virus, thus enabling the targeted delivery of specific therapeutic agents within the tumor environment. This, in turn, can potentially enhance the cytotoxic effect and therapeutic potential of CAR-T cell technology on solid malignancies, with impactful results in the clinical setting.
Collapse
MESH Headings
- Humans
- Neoplasms/therapy
- Neoplasms/immunology
- Oncolytic Viruses/genetics
- Oncolytic Viruses/immunology
- Immunotherapy, Adoptive/methods
- Oncolytic Virotherapy/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Tumor Microenvironment/immunology
- T-Lymphocytes/immunology
- Combined Modality Therapy/methods
- Adjuvants, Immunologic
- Antigens, Neoplasm/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Ruxandra Ilinca Stilpeanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
| | - Bianca Stefania Secara
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
| | | | - Octavian Bucur
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
- Genomics Research and Development Institute, 020021 Bucharest, Romania
- Viron Molecular Medicine Institute, Boston, MA 02108, USA
| |
Collapse
|
3
|
Zhonghao J, Fan Y. New advances in the treatment of intermediate and advanced hepatocellular carcinoma. Front Oncol 2024; 14:1430991. [PMID: 39376988 PMCID: PMC11456399 DOI: 10.3389/fonc.2024.1430991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/27/2024] [Indexed: 10/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, affecting millions of people worldwide. Due to the complexity and variability of the disease, there are major challenges in the treatment of HCC in its intermediate and advanced stages; despite advances in various treatment modalities, there are still gaps in our understanding of effective therapeutic strategies. Key findings from several studies have shown that the combination of immunotherapy and targeted therapy has a synergistic anti-tumor effect, which can significantly enhance efficacy with a favorable safety profile. In addition, other studies have identified potential biomarkers of therapeutic response, such as tumor protein 53 (TP53) and CTNNB1 (encoding β-conjugated proteins), thus providing personalized treatment options for patients with intermediate and advanced hepatocellular carcinoma. The aim of this article is to review the recent advances in the treatment of intermediate and advanced HCC, especially targeted immune-combination therapy, chimeric antigen receptor T cell therapy (CAR-T cell therapy), and gene therapy for these therapeutic options that fill in the gaps in our knowledge of effective treatment strategies, providing important insights for further research and clinical practice.
Collapse
|
4
|
Tonne JM, Budzik K, Carrasco TF, Ebbert L, Thompson J, Nace R, Kendall B, Diaz RM, Russell SJ, Vile RG. Smoldering oncolysis by foamy virus carrying CD19 as a CAR target escapes CAR T detection by genomic modification. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200852. [PMID: 39220111 PMCID: PMC11362648 DOI: 10.1016/j.omton.2024.200852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have had limited success against solid tumors. Here, we used an oncolytic foamy virus (oFV) to display a model CAR target antigen (CD19) on tumors in combination with anti-CD19 CAR T cells. We generated oFV-Δbel2 and oFV-bel2 vectors to test the efficiency and stability of viral/CD19 spread. While both viruses conferred equal CAR T killing in vitro, the oFV-Δbel2 virus acquired G-to-A mutations, whereas oFV-bel2 virus had genome deletions. In subcutaneous tumor models in vivo, CAR T cells led to a significant decrease in oFV-specific bioluminescence, confirming clearance of oFV-infected tumor cells. However, the most effective therapy was with high-dose oFV in the absence of CAR T cells, indicating that CAR T clearance of oFV was detrimental. Moreover, in tumors that escaped CAR T cell treatment, resurgent virus contained deletions within the oFV-CD19 transgene, allowing the virus to escape CAR T elimination. Therefore, oFV represents a slow smoldering type of oncolytic virus, whose chronic spread through tumors generates anti-tumor therapy, which is abolished by CAR T therapy. These results suggest that further development of this oncolytic platform, with additional immunotherapeutic arming, may allow for an effective combination of chronic oncolysis.
Collapse
Affiliation(s)
- Jason M. Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Karol Budzik
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Talia Fernandez Carrasco
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Vyriad Inc, Rochester, MN 55901, USA
| | - Landon Ebbert
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Rebecca Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin Kendall
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Rosa M. Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Vyriad Inc, Rochester, MN 55901, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Anderson GSF, Chapman MA. T cell-redirecting therapies in hematological malignancies: Current developments and novel strategies for improved targeting. Mol Ther 2024; 32:2856-2891. [PMID: 39095991 PMCID: PMC11403239 DOI: 10.1016/j.ymthe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
T cell-redirecting therapies (TCRTs), such as chimeric antigen receptor (CAR) or T cell receptor (TCR) T cells and T cell engagers, have emerged as a highly effective treatment modality, particularly in the B and plasma cell-malignancy setting. However, many patients fail to achieve deep and durable responses; while the lack of truly unique tumor antigens, and concurrent on-target/off-tumor toxicities, have hindered the development of TCRTs for many other cancers. In this review, we discuss the recent developments in TCRT targets for hematological malignancies, as well as novel targeting strategies that aim to address these, and other, challenges.
Collapse
Affiliation(s)
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
6
|
Zhou Z, Mai Y, Zhang G, Wang Y, Sun P, Jing Z, Li Z, Xu Y, Han B, Liu J. Emerging role of immunogenic cell death in cancer immunotherapy: Advancing next-generation CAR-T cell immunotherapy by combination. Cancer Lett 2024; 598:217079. [PMID: 38936505 DOI: 10.1016/j.canlet.2024.217079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Immunogenic cell death (ICD) is a stress-driven form of regulated cell death (RCD) in which dying tumor cells' specific signaling pathways are activated to release damage-associated molecular patterns (DAMPs), leading to the robust anti-tumor immune response as well as a reversal of the tumor immune microenvironment from "cold" to "hot". Chimeric antigen receptor (CAR)-T cell therapy, as a landmark in anti-tumor immunotherapy, plays a formidable role in hematologic malignancies but falls short in solid tumors. The Gordian knot of CAR-T cells for solid tumors includes but is not limited to, tumor antigen heterogeneity or absence, physical and immune barriers of tumors. The combination of ICD induction therapy and CAR-T cell immunotherapy is expected to promote the intensive use of CAR-T cell in solid tumors. In this review, we summarize the characteristics of ICD, stress-responsive mechanism, and the synergistic effect of various ICD-based therapies with CAR-T cells to effectively improve anti-tumor capacity.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yumiao Mai
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan Province Key Laboratory of Cardiac Injury and Repair, Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yingjie Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Pan Sun
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaohe Jing
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jian Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
7
|
Taha Z, Crupi MJF, Alluqmani N, MacKenzie D, Vallati S, Whelan JT, Fareez F, Alwithenani A, Petryk J, Chen A, Spinelli MM, Ng K, Sobh J, de Souza CT, Bharadwa PR, Lee TKH, Thomas DA, Huang BZ, Kassas O, Poutou J, Gilchrist VH, Boulton S, Thomson M, Marius R, Hooshyar M, McComb S, Arulanandam R, Ilkow CS, Bell JC, Diallo JS. Complementary dual-virus strategy drives synthetic target and cognate T-cell engager expression for endogenous-antigen agnostic immunotherapy. Nat Commun 2024; 15:7267. [PMID: 39179564 PMCID: PMC11343834 DOI: 10.1038/s41467-024-51498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Targeted antineoplastic immunotherapies have achieved remarkable clinical outcomes. However, resistance to these therapies due to target absence or antigen shedding limits their efficacy and excludes tumours from candidacy. To address this limitation, here we engineer an oncolytic rhabdovirus, vesicular stomatitis virus (VSVΔ51), to express a truncated targeted antigen, which allows for HER2-targeting with trastuzumab. The truncated HER2 (HER2T) lacks signaling capabilities and is efficiently expressed on infected cell surfaces. VSVΔ51-mediated HER2T expression simulates HER2-positive status in tumours, enabling effective treatment with the antibody-drug conjugate trastuzumab emtansine in vitro, ex vivo, and in vivo. Additionally, we combine VSVΔ51-HER2T with an oncolytic vaccinia virus expressing a HER2-targeted T-cell engager. This dual-virus therapeutic strategy demonstrates potent curative efficacy in vivo in female mice using CD3+ infiltrate for anti-tumour immunity. Our findings showcase the ability to tailor the tumour microenvironment using oncolytic viruses, thereby enhancing compatibility with "off-the-shelf" targeted therapies.
Collapse
Affiliation(s)
- Zaid Taha
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Mathieu Joseph François Crupi
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Nouf Alluqmani
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Duncan MacKenzie
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Sydney Vallati
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Jack Timothy Whelan
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Faiha Fareez
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Akram Alwithenani
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Julia Petryk
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Andrew Chen
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Marcus Mathew Spinelli
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Kristy Ng
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Judy Sobh
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | | | - Priya Rose Bharadwa
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Timothy Kit Hin Lee
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Dylan Anthony Thomas
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Ben Zhen Huang
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Omar Kassas
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Joanna Poutou
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Victoria Heather Gilchrist
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Stephen Boulton
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Max Thomson
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Ricardo Marius
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Mohsen Hooshyar
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Scott McComb
- Cancer Immunology Team, National Research Council of Canada, Human Health Therapeutics, Ottawa, ON, K1A 0R6, Canada
| | - Rozanne Arulanandam
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Carolina Solange Ilkow
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - John Cameron Bell
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Jean-Simon Diallo
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
8
|
Gao X, Liu J, Sun R, Zhang J, Cao X, Zhang Y, Zhao M. Alliance between titans: combination strategies of CAR-T cell therapy and oncolytic virus for the treatment of hematological malignancies. Ann Hematol 2024; 103:2569-2589. [PMID: 37853078 DOI: 10.1007/s00277-023-05488-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
There have been several clinical studies using chimeric antigen receptor (CAR)-T cell therapy for different hematological malignancies. It has transformed the therapy landscape for hematologic malignancies dramatically. Nonetheless, in acute myeloid leukemia (AML) and T cell malignancies, it still has a dismal prognosis. Even in the most promising locations, recurrence with CAR-T treatment remains a big concern. Oncolytic viruses (OVs) can directly lyse tumor cells or cause immune responses, and they can be manipulated to create therapeutic proteins, increasing anticancer efficacy. Oncolytic viruses have been proven in a rising number of studies to be beneficial in hematological malignancies. There are limitations that cannot be avoided by using either treatment alone, and the combination of CAR-T cell therapy and oncolytic virus therapy may complement the disadvantages of individual application, enhance the advantages of their respective treatment methods and improve the treatment effect. The alternatives for combining two therapies in hematological malignancies are discussed in this article.
Collapse
Affiliation(s)
- Xuejin Gao
- Emergency, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Jile Liu
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Rui Sun
- Nankai University School of Medicine, Tianjin, 300192, China
| | - Jingkun Zhang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xinping Cao
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
9
|
Utkarsh K, Srivastava N, Kumar S, Khan A, Dagar G, Kumar M, Singh M, Haque S. CAR-T cell therapy: a game-changer in cancer treatment and beyond. Clin Transl Oncol 2024; 26:1300-1318. [PMID: 38244129 DOI: 10.1007/s12094-023-03368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024]
Abstract
In recent years, cancer has become one of the primary causes of mortality, approximately 10 million deaths worldwide each year. The most advanced, chimeric antigen receptor (CAR) T cell immunotherapy has turned out as a promising treatment for cancer. CAR-T cell therapy involves the genetic modification of T cells obtained from the patient's blood, and infusion back to the patients. CAR-T cell immunotherapy has led to a significant improvement in the remission rates of hematological cancers. CAR-T cell therapy presently limited to hematological cancers, there are ongoing efforts to develop additional CAR constructs such as bispecific CAR, tandem CAR, inhibitory CAR, combined antigens, CRISPR gene-editing, and nanoparticle delivery. With these advancements, CAR-T cell therapy holds promise concerning potential to improve upon traditional cancer treatments such as chemotherapy and radiation while reducing associated toxicities. This review covers recent advances and advantages of CAR-T cell immunotherapy.
Collapse
Affiliation(s)
- Kumar Utkarsh
- Department of Microbiology and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Namita Srivastava
- Department of Microbiology and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sachin Kumar
- Department of Microbiology and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Azhar Khan
- Faculty of Applied Science and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Gunjan Dagar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh Kumar
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mayank Singh
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Shabirul Haque
- Department of Autoimmune Diseases, Feinstein Institute for Medical Research, Northwell Health, 350, Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
10
|
Vazaios K, van Berkum RE, Calkoen FG, van der Lugt J, Hulleman E. OV Modulators of the Paediatric Brain TIME: Current Status, Combination Strategies, Limitations and Future Directions. Int J Mol Sci 2024; 25:5007. [PMID: 38732225 PMCID: PMC11084613 DOI: 10.3390/ijms25095007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Oncolytic viruses (OVs) are characterised by their preference for infecting and replicating in tumour cells either naturally or after genetic modification, resulting in oncolysis. Furthermore, OVs can elicit both local and systemic anticancer immune responses while specifically infecting and lysing tumour cells. These characteristics render them a promising therapeutic approach for paediatric brain tumours (PBTs). PBTs are frequently marked by a cold tumour immune microenvironment (TIME), which suppresses immunotherapies. Recent preclinical and clinical studies have demonstrated the capability of OVs to induce a proinflammatory immune response, thereby modifying the TIME. In-depth insights into the effect of OVs on different cell types in the TIME may therefore provide a compelling basis for using OVs in combination with other immunotherapy modalities. However, certain limitations persist in our understanding of oncolytic viruses' ability to regulate the TIME to enhance anti-tumour activity. These limitations primarily stem from the translational limitations of model systems, the difficulties associated with tracking reliable markers of efficacy throughout the course of treatment and the role of pre-existing viral immunity. In this review, we describe the different alterations observed in the TIME in PBTs due to OV treatment, combination therapies of OVs with different immunotherapies and the hurdles limiting the development of effective OV therapies while suggesting future directions based on existing evidence.
Collapse
Affiliation(s)
| | | | | | | | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.V.); (F.G.C.); (J.v.d.L.)
| |
Collapse
|
11
|
Pang Y, Ghosh N. Novel and multiple targets for chimeric antigen receptor-based therapies in lymphoma. Front Oncol 2024; 14:1396395. [PMID: 38711850 PMCID: PMC11070555 DOI: 10.3389/fonc.2024.1396395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy targeting CD19 in B-cell non-Hodgkin lymphoma (NHL) validates the utility of CAR-based therapy for lymphomatous malignancies. Despite the success, treatment failure due to CD19 antigen loss, mutation, or down-regulation remains the main obstacle to cure. On-target, off-tumor effect of CD19-CAR T leads to side effects such as prolonged B-cell aplasia, limiting the application of therapy in indolent diseases such as chronic lymphocytic leukemia (CLL). Alternative CAR targets and multi-specific CAR are potential solutions to improving cellular therapy outcomes in B-NHL. For Hodgkin lymphoma and T-cell lymphoma, several cell surface antigens have been studied as CAR targets, some of which already showed promising results in clinical trials. Some antigens are expressed by different lymphomas and could be used for designing tumor-agnostic CAR. Here, we reviewed the antigens that have been studied for novel CAR-based therapies, as well as CARs designed to target two or more antigens in the treatment of lymphoma.
Collapse
Affiliation(s)
- Yifan Pang
- Department of Hematologic Oncology and Blood Disorders, Atrium Health Levine Cancer Institute, Wake Forest School of Medicine, Charlotte, NC, United States
| | | |
Collapse
|
12
|
Rojas-Quintero J, Díaz MP, Palmar J, Galan-Freyle NJ, Morillo V, Escalona D, González-Torres HJ, Torres W, Navarro-Quiroz E, Rivera-Porras D, Bermúdez V. Car T Cells in Solid Tumors: Overcoming Obstacles. Int J Mol Sci 2024; 25:4170. [PMID: 38673757 PMCID: PMC11050550 DOI: 10.3390/ijms25084170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Chimeric antigen receptor T cell (CAR T cell) therapy has emerged as a prominent adoptive cell therapy and a therapeutic approach of great interest in the fight against cancer. This approach has shown notorious efficacy in refractory hematological neoplasm, which has bolstered its exploration in the field of solid cancers. However, successfully managing solid tumors presents considerable intrinsic challenges, which include the necessity of guiding the modified cells toward the tumoral region, assuring their penetration and survival in adverse microenvironments, and addressing the complexity of identifying the specific antigens for each type of cancer. This review focuses on outlining the challenges faced by CAR T cell therapy when used in the treatment of solid tumors, as well as presenting optimizations and emergent approaches directed at improving its efficacy in this particular context. From precise localization to the modulation of the tumoral microenvironment and the adaptation of antigen recognition strategies, diverse pathways will be examined to overcome the current limitations and buttress the therapeutic potential of CAR T cells in the fight against solid tumors.
Collapse
Affiliation(s)
- Joselyn Rojas-Quintero
- Medicine, Pulmonary, Critical Care, and Sleep Medicine Department, Baylor College of Medicine, Houston, TX 77030, USA;
| | - María P. Díaz
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Jim Palmar
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Nataly J. Galan-Freyle
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
| | - Valery Morillo
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Daniel Escalona
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | | | - Wheeler Torres
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Elkin Navarro-Quiroz
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
- Facultad de Ciencias Básicas y Biomédicas, Barranquilla 080002, Colombia
| | - Diego Rivera-Porras
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540001, Colombia;
| | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia;
| |
Collapse
|
13
|
Stergiopoulos GM, Iankov I, Galanis E. Personalizing Oncolytic Immunovirotherapy Approaches. Mol Diagn Ther 2024; 28:153-168. [PMID: 38150172 DOI: 10.1007/s40291-023-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Development of successful cancer therapeutics requires exploration of the differences in genetics, metabolism, and interactions with the immune system among malignant and normal cells. The clinical observation of spontaneous tumor regression following natural infection with microorganism has created the premise of their use as cancer therapeutics. Oncolytic viruses (OVs) originate from viruses with attenuated virulence in humans, well-characterized vaccine strains of known human pathogens, or engineered replication-deficient viral vectors. Their selectivity is based on receptor expression level and post entry restriction factors that favor replication in the tumor, while keeping the normal cells unharmed. Clinical trials have demonstrated a wide range of patient responses to virotherapy, with subgroups of patients significantly benefiting from OV administration. Tumor-specific gene signatures, including antiviral interferon-stimulated gene (ISG) expression profile, have demonstrated a strong correlation with tumor permissiveness to infection. Furthermore, the combination of OVs with immunotherapeutics, including anticancer vaccines and immune checkpoint inhibitors [ICIs, such as anti-PD-1/PD-L1 or anti-CTLA-4 and chimeric antigen receptor (CAR)-T or CAR-NK cells], could synergistically improve the therapeutic outcome. Creating response prediction algorithms represents an important step for the transition to individualized immunovirotherapy approaches in the clinic. Integrative predictors could include tumor mutational burden (TMB), inflammatory gene signature, phenotype of tumor-infiltrating lymphocytes, tumor microenvironment (TME), and immune checkpoint receptor expression on both immune and target cells. Additionally, the gut microbiota has recently been recognized as a systemic immunomodulatory factor and could further be used in the optimization of individualized immunovirotherapy algorithms.
Collapse
Affiliation(s)
| | - Ianko Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
14
|
Xu L, Sun H, Lemoine NR, Xuan Y, Wang P. Oncolytic vaccinia virus and cancer immunotherapy. Front Immunol 2024; 14:1324744. [PMID: 38283361 PMCID: PMC10811104 DOI: 10.3389/fimmu.2023.1324744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Oncolytic virotherapy (OVT) is a promising form of cancer treatment that uses genetically engineered viruses to replicate within cancer cells and trigger anti-tumor immune response. In addition to killing cancer cells, oncolytic viruses can also remodel the tumor microenvironment and stimulate a long-term anti-tumor immune response. Despite achieving positive results in cellular and organismal studies, there are currently only a few approved oncolytic viruses for clinical use. Vaccinia virus (VACV) has emerged as a potential candidate due to its ability to infect a wide range of cancer cells. This review discusses the mechanisms, benefits, and clinical trials of oncolytic VACVs. The safety and efficacy of different viral backbones are explored, as well as the effects of oncolytic VACVs on the tumor microenvironment. The potential combination of oncolytic VACVs with immunotherapy or traditional therapies is also highlighted. The review concludes by addressing prospects and challenges in the field of oncolytic VACVs, with the aim of promoting further research and application in cancer therapy.
Collapse
Affiliation(s)
- Lihua Xu
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huihui Sun
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Nicholas R. Lemoine
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yujing Xuan
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengju Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Singer ZS, Pabón J, Huang H, Rice CM, Danino T. Engineered bacteria launch and control an oncolytic virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559873. [PMID: 37808855 PMCID: PMC10557668 DOI: 10.1101/2023.09.28.559873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The ability of bacteria and viruses to selectively replicate in tumors has led to synthetic engineering of new microbial therapies. Here we design a cooperative strategy whereby S. typhimurium bacteria transcribe and deliver the Senecavirus A RNA genome inside host cells, launching a potent oncolytic viral infection. Then, we engineer the virus to require a bacterially delivered protease in order to achieve virion maturation, demonstrating bacterial control over the virus. This work extends bacterially delivered therapeutics to viral genomes, and the governing of a viral population through engineered microbial interactions. One-Sentence Summary Bacteria are engineered to act as a synthetic "capsid" delivering Senecavirus A genome and controlling its spread.
Collapse
|
16
|
Zhang AQ, Hostetler A, Chen LE, Mukkamala V, Abraham W, Padilla LT, Wolff AN, Maiorino L, Backlund CM, Aung A, Melo M, Li N, Wu S, Irvine DJ. Universal redirection of CAR T cells against solid tumours via membrane-inserted ligands for the CAR. Nat Biomed Eng 2023; 7:1113-1128. [PMID: 37291434 PMCID: PMC10504084 DOI: 10.1038/s41551-023-01048-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/01/2023] [Indexed: 06/10/2023]
Abstract
The effectiveness of chimaeric antigen receptor (CAR) T cell therapies for solid tumours is hindered by difficulties in the selection of an effective target antigen, owing to the heterogeneous expression of tumour antigens and to target antigen expression in healthy tissues. Here we show that T cells with a CAR specific for fluorescein isothiocyanate (FITC) can be directed against solid tumours via the intratumoural administration of a FITC-conjugated lipid-poly(ethylene)-glycol amphiphile that inserts itself into cell membranes. In syngeneic and human tumour xenografts in mice, 'amphiphile tagging' of tumour cells drove tumour regression via the proliferation and accumulation of FITC-specific CAR T cells in the tumours. In syngeneic tumours, the therapy induced the infiltration of host T cells, elicited endogenous tumour-specific T cell priming and led to activity against distal untreated tumours and to protection against tumour rechallenge. Membrane-inserting ligands for specific CARs may facilitate the development of adoptive cell therapies that work independently of antigen expression and of tissue of origin.
Collapse
Affiliation(s)
- Angela Q Zhang
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biophysics, Harvard University, Cambridge, MA, USA
| | - Alexander Hostetler
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura E Chen
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vainavi Mukkamala
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wuhbet Abraham
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Lucia T Padilla
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandra N Wolff
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | | | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Mariane Melo
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Na Li
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Shengwei Wu
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
17
|
Li M, Zhang M, Ye Q, Liu Y, Qian W. Preclinical and clinical trials of oncolytic vaccinia virus in cancer immunotherapy: a comprehensive review. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0202. [PMID: 37615308 PMCID: PMC10546091 DOI: 10.20892/j.issn.2095-3941.2023.0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Oncolytic virotherapy has emerged as a promising treatment for human cancers owing to an ability to elicit curative effects via systemic administration. Tumor cells often create an unfavorable immunosuppressive microenvironment that degrade viral structures and impede viral replication; however, recent studies have established that viruses altered via genetic modifications can serve as effective oncolytic agents to combat hostile tumor environments. Specifically, oncolytic vaccinia virus (OVV) has gained popularity owing to its safety, potential for systemic delivery, and large gene insertion capacity. This review highlights current research on the use of engineered mutated viruses and gene-armed OVVs to reverse the tumor microenvironment and enhance antitumor activity in vitro and in vivo, and provides an overview of ongoing clinical trials and combination therapies. In addition, we discuss the potential benefits and drawbacks of OVV as a cancer therapy, and explore different perspectives in this field.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Minghuan Zhang
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qian Ye
- Hangzhou Rong-Gu Biotechnology Limited Company, Hangzhou 310056, China
| | - Yunhua Liu
- Department of Pathology & Pathophysiology and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenbin Qian
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
18
|
Mamola JA, Chen CY, Currier MA, Cassady K, Lee DA, Cripe TP. Opportunities and challenges of combining adoptive cellular therapy with oncolytic virotherapy. Mol Ther Oncolytics 2023; 29:118-124. [PMID: 37250971 PMCID: PMC10209482 DOI: 10.1016/j.omto.2023.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
The use of oncolytic viruses (OVs) and adoptive cell therapies (ACT) have independently emerged as promising approaches for cancer immunotherapy. More recently, the combination of such agents to obtain a synergistic anticancer effect has gained attention, particularly in solid tumors, where immune-suppressive barriers of the microenvironment remain a challenge for desirable therapeutic efficacy. While adoptive cell monotherapies may be restricted by an immunologically cold or suppressive tumor microenvironment (TME), OVs can serve to prime the TME by eliciting a wave of cancer-specific immunogenic cell death and inducing enhanced antitumor immunity. While OV/ACT synergy is an attractive approach, immune-suppressive barriers remain, and methods should be considered to optimize approaches for such combination therapy. In this review, we summarize current approaches that aim to overcome these barriers to enable optimal synergistic antitumor effects.
Collapse
Affiliation(s)
- Joseph A. Mamola
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Chun-Yu Chen
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Mark A. Currier
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Kevin Cassady
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Division of Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Dean A. Lee
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Timothy P. Cripe
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| |
Collapse
|
19
|
Jiang H, Shin DH, Yi Y, Fan X, Gumin J, He J, Gillard AG, Lang FF, Gomez-Manzano C, Fueyo J. Adjuvant Therapy with Oncolytic Adenovirus Delta-24-RGDOX After Intratumoral Adoptive T-cell Therapy Promotes Antigen Spread to Sustain Systemic Antitumor Immunity. CANCER RESEARCH COMMUNICATIONS 2023; 3:1118-1131. [PMID: 37379361 PMCID: PMC10295804 DOI: 10.1158/2767-9764.crc-23-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 06/30/2023]
Abstract
Cancer cell heterogeneity and immunosuppressive tumor microenvironment (TME) pose a challenge in treating solid tumors with adoptive cell therapies targeting limited tumor-associated antigens (TAA), such as chimeric antigen receptor T-cell therapy. We hypothesize that oncolytic adenovirus Delta-24-RGDOX activates the TME and promote antigen spread to potentiate the abscopal effect of adoptive TAA-targeting T cells in localized intratumoral treatment. Herein, we used C57BL/6 mouse models with disseminated tumors derived from B16 melanoma cell lines to assess therapeutic effects and antitumor immunity. gp100-specific pmel-1 or ovalbumin (OVA)-specific OT-I T cells were injected into the first subcutaneous tumor, followed by three injections of Delta-24-RGDOX. We found TAA-targeting T cells injected into one subcutaneous tumor showed tumor tropism. Delta-24-RGDOX sustained the systemic tumor regression mediated by the T cells, leading to improved survival rate. Further analysis revealed that, in mice with disseminated B16-OVA tumors, Delta-24-RGDOX increased CD8+ leukocyte density within treated and untreated tumors. Importantly, Delta-24-RGDOX significantly reduced the immunosuppression of endogenous OVA-specific CTLs while increasing that of CD8+ leukocytes and, to a lesser extent, adoptive pmel-1 T cells. Consequently, Delta-24-RGDOX drastically increased the density of the OVA-specific CTLs in both tumors, and the combination synergistically enhanced the effect. Consistently, the splenocytes from the combination group showed a significantly stronger response against other TAAs (OVA and TRP2) than gp100, resulted in higher activity against tumor cells. Therefore, our data demonstrate that, as an adjuvant therapy followed TAA-targeting T cells in localized treatment, Delta-24-RGDOX activates TME and promotes antigen spread, leading to efficacious systemic antitumor immunity to overcome tumor relapse. Significance Adjuvant therapy with oncolytic viruses promotes antigen spread to potentiate localized intratumoral adoptive T-cell therapy with limited TAA targets, leading to sustainable systemic antitumor immunity to overcome tumor relapse.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dong Ho Shin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yanhua Yi
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xuejun Fan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joy Gumin
- Department of Neuro-Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiasen He
- Pediatric division, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew G. Gillard
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frederick F. Lang
- Department of Neuro-Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
20
|
Chimeric Antigen Receptor T-Cell Therapy: Current Perspective on T Cell-Intrinsic, T Cell-Extrinsic, and Therapeutic Limitations. Cancer J 2023; 29:28-33. [PMID: 36693155 DOI: 10.1097/ppo.0000000000000636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ABSTRACT Genetically engineered chimeric antigen receptor (CAR) T-cell therapy leverages the ability of the immune system to eliminate tumors and redirects cytotoxic functions toward cells expressing specified tumor-restricted antigens. Although 6 CAR T-cell therapies have received Food and Drug Administration (FDA) approval for the treatment of many hematological malignancies, limitations involving T cell-intrinsic, T cell-extrinsic, and therapeutic factors remain in the treatment of both liquid and solid tumors. Chimeric antigen receptor design, signals from the tumor microenvironment, tumor antigen escape mechanisms, and systemic inflammatory consequences of CAR T-cell infusion all influence the efficacy and feasibility of CAR T-cell therapy in different malignancies. Here, we review the core structure of the CAR, the evolution of different CAR generations, CAR T-cell therapy limitations, and current strategies being investigated to overcome the T cell-intrinsic, T cell-independent, and therapeutic barriers to successful CAR T-cell therapy.
Collapse
|
21
|
Wang J, Du L, Chen X. Oncolytic virus: A catalyst for the treatment of gastric cancer. Front Oncol 2022; 12:1017692. [PMID: 36505792 PMCID: PMC9731121 DOI: 10.3389/fonc.2022.1017692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Gastric cancer (GC) is a leading contributor to global cancer incidence and mortality. According to the GLOBOCAN 2020 estimates of incidence and mortality for 36 cancers in 185 countries produced by the International Agency for Research on Cancer (IARC), GC ranks fifth and fourth, respectively, and seriously threatens the survival and health of people all over the world. Therefore, how to effectively treat GC has become an urgent problem for medical personnel and scientific workers at this stage. Due to the unobvious early symptoms and the influence of some adverse factors such as tumor heterogeneity and low immunogenicity, patients with advanced gastric cancer (AGC) cannot benefit significantly from treatments such as radical surgical resection, radiotherapy, chemotherapy, and targeted therapy. As an emerging cancer immunotherapy, oncolytic virotherapies (OVTs) can not only selectively lyse cancer cells, but also induce a systemic antitumor immune response. This unique ability to turn unresponsive 'cold' tumors into responsive 'hot' tumors gives them great potential in GC therapy. This review integrates most experimental studies and clinical trials of various oncolytic viruses (OVs) in the diagnosis and treatment of GC. It also exhaustively introduces the concrete mechanism of invading GC cells and the viral genome composition of adenovirus and herpes simplex virus type 1 (HSV-1). At the end of the article, some prospects are put forward to determine the developmental directions of OVTs for GC in the future.
Collapse
Affiliation(s)
- Junqing Wang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linyong Du
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Xiangjian Chen, ; Linyong Du,
| | - Xiangjian Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Xiangjian Chen, ; Linyong Du,
| |
Collapse
|
22
|
Nasiri F, Kazemi M, Mirarefin SMJ, Mahboubi Kancha M, Ahmadi Najafabadi M, Salem F, Dashti Shokoohi S, Evazi Bakhshi S, Safarzadeh Kozani P, Safarzadeh Kozani P. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front Immunol 2022; 13. [DOI: https:/doi.org/10.3389/fimmu.2022.1018786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is known as the most intricate and hard-to-treat subtype of breast cancer. TNBC cells do not express the well-known estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expressed by other breast cancer subtypes. This phenomenon leaves no room for novel treatment approaches including endocrine and HER2-specific antibody therapies. To date, surgery, radiotherapy, and systemic chemotherapy remain the principal therapy options for TNBC treatment. However, in numerous cases, these approaches either result in minimal clinical benefit or are nonfunctional, resulting in disease recurrence and poor prognosis. Nowadays, chimeric antigen receptor T cell (CAR-T) therapy is becoming more established as an option for the treatment of various types of hematologic malignancies. CAR-Ts are genetically engineered T lymphocytes that employ the body’s immune system mechanisms to selectively recognize cancer cells expressing tumor-associated antigens (TAAs) of interest and efficiently eliminate them. However, despite the clinical triumph of CAR-T therapy in hematologic neoplasms, CAR-T therapy of solid tumors, including TNBC, has been much more challenging. In this review, we will discuss the success of CAR-T therapy in hematological neoplasms and its caveats in solid tumors, and then we summarize the potential CAR-T targetable TAAs in TNBC studied in different investigational stages.
Collapse
|
23
|
Nasiri F, Kazemi M, Mirarefin SMJ, Mahboubi Kancha M, Ahmadi Najafabadi M, Salem F, Dashti Shokoohi S, Evazi Bakhshi S, Safarzadeh Kozani P, Safarzadeh Kozani P. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front Immunol 2022; 13:1018786. [PMID: 36483567 PMCID: PMC9722775 DOI: 10.3389/fimmu.2022.1018786] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is known as the most intricate and hard-to-treat subtype of breast cancer. TNBC cells do not express the well-known estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expressed by other breast cancer subtypes. This phenomenon leaves no room for novel treatment approaches including endocrine and HER2-specific antibody therapies. To date, surgery, radiotherapy, and systemic chemotherapy remain the principal therapy options for TNBC treatment. However, in numerous cases, these approaches either result in minimal clinical benefit or are nonfunctional, resulting in disease recurrence and poor prognosis. Nowadays, chimeric antigen receptor T cell (CAR-T) therapy is becoming more established as an option for the treatment of various types of hematologic malignancies. CAR-Ts are genetically engineered T lymphocytes that employ the body's immune system mechanisms to selectively recognize cancer cells expressing tumor-associated antigens (TAAs) of interest and efficiently eliminate them. However, despite the clinical triumph of CAR-T therapy in hematologic neoplasms, CAR-T therapy of solid tumors, including TNBC, has been much more challenging. In this review, we will discuss the success of CAR-T therapy in hematological neoplasms and its caveats in solid tumors, and then we summarize the potential CAR-T targetable TAAs in TNBC studied in different investigational stages.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Mehrasa Kazemi
- Department of Laboratory Medicine, Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Maral Mahboubi Kancha
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Milad Ahmadi Najafabadi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Faeze Salem
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setareh Dashti Shokoohi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sahar Evazi Bakhshi
- Department of Anatomical Sciences, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
24
|
Liu Y, Zheng Y, Deng T, Huang Y, Liu Z, Zhan B, Zhou X, Yan R, Ren J, Xing Y, Wu G, Zheng B, Hu G, Wang W, Liu Y, Zhao J, Chen X, Zhou GG. Oncolytic herpes simplex virus delivery of dual CAR targets of CD19 and BCMA as well as immunomodulators to enhance therapeutic efficacy in solid tumors combined with CAR T cell therapy. Front Oncol 2022; 12:1037934. [PMID: 36353540 PMCID: PMC9638445 DOI: 10.3389/fonc.2022.1037934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/06/2022] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND The CAR T-cell therapy is a promising approach to treating hematologic malignancies. However, the application in solid tumors still has many tough challenges, including heterogenicity in antigen expressions and immunosuppressive tumor microenvironment (TME). As a new cancer treatment modality, oncolytic virotherapy can be engineered to circumvent these obstacles for CAR T cell therapy in solid tumors. METHODS In this study, an oHSV T7011 is engineered to drive ectopic expression of dual-antigens, extracellular domains of CD19 and BCMA, on the solid tumor cell surface to be targeted by approved CAR T cells. In addition, multiple immunomodulators, CCL5, IL-12, and anti-PD-1 antibody are also included to modulate the TME. The antitumor activities of T7011 in combination with CD19 or BCMA CAR T-cell were evaluated in vitro and in vivo. RESULTS The expression of CD19 or BMCA on the tumor cell surface could be detected after T7011 infection. The level of CCL5 in TME was also increased. Efficacy studies demonstrated that combination with T7011 and CAR-TCD19 or CAR-TBCMA cells showed significant synergistic anti-tumor responses in several solid tumor models. CONCLUSION These studies indicated that the new generation of oHSV T7011 can be a promising combinational therapy with CD19 or BCMA-specific CAR T cells for the treatment of a broad range of solid tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiangtao Ren
- Nanjing Bioheng Biotech Co., Ltd., Nanjing, China
| | - Yun Xing
- Nanjing Bioheng Biotech Co., Ltd., Nanjing, China
| | - Guixing Wu
- Nanjing Bioheng Biotech Co., Ltd., Nanjing, China
| | - Biao Zheng
- IASO Biotherapeutics Co., Ltd., Shanghai, China
| | - Guang Hu
- IASO Biotherapeutics Co., Ltd., Shanghai, China
| | - Wen Wang
- IASO Biotherapeutics Co., Ltd., Shanghai, China
| | | | | | | | | |
Collapse
|
25
|
Brog RA, Ferry SL, Schiebout CT, Messier CM, Cook WJ, Abdullah L, Zou J, Kumar P, Sentman CL, Frost HR, Huang YH. Superkine IL-2 and IL-33 Armored CAR T Cells Reshape the Tumor Microenvironment and Reduce Growth of Multiple Solid Tumors. Cancer Immunol Res 2022; 10:962-977. [PMID: 35696724 PMCID: PMC9357153 DOI: 10.1158/2326-6066.cir-21-0536] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/01/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023]
Abstract
Chimeric-antigen receptor (CAR) T-cell therapy has shown remarkable efficacy against hematologic tumors. Yet, CAR T-cell therapy has had little success against solid tumors due to obstacles presented by the tumor microenvironment (TME) of these cancers. Here, we show that CAR T cells armored with the engineered IL-2 superkine Super2 and IL-33 were able to promote tumor control as a single-agent therapy. IFNγ and perforin were dispensable for the effects of Super2- and IL-33-armored CAR T cells. Super2 and IL-33 synergized to shift leukocyte proportions in the TME and to recruit and activate a broad repertoire of endogenous innate and adaptive immune cells including tumor-specific T cells. However, depletion of CD8+ T cells or NK cells did not disrupt tumor control, suggesting that broad immune activation compensated for loss of individual cell subsets. Thus, we have shown that Super2 and IL-33 CAR T cells can promote antitumor immunity in multiple solid tumor models and can potentially overcome antigen loss, highlighting the potential of this universal CAR T-cell platform for the treatment of solid tumors.
Collapse
Affiliation(s)
- Rachel A Brog
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Shannon L Ferry
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Courtney T Schiebout
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Cameron M Messier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - W James Cook
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Leena Abdullah
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jia Zou
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Prathna Kumar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Charles L Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - H Robert Frost
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA,Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
26
|
Zeng Q, Liu Z, Niu T, He C, Qu Y, Qian Z. Application of nanotechnology in CAR-T-cell immunotherapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
27
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Ahmadi Najafabadi M, Yousefi F, Mirarefin SMJ, Rahbarizadeh F. Recent Advances in Solid Tumor CAR-T Cell Therapy: Driving Tumor Cells From Hero to Zero? Front Immunol 2022; 13:795164. [PMID: 35634281 PMCID: PMC9130586 DOI: 10.3389/fimmu.2022.795164] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor T-cells (CAR-Ts) are known as revolutionary living drugs that have turned the tables of conventional cancer treatments in certain hematologic malignancies such as B-cell acute lymphoblastic leukemia (B-ALL) and diffuse large B-cell lymphoma (DLBCL) by achieving US Food and Drug Administration (FDA) approval based on their successful clinical outcomes. However, this type of therapy has not seen the light of victory in the fight against solid tumors because of various restricting caveats including heterogeneous tumor antigen expression and the immunosuppressive tumor microenvironments (TME) that negatively affect the tumor-site accessibility, infiltration, stimulation, activation, and persistence of CAR-Ts. In this review, we explore strategic twists including boosting vaccines and designing implementations that can support CAR-T expansion, proliferation, and tumoricidal capacity. We also step further by underscoring novel strategies for triggering endogenous antitumor responses and overcoming the limitation of poor CAR-T tumor-tissue infiltration and the lack of definitive tumor-specific antigens. Ultimately, we highlight how these approaches can address the mentioned arduous hurdles.
Collapse
Affiliation(s)
- Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Milad Ahmadi Najafabadi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yousefi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
28
|
Combination therapy with CAR T cells and oncolytic viruses: a new era in cancer immunotherapy. Cancer Gene Ther 2022; 29:647-660. [PMID: 34158626 DOI: 10.1038/s41417-021-00359-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/16/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an encouraging and fast-growing platform used for the treatment of various types of tumors in human body. Despite the recent success of CAR T-cell therapy in hematologic malignancies, especially in B-cell lymphoma and acute lymphoblastic leukemia, the application of this treatment approach in solid tumors faced several obstacles resulted from the heterogeneous expression of antigens as well as the induction of immunosuppressive tumor microenvironment. Oncolytic virotherapy (OV) is a new cancer treatment modality by the use of competent or genetically engineered viruses to replicate in tumor cells selectively. OVs represent potential candidates to synergize the current setbacks of CAR T-cell application in solid tumors and then and overcome them. As well, the application of OVs gives researches the ability to engineer the virus with payloads in the way that it selectively deliver a specific therapeutic agents in tumor milieu to reinforce the cytotoxic activity of CAR T cells. Herein, we made a comprehensive review on the outcomes resulted from the combination of CAR T-cell immunotherapy and oncolytic virotherapy for the treatment of solid cancers. In the current study, we also provided brief details on some challenges that remained in this field and attempted to shed a little light on the future perspectives.
Collapse
|
29
|
Mardi A, Shirokova AV, Mohammed RN, Keshavarz A, Zekiy AO, Thangavelu L, Mohamad TAM, Marofi F, Shomali N, Zamani A, Akbari M. Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; Combination of Oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction. Cancer Cell Int 2022; 22:168. [PMID: 35488303 PMCID: PMC9052538 DOI: 10.1186/s12935-022-02585-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a promising and rapidly expanding therapeutic option for a wide range of human malignancies. Despite the ongoing progress of CAR T-cell therapy in hematologic malignancies, the application of this therapeutic strategy in solid tumors has encountered several challenges due to antigen heterogeneity, suboptimal CAR T-cell trafficking, and the immunosuppressive features of the tumor microenvironment (TME). Oncolytic virotherapy is a novel cancer therapy that employs competent or genetically modified oncolytic viruses (OVs) to preferentially proliferate in tumor cells. OVs in combination with CAR T-cells are promising candidates for overcoming the current drawbacks of CAR T-cell application in tumors through triggering immunogenic cell death (ICD) in cancer cells. ICD is a type of cellular death in which danger-associated molecular patterns (DAMPs) and tumor-specific antigens are released, leading to the stimulation of potent anti-cancer immunity. In the present review, we discuss the biological causes of ICD, different types of ICD, and the synergistic combination of OVs and CAR T-cells to reach potent tumor-specific immunity.
Collapse
Affiliation(s)
- Amirhossein Mardi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anastasia V Shirokova
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Science, Cihan University of Sulaimaniya, Suleimanyah, Kurdistan region, Iraq.,College of. Veterinary Medicine, University of Sulaimani, Suleimanyah, Iraq
| | - Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Angelina O Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Talar Ahmad Merza Mohamad
- Department of Pharmacology and Toxicology, Clinical Pharmacy, Hawler Medical University, College of Pharmacy, Kurdistan Region-Erbil, Iraq
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zamani
- Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Vasic D, Lee JB, Leung Y, Khatri I, Na Y, Abate-Daga D, Zhang L. Allogeneic double-negative CAR-T cells inhibit tumor growth without off-tumor toxicities. Sci Immunol 2022; 7:eabl3642. [PMID: 35452255 DOI: 10.1126/sciimmunol.abl3642] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of autologous chimeric antigen receptor T (CAR-T) cell therapies has revolutionized cancer treatment. Nevertheless, the delivery of CAR-T cell therapy faces challenges, including high costs, lengthy production times, and manufacturing failures. To overcome this, attempts have been made to develop allogeneic CAR-T cells using donor-derived conventional CD4+ or CD8+ T cells (Tconvs), but severe graft-versus-host disease (GvHD) and host immune rejection have made this challenging. CD3+CD4-CD8- double-negative T cells (DNTs) are a rare subset of mature T cells shown to fulfill the requirements of an off-the-shelf cellular therapy, including scalability, cryopreservability, donor-independent anticancer function, resistance to rejection, and no observed off-tumor toxicity including GvHD. To overcome the challenges faced with CAR-Tconvs, we evaluated the feasibility, safety, and efficacy of using healthy donor-derived allogeneic DNTs as a CAR-T cell therapy platform. We successfully transduced DNTs with a second-generation anti-CD19-CAR (CAR19) without hampering their endogenous characteristics or off-the-shelf properties. CAR19-DNTs induced antigen-specific cytotoxicity against B cell acute lymphoblastic leukemia (B-ALL). In addition, CAR19-DNTs showed effective infiltration and tumor control against lung cancer genetically modified to express CD19 in xenograft models. CAR19-DNT efficacy was comparable with that of CAR19-Tconvs. However, unlike CAR19-Tconvs, CAR19-DNTs did not cause alloreactivity or xenogeneic GvHD-related mortality in xenograft models. These studies demonstrate the potential of using allogeneic DNTs as a platform for CAR technology to provide a safe, effective, and patient-accessible CAR-T cell treatment option.
Collapse
Affiliation(s)
- Daniel Vasic
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jong Bok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yuki Leung
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ismat Khatri
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yoosu Na
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Engineered cellular immunotherapies in cancer and beyond. Nat Med 2022; 28:678-689. [PMID: 35440724 DOI: 10.1038/s41591-022-01765-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
This year marks the tenth anniversary of cell therapy with chimeric antigen receptor (CAR)-modified T cells for refractory leukemia. The widespread commercial approval of genetically engineered T cells for a variety of blood cancers offers hope for patients with other types of cancer, and the convergence of human genome engineering and cell therapy technology holds great potential for generation of a new class of cellular therapeutics. In this Review, we discuss the goals of cellular immunotherapy in cancer, key challenges facing the field and exciting strategies that are emerging to overcome these obstacles. Finally, we outline how developments in the cancer field are paving the way for cellular immunotherapeutics in other diseases.
Collapse
|
32
|
Evgin L, Kottke T, Tonne J, Thompson J, Huff AL, van Vloten J, Moore M, Michael J, Driscoll C, Pulido J, Swanson E, Kennedy R, Coffey M, Loghmani H, Sanchez-Perez L, Olivier G, Harrington K, Pandha H, Melcher A, Diaz RM, Vile RG. Oncolytic virus-mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Sci Transl Med 2022; 14:eabn2231. [PMID: 35417192 PMCID: PMC9297825 DOI: 10.1126/scitranslmed.abn2231] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oncolytic viruses (OVs) encoding a variety of transgenes have been evaluated as therapeutic tools to increase the efficacy of chimeric antigen receptor (CAR)-modified T cells in the solid tumor microenvironment (TME). Here, using systemically delivered OVs and CAR T cells in immunocompetent mouse models, we have defined a mechanism by which OVs can potentiate CAR T cell efficacy against solid tumor models of melanoma and glioma. We show that stimulation of the native T cell receptor (TCR) with viral or virally encoded epitopes gives rise to enhanced proliferation, CAR-directed antitumor function, and distinct memory phenotypes. In vivo expansion of dual-specific (DS) CAR T cells was leveraged by in vitro preloading with oncolytic vesicular stomatitis virus (VSV) or reovirus, allowing for a further in vivo expansion and reactivation of T cells by homologous boosting. This treatment led to prolonged survival of mice with subcutaneous melanoma and intracranial glioma tumors. Human CD19 CAR T cells could also be expanded in vitro with TCR reactivity against viral or virally encoded antigens and was associated with greater CAR-directed cytokine production. Our data highlight the utility of combining OV and CAR T cell therapy and show that stimulation of the native TCR can be exploited to enhance CAR T cell activity and efficacy in mice.
Collapse
Affiliation(s)
- Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Tim Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Amanda L. Huff
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Jacob van Vloten
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Madelyn Moore
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Josefine Michael
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | | | - Jose Pulido
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Eric Swanson
- Vaccine Research Group, Mayo Clinic, Rochester, MN 55905,
USA
| | - Richard Kennedy
- Vaccine Research Group, Mayo Clinic, Rochester, MN 55905,
USA
| | - Matt Coffey
- Oncolytics Biotech Incorporated, Calgary, AB, Canada
| | | | | | - Gloria Olivier
- Mayo Clinic Ventures, Mayo Clinic, Rochester, MN 55905,
USA
| | - Kevin Harrington
- Division of Radiotherapy and Imaging, Institute of Cancer
Research, Chester Beatty Laboratories, London SW3 6JB, UK
| | - Hardev Pandha
- Faculty of Health and Medical Sciences, University of
Surrey, Guildford GU2 7WG, UK
| | - Alan Melcher
- Division of Radiotherapy and Imaging, Institute of Cancer
Research, Chester Beatty Laboratories, London SW3 6JB, UK
| | - Rosa Maria Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905,
USA
| |
Collapse
|
33
|
Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther 2022; 7:117. [PMID: 35387984 PMCID: PMC8987060 DOI: 10.1038/s41392-022-00951-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses (OVs) are emerging as potentially useful platforms in treatment methods for patients with tumors. They preferentially target and kill tumor cells, leaving healthy cells unharmed. In addition to direct oncolysis, the essential and attractive aspect of oncolytic virotherapy is based on the intrinsic induction of both innate and adaptive immune responses. To further augment this efficacious response, OVs have been genetically engineered to express immune regulators that enhance or restore antitumor immunity. Recently, combinations of OVs with other immunotherapies, such as immune checkpoint inhibitors (ICIs), chimeric antigen receptors (CARs), antigen-specific T-cell receptors (TCRs) and autologous tumor-infiltrating lymphocytes (TILs), have led to promising progress in cancer treatment. This review summarizes the intrinsic mechanisms of OVs, describes the optimization strategies for using armed OVs to enhance the effects of antitumor immunity and highlights rational combinations of OVs with other immunotherapies in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China.,College of Bioengineering, Sichuan University of Science & Engineering, No. 519, Huixing Road, 643000, Zigong, Sichuan, People's Republic of China
| | - Daoyuan Xie
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
34
|
Mahasa KJ, Ouifki R, Eladdadi A, Pillis LD. A combination therapy of oncolytic viruses and chimeric antigen receptor T cells: a mathematical model proof-of-concept. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:4429-4457. [PMID: 35430822 DOI: 10.3934/mbe.2022205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Combining chimeric antigen receptor T (CAR-T) cells with oncolytic viruses (OVs) has recently emerged as a promising treatment approach in preclinical studies that aim to alleviate some of the barriers faced by CAR-T cell therapy. In this study, we address by means of mathematical modeling the main question of whether a single dose or multiple sequential doses of CAR-T cells during the OVs therapy can have a synergetic effect on tumor reduction. To that end, we propose an ordinary differential equations-based model with virus-induced synergism to investigate potential effects of different regimes that could result in efficacious combination therapy against tumor cell populations. Model simulations show that, while the treatment with a single dose of CAR-T cells is inadequate to eliminate all tumor cells, combining the same dose with a single dose of OVs can successfully eliminate the tumor in the absence of virus-induced synergism. However, in the presence of virus-induced synergism, the same combination therapy fails to eliminate the tumor. Furthermore, it is shown that if the intensity of virus-induced synergy and/or virus oncolytic potency is high, then the induced CAR-T cell response can inhibit virus oncolysis. Additionally, the simulations show a more robust synergistic effect on tumor cell reduction when OVs and CAR-T cells are administered simultaneously compared to the combination treatment where CAR-T cells are administered first or after OV injection. Our findings suggest that the combination therapy of CAR-T cells and OVs seems unlikely to be effective if the virus-induced synergistic effects are included when genetically engineering oncolytic viral vectors.
Collapse
Affiliation(s)
- Khaphetsi Joseph Mahasa
- Department of Mathematics and Computer Science, National University of Lesotho, Roma 180, Maseru, Lesotho
| | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, North-West University, Mafikeng campus, Private Bag X2046, Mmabatho 2735, South Africa
| | | | | |
Collapse
|
35
|
Controlling Cell Trafficking: Addressing Failures in CAR T and NK Cell Therapy of Solid Tumours. Cancers (Basel) 2022; 14:cancers14040978. [PMID: 35205725 PMCID: PMC8870056 DOI: 10.3390/cancers14040978] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
The precision guiding of endogenous or adoptively transferred lymphocytes to the solid tumour mass is obligatory for optimal anti-tumour effects and will improve patient safety. The recognition and elimination of the tumour is best achieved when anti-tumour lymphocytes are proximal to the malignant cells. For example, the regional secretion of soluble factors, cytotoxic granules, and cell-surface molecule interactions are required for the death of tumour cells and the suppression of neovasculature formation, tumour-associated suppressor, or stromal cells. The resistance of individual tumour cell clones to cellular therapy and the hostile environment of the solid tumours is a major challenge to adoptive cell therapy. We review the strategies that could be useful to overcoming insufficient immune cell migration to the tumour cell mass. We argue that existing 'competitive' approaches should now be revisited as complementary approaches to improve CAR T and NK cell therapy.
Collapse
|
36
|
Ban W, Guan J, Huang H, He Z, Sun M, Liu F, Sun J. Emerging systemic delivery strategies of oncolytic viruses: A key step toward cancer immunotherapy. NANO RESEARCH 2022; 15:4137-4153. [PMID: 35194488 PMCID: PMC8852960 DOI: 10.1007/s12274-021-4031-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 05/16/2023]
Abstract
Oncolytic virotherapy (OVT) is a novel type of immunotherapy that induces anti-tumor responses through selective self-replication within cancer cells and oncolytic virus (OV)-mediated immunostimulation. Notably, talimogene laherparepvec (T-Vec) developed by the Amgen company in 2015, is the first FDA-approved OV product to be administered via intratumoral injection and has been the most successful OVT treatment. However, the systemic administration of OVs still faces huge challenges, including in vivo pre-existing neutralizing antibodies and poor targeting delivery efficacy. Recently, state-of-the-art progress has been made in the development of systemic delivery of OVs, which demonstrates a promising step toward broadening the scope of cancer immunotherapy and improving the clinical efficacy of OV delivery. Herein, this review describes the general characteristics of OVs, focusing on the action mechanisms of OVs as well as the advantages and disadvantages of OVT. The emerging multiple systemic administration approaches of OVs are summarized in the past five years. In addition, the combination treatments between OVT and traditional therapies (chemotherapy, thermotherapy, immunotherapy, and radiotherapy, etc.) are highlighted. Last but not least, the future prospects and challenges of OVT are also discussed, with the aim of facilitating medical researchers to extensively apply the OVT in the cancer therapy.
Collapse
Affiliation(s)
- Weiyue Ban
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Jianhuan Guan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| |
Collapse
|
37
|
Cook J, Acosta-Medina AA, Peng KW, Lacy M, Russell S. Oncolytic virotherapy - Forging its place in the immunomodulatory paradigm for Multiple Myeloma. Cancer Treat Res Commun 2021; 29:100473. [PMID: 34673439 DOI: 10.1016/j.ctarc.2021.100473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
The treatment focus for multiple myeloma (MM) has recently pivoted towards immune modulating strategies, with T-cell redirection therapies currently at the forefront of drug development. Yet, despite this revolution in treatment, MM remains without a sustainable cure. At the same time, tremendous advancement has been made in recombinant and gene editing techniques for oncolytic viruses (OV), which have increased their tumor specificity, improved safety, and enhanced the oncolytic and immunostimulatory potential. These breakthrough developments in oncolytic virotherapy have opened new avenues for OVs to be used in combination with other immune-based therapies such as checkpoint inhibitors, chimeric antigen receptor T-cells (CAR-T) and bispecific T-cell engagers. In this review, the authors place the spotlight on systemic oncolytic virotherapy as an adaptable immunotherapeutic for MM, highlight the unique mechanism of OVs in activating the immune-suppressive marrow microenvironment, and lastly showcase the OV platforms and the promising combination strategies in the pipeline for MM.
Collapse
Affiliation(s)
- Joselle Cook
- Division of Hematology, Mayo Clinic, Rochester MN, United States.
| | | | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester MN , United States
| | - Martha Lacy
- Division of Hematology, Mayo Clinic, Rochester MN, United States
| | - Stephen Russell
- Division of Hematology, Mayo Clinic, Rochester MN, United States; Department of Molecular Medicine, Mayo Clinic, Rochester MN , United States
| |
Collapse
|
38
|
Teijeira Crespo A, Burnell S, Capitani L, Bayliss R, Moses E, Mason GH, Davies JA, Godkin AJ, Gallimore AM, Parker AL. Pouring petrol on the flames: Using oncolytic virotherapies to enhance tumour immunogenicity. Immunology 2021; 163:389-398. [PMID: 33638871 PMCID: PMC8274202 DOI: 10.1111/imm.13323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses possess the ability to infect, replicate and lyse malignantly transformed tumour cells. This oncolytic activity amplifies the therapeutic advantage and induces a form of immunogenic cell death, characterized by increased CD8 + T-cell infiltration into the tumour microenvironment. This important feature of oncolytic viruses can result in the warming up of immunologically 'cold' tumour types, presenting the enticing possibility that oncolytic virus treatment combined with immunotherapies may enhance efficacy. In this review, we assess some of the most promising candidates that might be used for oncolytic virotherapy: immunotherapy combinations. We assess their potential as separate agents or as agents combined into a single therapy, where the immunotherapy is encoded within the genome of the oncolytic virus. The development of such advanced agents will require increasingly sophisticated model systems for their preclinical assessment and evaluation. In vivo rodent model systems are fraught with limitations in this regard. Oncolytic viruses replicate selectively within human cells and therefore require human xenografts in immune-deficient mice for their evaluation. However, the use of immune-deficient rodent models hinders the ability to study immune responses against any immunomodulatory transgenes engineered within the viral genome and expressed within the tumour microenvironment. There has therefore been a shift towards the use of more sophisticated ex vivo patient-derived model systems based on organoids and explant co-cultures with immune cells, which may be more predictive of efficacy than contrived and artificial animal models. We review the best of those model systems here.
Collapse
Affiliation(s)
- Alicia Teijeira Crespo
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Stephanie Burnell
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Lorenzo Capitani
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Rebecca Bayliss
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Elise Moses
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Georgina H. Mason
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - James A. Davies
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Andrew J. Godkin
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Awen M. Gallimore
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Alan L. Parker
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| |
Collapse
|
39
|
Yang C, Hua N, Xie S, Wu Y, Zhu L, Wang S, Tong X. Oncolytic viruses as a promising therapeutic strategy for hematological malignancies. Biomed Pharmacother 2021; 139:111573. [PMID: 33894623 DOI: 10.1016/j.biopha.2021.111573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
The incidence of hematological malignancies such as multiple myeloma, leukemia, and lymphoma has increased over time. Although bone marrow transplantation, immunotherapy and chemotherapy have led to significant improvements in efficacy, poor prognosis in elderly patients, recurrence and high mortality among hematological malignancies remain major challenges, and innovative therapeutic strategies should be explored. Besides directly lyse tumor cells, oncolytic viruses can activate immune responses or be engineered to express therapeutic factors to increase antitumor efficacy, and have gradually been recognized as an appealing approach for fighting cancers. An increasing number of studies have applied oncolytic viruses in hematological malignancies and made progress. In particular, strategies combining immunotherapy and oncolytic virotherapy are emerging. Various phase I clinical trials of oncolytic reovirus with lenalidomide or programmed death 1(PD-1) immune checkpoint inhibitors in multiple myeloma are ongoing. Moreover, preclinical studies of combinations with chimeric antigen receptor T (CAR-T) cells are underway. Thus, oncolytic virotherapy is expected to be a promising approach to cure hematological malignancies. This review summarizes progress in oncolytic virus research in hematological malignancies. After briefly reviewing the development and oncolytic mechanism of oncolytic viruses, we focus on delivery methods of oncolytic viruses, especially systemic delivery that is suitable for hematological tumors. We then discuss the main types of oncolytic viruses applied for hematological malignancies and related clinical trials. In addition, we present several ways to improve the antitumor efficacy of oncolytic viruses. Finally, we discuss current challenges and provide suggestions for future studies.
Collapse
Affiliation(s)
- Chen Yang
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; Department of Clinical Medicine, Qingdao University, Qingdao, PR China
| | - Nanni Hua
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Shufang Xie
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Yi Wu
- Phase I clinical research center, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China
| | - Lifeng Zhu
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China
| | - Shibing Wang
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China.
| | - Xiangmin Tong
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China.
| |
Collapse
|
40
|
Parking CAR T Cells in Tumours: Oncolytic Viruses as Valets or Vandals? Cancers (Basel) 2021; 13:cancers13051106. [PMID: 33807553 PMCID: PMC7961585 DOI: 10.3390/cancers13051106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022] Open
Abstract
Oncolytic viruses (OVs) and adoptive T cell therapy (ACT) each possess direct tumour cytolytic capabilities, and their combination potentially seems like a match made in heaven to complement the strengths and weakness of each modality. While providing strong innate immune stimulation that can mobilize adaptive responses, the magnitude of anti-tumour T cell priming induced by OVs is often modest. Chimeric antigen receptor (CAR) modified T cells bypass conventional T cell education through introduction of a synthetic receptor; however, realization of their full therapeutic properties can be stunted by the heavily immune-suppressive nature of the tumour microenvironment (TME). Oncolytic viruses have thus been seen as a natural ally to overcome immunosuppressive mechanisms in the TME which limit CAR T cell infiltration and functionality. Engineering has further endowed viruses with the ability to express transgenes in situ to relieve T cell tumour-intrinsic resistance mechanisms and decorate the tumour with antigen to overcome antigen heterogeneity or loss. Despite this helpful remodeling of the tumour microenvironment, it has simultaneously become clear that not all virus induced effects are favourable for CAR T, begging the question whether viruses act as valets ushering CAR T into their active site, or vandals which cause chaos leading to both tumour and T cell death. Herein, we summarize recent studies combining these two therapeutic modalities and seek to place them within the broader context of viral T cell immunology which will help to overcome the current limitations of effective CAR T therapy to make the most of combinatorial strategies.
Collapse
|
41
|
McGrath K, Dotti G. Combining Oncolytic Viruses with Chimeric Antigen Receptor T Cell Therapy. Hum Gene Ther 2021; 32:150-157. [PMID: 33349123 PMCID: PMC8336251 DOI: 10.1089/hum.2020.278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/18/2020] [Indexed: 01/17/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of hematological malignancies, but solid tumors continue to pose significant challenges. Oncolytic viruses (OVs) have generated significant excitement in the field of cancer treatment recently. In particular, OVs can help CAR T cells overcome some of the immunosuppressive mechanisms within the tumor microenvironment through OV intrinsic effects or delivery of immunostimulatory agents. Numerous preclinical studies demonstrate that combining CAR T cells with OVs can increase CAR T cell trafficking, antitumor activity, and elimination of antigen-negative tumor cells. Despite promising preclinical results, only one clinical trial (NCT03740256) investigating CAR T and OV combination therapy is underway, highlighting the challenges of translating this approach to the clinic. Antiviral immunity and the route of OV administration, in addition to concerns about cost and safety, limit the clinical application of this approach. Strategies to reduce the production cost of both CAR T cells and OVs, as well as molecularly modifying OVs to enhance their bioavailability, will likely encourage further exploration of this combination therapy in clinical trials.
Collapse
Affiliation(s)
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
42
|
Tang XY, Ding YS, Zhou T, Wang X, Yang Y. Tumor-tagging by oncolytic viruses: A novel strategy for CAR-T therapy against solid tumors. Cancer Lett 2021; 503:69-74. [PMID: 33476650 DOI: 10.1016/j.canlet.2021.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is one of the most promising immunotherapies in the past decade. It brings hope for cure to patients with previously refractory hematological malignancies. However, when translating this strategy into non-hematologic malignancies, the antitumor activity from multiple clinical studies seemed to be subtle or transient. The less satisfying efficacy in solid tumors might at least due to antigen heterogeneity, suboptimal CAR-T cell trafficking and tumor immunosuppressive environment. Here, we will review the updating strategies to challenge the therapeutic impediments of CAR-T therapy in non-hematologic malignancies. We mainly focus on the combination with oncolytic viruses (OV), the born allies for CAR-T cells. In addition to previously reported OVs-arming strategy, we discuss recently proposed tumor-tagging concept by OVs as CAR-T targets, as well as the possible improvements. Overall, tumor-tagging strategy by OVs combination with CAR-T would be a novel and promising solution for the heterogeneity and immunosuppressive microenvironment of solid tumors.
Collapse
Affiliation(s)
- Xin-Ying Tang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Shi Ding
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tao Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xu Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yong Yang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
43
|
Wagner J, Wickman E, DeRenzo C, Gottschalk S. CAR T Cell Therapy for Solid Tumors: Bright Future or Dark Reality? Mol Ther 2020; 28:2320-2339. [PMID: 32979309 DOI: 10.1016/j.ymthe.2020.09.015] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 01/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has garnered significant excitement due to its success for hematological malignancies in clinical studies leading to the US Food and Drug Administration (FDA) approval of three CD19-targeted CAR T cell products. In contrast, the clinical experience with CAR T cell therapy for solid tumors and brain tumors has been less encouraging, with only a few patients achieving complete responses. Clinical and preclinical studies have identified multiple "roadblocks," including (1) a limited array of targetable antigens and heterogeneous antigen expression, (2) limited T cell fitness and survival before reaching tumor sites, (3) an inability of T cells to efficiently traffic to tumor sites and penetrate physical barriers, and (4) an immunosuppressive tumor microenvironment. Herein, we review these challenges and discuss strategies that investigators have taken to improve the effector function of CAR T cells for the adoptive immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Jessica Wagner
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth Wickman
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
44
|
Burchett R, Walsh S, Wan Y, Bramson JL. A rational relationship: Oncolytic virus vaccines as functional partners for adoptive T cell therapy. Cytokine Growth Factor Rev 2020; 56:149-159. [PMID: 32665126 DOI: 10.1016/j.cytogfr.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 01/02/2023]
Abstract
Tumours employ a variety of immune-evasion and suppression mechanisms to impair development of functional tumor-specific T cells and subvert T cell-mediated immunity in the tumour microenvironment. Adoptive T cell therapy (ACT) aims to overcome these barriers and overwhelm tumor defenses with a bolus of T cells that were selectively expanded ex vivo. Although this strategy has been effective in liquid tumors and melanomas, many tumors appear to be resistant to ACT. Several factors are thought to play into this resistance, including poor engraftment and persistence of transferred cells, tumour cell heterogeneity and antigen loss, poor immune cell recruitment and infiltration into the tumour, and susceptibility to local immunosuppression in the tumor microenvironment. Oncolytic viruses (OV) have been identified as powerful stimulators of the anti-tumour immune response. As such, OVs are inherently well-positioned to act in synergy with ACT to bolster the anti-tumour T cell response. Further, OV vaccines, wherein tumour-associated antigens are encoded into the viral backbone, have proven to be remarkable in boosting antigen-specific T cell response. Pre-clinical studies have revealed remarkable therapeutic outcomes when OV vaccines are paired with ACT. In this scenario, OV vaccines are thought to function in a "push and pull" manner, where push refers to expanding T cells in the periphery and pull refers to recruiting those cells into the tumour that has been rendered amenable to T cell attack by the actions of the OV. In this review, we discuss barriers that limit eradication of tumors by T cells, highlight attributes of OVs that break down these barriers and present strategies for rational combinations of ACT with OV vaccines.
Collapse
Affiliation(s)
- Rebecca Burchett
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Scott Walsh
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jonathan L Bramson
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
45
|
Chaurasiya S, Fong Y, Warner SG. Optimizing Oncolytic Viral Design to Enhance Antitumor Efficacy: Progress and Challenges. Cancers (Basel) 2020; 12:cancers12061699. [PMID: 32604787 PMCID: PMC7352900 DOI: 10.3390/cancers12061699] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
The field of oncolytic virotherapy has seen remarkable advancements in last two decades, leading to approval of the first oncolytic immuno-virotherapy, Talimogene Laherparepvec, for the treatment of melanoma. A plethora of preclinical and clinical studies have demonstrated excellent safety profiles of other oncolytic viruses. While oncolytic viruses show clinical promise in already immunogenic malignancies, response rates are inconsistent. Response rates are even less consistent in immunosuppressed tumor microenvironments like those found in liver, pancreas, and MSI-stable colon cancers. Therefore, the efficacy of oncolytic viruses needs to be improved for more oncolytic viruses to enter mainstream cancer therapy. One approach to increase the therapeutic efficacy of oncolytic viruses is to use them as primers for other immunotherapeutics. The amenability of oncolytic viruses to transgene-arming provides an immense opportunity for investigators to explore different ways of improving the outcome of oncolytic therapy. In this regard, genes encoding immunomodulatory proteins are the most commonly studied genes for arming oncolytic viruses. Other transgenes used to arm oncolytic viruses include those with the potential to favorably modulate tumor stroma, making it possible to image the virus distribution and increase its suitability for combination with other therapeutics. This review will detail the progress made in arming oncolytic viruses with a focus on immune-modulatory transgenes, and will discuss the challenges that need to be addressed for more armed oncolytic viruses to find widespread clinical use.
Collapse
|