1
|
Notartomaso S, Antenucci N, Mazzitelli M, Rovira X, Boccella S, Ricciardi F, Liberatore F, Gomez-Santacana X, Imbriglio T, Cannella M, Zussy C, Luongo L, Maione S, Goudet C, Battaglia G, Llebaria A, Nicoletti F, Neugebauer V. A 'double-edged' role for type-5 metabotropic glutamate receptors in pain disclosed by light-sensitive drugs. eLife 2024; 13:e94931. [PMID: 39172042 PMCID: PMC11341090 DOI: 10.7554/elife.94931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
We used light-sensitive drugs to identify the brain region-specific role of mGlu5 metabotropic glutamate receptors in the control of pain. Optical activation of systemic JF-NP-26, a caged, normally inactive, negative allosteric modulator (NAM) of mGlu5 receptors, in cingulate, prelimbic, and infralimbic cortices and thalamus inhibited neuropathic pain hypersensitivity. Systemic treatment of alloswitch-1, an intrinsically active mGlu5 receptor NAM, caused analgesia, and the effect was reversed by light-induced drug inactivation in the prelimbic and infralimbic cortices, and thalamus. This demonstrates that mGlu5 receptor blockade in the medial prefrontal cortex and thalamus is both sufficient and necessary for the analgesic activity of mGlu5 receptor antagonists. Surprisingly, when the light was delivered in the basolateral amygdala, local activation of systemic JF-NP-26 reduced pain thresholds, whereas inactivation of alloswitch-1 enhanced analgesia. Electrophysiological analysis showed that alloswitch-1 increased excitatory synaptic responses in prelimbic pyramidal neurons evoked by stimulation of presumed BLA input, and decreased BLA-driven feedforward inhibition of amygdala output neurons. Both effects were reversed by optical silencing and reinstated by optical reactivation of alloswitch-1. These findings demonstrate for the first time that the action of mGlu5 receptors in the pain neuraxis is not homogenous, and suggest that blockade of mGlu5 receptors in the BLA may limit the overall analgesic activity of mGlu5 receptor antagonists. This could explain the suboptimal effect of mGlu5 NAMs on pain in human studies and validate photopharmacology as an important tool to determine ideal target sites for systemic drugs.
Collapse
Affiliation(s)
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences CenterLubbockUnited States
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences CenterLubbockUnited States
| | - Xavier Rovira
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of CataloniaBarcelonaSpain
| | - Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”NaplesItaly
| | - Flavia Ricciardi
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”NaplesItaly
| | | | - Xavier Gomez-Santacana
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of CataloniaBarcelonaSpain
| | | | - Milena Cannella
- Mediterranean Neurological Institute, IRCCS NeuromedPozzilliItaly
| | - Charleine Zussy
- Institute of Functional Genomics IGF, National Centre for Scientific Research CNRS, INSERM, University of MontpellierMontpellierFrance
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”NaplesItaly
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”NaplesItaly
| | - Cyril Goudet
- Institute of Functional Genomics IGF, National Centre for Scientific Research CNRS, INSERM, University of MontpellierMontpellierFrance
| | - Giuseppe Battaglia
- Mediterranean Neurological Institute, IRCCS NeuromedPozzilliItaly
- Department of Physiology and Pharmacology, Sapienza University of RomeRomeItaly
| | - Amadeu Llebaria
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of CataloniaBarcelonaSpain
| | - Ferdinando Nicoletti
- Mediterranean Neurological Institute, IRCCS NeuromedPozzilliItaly
- Department of Physiology and Pharmacology, Sapienza University of RomeRomeItaly
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences CenterLubbockUnited States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences CenterLubbockUnited States
- Garrison Institute on Aging, Texas Tech University Health Sciences CenterLubbockUnited States
| |
Collapse
|
2
|
Notartomaso S, Antenucci N, Mazzitelli M, Rovira X, Boccella S, Ricciardi F, Liberatore F, Gomez-Santacana X, Imbriglio T, Cannella M, Zussy C, Luongo L, Maione S, Goudet C, Battaglia G, Llebaria A, Nicoletti F, Neugebauer V. A "double-edged" role for type-5 metabotropic glutamate receptors in pain disclosed by light-sensitive drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573945. [PMID: 38260426 PMCID: PMC10802266 DOI: 10.1101/2024.01.02.573945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Knowing the site of drug action is important to optimize effectiveness and address any side effects. We used light-sensitive drugs to identify the brain region-specific role of mGlu5 metabotropic glutamate receptors in the control of pain. Optical activation of systemic JF-NP-26, a caged, normally inactive, negative allosteric modulator (NAM) of mGlu5 receptors, in cingulate, prelimbic and infralimbic cortices and thalamus inhibited neuropathic pain hypersensitivity. Systemic treatment of alloswitch-1, an intrinsically active mGlu5 receptor NAM, caused analgesia, and the effect was reversed by light-induced drug inactivation in in the prelimbic and infralimbic cortices, and thalamus. This demonstrates that mGlu5 receptor blockade in the medial prefrontal cortex and thalamus is both sufficient and necessary for the analgesic activity of mGlu5 receptor antagonists. Surprisingly, when light was delivered in the basolateral amygdala, local activation of systemic JF-NP-26 reduced pain thresholds, whereas inactivation of alloswitch-1 enhanced analgesia. Electrophysiological analysis showed that alloswitch-1 increased excitatory synaptic responses in prelimbic pyramidal neurons evoked by stimulation of BLA input, and decreased feedforward inhibition of amygdala output neurons by BLA. Both effects were reversed by optical silencing and reinstated by optical reactivation of alloswitch-1. These findings demonstrate for the first time that the action of mGlu5 receptors in the pain neuraxis is not homogenous, and suggest that blockade of mGlu5 receptors in the BLA may limit the overall analgesic activity of mGlu5 receptor antagonists. This could explain the suboptimal effect of mGlu5 NAMs on pain in human studies and validate photopharmacology as an important tool to determine ideal target sites for systemic drugs.
Collapse
Affiliation(s)
- Serena Notartomaso
- Mediterranean Neurological Institute, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Xavier Rovira
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC−CSIC), Barcelona 08034, Spain
| | - Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Flavia Ricciardi
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | | | - Xavier Gomez-Santacana
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC−CSIC), Barcelona 08034, Spain
| | - Tiziana Imbriglio
- Mediterranean Neurological Institute, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Milena Cannella
- Mediterranean Neurological Institute, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Charleine Zussy
- Institute of Functional Genomics IGF, National Centre for Scientific Research CNRS, INSERM, University of Montpellier, F-34094 Montpellier, France
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Cyril Goudet
- Institute of Functional Genomics IGF, National Centre for Scientific Research CNRS, INSERM, University of Montpellier, F-34094 Montpellier, France
| | - Giuseppe Battaglia
- Mediterranean Neurological Institute, IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome 00185, Italy
| | - Amadeu Llebaria
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC−CSIC), Barcelona 08034, Spain
| | - Ferdinando Nicoletti
- Mediterranean Neurological Institute, IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome 00185, Italy
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
3
|
Presto P, Ji G, Ponomareva O, Ponomarev I, Neugebauer V. Hmgb1 Silencing in the Amygdala Inhibits Pain-Related Behaviors in a Rat Model of Neuropathic Pain. Int J Mol Sci 2023; 24:11944. [PMID: 37569320 PMCID: PMC10418916 DOI: 10.3390/ijms241511944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic pain presents a therapeutic challenge due to the highly complex interplay of sensory, emotional-affective and cognitive factors. The mechanisms of the transition from acute to chronic pain are not well understood. We hypothesized that neuroimmune mechanisms in the amygdala, a brain region involved in the emotional-affective component of pain and pain modulation, play an important role through high motility group box 1 (Hmgb1), a pro-inflammatory molecule that has been linked to neuroimmune signaling in spinal nociception. Transcriptomic analysis revealed an upregulation of Hmgb1 mRNA in the right but not left central nucleus of the amygdala (CeA) at the chronic stage of a spinal nerve ligation (SNL) rat model of neuropathic pain. Hmgb1 silencing with a stereotaxic injection of siRNA for Hmgb1 into the right CeA of adult male and female rats 1 week after (post-treatment), but not 2 weeks before (pre-treatment) SNL induction decreased mechanical hypersensitivity and emotional-affective responses, but not anxiety-like behaviors, measured 4 weeks after SNL. Immunohistochemical data suggest that neurons are a major source of Hmgb1 in the CeA. Therefore, Hmgb1 in the amygdala may contribute to the transition from acute to chronic neuropathic pain, and the inhibition of Hmgb1 at a subacute time point can mitigate neuropathic pain.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
4
|
Mazzitelli M, Presto P, Antenucci N, Meltan S, Neugebauer V. Recent Advances in the Modulation of Pain by the Metabotropic Glutamate Receptors. Cells 2022; 11:2608. [PMID: 36010684 PMCID: PMC9406805 DOI: 10.3390/cells11162608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 01/22/2023] Open
Abstract
Metabotropic glutamate receptors (mGluR or mGlu) are G-protein coupled receptors activated by the binding of glutamate, the main classical neurotransmitter of the nervous system. Eight different mGluR subtypes (mGluR1-8) have been cloned and are classified in three groups based on their molecular, pharmacological and signaling properties. mGluRs mediate several physiological functions such as neuronal excitability and synaptic plasticity, but they have also been implicated in numerous pathological conditions including pain. The availability of new and more selective allosteric modulators together with the canonical orthosteric ligands and transgenic technologies has led to significant advances in our knowledge about the role of the specific mGluR subtypes in the pathophysiological mechanisms of various diseases. Although development of successful compounds acting on mGluRs for clinical use has been scarce, the subtype-specific-pharmacological manipulation might be a compelling approach for the treatment of several disorders in humans, including pain; this review aims to summarize and update on preclinical evidence for the roles of different mGluRs in the pain system and discusses knowledge gaps regarding mGluR-related sex differences and neuroimmune signaling in pain.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Shakira Meltan
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
5
|
Presto P, Neugebauer V. Sex Differences in CGRP Regulation and Function in the Amygdala in a Rat Model of Neuropathic Pain. Front Mol Neurosci 2022; 15:928587. [PMID: 35726298 PMCID: PMC9206543 DOI: 10.3389/fnmol.2022.928587] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
The amygdala has emerged as a key player in the emotional response to pain and pain modulation. The lateral and capsular regions of the central nucleus of the amygdala (CeA) represent the “nociceptive amygdala” due to their high content of neurons that process pain-related information. These CeA divisions are the targets of the spino-parabrachio-amygdaloid pain pathway, which is the predominant source of calcitonin gene-related peptide (CGRP) within the amygdala. Changes in lateral and capsular CeA neurons have previously been observed in pain models, and synaptic plasticity in these areas has been linked to pain-related behavior. CGRP has been demonstrated to play an important role in peripheral and spinal mechanisms, and in pain-related amygdala plasticity in male rats in an acute arthritis pain model. However, the role of CGRP in chronic neuropathic pain-related amygdala function and behaviors remains to be determined for both male and female rats. Here we tested the hypothesis that the CGRP1 receptor is involved in neuropathic pain-related amygdala activity, and that blockade of this receptor can inhibit neuropathic pain behaviors in both sexes. CGRP mRNA expression levels in the CeA of male rats were upregulated at the acute stage of the spinal nerve ligation (SNL) model of neuropathic pain, whereas female rats had significantly higher CGRP and CGRP receptor component expression at the chronic stage. A CGRP1 receptor antagonist (CGRP 8-37) administered into the CeA in chronic neuropathic rats reduced mechanical hypersensitivity (von Frey and paw compression tests) in both sexes but showed female-predominant effects on emotional-affective responses (ultrasonic vocalizations) and anxiety-like behaviors (open field test). CGRP 8-37 inhibited the activity of CeA output neurons assessed with calcium imaging in brain slices from chronic neuropathic pain rats. Together, these findings may suggest that CGRP1 receptors in the CeA are involved in neuropathic pain-related amygdala activity and contribute to sensory aspects in both sexes but to emotional-affective pain responses predominantly in females. The sexually dimorphic function of CGRP in the amygdala would make CGRP1 receptors a potential therapeutic target for neuropathic pain relief, particularly in females in chronic pain conditions.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- *Correspondence: Volker Neugebauer
| |
Collapse
|
6
|
Ashraf-Uz-Zaman M, Ji G, Tidwell D, Yin L, Thakolwiboon S, Pan J, Junell R, Griffin Z, Shahi S, Barthels D, Sajib MS, Trippier PC, Mikelis CM, Das H, Avila M, Neugebauer V, German NA. Evaluation of Urea-Based Inhibitors of the Dopamine Transporter Using the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. ACS Chem Neurosci 2022; 13:217-228. [PMID: 34978174 DOI: 10.1021/acschemneuro.1c00647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dopaminergic system is involved in the regulation of immune responses in various homeostatic and disease conditions. For conditions such as Parkinson's disease and multiple sclerosis (MS), pharmacological modulation of dopamine (DA) system activity is thought to have therapeutic relevance, providing the basis for using dopaminergic agents as a treatment of relevant states. In particular, it was proposed that restoration of DA levels may inhibit neuroinflammation. We have recently reported a new class of dopamine transporter (DAT) inhibitors with high selectivity to the DAT over other G-protein coupled receptors tested. Here, we continue their evaluation as monoamine transporter inhibitors. Furthermore, we show that the urea-like DAT inhibitor (compound 5) has statistically significant anti-inflammatory effects and attenuates motor deficits and pain behaviors in the experimental autoimmune encephalomyelitis model mimicking clinical signs of MS. To the best of our knowledge, this is the first study reporting the beneficial effects of DAT inhibitor-based treatment in animals with induced autoimmune encephalomyelitis, and the observed results provide additional support to the model of DA-related neuroinflammation.
Collapse
Affiliation(s)
- Md Ashraf-Uz-Zaman
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Dalton Tidwell
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Linda Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Smathorn Thakolwiboon
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Jie Pan
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Riley Junell
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Zach Griffin
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Sadisna Shahi
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Derek Barthels
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Hiranmoy Das
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Mirla Avila
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
- Multiple Sclerosis and Demyelinating Diseases Clinic; Department of Neurology, Texas Tech University Health Science Center,Lubbock, Texas 79430, United States
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Nadezhda A. German
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| |
Collapse
|
7
|
Presto P, Ji G, Junell R, Griffin Z, Neugebauer V. Fear Extinction-Based Inter-Individual and Sex Differences in Pain-Related Vocalizations and Anxiety-like Behaviors but Not Nocifensive Reflexes. Brain Sci 2021; 11:brainsci11101339. [PMID: 34679403 PMCID: PMC8533751 DOI: 10.3390/brainsci11101339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inter-individual and sex differences in pain responses are recognized but their mechanisms are not well understood. This study was intended to provide the behavioral framework for analyses of pain mechanisms using fear extinction learning as a predictor of phenotypic and sex differences in sensory (mechanical withdrawal thresholds) and emotional-affective aspects (open field tests for anxiety-like behaviors and audible and ultrasonic components of vocalizations) of acute and chronic pain. In acute arthritis and chronic neuropathic pain models, greater increases in vocalizations were found in females than males and in females with poor fear extinction abilities than females with strong fear extinction, particularly in the neuropathic pain model. Female rats showed higher anxiety-like behavior than males under baseline conditions but no inter-individual or sex differences were seen in the pain models. No inter-individual and sex differences in mechanosensitivity were observed. The data suggest that vocalizations are uniquely suited to detect inter-individual and sex differences in pain models, particularly in chronic neuropathic pain, whereas no such differences were found for mechanosensitivity, and baseline differences in anxiety-like behaviors disappeared in the pain models.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA
| | - Riley Junell
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
| | - Zach Griffin
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA
- Correspondence: ; Tel.: +1-806-743-3880; Fax: +1-806-732-2744
| |
Collapse
|
8
|
Ji G, Neugebauer V. Kappa opioid receptors in the central amygdala modulate spinal nociceptive processing through an action on amygdala CRF neurons. Mol Brain 2020; 13:128. [PMID: 32948219 PMCID: PMC7501648 DOI: 10.1186/s13041-020-00669-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The amygdala plays an important role in the emotional-affective aspects of behaviors and pain, but can also modulate sensory aspect of pain ("nociception"), likely through coupling to descending modulatory systems. Here we explored the functional coupling of the amygdala to spinal nociception. We found that pharmacological activation of neurons in the central nucleus of the amygdala (CeA) increased the activity of spinal dorsal horn neurons; and this effect was blocked by optogenetic silencing of corticotropin releasing factor (CRF) positive CeA neurons. A kappa opioid receptor (KOR) agonist (U-69,593) was administered into the CeA by microdialysis. KOR was targeted because of their role in averse-affective behaviors through actions in limbic brain regions. Extracellular single-unit recordings were made of CeA neurons or spinal dorsal horn neurons in anesthetized transgenic Crh-Cre rats. Neurons responded more strongly to noxious than innocuous stimuli. U-69,593 increased the responses of CeA and spinal neurons to innocuous and noxious mechanical stimulation of peripheral tissues. The facilitatory effect of the agonist was blocked by optical silencing of CRF-CeA neurons though light activation of halorhodopsin expressed in these neurons by viral-vector. The CRF system in the amygdala has been implicated in aversiveness and pain modulation. The results suggest that the amygdala can modulate spinal nociceptive processing in a positive direction through CRF-CeA neurons and that KOR activation in the amygdala (CeA) has pro-nociceptive effects.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St, Lubbock, TX, 79430-6592, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St, Lubbock, TX, 79430-6592, USA.
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
9
|
Allen HN, Bobnar HJ, Kolber BJ. Left and right hemispheric lateralization of the amygdala in pain. Prog Neurobiol 2020; 196:101891. [PMID: 32730859 DOI: 10.1016/j.pneurobio.2020.101891] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/29/2020] [Accepted: 07/22/2020] [Indexed: 02/04/2023]
Abstract
Hemispheric asymmetries within the brain have been identified across taxa and have been extensively studied since the early 19th century. Here, we discuss lateralization of a brain structure, the amygdala, and how this lateralization is reshaping how we understand the role of the amygdala in pain processing. The amygdala is an almond-shaped, bilateral brain structure located within the limbic system. Historically, the amygdala was known to have a role in the processing of emotions and attaching emotional valence to memories and other experiences. The amygdala has been extensively studied in fear conditioning and affect but recently has been shown to have an important role in processing noxious information and impacting pain. The amygdala is composed of multiple nuclei; of special interest is the central nucleus of the amygdala (CeA). The CeA receives direct nociceptive inputs from the parabrachial nucleus (PBN) through the spino-parabrachio-amygdaloid pathway as well as more highly processed cortical and thalamic input via the lateral and basolateral amygdala. Although the amygdala is a bilateral brain region, most data investigating the amygdala's role in pain have been generated from the right CeA, which has an overwhelmingly pro-nociceptive function across pain models. The left CeA has often been characterized to have no effect on pain modulation, a dampened pro-nociceptive function, or most recently an anti-nociceptive function. This review explores the current literature on CeA lateralization and the hemispheres' respective roles in the processing and modulation of different forms of pain.
Collapse
Affiliation(s)
- Heather N Allen
- Department of Biological Sciences and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, 15282, United States
| | - Harley J Bobnar
- Department of Biological Sciences and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, 15282, United States
| | - Benedict J Kolber
- Department of Biological Sciences and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, 15282, United States; Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, 75080, United States.
| |
Collapse
|
10
|
Abstract
The amygdala has emerged as an important brain area for the emotional-affective dimension of pain and pain modulation. The amygdala receives nociceptive information through direct and indirect routes. These excitatory inputs converge on the amygdala output region (central nucleus) and can be modulated by inhibitory elements that are the target of (prefrontal) cortical modulation. For example, inhibitory neurons in the intercalated cell mass in the amygdala project to the central nucleus to serve gating functions, and so do inhibitory (PKCdelta) interneurons within the central nucleus. In pain conditions, synaptic plasticity develops in output neurons because of an excitation-inhibition imbalance and drives pain-like behaviors and pain persistence. Mechanisms of pain related neuroplasticity in the amygdala include classical transmitters, neuropeptides, biogenic amines, and various signaling pathways. An emerging concept is that differences in amygdala activity are associated with phenotypic differences in pain vulnerability and resilience and may be predetermining factors of the complexity and persistence of pain.
Collapse
Affiliation(s)
- Volker Neugebauer
- Professor and Chair, Department of Pharmacology and Neuroscience, Giles McCrary Endowed Chair in Addiction Medicine, Director, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center
- School of Medicine, 3601 4th Street
- Mail Stop 6592, Lubbock, Texas 79430-6592
| |
Collapse
|
11
|
Electroacupuncture Alleviates Pain-Related Emotion by Upregulating the Expression of NPS and Its Receptor NPSR in the Anterior Cingulate Cortex and Hypothalamus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8630368. [PMID: 32104195 PMCID: PMC7035524 DOI: 10.1155/2020/8630368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Objective Electroacupuncture (EA) is reported effective in alleviating pain-related emotion; however, the underlying mechanism of its effects still needs to be elucidated. The NPS-NPSR system has been validated for the involvement in the modulation of analgesia and emotional behavior. Here, we aimed to investigate the role of the NPS-NPSR system in the anterior cingulate cortex (ACC), hypothalamus, and central amygdala (CeA) in the use of EA to relieve affective pain modeled by complete Freund's adjuvant- (CFA-) evoked conditioned place aversion (C-CPA). Materials and Methods. CFA injection combined with a CPA paradigm was introduced to establish the C-CPA model, and the elevated O-maze (EOM) was used to test the behavioral changes after model establishment. We further explored the expression of NPS and NPSR at the protein and gene levels in the brain regions of interest by immunofluorescence staining and quantitative real-time PCR. Results We observed that EA stimulation delivered to the bilateral Zusanli (ST36) and Kunlun (BL60) acupoints remarkably inhibited sensory pain, pain-evoked place aversion, and anxiety-like behavior. The current study showed that EA significantly enhanced the protein expression of this peptide system in the ACC and hypothalamus, while the elevated expression of NPSR protein alone was just confined to the affected side in the CeA. Moreover, EA remarkably upregulated the mRNA expression of NPS in CeA, ACC, and hypothalamus and NPSR mRNA in the hypothalamus and CeA. Conclusions These data suggest the effectiveness of EA in alleviating affective pain, and these benefits may at least partially be attributable to the upregulation of the NPS-NPSR system in the ACC and hypothalamus.
Collapse
|
12
|
Barroso AR, Araya EI, de Souza CP, Andreatini R, Chichorro JG. Characterization of rat ultrasonic vocalization in the orofacial formalin test: Influence of the social context. Eur Neuropsychopharmacol 2019; 29:1213-1226. [PMID: 31447094 DOI: 10.1016/j.euroneuro.2019.08.298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022]
Abstract
Rats emit ultrasonic vocalizations (USVs) about 22 kHz and 50 kHz sound frequency to communicate the presence of negative or positive emotional states, respectively. The calling behavior may be influenced by several factors, including environmental factors. Likewise, pain behavior can be modulated according to the social context, and also can be transferred to conspecifics through direct observation and/or social interaction. Herein we investigated if acute pain induction was related to changes in emission of aversive and appetitive calls and how different social contexts affected the nociceptive behavior and USVs. Our results demonstrated that orofacial formalin injection in rats induced aversive calls in addition to the nociceptive behavior, and both are reduced by systemic treatment with morphine (2.5 mg/kg). Exposure of formalin-injected rats to cagemates had no effect on the nociceptive behavior or calls emitted by the demonstrator, but the observer showed emotional contagion of pain. In contrast, exposure of formalin-injected rats to non-cagemates decreased the nociceptive behavior of the demonstrator, without affecting the calls emission. The emotional contagion was not detected in non-cagemates or in cagemates separated by a visual barrier. In conclusion, we suggest that familiarity and the visual contact contributes to emotional contagion of pain. USV analysis may represent an additional measure in the evaluation of the emotional aspect of orofacial pain, and for the study of pain modulation.
Collapse
Affiliation(s)
- Amanda Ribeiro Barroso
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, 100 Cel. Francisco H. dos Santos Ave, Curitiba, PR 81531-980, Brazil
| | - Erika Ivanna Araya
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, 100 Cel. Francisco H. dos Santos Ave, Curitiba, PR 81531-980, Brazil
| | - Camila Pasquini de Souza
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, 100 Cel. Francisco H. dos Santos Ave, Curitiba, PR 81531-980, Brazil
| | - Roberto Andreatini
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, 100 Cel. Francisco H. dos Santos Ave, Curitiba, PR 81531-980, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, 100 Cel. Francisco H. dos Santos Ave, Curitiba, PR 81531-980, Brazil.
| |
Collapse
|
13
|
Touj S, Tokunaga R, Al Aïn S, Bronchti G, Piché M. Pain Hypersensitivity is Associated with Increased Amygdala Volume and c-Fos Immunoreactivity in Anophthalmic Mice. Neuroscience 2019; 418:37-49. [PMID: 31472214 DOI: 10.1016/j.neuroscience.2019.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 01/07/2023]
Abstract
It is well established that early blindness results in brain plasticity and behavioral changes in both humans and animals. However, only a few studies have examined the effects of blindness on pain perception. In these studies, pain hypersensitivity was reported in early, but not late, blind humans. The underlying mechanisms remain unclear, but considering its key role in pain perception and modulation, the amygdala may contribute to this pain hypersensitivity. The first aim of this study was to develop an animal model of early blindness to examine the effects of blindness on pain perception. A mouse cross was therefore developed (ZRDBA mice), in which half of the animals are born sighted and half are born anophthalmic, allowing comparisons between blind and sighted mice with the same genetic background. The second aim of the present study was to examine mechanical and thermal pain thresholds as well as pain behaviors and pain-related c-Fos immunoreactivity induced by the formalin test in the amygdalas of blind and sighted mice. Group differences in amygdala volume were also assessed histologically. Blind mice exhibited lower mechanical and thermal pain thresholds and more pain behaviors during the acute phase of the formalin test, compared with sighted mice. Moreover, pain hypersensitivity during the formalin test was associated with increased c-Fos immunoreactivity in the amygdala. Furthermore, amygdala volume was larger bilaterally in blind compared with sighted mice. These results indicate that congenitally blind mice show pain hypersensitivity like early blind individuals and suggest that this is due in part to plasticity in the amygdala.
Collapse
Affiliation(s)
- Sara Touj
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Ryota Tokunaga
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Syrina Al Aïn
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Gilles Bronchti
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7.
| |
Collapse
|
14
|
Mazzitelli M, Neugebauer V. Amygdala group II mGluRs mediate the inhibitory effects of systemic group II mGluR activation on behavior and spinal neurons in a rat model of arthritis pain. Neuropharmacology 2019; 158:107706. [PMID: 31306647 DOI: 10.1016/j.neuropharm.2019.107706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
Abstract
The amygdala plays a critical role in emotional-affective aspects of behaviors and pain modulation. The central nucleus of amygdala (CeA) serves major output functions, and neuroplasticity in the CeA is linked to pain-related behaviors in different models. Activation of Gi/o-coupled group II metabotropic glutamate receptors (mGluRs), which consist of mGluR2 and mGluR3, can decrease neurotransmitter release and regulate synaptic plasticity. Group II mGluRs have emerged as targets for neuropsychiatric disorders and can inhibit pain-related processing and behaviors. Surprisingly, site and mechanism of antinociceptive actions of systemically applied group II mGluR agonists are not clear. Our previous work showed that group II mGluR activation in the amygdala inhibits pain-related CeA activity, but behavioral and spinal consequences remain to be determined. Here we studied the contribution of group II mGluRs in the amygdala to the antinociceptive effects of a systemically applied group II mGluR agonist (LY379268) on behavior and spinal dorsal horn neuronal activity, using the kaolin/carrageenan-induced knee joint arthritis pain model. Audible and ultrasonic vocalizations (emotional responses) and mechanical reflex thresholds were measured in adult rats with and without arthritis (5-6 h postinduction). Extracellular single-unit recordings were made from spinal dorsal horn wide dynamic range neurons of anesthetized (isoflurane) rats with and without arthritis (5-6 h postinduction). Systemic (intraperitoneal) application of a group II mGluR agonist (LY379268) decreased behaviors and activity of spinal neurons in the arthritis pain model but not under normal conditions. Stereotaxic administration of LY379268 into the CeA mimicked the effects of systemic application. Conversely, stereotaxic administration of a group II mGluR antagonist (LY341495) into the CeA reversed the effects of systemic application of LY379268 on behaviors and dorsal horn neuronal activity in arthritic rats. The data show for the first time that the amygdala is the critical site of action for the antinociceptive behavioral and spinal neuronal effects of systemically applied group II mGluR agonists.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6592, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6592, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6592, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6592, USA.
| |
Collapse
|
15
|
Abstract
Spinal projection neurons convey nociceptive signals to multiple brain regions including the parabrachial (PB) nucleus, which contributes to the emotional valence of pain perception. Despite the clear importance of projection neurons to pain processing, our understanding of the factors that shape their intrinsic membrane excitability remains limited. Here, we investigate a potential role for the Na leak channel NALCN in regulating the activity of spino-PB neurons in the developing rodent. Pharmacological reduction of NALCN current (INALCN), or the genetic deletion of NALCN channels, significantly reduced the intrinsic excitability of lamina I spino-PB neurons. In addition, substance P (SP) activated INALCN in ascending projection neurons through downstream Src kinase signaling, and the knockout of NALCN prevented SP-evoked action potential discharge in this neuronal population. These results identify, for the first time, NALCN as a strong regulator of neuronal activity within central pain circuits and also elucidate an additional ionic mechanism by which SP can modulate spinal nociceptive processing. Collectively, these findings indicate that the level of NALCN conductance within spino-PB neurons tightly governs ascending nociceptive transmission to the brain and thereby potentially influences pain perception.
Collapse
|
16
|
Pereira V, Goudet C. Emerging Trends in Pain Modulation by Metabotropic Glutamate Receptors. Front Mol Neurosci 2019; 11:464. [PMID: 30662395 PMCID: PMC6328474 DOI: 10.3389/fnmol.2018.00464] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Pain is an essential protective mechanism meant to prevent tissue damages in organisms. On the other hand, chronic or persistent pain caused, for example, by inflammation or nerve injury is long lasting and responsible for long-term disability in patients. Therefore, chronic pain and its management represents a major public health problem. Hence, it is critical to better understand chronic pain molecular mechanisms to develop innovative and efficient drugs. Over the past decades, accumulating evidence has demonstrated a pivotal role of glutamate in pain sensation and transmission, supporting glutamate receptors as promising potential targets for pain relieving drug development. Glutamate is the most abundant excitatory neurotransmitter in the brain. Once released into the synapse, glutamate acts through ionotropic glutamate receptors (iGluRs), which are ligand-gated ion channels triggering fast excitatory neurotransmission, and metabotropic glutamate receptors (mGluRs), which are G protein-coupled receptors modulating synaptic transmission. Eight mGluRs subtypes have been identified and are divided into three classes based on their sequence similarities and their pharmacological and biochemical properties. Of note, all mGluR subtypes (except mGlu6 receptor) are expressed within the nociceptive pathways where they modulate pain transmission. This review will address the role of mGluRs in acute and persistent pain processing and emerging pharmacotherapies for pain management.
Collapse
Affiliation(s)
- Vanessa Pereira
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, France
| | - Cyril Goudet
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, France
| |
Collapse
|
17
|
Kim H, Thompson J, Ji G, Ganapathy V, Neugebauer V. Monomethyl fumarate inhibits pain behaviors and amygdala activity in a rat arthritis model. Pain 2018; 158:2376-2385. [PMID: 28832396 DOI: 10.1097/j.pain.0000000000001042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuroplasticity in the amygdala, a brain center for emotions, leads to increased neuronal activity and output that can generate emotional-affective behaviors and modulate nocifensive responses. Mechanisms of increased activity in the amygdala output region (central nucleus, CeA) include increased reactive oxygen species, and so we explored beneficial effects of monomethyl fumarate (MMF), which can have neuroprotective effects through the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) antioxidant response pathway. Systemic (intraperitoneal) MMF dose-dependently inhibited vocalizations and mechanosensitivity (hindlimb withdrawal reflexes) of rats in an arthritis pain model (kaolin-carrageenan-induced monoarthritis in the knee). Stereotaxic administration of MMF into the CeA by microdialysis also inhibited vocalizations but had a limited effect on mechanosensitivity, suggesting a differential contribution to emotional-affective vs sensory pain aspects. Extracellular single-unit recordings of CeA neurons in anesthetized rats showed that stereotaxic administration of MMF into the CeA by microdialysis inhibited background activity and responses of CeA neurons to knee joint stimulation in the arthritis pain model. Monomethyl fumarate had no effect on behaviors and neuronal activity under normal conditions. The results suggest that MMF can inhibit emotional-affective responses in an arthritis pain model through an action that involves the amygdala (CeA).
Collapse
Affiliation(s)
- Hyunyoung Kim
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA
| | - Jeremy Thompson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA
| | - Vadivel Ganapathy
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA
| |
Collapse
|
18
|
Sang K, Bao C, Xin Y, Hu S, Gao X, Wang Y, Bodner M, Zhou YD, Dong XW. Plastic change of prefrontal cortex mediates anxiety-like behaviors associated with chronic pain in neuropathic rats. Mol Pain 2018; 14:1744806918783931. [PMID: 29871537 PMCID: PMC6077894 DOI: 10.1177/1744806918783931] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Clinical studies show that anxiety and chronic pain are concomitant. The neural
basis for the comorbidity is unclear. The prefrontal cortex (PFC) has been
recognized as a critical area for affective disorders and chronic pain
modulation. In this study, we examined the role of the PFC in the pathogenesis
of anxiety associated with chronic pain in a rat model of neuropathic pain with
spare nerve injury (SNI). The SNI rats showed apparent anxiety-like behaviors in
both open field (OF) test and elevated-plus maze (EPM) test eight weeks after
surgery. Thus, the number of entries to the central area in the OF decreased to
45% (±5%, n = 15) of sham control (n = 17), while the overall motor activity
(i.e., total distance) was unaffected. In the EPM, the percentage of entries
into the open arms significantly (p < 0.001) decreased in SNI rats (SNI:
12.58 ± 2.7%, n = 15; sham: 30.75 ± 2.82%, n = 17), so did the time spent in the
open arms (SNI: 4.35 ± 1.45%, n = 15; Sham: 11.65 ± 2.18%, n = 17). To explore
the neural basis for the association between anxiety and chronic pain, local
field potentials (LFPs) were recorded from the medial PFC (mPFC) and ventral
hippocampus. In SNI rats, there were significantly greater increases in both
theta-frequency power in the mPFC and theta-frequency synchronization between
the mPFC and ventral hippocampus, when animals were displaying elevated
anxiety-like behaviors in avoiding anxiogenic regions in EPM and OF chamber.
Western blot analyses showed a significant elevation of serotonin transporter
expression in the anxious SNI rats. Inhibition of serotonin transporter
effectively alleviated anxiety-like behaviors following sub-chronic (15 days)
treatment with systemic citalopram (10 mg/kg/day, intraperitoneally). Moreover,
the anxiety-like behaviors in the SNI rats were also suppressed by direct mPFC
application of serotonin. Taken together, we conclude that the plasticity of
serotonin transmission in the mPFC likely contribute to the promotion of anxiety
state associated with neuropathic pain.
Collapse
Affiliation(s)
- Kangning Sang
- 1 Key Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Chaofei Bao
- 1 Key Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yushi Xin
- 1 Key Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Shunan Hu
- 1 Key Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xian Gao
- 1 Key Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yongsheng Wang
- 2 School of Life Sciences, East China Normal University, Shanghai, China
| | | | - Yong-Di Zhou
- 4 Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA.,5 Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Xiao-Wei Dong
- 1 Key Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,6 NYU-ECNU Institute of Brain and Cognitive Science at New York University Shanghai, Shanghai, China
| |
Collapse
|
19
|
Abstract
The amygdala is a limbic brain region that plays a key role in emotional processing, neuropsychiatric disorders, and the emotional-affective dimension of pain. Preclinical and clinical studies have identified amygdala hyperactivity as well as impairment of cortical control mechanisms in pain states. Hyperactivity of basolateral amygdala (BLA) neurons generates enhanced feedforward inhibition and deactivation of the medial prefrontal cortex (mPFC), resulting in pain-related cognitive deficits. The mPFC sends excitatory projections to GABAergic neurons in the intercalated cell mass (ITC) in the amygdala, which project to the laterocapsular division of the central nucleus of the amygdala (CeLC; output nucleus) and serve gating functions for amygdala output. Impairment of these cortical control mechanisms allows the development of amygdala pain plasticity. Mechanisms of abnormal amygdala activity in pain with particular focus on loss of cortical control mechanisms as well as new strategies to correct pain-related amygdala dysfunction will be discussed in the present review.
Collapse
|
20
|
He BH, Christin M, Mouchbahani-Constance S, Davidova A, Sharif-Naeini R. Mechanosensitive ion channels in articular nociceptors drive mechanical allodynia in osteoarthritis. Osteoarthritis Cartilage 2017; 25:2091-2099. [PMID: 28882752 DOI: 10.1016/j.joca.2017.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 08/18/2017] [Accepted: 08/29/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a disabling and highly prevalent condition affecting millions worldwide. Pain is the major complaint of OA patients and is presently inadequately managed. It manifests as mechanical allodynia, a painful response to innocuous stimuli such as joint movement. Allodynia is due in part to the sensitization of articular nociceptors to mechanical stimuli. These nociceptors respond to noxious mechanical stimuli applied to their terminals via the expression of depolarizing high-threshold mechanosensitive ion channels (MSICs) that convert painful mechanical forces into electrical signals. In this study, we examined the contribution of MSICs to mechanical allodynia in a mouse model of OA. METHOD Sodium mono-iodoacetate (MIA) was injected in the left knee of adult male Trpv1:Cre; GFP mice. Primary mechanical allodynia was monitored using the knee-bend test. Single-channel patch clamp electrophysiology was performed on visually-identified knee-innervating nociceptors. Dorsal horn neuronal activation was assessed by Fos immunoreactivity. RESULTS In examining the gating properties of MSICs of naïve and OA mice, we discovered that their activation threshold is greatly reduced, causing their opening at significantly lower stimuli intensities. Consequently, nociceptors are activated by mild mechanical stimuli. These channels are reversibly inhibited by the selective MSIC inhibitor GsMTx4, and the intra-articular injection of this peptide significantly reduced the activation of dorsal horn nociceptive circuits and primary mechanical allodynia in OA mice. CONCLUSIONS These results suggest that MSICs are sensitized during OA and directly contribute to mechanical allodynia. They therefore represent potential therapeutic targets in the treatment of OA pain.
Collapse
Affiliation(s)
- B H He
- Department of Physiology and Cell Information Systems, McGill University, Canada.
| | - M Christin
- Department of Physiology and Cell Information Systems, McGill University, Canada.
| | | | - A Davidova
- Department of Physiology and Cell Information Systems, McGill University, Canada.
| | - R Sharif-Naeini
- Department of Physiology and Cell Information Systems, McGill University, Canada.
| |
Collapse
|
21
|
Neuronal-Glial Interactions Maintain Chronic Neuropathic Pain after Spinal Cord Injury. Neural Plast 2017; 2017:2480689. [PMID: 28951789 PMCID: PMC5603132 DOI: 10.1155/2017/2480689] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 02/01/2023] Open
Abstract
The hyperactive state of sensory neurons in the spinal cord enhances pain transmission. Spinal glial cells have also been implicated in enhanced excitability of spinal dorsal horn neurons, resulting in pain amplification and distortions. Traumatic injuries of the neural system such as spinal cord injury (SCI) induce neuronal hyperactivity and glial activation, causing maladaptive synaptic plasticity in the spinal cord. Recent studies demonstrate that SCI causes persistent glial activation with concomitant neuronal hyperactivity, thus providing the substrate for central neuropathic pain. Hyperactive sensory neurons and activated glial cells increase intracellular and extracellular glutamate, neuropeptides, adenosine triphosphates, proinflammatory cytokines, and reactive oxygen species concentrations, all of which enhance pain transmission. In addition, hyperactive sensory neurons and glial cells overexpress receptors and ion channels that maintain this enhanced pain transmission. Therefore, post-SCI neuronal-glial interactions create maladaptive synaptic circuits and activate intracellular signaling events that permanently contribute to enhanced neuropathic pain. In this review, we describe how hyperactivity of sensory neurons contributes to the maintenance of chronic neuropathic pain via neuronal-glial interactions following SCI.
Collapse
|
22
|
Li Z, Yin P, Chen J, Jin S, Liu J, Luo F. CaMKIIα may modulate fentanyl-induced hyperalgesia via a CeLC-PAG-RVM-spinal cord descending facilitative pain pathway in rats. PLoS One 2017; 12:e0177412. [PMID: 28489932 PMCID: PMC5425219 DOI: 10.1371/journal.pone.0177412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/26/2017] [Indexed: 11/30/2022] Open
Abstract
Each of the lateral capsular division of central nucleus of amygdala(CeLC), periaqueductal gray (PAG), rostral ventromedial medulla(RVM) and spinal cord has been proved to contribute to the development of opioid-induced hyperalgesia(OIH). Especially, Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) in CeLC and spinal cord seems to play a key role in OIH modulation. However, the pain pathway through which CaMKIIα modulates OIH is not clear. The pathway from CeLC to spinal cord for this modulation was explored in the present study. Mechanical and thermal hyperalgesia were tested by von Frey test or Hargreaves test, respectively. CaMKIIα activity (phospho-CaMKIIα, p-CaMKIIα) was evaluated by western blot analysis. CaMKIIα antagonist (KN93) was micro-infused into CeLC, spinal cord or PAG, respectively, to evaluate its effect on behavioral hyperalgesia and p-CaMKIIα expression in CeLC, PAG, RVM and spinal cord. Then the underlying synaptic mechanism was explored by recording miniature excitatory postsynaptic currents (mEPSCs) on PAG slices using whole-cell voltage-clamp methods. Results showed that inhibition of CeLC, PAG or spinal CaMKIIα activity respectively by KN93, reversed both mechanical and thermal hyperalgesia. Microinjection of KN93 into CeLC decreased p-CaMKIIα expression in CeLC, PAG, RVM and spinal cord; while intrathecal KN93 can only block spinal but not CeLC CaMKIIα activity. KN93 injected into PAG just decreased p-CaMKIIα expression in PAG, RVM and spinal cord, but not in the CeLC. Similarly, whole-cell voltage-clamp recording found the frequency and amplitude of mEPSCs in PAG cells were decreased by KN93 added in PAG slice or micro-infused into CeLC in vivo. These results together with previous findings suggest that CaMKIIα may modulate OIH via a CeLC-PAG-RVM-spinal cord descending facilitative pain pathway.
Collapse
Affiliation(s)
- Zhen Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingping Yin
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Chen
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Shenglan Jin
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieqiong Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Li Z, Li C, Yin P, Wang ZJ, Luo F. Inhibition of CaMKIIα in the Central Nucleus of Amygdala Attenuates Fentanyl-Induced Hyperalgesia in Rats. J Pharmacol Exp Ther 2016; 359:82-9. [PMID: 27451410 DOI: 10.1124/jpet.116.233817] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
Opioid-induced hyperalgesia (OIH) is a less-studied phenomenon that has been reported in both preclinical and clinical studies. Although the underlying cause is not entirely understood, OIH is a real-life problem that affects millions of patients on a daily basis. Research has implicated the important contribution of Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) to OIH at the level of spinal nociceptors. To expand our understanding of the entire brain circuitry driving OIH, in this study we investigated the role of CaMKIIα in the laterocapcular division of the central amygdala (CeLC), the conjunctive point between the spinal cord and rostro-ventral medulla. OIH was produced by repeated fentanyl administration in the rat. Correlating with the development of mechanical allodynia and thermal hyperalgesia, CaMKIIα activity was significantly elevated in the CeLC in OIH. In addition, the frequency and amplitude of spontaneous miniature excitatory postsynaptic currents (mEPSCs) in CeLC neurons were significantly increased in OIH. 2-[N-(2-hidroxyethyl)-N-(4-methoxy-benzenesulfonyl)]-amino-N-(4-chlorocinnamyl)-N-methylbenzylamine, a CaMKIIα inhibitor, dose dependently reversed sensory hypersensitivity, activation of CeLC CaMKIIα, and mEPSCs in OIH. Taken together, our data for the first time implicate a critical role of CeLC CaMKIIα in OIH.
Collapse
Affiliation(s)
- Zhen Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.L., P.Y, F.L.); Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (C. L.); and Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois (Z.J.W)
| | - Chenhong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.L., P.Y, F.L.); Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (C. L.); and Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois (Z.J.W)
| | - Pingping Yin
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.L., P.Y, F.L.); Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (C. L.); and Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois (Z.J.W)
| | - Zaijie Jim Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.L., P.Y, F.L.); Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (C. L.); and Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois (Z.J.W)
| | - Fang Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.L., P.Y, F.L.); Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (C. L.); and Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois (Z.J.W)
| |
Collapse
|
24
|
Muley MM, Krustev E, McDougall JJ. Preclinical Assessment of Inflammatory Pain. CNS Neurosci Ther 2015; 22:88-101. [PMID: 26663896 DOI: 10.1111/cns.12486] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
While acute inflammation is a natural physiological response to tissue injury or infection, chronic inflammation is maladaptive and engenders a considerable amount of adverse pain. The chemical mediators responsible for tissue inflammation act on nociceptive nerve endings to lower neuronal excitation threshold and sensitize afferent firing rate leading to the development of allodynia and hyperalgesia, respectively. Animal models have aided in our understanding of the pathophysiological mechanisms responsible for the generation of chronic inflammatory pain and allowed us to identify and validate numerous analgesic drug candidates. Here we review some of the commonly used models of skin, joint, and gut inflammatory pain along with their relative benefits and limitations. In addition, we describe and discuss several behavioral and electrophysiological approaches used to assess the inflammatory pain in these preclinical models. Despite significant advances having been made in this area, a gap still exists between fundamental research and the implementation of these findings into a clinical setting. As such we need to characterize inherent pathophysiological pathways and develop new endpoints in these animal models to improve their predictive value of human inflammatory diseases in order to design safer and more effective analgesics.
Collapse
Affiliation(s)
- Milind M Muley
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Eugene Krustev
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jason J McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
25
|
Yu J, Ding CP, Wang J, Wang T, Zhang T, Zeng XY, Wang JY. Red nucleus glutamate facilitates neuropathic allodynia induced by spared nerve injury through non-NMDA and metabotropic glutamate receptors. J Neurosci Res 2015; 93:1839-48. [DOI: 10.1002/jnr.23671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Jing Yu
- Department of Immunology and Pathogenic Biology; Xi'an Jiaotong University Health Science Center; Xi'an Shaanxi People's Republic of China
| | - Cui-Ping Ding
- Department of Immunology and Pathogenic Biology; Xi'an Jiaotong University Health Science Center; Xi'an Shaanxi People's Republic of China
| | - Jing Wang
- Department of Immunology and Pathogenic Biology; Xi'an Jiaotong University Health Science Center; Xi'an Shaanxi People's Republic of China
| | - Ting Wang
- Department of Immunology and Pathogenic Biology; Xi'an Jiaotong University Health Science Center; Xi'an Shaanxi People's Republic of China
- Department of Nuclear Medicine; Ankang City Center Hospital; Ankang Shaanxi People's Republic of China
| | - Tao Zhang
- Department of Immunology and Pathogenic Biology; Xi'an Jiaotong University Health Science Center; Xi'an Shaanxi People's Republic of China
- Department of Nuclear Medicine; Ankang City Center Hospital; Ankang Shaanxi People's Republic of China
| | - Xiao-Yan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital; Xi'an Jiaotong University Health Science Center; Xi'an Shaanxi People's Republic of China
| | - Jun-Yang Wang
- Department of Immunology and Pathogenic Biology; Xi'an Jiaotong University Health Science Center; Xi'an Shaanxi People's Republic of China
| |
Collapse
|
26
|
Dexmedetomidine Dose-Dependently Attenuates Ropivacaine-Induced Seizures and Negative Emotions Via Inhibiting Phosphorylation of Amygdala Extracellular Signal-Regulated Kinase in Mice. Mol Neurobiol 2015; 53:2636-46. [PMID: 26099305 DOI: 10.1007/s12035-015-9276-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/01/2015] [Indexed: 02/07/2023]
Abstract
Ropivacaine (Ropi), one of the newest and safest amino amide local anesthetics, is linked to toxicity, including the potential for seizures, changes in behavior, and even cardiovascular collapse. Dexmedetomidine (Dex), an α2-adrenergic receptor agonist, has been widely used in anesthesia and critical care practice. To date, the underlying mechanisms of the effects of Dex premedication on Ropi-induced toxicity have not been clearly identified. In the current study, we investigated the effects of increasing doses of Dex premedication on 50% convulsive dose (CD50) of Ropi. With increasing doses of intraperitoneal (i.p.) Dex 10 min prior to each i.p. RopiCD50, the latency and duration of seizure activity were recorded. Open-field (OF) and elevated plus maze (EPM) test were used to measure negative behavioral emotions such as depression and anxiety. Immunohistochemistry and Western blot were utilized to investigate phosphorylation-extracellular regulated protein kinases (p-ERK) expression in the basolateral amygdala (BLA) on 2 h and in the central amygdala (CeA) on 24 h after convulsion in mice. The results of our investigation demonstrated that Dex dose-dependently increased RopiCD50, prolonged the latency and shortened the duration of each RopiCD50-induced seizure, improved the negative emotions revealed by both OF and EPM test, and inhibited p-ERK expression in the BLA and the CeA.
Collapse
|
27
|
|
28
|
Kolber BJ. mGluRs Head to Toe in Pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:281-324. [DOI: 10.1016/bs.pmbts.2014.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Abstract
A limbic brain area, the amygdala plays a key role in emotional responses and affective states and disorders such as learned fear, anxiety, and depression. The amygdala has also emerged as an important brain center for the emotional-affective dimension of pain and for pain modulation. Hyperactivity in the laterocapsular division of the central nucleus of the amygdala (CeLC, also termed the "nociceptive amygdala") accounts for pain-related emotional responses and anxiety-like behavior. Abnormally enhanced output from the CeLC is the consequence of an imbalance between excitatory and inhibitory mechanisms. Impaired inhibitory control mediated by a cluster of GABAergic interneurons in the intercalated cell masses (ITC) allows the development of glutamate- and neuropeptide-driven synaptic plasticity of excitatory inputs from the brainstem (parabrachial area) and from the lateral-basolateral amygdala network (LA-BLA, site of integration of polymodal sensory information). BLA hyperactivity also generates abnormally enhanced feedforward inhibition of principal cells in the medial prefrontal cortex (mPFC), a limbic cortical area that is strongly interconnected with the amygdala. Pain-related mPFC deactivation results in cognitive deficits and failure to engage cortically driven ITC-mediated inhibitory control of amygdala processing. Impaired cortical control allows the uncontrolled persistence of amygdala pain mechanisms.
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, Center for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430-6592, USA,
| |
Collapse
|
30
|
Palazzo E, Marabese I, de Novellis V, Rossi F, Maione S. Supraspinal metabotropic glutamate receptors: a target for pain relief and beyond. Eur J Neurosci 2014; 39:444-54. [PMID: 24494684 DOI: 10.1111/ejn.12398] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 01/09/2023]
Abstract
Glutamate is the main excitatory neurotransmitter in the central nervous system, controlling the majority of synapses. Apart from neurodegenerative diseases, growing evidence suggests that glutamate is involved in psychiatric and neurological disorders, including pain. Glutamate signaling is mediated via ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). So far, drugs acting via modulation of glutamatergic system are few in number, and all are associated with iGluRs and important side effects. The glutamatergic system may be finely modulated by mGluRs. Signaling via these receptors is slower and longer-lasting, and permits fine-tuning of glutamate transmission. There have been eight mGluRs cloned to date (mGluR1-mGluR8), and these are further divided into three groups on the basis of sequence homology, pharmacological profile, and second messenger signaling. The pattern of expression of mGluRs along the pain neuraxis makes them suitable substrates for the design of novel analgesics. This review will focus on the supraspinal mGluRs, whose pharmacological manipulation generates a variety of effects, which depend on the synaptic location, the cell type on which they are located, and the expression in particular pain modulation areas, such as the periaqueductal gray, which plays a major role in the descending modulation of pain, and the central nucleus of the amygdala, which is an important center for the processing of emotional information associated with pain. A particular emphasis will also be given to the novel selective mGluR subtype ligands, as well as positive and negative allosteric modulators, which have permitted discrimination of the individual roles of the different mGluR subtypes, and subtle modulation of central nervous system functioning and related disorders.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Anaesthesiology, Surgery and Emergency, The Second University of Naples, Piazza Luigi Miraglia 2, 80138, Naples, Italy
| | | | | | | | | |
Collapse
|
31
|
Grégoire S, Wattiez AS, Etienne M, Marchand F, Ardid D. Monoarthritis-induced emotional and cognitive impairments in rats are sensitive to low systemic doses or intra-amygdala injections of morphine. Eur J Pharmacol 2014; 735:1-9. [PMID: 24747193 DOI: 10.1016/j.ejphar.2014.03.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 02/21/2014] [Accepted: 03/26/2014] [Indexed: 11/27/2022]
Abstract
Chronic pain is a multidimensional experience that not only includes changes in nociception but also impairments in emotional and cognitive functions, not often taken into account in preclinical research. The present study investigated emotional and cognitive impairments in an animal model of persistent inflammatory pain as well as the involvement of the basolateral complex (BLC) of the amygdala in these components. Monoarthritis was induced by intra-articular injection of complete Freund׳s adjuvant. Mechanical hypersensitivity, anxiety and depressive-like behaviours as well as cognitive capacities were assessed using several tests, such as von Frey, social interaction, open field, saccharin preference, spatial and social recognition memory tests. The effects of morphine administered systemically or into the BLC of the amygdala were also studied. Monoarthritic rats exhibited mechanical hypersensitivity, anxiety and depressive-like behaviours as well as cognitive impairments. Whereas low systemic doses and intra-BLC infusion of morphine failed to reduce mechanical hypersensitivity, they reversed monoarthritis-induced anxiety-like behaviours and cognitive impairments. Our findings further support a crucial role of amygdala in the effect of morphine on emotional/cognitive components of pain and not on mechanical hypersensitivity. Finally, our study highlights the interest of a multi-behavioural approach in the assessment of pain and the analgesic effect of drugs.
Collapse
Affiliation(s)
- Stéphanie Grégoire
- Clermont Université, Université d׳Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; Clermont-Ferrand Inserm, U1107, F-63001 Clermont-Ferrand BP 10448, F-63000 Clermont-Ferrand, France.
| | - Anne-Sophie Wattiez
- Clermont Université, Université d׳Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; Clermont-Ferrand Inserm, U1107, F-63001 Clermont-Ferrand BP 10448, F-63000 Clermont-Ferrand, France.
| | - Monique Etienne
- Clermont Université, Université d׳Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; Clermont-Ferrand Inserm, U1107, F-63001 Clermont-Ferrand BP 10448, F-63000 Clermont-Ferrand, France.
| | - Fabien Marchand
- Clermont Université, Université d׳Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; Clermont-Ferrand Inserm, U1107, F-63001 Clermont-Ferrand BP 10448, F-63000 Clermont-Ferrand, France.
| | - Denis Ardid
- Clermont Université, Université d׳Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; Clermont-Ferrand Inserm, U1107, F-63001 Clermont-Ferrand BP 10448, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
32
|
Ji G, Neugebauer V. CB1 augments mGluR5 function in medial prefrontal cortical neurons to inhibit amygdala hyperactivity in an arthritis pain model. Eur J Neurosci 2014; 39:455-66. [PMID: 24494685 PMCID: PMC4288820 DOI: 10.1111/ejn.12432] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/17/2013] [Accepted: 10/25/2013] [Indexed: 12/29/2022]
Abstract
The medial prefrontal cortex (mPFC) serves executive control functions and forms direct connections with subcortical areas such as the amygdala. Our previous work showed abnormal inhibition of mPFC pyramidal cells and hyperactivity of amygdala output neurons in an arthritis pain model. To restore mPFC activity and hence control pain-related amygdala hyperactivity this study focused on CB1 and mGluR5 receptors, which are important modulators of cortical functions. Extracellular single-unit recordings of infralimbic mPFC pyramidal cells and of amygdala output neurons in the laterocapsular division of the central nucleus (CeLC) were made in anesthetised adult male rats. mPFC neurons were classified as 'excited' or 'inhibited' based on their response to brief innocuous and noxious test stimuli. After arthritis pain induction, background activity and evoked responses of excited neurons and background activity and inhibition of inhibited neurons decreased. Stereotaxic application of an mGluR5-positive allosteric modulator (N-cyclobutyl-6-((3-fluorophenyl)ethynyl) nicotinamide hydrochloride, VU0360172) into the mPFC increased background and evoked activity of excited, but not inhibited, mPFC neurons under normal conditions but not in arthritis. A selective CB1 receptor agonist (arachidonyl-2-chloroethylamide) alone had no effect but restored the facilitatory effects of VU0360172 in the pain model. Coactivation of CB1 and mGluR5 in the mPFC inhibited the pain-related activity increase of CeLC neurons but had no effect under normal conditions. The data suggest that excited mPFC neurons are inversely linked to amygdala output (CeLC) and that CB1 can increase mGluR5 function in this subset of mPFC neurons to engage cortical control of abnormally enhanced amygdala output in pain.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555-1069, USA
| | | |
Collapse
|
33
|
Neuroprotective activity of thioctic acid in central nervous system lesions consequent to peripheral nerve injury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:985093. [PMID: 24527432 PMCID: PMC3914604 DOI: 10.1155/2013/985093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 11/21/2022]
Abstract
Peripheral neuropathies are heterogeneous disorders presenting often with hyperalgesia and allodynia. This study has assessed if chronic constriction injury (CCI) of sciatic nerve is accompanied by increased oxidative stress and central nervous system (CNS) changes and if these changes are sensitive to treatment with thioctic acid. Thioctic acid is a naturally occurring antioxidant existing in two optical isomers (+)- and (−)-thioctic acid and in the racemic form. It has been proposed for treating disorders associated with increased oxidative stress. Sciatic nerve CCI was made in spontaneously hypertensive rats (SHRs) and in normotensive reference cohorts. Rats were untreated or treated intraperitoneally for 14 days with (+/−)-, (+)-, or (−)-thioctic acid. Oxidative stress, astrogliosis, myelin sheets status, and neuronal injury in motor and sensory cerebrocortical areas were assessed. Increase of oxidative stress markers, astrogliosis, and neuronal damage accompanied by a decreased expression of neurofilament were observed in SHR. This phenomenon was more pronounced after CCI. Thioctic acid countered astrogliosis and neuronal damage, (+)-thioctic acid being more active than (+/−)- or (−)-enantiomers. These findings suggest a neuroprotective activity of thioctic acid on CNS lesions consequent to CCI and that the compound may represent a therapeutic option for entrapment neuropathies.
Collapse
|
34
|
Apkarian AV, Neugebauer V, Koob G, Edwards S, Levine JD, Ferrari L, Egli M, Regunathan S. Neural mechanisms of pain and alcohol dependence. Pharmacol Biochem Behav 2013; 112:34-41. [PMID: 24095683 DOI: 10.1016/j.pbb.2013.09.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/06/2013] [Accepted: 09/17/2013] [Indexed: 01/09/2023]
Abstract
An association between chronic pain conditions and alcohol dependence has been revealed in numerous studies with episodes of alcohol abuse antedating chronic pain in some people and alcohol dependence emerging after the onset of chronic pain in others. Alcohol dependence and chronic pain share common neural circuits giving rise to the possibility that chronic pain states could significantly affect alcohol use patterns and that alcohol dependence could influence pain sensitivity. The reward and emotional pathways that regulate drug/alcohol addiction also mediate chronic pain. For example, pain-evoked activation of brain learning and brain reward circuitry may modulate cortical processing of pain and central sensitization mediated by mesocorticolimbic circuitry. Imbalance and reorganization of amygdala-mPFC interactions may not only be important for persistent pain, but also for disorders characterized by the abnormal persistence of emotional-affective states such as drug and alcohol addiction. Further studies are necessary to understand how these neural circuits are regulated in comorbid conditions of alcoholism and chronic pain. In addition, long term alcohol use could induce pain symptoms and may exacerbate chronic pain arising from other sources. While prior studies have established a role of neuroendocrine stress axis mediators in alcohol abuse and neurotoxic effects, these studies have not explored the distinction between the individual impact of alcohol and stress hormones. Future studies should explore the mechanisms mediating the contribution of alcohol and stress axis hormones on pain, an important question in our understanding of the neurobiology of alcohol abuse and chronic pain.
Collapse
Affiliation(s)
- A Vania Apkarian
- Department of Neuroscience, Northwestern University Med School, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ren W, Kiritoshi T, Grégoire S, Ji G, Guerrini R, Calo G, Neugebauer V. Neuropeptide S: a novel regulator of pain-related amygdala plasticity and behaviors. J Neurophysiol 2013; 110:1765-81. [PMID: 23883857 PMCID: PMC3798934 DOI: 10.1152/jn.00874.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 07/18/2013] [Indexed: 12/12/2022] Open
Abstract
Amygdala plasticity is an important contributor to the emotional-affective dimension of pain. Recently discovered neuropeptide S (NPS) has anxiolytic properties through actions in the amygdala. Behavioral data also suggest antinociceptive effects of centrally acting NPS, but site and mechanism of action remain to be determined. This is the first electrophysiological analysis of pain-related NPS effects in the brain. We combined whole cell patch-clamp recordings in brain slices and behavioral assays to test the hypothesis that NPS activates synaptic inhibition of amygdala output to suppress pain behavior in an arthritis pain model. Recordings of neurons in the laterocapsular division of the central nucleus (CeLC), which serves pain-related amygdala output functions, show that NPS inhibited the enhanced excitatory drive [monosynaptic excitatory postsynaptic currents (EPSCs)] from the basolateral amygdala (BLA) in the pain state. As shown by miniature EPSC analysis, the inhibitory effect of NPS did not involve direct postsynaptic action on CeLC neurons but rather a presynaptic, action potential-dependent network mechanism. Indeed, NPS increased external capsule (EC)-driven synaptic inhibition of CeLC neurons through PKA-dependent facilitatory postsynaptic action on a cluster of inhibitory intercalated (ITC) cells. NPS had no effect on BLA neurons. High-frequency stimulation (HFS) of excitatory EC inputs to ITC cells also inhibited synaptic activation of CeLC neurons, providing further evidence that ITC activation can control amygdala output. The cellular mechanisms by which EC-driven synaptic inhibition controls CeLC output remain to be determined. Administration of NPS into ITC, but not CeLC, also inhibited vocalizations and anxiety-like behavior in arthritic rats. A selective NPS receptor antagonist ([d-Cys(tBu)(5)]NPS) blocked electrophysiological and behavioral effects of NPS. Thus NPS is a novel tool to control amygdala output and pain-related affective behaviors through a direct action on inhibitory ITC cells.
Collapse
Affiliation(s)
- Wenjie Ren
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | | | |
Collapse
|
36
|
Grégoire S, Neugebauer V. 5-HT2CR blockade in the amygdala conveys analgesic efficacy to SSRIs in a rat model of arthritis pain. Mol Pain 2013; 9:41. [PMID: 23937887 PMCID: PMC3751088 DOI: 10.1186/1744-8069-9-41] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/09/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pain, including arthritic pain, has a negative affective component and is often associated with anxiety and depression. However, selective serotonin reuptake inhibitor antidepressants (SSRIs) show limited effectiveness in pain. The amygdala plays a key role in the emotional-affective component of pain, pain modulation and affective disorders. Neuroplasticity in the basolateral and central amygdala (BLA and CeA, respectively) correlate positively with pain behaviors. Evidence suggests that serotonin receptor subtype 5-HT2CR in the amygdala contributes critically to anxiogenic behavior and anxiety disorders. In this study, we tested the hypothesis that 5-HT2CR in the amygdala accounts for the limited effectiveness of SSRIs in reducing pain behaviors and that 5-HT2CR blockade in the amygdala renders SSRIs effective. RESULTS Nocifensive reflexes, vocalizations and anxiety-like behavior were measured in adult male Sprague-Dawley rats. Behavioral experiments were done in sham controls and in rats with arthritis induced by kaolin/carrageenan injections into one knee joint. Rats received a systemic (i.p.) administration of an SSRI (fluvoxamine, 30 mg/kg) or vehicle (sterile saline) and stereotaxic application of a selective 5-HT2CR antagonist (SB242084, 10 μM) or vehicle (ACSF) into BLA or CeA by microdialysis. Compared to shams, arthritic rats showed decreased hindlimb withdrawal thresholds (increased reflexes), increased duration of audible and ultrasonic vocalizations, and decreased open-arm choices in the elevated plus maze test suggesting anxiety-like behavior. Fluvoxamine (i.p.) or SB242084 (intra-BLA) alone had no significant effect, but their combination inhibited the pain-related increase of vocalizations and anxiety-like behavior without affecting spinal reflexes. SB242084 applied into the CeA in combination with systemic fluvoxamine had no effect on vocalizations and spinal reflexes. CONCLUSIONS The data suggest that 5-HT2CR in the amygdala, especially in the BLA, limits the effectiveness of SSRIs to inhibit pain-related emotional-affective behaviors.
Collapse
Affiliation(s)
- Stéphanie Grégoire
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston Texas 77555-1069, USA
| | - Volker Neugebauer
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston Texas 77555-1069, USA
| |
Collapse
|
37
|
Veinante P, Yalcin I, Barrot M. The amygdala between sensation and affect: a role in pain. J Mol Psychiatry 2013; 1:9. [PMID: 25408902 PMCID: PMC4223879 DOI: 10.1186/2049-9256-1-9] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/11/2013] [Indexed: 01/15/2023] Open
Abstract
The amygdala is a structure of the temporal lobe thought to be involved in assigning emotional significance to environmental information and triggering adapted physiological, behavioral and affective responses. A large body of literature in animals and human implicates the amygdala in fear. Pain having a strong affective and emotional dimension, the amygdala, especially its central nucleus (CeA), has also emerged in the last twenty years as key element of the pain matrix. The CeA receives multiple nociceptive information from the brainstem, as well as highly processed polymodal information from the thalamus and the cerebral cortex. It also possesses the connections that allow influencing most of the descending pain control systems as well as higher centers involved in emotional, affective and cognitive functions. Preclinical studies indicate that the integration of nociceptive inputs in the CeA only marginally contributes to sensory-discriminative components of pain, but rather contributes to associated behavior and affective responses. The CeA doesn’t have a major influence on responses to acute nociception in basal condition, but it induces hypoalgesia during aversive situation, such as stress or fear. On the contrary, during persistent pain states (inflammatory, visceral, neuropathic), a long-lasting functional plasticity of CeA activity contributes to an enhancement of the pain experience, including hyperalgesia, aversive behavioral reactions and affective anxiety-like states.
Collapse
Affiliation(s)
- Pierre Veinante
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212, Centre National de la Recherche Scientifique, 21 Rue René Descartes, 67084 Strasbourg Cedex, France ; Université de Strasbourg, 21 Rue René Descartes, 67084 Strasbourg Cedex, France
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212, Centre National de la Recherche Scientifique, 21 Rue René Descartes, 67084 Strasbourg Cedex, France ; Université de Strasbourg, 21 Rue René Descartes, 67084 Strasbourg Cedex, France
| | - Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212, Centre National de la Recherche Scientifique, 21 Rue René Descartes, 67084 Strasbourg Cedex, France ; Université de Strasbourg, 21 Rue René Descartes, 67084 Strasbourg Cedex, France
| |
Collapse
|
38
|
Han P, Zhao J, Liu SB, Yang CJ, Wang YQ, Wu GC, Xu DM, Mi WL. Interleukin-33 mediates formalin-induced inflammatory pain in mice. Neuroscience 2013; 241:59-66. [PMID: 23523996 DOI: 10.1016/j.neuroscience.2013.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 01/21/2023]
Abstract
Interleukin-33 (IL-33), a member of the IL-1 family, has attracted growing interest since its discovery in 2003. IL-33 has been implicated in many diseases, including arthritis, asthma, allergies, and cardiovascular and infectious diseases. However, few studies have investigated its role in the transmission and modulation of pain. The present study was designed to explore the possible roles of IL-33 and its receptor, ST2, in formalin-induced inflammatory pain in mice. We found that both subcutaneous (s.c., 300 ng) and intrathecal injection (i.t., 3 ng) of recombinant IL-33 (rIL-33) increased paw lifting and licking time not only in normal mice but also in formalin models. Administration of ST2 antibody, which blocked the IL-33/ST2 signaling, alleviated the formalin-induced spontaneous pain behavior. Moreover, the ST2(-/-) mice showed significantly decreased pain behavior, as well as reduced ultrasonic vocalization induced by formalin, compared with the wild-type group. Additionally, ST2 antibody alleviated the potentiating effects of rIL-33 on pain behavior in the formalin mice, indicating that IL-33 plays a role in pain modulation through its ST2 receptor. These data suggest IL-33 and its ST2 receptor mediate formalin-induced inflammatory pain, and as a result this cytokine and its receptor may be new targets for the development of analgesics.
Collapse
Affiliation(s)
- P Han
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ji G, Fu Y, Adwanikar H, Neugebauer V. Non-pain-related CRF1 activation in the amygdala facilitates synaptic transmission and pain responses. Mol Pain 2013; 9:2. [PMID: 23410057 PMCID: PMC3583817 DOI: 10.1186/1744-8069-9-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/13/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) plays an important role in affective states and disorders. CRF is not only a "stress hormone" but also a neuromodulator outside the hypothalamic-pituitary-adrenocortical (HPA) axis. The amygdala, a brain center for emotions, is a major site of extrahypothalamic expression of CRF and its G-protein-coupled receptors. Our previous studies showed that endogenous activation of CRF1 receptors in an arthritis pain model contributes to amygdala hyperactivity and pain-related behaviors. Here we examined the synaptic and behavioral effects of CRF in the amygdala of normal animals in the absence of tissue injury or disease. RESULTS Whole-cell patch-clamp recordings of neurons in the latero-capsular division of the central nucleus of the amygdala (CeLC) in brain slices from normal rats showed that CRF (0.1-10 nM) increased excitatory postsynaptic currents (EPSCs) at the "nociceptive" parabrachio-amygdaloid (PB-CeLC) synapse and also increased neuronal output. Synaptic facilitation involved a postsynaptic action and was blocked by an antagonist for CRF1 (NBI27914, 1 μM) but not CRF2 (astressin-2B, 1 μM) and by an inhibitor of PKA (KT5720, 1 μM) but not PKC (GF109203X, 1 μM). CRF increased a latent NMDA receptor-mediated EPSC, and this effect also required CRF1 and PKA but not CRF2 and PKC. Stereotaxic administration of CRF (10 μM, concentration in microdialysis probe) into the CeLC by microdialysis in awake rats increased audible and ultrasonic vocalizations and decreased hindlimb withdrawal thresholds. Behavioral effects of CRF were blocked by a NBI27914 (100 μM) and KT5720 (100 μM) but not GF109203x (100 μM). CRF effects persisted when HPA axis function was suppressed by pretreatment with dexamethasone (50 μg/kg, subcutaneously). CONCLUSIONS Non-pain-related activation of CRF1 receptors in the amygdala can trigger pain-responses in normal animals through a mechanism that involves PKA-dependent synaptic facilitation in CeLC neurons independent of HPA axis function. The results suggest that conditions of increased amygdala CRF levels can contribute to pain in the absence of tissue pathology or disease state.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-1069, USA
| | - Yu Fu
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-1069, USA
| | - Hita Adwanikar
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-1069, USA
| | - Volker Neugebauer
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-1069, USA
| |
Collapse
|
40
|
Nakamura Y, Izumi H, Shimizu T, Hisaoka-Nakashima K, Morioka N, Nakata Y. Volume Transmission of Substance P in Striatum Induced by Intraplantar Formalin Injection Attenuates Nociceptive Responses via Activation of the Neurokinin 1 Receptor. J Pharmacol Sci 2013; 121:257-71. [DOI: 10.1254/jphs.12218fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
41
|
Hovelsø N, Sotty F, Montezinho LP, Pinheiro PS, Herrik KF, Mørk A. Therapeutic potential of metabotropic glutamate receptor modulators. Curr Neuropharmacol 2012; 10:12-48. [PMID: 22942876 PMCID: PMC3286844 DOI: 10.2174/157015912799362805] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/10/2011] [Accepted: 03/04/2011] [Indexed: 12/21/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is a major player in complex brain functions. Glutamatergic transmission is primarily mediated by ionotropic glutamate receptors, which include NMDA, AMPA and kainate receptors. However, glutamate exerts modulatory actions through a family of metabotropic G-protein-coupled glutamate receptors (mGluRs). Dysfunctions of glutamatergic neurotransmission have been implicated in the etiology of several diseases. Therefore, pharmacological modulation of ionotropic glutamate receptors has been widely investigated as a potential therapeutic strategy for the treatment of several disorders associated with glutamatergic dysfunction. However, blockade of ionotropic glutamate receptors might be accompanied by severe side effects due to their vital role in many important physiological functions. A different strategy aimed at pharmacologically interfering with mGluR function has recently gained interest. Many subtype selective agonists and antagonists have been identified and widely used in preclinical studies as an attempt to elucidate the role of specific mGluRs subtypes in glutamatergic transmission. These studies have allowed linkage between specific subtypes and various physiological functions and more importantly to pathological states. This article reviews the currently available knowledge regarding the therapeutic potential of targeting mGluRs in the treatment of several CNS disorders, including schizophrenia, addiction, major depressive disorder and anxiety, Fragile X Syndrome, Parkinson’s disease, Alzheimer’s disease and pain.
Collapse
Affiliation(s)
- N Hovelsø
- Department of Neurophysiology, H. Lundbeck A/S, Ottiliavej 9, 2500 Copenhagen-Valby, Denmark
| | | | | | | | | | | |
Collapse
|
42
|
Grégoire S, Michaud V, Chapuy E, Eschalier A, Ardid D. Study of emotional and cognitive impairments in mononeuropathic rats: Effect of duloxetine and gabapentin. Pain 2012; 153:1657-1663. [DOI: 10.1016/j.pain.2012.04.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/04/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
|
43
|
Rouwette T, Vanelderen P, de Reus M, Loohuis NO, Giele J, van Egmond J, Scheenen W, Scheffer GJ, Roubos E, Vissers K, Kozicz T. Experimental neuropathy increases limbic forebrain CRF. Eur J Pain 2012; 16:61-71. [PMID: 21684787 DOI: 10.1016/j.ejpain.2011.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuropathic pain is often accompanied by stress, anxiety and depression. Although there is evidence for involvement of corticotropin-releasing factor (CRF), the detailed neuronal basis of these pain-related mood alterations is unknown. This study shows that peripheral mononeuropathy was accompanied by changes in limbic forebrain CRF, but did not lead to changes in the functioning of the hypothalamo-pituitary-adrenal axis and the midbrain Edinger-Westphal centrally projecting (EWcp) neuron population, which play main roles in the organism's response to acute pain. Twenty-four days after chronic constriction injury (CCI) of the rat sciatic nerve, the oval bed nucleus of the stria terminalis (BSTov) contained substantially more Crf mRNA as did the central amygdala (CeA), which, in addition, possessed more CRF. In contrast, Crf mRNA and CRF contents of the hypothalamic paraventricular nucleus (PVN) were unaffected by CCI. Similarly, EWcp neurons, producing the CRF family member urocortin 1 (Ucn1) and constitutively activated by various stressors including acute pain, did not show an effect of CCI on Ucn1 mRNA or Ucn1. Also, the immediate early gene products cFos and deltaFosB in the EWcp were unaffected by CCI. These results indicate that neuropathic pain does not act via the HPA-axis or the EWcp, but includes a main role of Crf in the limbic system, which is in clear contrast to stressors like acute and chronic pain, which primarily act on the PVN and the EWcp.
Collapse
Affiliation(s)
- T Rouwette
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Montana MC, Gereau RW. Metabotropic glutamate receptors as targets for analgesia: antagonism, activation, and allosteric modulation. Curr Pharm Biotechnol 2012; 12:1681-8. [PMID: 21466446 DOI: 10.2174/138920111798357438] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/20/2010] [Indexed: 12/20/2022]
Abstract
The metabotropic glutamate receptors (mGluRs) are expressed pre- and post-synaptically throughout the nervous system where they serve as modulators of synaptic transmission and neuronal excitability. Activation of mGluRs can be pro- or anti-nociceptive, depending on their anatomic location and the signaling cascades to which they couple. Antagonists of Group I mGluRs and agonists of Group II and III mGluRs have shown therapeutic promise in animal pain models. This article reviews the potential therapeutic utility of several agents that act predominantly via mGluRs, specifically focusing on their analgesic efficacy and discussing possible off-target effects. Glutamate, the primary excitatory neurotransmitter in the vertebrate nervous system, mediates its effects via activation of two main classes of receptors: ligand-gated ion channels known as ionotropic receptors and G-protein coupled metabotropic receptors. Antagonists of ionotropic glutamate receptors, such as ketamine, have robust analgesic properties; however, their analgesic utility is limited to monitored clinical settings due to the potential for psychomimetic effects.
Collapse
Affiliation(s)
- Michael C Montana
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
45
|
Mutso AA, Radzicki D, Baliki MN, Huang L, Banisadr G, Centeno MV, Radulovic J, Martina M, Miller RJ, Apkarian AV. Abnormalities in hippocampal functioning with persistent pain. J Neurosci 2012; 32:5747-56. [PMID: 22539837 PMCID: PMC3365570 DOI: 10.1523/jneurosci.0587-12.2012] [Citation(s) in RCA: 351] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/06/2012] [Accepted: 03/12/2012] [Indexed: 02/07/2023] Open
Abstract
Chronic pain patients exhibit increased anxiety, depression, and deficits in learning and memory. Yet how persistent pain affects the key brain area regulating these behaviors, the hippocampus, has remained minimally explored. In this study we investigated the impact of spared nerve injury (SNI) neuropathic pain in mice on hippocampal-dependent behavior and underlying cellular and molecular changes. In parallel, we measured the hippocampal volume of three groups of chronic pain patients. We found that SNI animals were unable to extinguish contextual fear and showed increased anxiety-like behavior. Additionally, SNI mice compared with Sham animals exhibited hippocampal (1) reduced extracellular signal-regulated kinase expression and phosphorylation, (2) decreased neurogenesis, and (3) altered short-term synaptic plasticity. To relate the observed hippocampal abnormalities with human chronic pain, we measured the volume of human hippocampus in chronic back pain (CBP), complex regional pain syndrome (CRPS), and osteoarthritis patients (OA). Compared with controls, CBP and CRPS, but not OA, had significantly less bilateral hippocampal volume. These results indicate that hippocampus-mediated behavior, synaptic plasticity, and neurogenesis are abnormal in neuropathic rodents. The changes may be related to the reduction in hippocampal volume we see in chronic pain patients, and these abnormalities may underlie learning and emotional deficits commonly observed in such patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - A. Vania Apkarian
- Departments of Physiology
- Anesthesia and Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
46
|
Ji G, Neugebauer V. Pain-related deactivation of medial prefrontal cortical neurons involves mGluR1 and GABA(A) receptors. J Neurophysiol 2011; 106:2642-52. [PMID: 21880942 PMCID: PMC3214095 DOI: 10.1152/jn.00461.2011] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/29/2011] [Indexed: 11/22/2022] Open
Abstract
Pain-related hyperactivity in the amygdala leads to deactivation of the medial prefrontal cortex (mPFC) and decision-making deficits. The mechanisms of pain-related inhibition of the mPFC are not yet known. Here, we used extracellular single-unit recordings of prelimbic mPFC neurons to determine the role of GABA(A) receptors and metabotropic glutamate receptor (mGluR) subtypes, mGluR1 and mGluR5, in pain-related activity changes of mPFC neurons. Background and evoked activity of mPFC neurons decreased after arthritis induction. To determine pain-related changes, the same neuron was recorded continuously before and after induction of arthritis in one knee joint by intra-articular injection of kaolin/carrageenan. Stereotaxic administration of a GABA(A) receptor antagonist {[R-(R*,S*)]-5-(6,8-dihydro-8-oxofuro[3,4-e]-1,3-benzodioxol-6-yl)-5,6,7,8-tetrahydro-6,6-dimethyl-1,3-dioxolo[4,5-g]isoquinolinium iodide (bicuculline)} into the mPFC by microdialysis reversed pain-related inhibition, whereas offsite injections into the adjacent anterior cingulate cortex had no or opposite effects on prelimbic mPFC neurons. A selective mGluR1/5 agonist [(S)-3,5-dihydroxyphenylglycine (DHPG)] inhibited background and evoked activity under normal conditions through a GABAergic mechanism, because the inhibitory effect was blocked with bicuculline. In the arthritis pain state, DHPG, alone or in the presence of bicuculline, had no effect. Consistent with the involvement of mGluR1 in pain-related inhibition of the mPFC, a selective mGluR1 antagonist [(S)-(+)-α-amino-4-carboxy-2-methylbenzeneacetic acid] reversed the pain-related decrease of background and evoked activity of mPFC neurons in arthritis, whereas a selective mGluR5 antagonist [2-methyl-6-(phenylethynyl)pyridine hydrochloride] had no effect. The mGluR antagonists had no effect under normal conditions. We interpret our data to suggest that pain-related inhibition of mPFC neurons in the arthritis model depends on mGluR1-mediated endogenous activation of GABA(A) receptors. Exogenous activation of mGluR1/5 produces GABAergic inhibition under normal conditions. Restoring normal activity in the mPFC may be a therapeutic strategy to improve cognitive deficits associated with persistent pain.
Collapse
Affiliation(s)
- Guangchen Ji
- Dept. of Neuroscience and Cell Biology, The Univ. of Texas Medical Branch, 301 Univ. Blvd., Galveston, TX 77555-1069, USA
| | | |
Collapse
|
47
|
Simon L, Toth J, Molnar L, Agoston DV. MRI analysis of mGluR5 and mGluR1 antagonists, MTEP and R214127 in the cerebral forebrain of awake, conscious rats. Neurosci Lett 2011; 505:155-9. [PMID: 22015763 DOI: 10.1016/j.neulet.2011.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/18/2011] [Accepted: 10/04/2011] [Indexed: 12/18/2022]
Abstract
Metabotropic glutamate receptors mGluR5 and mGluR1 mediate key neuropsychiatric functions in health and disease and their antagonists hold promise to treat anxiety, depression, inflammation, and neuropathic pain. Pharmacological magnetic resonance imaging (phMRI) using a functional MRI approach in awake, conscious rodents can determine the activities of receptor ligands without the potential interference of anesthetics and independent of the specific biochemical mechanism of action of the candidate molecule. In this study we determined the neuronal activation patterns of 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) and 1-(3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl0-2phenyl-1-ethanone (R214127), antagonists of mGluR5 and mGluR1 receptors by phMRI. We found that MTEP and R214127 activated specific primary somatosensory, piriform, entorhinal and motor cortices and the caudateputamen each to a different extent and in partly overlapping manners. Additional analysis of the activation data indicated that these brain regions and their connections are involved in mediating neuropathic pain and also, reward and olfaction. Using awake, conscious animals in phMRI can be a useful approach in characterizing candidate mGluR5 and mGlR1 antagonists also allowing a more direct comparison of animal and human phMRI studies.
Collapse
Affiliation(s)
- Laszlo Simon
- Neuronomix Inc., 5620 Sonoma Rd., Bethesda, MD 20817, USA
| | | | | | | |
Collapse
|
48
|
Ren W, Palazzo E, Maione S, Neugebauer V. Differential effects of mGluR7 and mGluR8 activation on pain-related synaptic activity in the amygdala. Neuropharmacology 2011; 61:1334-44. [PMID: 21854791 DOI: 10.1016/j.neuropharm.2011.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/18/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
Abstract
Pain-related plasticity in the laterocapsular division of the central nucleus of the amygdala (CeLC) depends on the activation of group I metabotropic glutamate receptors (mGluRs) whereas groups II and III mGluRs generally serve inhibitory functions. Recent evidence suggests differential roles of group III subtypes mGluR7 (pain enhancing) and mGluR8 (pain inhibiting) in the amygdala (Palazzo et al., 2008). Here we addressed the underlying synaptic mechanisms of mGluR7 and mGluR8 function in the CeLC under normal conditions and in an arthritis pain model. Using patch-clamp recordings in rat brain slices, we measured monosynaptic excitatory post-synaptic currents (EPSCs), mono- and polysynaptic inhibitory synaptic currents (IPSCs), and synaptically evoked action potentials (E-S coupling) in CeLC neurons. Synaptic responses were evoked by electrical stimulation in the basolateral amygdala (BLA). A selective mGluR8 agonist (DCPG) inhibited evoked EPSCs and synaptic spiking more potently in slices from arthritic rats than in slices from normal rats. In contrast, a selective mGluR7 agonist (AMN082) increased EPSCs and E-S coupling in slices from normal rats but not in the pain model. The effects of AMN082 and DCPG were blocked by a group III antagonist (MAP4). AMN082 increased frequency, but not amplitude, of spontaneous EPSCs but had no effect on miniature EPSCs (in TTX). DCPG decreased frequency, but not amplitude, of spontaneous and miniature EPSCs. The data suggest that mGluR8 acts presynaptically to inhibit excitatory transmission whereas the facilitatory effects of mGluR7 are indirect through action potential-dependent network action. AMN082 decreased evoked IPSCs and frequency, but not amplitude, of spontaneous and miniature IPSCs in slices from normal rats. DCPG had no effect on inhibitory transmission. The results suggest that presynaptic mGluR7 inhibits inhibitory synaptic transmission to gate glutamatergic transmission to CeLC neurons under normal conditions but not in pain. Presynaptic mGluR8 inhibits pain-related enhanced excitatory transmission in the CeLC.
Collapse
Affiliation(s)
- Wenjie Ren
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, Galveston, TX 77555-1069, USA.
| | | | | | | |
Collapse
|
49
|
Homer1a signaling in the amygdala counteracts pain-related synaptic plasticity, mGluR1 function and pain behaviors. Mol Pain 2011; 7:38. [PMID: 21595930 PMCID: PMC3121594 DOI: 10.1186/1744-8069-7-38] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group I metabotropic glutamate receptor (mGluR1/5) signaling is an important mechanism of pain-related plasticity in the amygdala that plays a key role in the emotional-affective dimension of pain. Homer1a, the short form of the Homer1 family of scaffolding proteins, disrupts the mGluR-signaling complex and negatively regulates nociceptive plasticity at spinal synapses. Using transgenic mice overexpressing Homer1a in the forebrain (H1a-mice), we analyzed synaptic plasticity, pain behavior and mGluR1 function in the basolateral amygdala (BLA) in a model of arthritis pain. FINDINGS In contrast to wild-type mice, H1a-mice mice did not develop increased pain behaviors (spinal reflexes and audible and ultrasonic vocalizations) after induction of arthritis in the knee joint. Whole-cell patch-clamp recordings in brain slices showed that excitatory synaptic transmission from the BLA to the central nucleus (CeA) did not change in arthritic H1a-mice but increased in arthritic wild-type mice. A selective mGluR1 antagonist (CPCCOEt) had no effect on enhanced synaptic transmission in slices from H1a-BLA mice with arthritis but inhibited transmission in wild-type mice with arthritis as in our previous studies in rats. CONCLUSIONS The results show that Homer1a expressed in forebrain neurons, prevents the development of pain hypersensitivity in arthritis and disrupts pain-related plasticity at synapses in amygdaloid nuclei. Furthermore, Homer1a eliminates the effect of an mGluR1 antagonist, which is consistent with the well-documented disruption of mGluR1 signaling by Homer1a. These findings emphasize the important role of mGluR1 in pain-related amygdala plasticity and provide evidence for the involvement of Homer1 proteins in the forebrain in the modulation of pain hypersensitivity.
Collapse
|
50
|
Palazzo E, Marabese I, Soukupova M, Luongo L, Boccella S, Giordano C, de Novellis V, Rossi F, Maione S. Metabotropic glutamate receptor subtype 8 in the amygdala modulates thermal threshold, neurotransmitter release, and rostral ventromedial medulla cell activity in inflammatory pain. J Neurosci 2011; 31:4687-97. [PMID: 21430167 PMCID: PMC6622912 DOI: 10.1523/jneurosci.2938-10.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 11/18/2010] [Accepted: 12/06/2010] [Indexed: 11/21/2022] Open
Abstract
The amygdala is a crucial area in controlling the threshold of pain and its emotional component. The present study has evaluated the effect of a metabotropic glutamate 8 receptor (mGluR8) stimulation in the central nucleus of the amygdala (CeA) on the thermoceptive threshold and on CeA serotonin (5-HT), glutamate (Glu), and GABA release in normal and carrageenan-induced inflammatory pain conditions in rats. Furthermore, the activity of rostral ventromedial medulla (RVM) putative "pronociceptive" ON and "antinociceptive" OFF cells has been evaluated. (S)-3,4-Dicarboxyphenylglycine [(S)-3,4-DCPG], a selective mGluR8 agonist, administered into the CeA, did not change 5-HT, Glu, and GABA release, or the thermoceptive threshold, nor did it modify the activity of ON and OFF cells of the RVM in normal animals. In rats treated with carrageenan, intra-CeA (S)-3,4-DCPG perfusion produced antinociception, and increased 5-HT and Glu, whereas it decreased GABA release. Intra-CeA (S)-3,4-DCPG inhibited ON and increased OFF cell activities. Furthermore, an increase in mGluR8 gene, protein, and staining, the latter being associated with vesicular GABA transporter-positive profiles, has been found in the CeA after carrageenan-induced inflammatory pain. These results show that stimulation of mGluR8, which was overexpressed within the CeA in inflammatory pain conditions, inhibits nociceptive behavior. Such an effect is associated with an increase in 5-HT and Glu release, a decrease in GABA, and the inhibition of ON- and the stimulation of OFF-cell activities within RVM.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
| | - Ida Marabese
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
| | - Marie Soukupova
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
- Department of Pharmacology, Third Faculty of Medicine, Charles University of Prague, 100 34 Prague, Czech Republic
| | - Livio Luongo
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
| | - Serena Boccella
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
| | - Catia Giordano
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
| | - Vito de Novellis
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
| | - Francesca Rossi
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
| | - Sabatino Maione
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” Faculty of Medicine and Surgery, The Second University of Naples, 80138 Naples, Italy, and
| |
Collapse
|