1
|
Ajrawat P, Yang Y, Wasilewski E, Leroux T, Ladha KS, Bhatia A, Singh M, Thaker S, Kapoor M, Furlan AD, Kotra LP, Clarke H. Medical Cannabis Use and Inflammatory Cytokines and Chemokines Among Adult Chronic Pain Patients. Cannabis Cannabinoid Res 2024; 9:267-281. [PMID: 36342776 DOI: 10.1089/can.2022.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Utilizing cannabis as a therapeutic option for chronic pain (CP) has increased significantly. However, data regarding the potential immunomodulatory effects of cannabis in CP patients remain scarce. We aimed at exploring the relationship between cannabis use and inflammatory cytokines and chemokines among a cohort of CP patients. Methods: Adult patients with a CP diagnosis and medical authorization of cannabis were enrolled. Patients completed validated clinical questionnaires and self-reported the effectiveness of cannabis for symptom management. Patients' blood and cannabis samples were analyzed for the presence of four major cannabinoids, two major cannabinoid metabolites, 29 different cytokines/chemokines, and cortisol. The multivariable linear regression model was used to identify cannabis and patient factors associated with immune markers. Results: Fifty-six patients (48±15 years; 64% females) were included, with dried cannabis (53%) being the most common type of cannabis consumed. Seventy percent of products were considered delta-9-tetrahydrocannabinol (Δ9-THC)-dominant. The majority of patients (96%) self-reported effective pain management, and 76% reported a significant decrease in analgesic medication usage (p≤0.001). Compared with males, female patients had higher plasma levels of cannabidiol (CBD), cannabidiolic acid, Δ9-THC, and 11-hydroxy-Δ9-tetrahydrocannabinol but lower concentrations of delta-9-tetrahydrocannabinolic acid and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH). Females had significantly lower eotaxin levels (p=0.04) in comparison to male patients. The regression analysis indicated that high cannabis doses were related to increased levels of interleukin (IL)-12p40 (p=0.02) and IL-6 (p=0.01), whereas female sex was associated with decreased eotaxin (p≤0.01) concentrations. Blood CBD levels were associated with lower vascular endothelial growth factor (p=0.04) concentrations, and THC-COOH was a factor related to decreased tumor necrosis factor alpha (p=0.02) and IL-12p70 (p=0.03). Conclusion: This study provides further support for the patient-perceived effectiveness of cannabis in managing CP symptoms and reducing analgesic medication consumption. The results suggest a potential sex difference in metabolizing cannabinoids, and the varying immune marker concentrations may support a possible immunomodulatory effect associated with patient sex and cannabis product type. These preliminary findings provide grounds for further validation using larger, well-designed studies with longer follow-up periods.
Collapse
Affiliation(s)
- Prabjit Ajrawat
- Department of Anesthesiology and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Yi Yang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Ewa Wasilewski
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Timothy Leroux
- Osteoarthritis Research Program, Division of Orthopedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Karim S Ladha
- Department of Anesthesia, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Anuj Bhatia
- Department of Anesthesiology and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mandeep Singh
- Department of Anesthesiology and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sonalben Thaker
- Pain Research Unit, Toronto General Hospital, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Centre for Cannabinoid Therapeutics, Toronto, Ontario, Canada
| | - Andrea D Furlan
- Centre for Cannabinoid Therapeutics, Toronto, Ontario, Canada
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Lakshmi P Kotra
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Pain Research Unit, Toronto General Hospital, Toronto, Ontario, Canada
- Centre for Cannabinoid Therapeutics, Toronto, Ontario, Canada
| | - Hance Clarke
- Department of Anesthesiology and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Pain Research Unit, Toronto General Hospital, Toronto, Ontario, Canada
- Centre for Cannabinoid Therapeutics, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Karimi SA, Zahra FT, Martin LJ. IUPHAR review: Navigating the role of preclinical models in pain research. Pharmacol Res 2024; 200:107073. [PMID: 38232910 DOI: 10.1016/j.phrs.2024.107073] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Chronic pain is a complex and challenging medical condition that affects millions of people worldwide. Understanding the underlying mechanisms of chronic pain is a key goal of preclinical pain research so that more effective treatment strategies can be developed. In this review, we explore nociception, pain, and the multifaceted factors that lead to chronic pain by focusing on preclinical models. We provide a detailed look into inflammatory and neuropathic pain models and discuss the most used animal models for studying the mechanisms behind these conditions. Additionally, we emphasize the vital role of these preclinical models in developing new pain-relief drugs, focusing on biologics and the therapeutic potential of NMDA and cannabinoid receptor antagonists. We also discuss the challenges of TRPV1 modulation for pain treatment, the clinical failures of neurokinin (NK)- 1 receptor antagonists, and the partial success story of Ziconotide to provide valuable lessons for preclinical pain models. Finally, we highlight the overall success and limitations of current treatments for chronic pain while providing critical insights into the development of more effective therapies to alleviate the burden of chronic pain.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Fatama Tuz Zahra
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
3
|
Zheng G, Ren J, Shang L, Bao Y. Role of autophagy in the pathogenesis and regulation of pain. Eur J Pharmacol 2023; 955:175859. [PMID: 37429517 DOI: 10.1016/j.ejphar.2023.175859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
Pain is a ubiquitous and highly concerned clinical symptom, usually caused by peripheral or central nervous injury, tissue damage, or other diseases. The long-term existence of pain can seriously affect daily physical function and quality of life and produce great torture on the physiological and psychological levels. However, the complex pathogenesis of pain involving molecular mechanisms and signaling pathways has not been fully elucidated, and managing pain remains highly challenging. As a result, finding new targets to pursue effective and long-term pain treatment strategies is required and urgent. Autophagy is an intracellular degradation and recycling process that maintains tissue homeostasis and energy supply, which can be cytoprotective and is vital in maintaining neural plasticity and proper nervous system function. Much evidence has shown that autophagy dysregulation is linked to the emergence of neuropathic pain, such as postherpetic neuralgia and cancer-related pain. Autophagy has also been connected to pain caused by osteoarthritis and lumbar disc degeneration. It is worth noting that in recent years, studies on traditional Chinese medicine have also proved that several traditional Chinese medicine monomers involve autophagy in the mechanism of pain relief. Therefore, autophagy can serve as a potential regulatory target to provide new ideas and inspiration for pain management.
Collapse
Affiliation(s)
- Guangda Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
4
|
Borgonetti V, Mugnaini C, Corelli F, Galeotti N. The Selective CB2 Agonist COR167 Reduced Symptoms in a Mice Model of Trauma-Induced Peripheral Neuropathy through HDAC-1 Inhibition. Biomedicines 2023; 11:1546. [PMID: 37371642 DOI: 10.3390/biomedicines11061546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Neuropathic pain is a chronic disabling condition with a 7-10% of prevalence in the general population that is largely undertreated. Available analgesic therapies are poorly effective and are often accompanied by numerous side effects. Growing evidence indicates cannabinoids are a valuable treatment opportunity for neuropathic pain. The endocannabinoid system is an important regulator of pain perception through the CB1 receptors, but CB1 agonists, while largely effective, are not always satisfactory pain-relieving agents in clinics because of their serious adverse effects. Recently, several CB2 agonists have shown analgesic, anti-hyperalgesic, and anti-allodynic activity in the absence of CB1-induced psychostimulant effects, offering promise in neuropathic pain management. The aim of this study was to evaluate the anti-neuropathic activity of a novel selective CB2 agonist, COR167, in a preclinical model of peripheral neuropathy, the spared nerve injury (SNI). Oral COR167, in a dose-dependent manner, attenuated mechanical allodynia and thermal hyperalgesia after acute and repeated administration, showing the absence of tolerance induction. At anti-neuropathic doses, COR167 did not show any alteration in the locomotor behavior. SNI mice showed increased microglial levels of HDAC1 protein in the ipsilateral side of the spinal cord, along with NF-kB activation. COR167 treatment prevented the HDAC1 overexpression and the NF-kB activation and increased the levels of the anti-inflammatory cytokine IL-10 through a CB2-mediated mechanism. Oral administration of COR167 shows promising therapeutic potential in the management of neuropathic pain conditions.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Federico Corelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
5
|
Microglial Cannabinoid CB 2 Receptors in Pain Modulation. Int J Mol Sci 2023; 24:ijms24032348. [PMID: 36768668 PMCID: PMC9917135 DOI: 10.3390/ijms24032348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Pain, especially chronic pain, can strongly affect patients' quality of life. Cannabinoids ponhave been reported to produce potent analgesic effects in different preclinical pain models, where they primarily function as agonists of Gi/o protein-coupled cannabinoid CB1 and CB2 receptors. The CB1 receptors are abundantly expressed in both the peripheral and central nervous systems. The central activation of CB1 receptors is strongly associated with psychotropic adverse effects, thus largely limiting its therapeutic potential. However, the CB2 receptors are promising targets for pain treatment without psychotropic adverse effects, as they are primarily expressed in immune cells. Additionally, as the resident immune cells in the central nervous system, microglia are increasingly recognized as critical players in chronic pain. Accumulating evidence has demonstrated that the expression of CB2 receptors is significantly increased in activated microglia in the spinal cord, which exerts protective consequences within the surrounding neural circuitry by regulating the activity and function of microglia. In this review, we focused on recent advances in understanding the role of microglial CB2 receptors in spinal nociceptive circuitry, highlighting the mechanism of CB2 receptors in modulating microglia function and its implications for CB2 receptor- selective agonist-mediated analgesia.
Collapse
|
6
|
Cherkasova V, Wang B, Gerasymchuk M, Fiselier A, Kovalchuk O, Kovalchuk I. Use of Cannabis and Cannabinoids for Treatment of Cancer. Cancers (Basel) 2022; 14:5142. [PMID: 36291926 PMCID: PMC9600568 DOI: 10.3390/cancers14205142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 07/26/2023] Open
Abstract
The endocannabinoid system (ECS) is an ancient homeostasis mechanism operating from embryonic stages to adulthood. It controls the growth and development of many cells and cell lineages. Dysregulation of the components of the ECS may result in uncontrolled proliferation, adhesion, invasion, inhibition of apoptosis and increased vascularization, leading to the development of various malignancies. Cancer is the disease of uncontrolled cell division. In this review, we will discuss whether the changes to the ECS are a cause or a consequence of malignization and whether different tissues react differently to changes in the ECS. We will discuss the potential use of cannabinoids for treatment of cancer, focusing on primary outcome/care-tumor shrinkage and eradication, as well as secondary outcome/palliative care-improvement of life quality, including pain, appetite, sleep, and many more factors. Finally, we will complete this review with the chapter on sex- and gender-specific differences in ECS and response to cannabinoids, and equality of the access to treatments with cannabinoids.
Collapse
Affiliation(s)
- Viktoriia Cherkasova
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marta Gerasymchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Anna Fiselier
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
7
|
Bockmann EC, Brito R, Madeira LF, da Silva Sampaio L, de Melo Reis RA, França GR, Calaza KDC. The Role of Cannabinoids in CNS Development: Focus on Proliferation and Cell Death. Cell Mol Neurobiol 2022; 43:1469-1485. [PMID: 35925507 DOI: 10.1007/s10571-022-01263-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
The active principles of Cannabis sativa are potential treatments for several diseases, such as pain, seizures and anorexia. With the increase in the use of cannabis for medicinal purposes, a more careful assessment of the possible impacts on embryonic development becomes necessary. Surveys indicate that approximately 3.9% of pregnant women use cannabis in a recreational and/or medicinal manner. However, although the literature has already described the presence of endocannabinoid system components since the early stages of CNS development, many of their physiological effects during this stage have not yet been established. Moreover, it is still uncertain how the endocannabinoid system can be altered in terms of cell proliferation and cell fate, neural migration, neural differentiation, synaptogenesis and particularly cell death. In relation to cell death in the CNS, knowledge about the effects of cannabinoids is scarce. Thus, the present work aims to review the role of the endocannabinoid system in different aspects of CNS development and discuss possible side effects or even opportunities for treating some conditions in the development of this tissue.
Collapse
Affiliation(s)
- Eduardo Cosendey Bockmann
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Rafael Brito
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Lucianne Fragel Madeira
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Luzia da Silva Sampaio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Augusto de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme Rapozeiro França
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Karin da Costa Calaza
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Díaz-Reval MI, Cárdenas Y, Huerta M, Trujillo X, Sánchez-Pastor EA, González-Trujano ME, Virgen-Ortíz A, Pérez-Hernández MG. Activation of Peripheral Cannabinoid Receptors Synergizes the Effect of Systemic Ibuprofen in a Pain Model in Rat. Pharmaceuticals (Basel) 2022; 15:ph15080910. [PMID: 35893735 PMCID: PMC9394297 DOI: 10.3390/ph15080910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
Pharmacological synergism is a current strategy for the treatment of pain. However, few studies have been explored to provide evidence of the possible synergism between a non-steroidal anti-inflammatory drug (NSAID) and a cannabinoid agonist, in order to establish which combinations might be effective to manage pain. The aim of this study was to explore the synergism between ibuprofen (IBU) and the synthetic cannabinoid WIN 55,212-2 (WIN) to improve pain relief by analyzing the degree of participation of the CB1 and CB2 cannabinoid receptors in the possible antinociceptive synergism using an experimental model of pain in Wistar rats. First, the effective dose thirty (ED30) of IBU (10, 40, 80, and 160 mg/kg, subcutaneous) and WIN (3, 10, and 30 µg/p, intraplantar) were evaluated in the formalin test. Then, the constant ratio method was used to calculate the doses of IBU and WIN to be administered in combination (COMB) to determine the possible synergism using the isobolographic method. The participation of the CB1 and CB2 receptors was explored in the presence of the antagonists AM281 and AM630, respectively. The combination of these drugs produced a supra-additive response with an interaction index of 0.13. In addition, AM281 and AM630 antagonists reversed the synergistic effect in 45% and 76%, respectively, suggesting that both cannabinoid receptors are involved in this synergism, with peripheral receptors playing a relevant role. In conclusion, the combination of IBU + WIN synergism is mainly mediated by the participation of the CB2 receptor, which can be a good option for the better management of pain relief.
Collapse
Affiliation(s)
- M. Irene Díaz-Reval
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (Y.C.); (M.H.); (X.T.); (E.A.S.-P.); (A.V.-O.)
- Correspondence:
| | - Yolitzy Cárdenas
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (Y.C.); (M.H.); (X.T.); (E.A.S.-P.); (A.V.-O.)
| | - Miguel Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (Y.C.); (M.H.); (X.T.); (E.A.S.-P.); (A.V.-O.)
| | - Xóchitl Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (Y.C.); (M.H.); (X.T.); (E.A.S.-P.); (A.V.-O.)
| | - Enrique Alejandro Sánchez-Pastor
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (Y.C.); (M.H.); (X.T.); (E.A.S.-P.); (A.V.-O.)
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico 14370, Mexico;
| | - Adolfo Virgen-Ortíz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (Y.C.); (M.H.); (X.T.); (E.A.S.-P.); (A.V.-O.)
| | | |
Collapse
|
9
|
Abidi AH, Alghamdi SS, Derefinko K. A critical review of cannabis in medicine and dentistry: A look back and the path forward. Clin Exp Dent Res 2022; 8:613-631. [PMID: 35362240 PMCID: PMC9209799 DOI: 10.1002/cre2.564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
Introduction In the last two decades, our understanding of the therapeutic utility and medicinal properties of cannabis has greatly changed. This change has been accompanied by widespread cannabis use in various communities and different age groups, especially within the United States. With this increase, we should consider the potential effects of cannabis–hemp on general public health and how they could alter therapeutic outcomes. Material and Methods The present investigation examined cannabis use for recreational and therapeutic use and a review of pertinent indexed literature was performed. The focused question evaluates “how cannabis or hemp products impact health parameters and do they provide potential therapeutic value in dentistry, and how do they interact with conventional medicines (drugs).” Indexed databases (PubMed/Medline, EMBASE) were searched without any time restrictions but language was restricted to English. Results The review highlights dental concerns of cannabis usage, the need to understand the endocannabinoid system (ECS), cannabinoid receptor system, its endogenous ligands, pharmacology, metabolism, current oral health, and medical dilemma to ascertain the detrimental or beneficial effects of using cannabis–hemp products. The pharmacological effects of pure cannabidiol (CBD) have been studied extensively while cannabis extracts can vary significantly and lack empirical studies. Several metabolic pathways are affected by cannabis use and could pose a potential drug interaction. The chronic use of cannabis is associated with health issues, but the therapeutic potential is multifold since there is a regulatory role of ECS in many pathologies. Conclusion Current shortcomings in understanding the benefits of cannabis or hemp products are limited due to pharmacological and clinical effects not being predictable, while marketed products vary greatly in phytocompounds warrant further empirical investigation. Given the healthcare challenges to manage acute and chronic pain, this review highlights both cannabis and CBD‐hemp extracts to help identify the therapeutic application for patient populations suffering from anxiety, inflammation, and dental pain.
Collapse
Affiliation(s)
- Ammaar H Abidi
- College of Dentistry, Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.,College of Dentistry, Department of General Dentistry, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sahar S Alghamdi
- Department of Phamaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Karen Derefinko
- College of Medicine, Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.,College of Medicine, Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
10
|
Liu Y, Jia M, Wu C, Zhang H, Chen C, Ge W, Wan K, Lan Y, Liu S, Li Y, Fang M, He J, Pan HL, Si JQ, Li M. Transcriptomic Profiling in Mice With CB1 receptor Deletion in Primary Sensory Neurons Suggests New Analgesic Targets for Neuropathic Pain. Front Pharmacol 2022; 12:781237. [PMID: 35046811 PMCID: PMC8762320 DOI: 10.3389/fphar.2021.781237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
Type 1 and type 2 cannabinoid receptors (CB1 and CB2, respectively) mediate cannabinoid-induced analgesia. Loss of endogenous CB1 is associated with hyperalgesia. However, the downstream targets affected by ablation of CB1 in primary sensory neurons remain unknown. In the present study, we hypothesized that conditional knockout of CB1 in primary sensory neurons (CB1cKO) alters downstream gene expression in the dorsal root ganglion (DRG) and that targeting these pathways alleviates neuropathic pain. We found that CB1cKO in primary sensory neurons induced by tamoxifen in adult Advillin-Cre:CB1-floxed mice showed persistent hyperalgesia. Transcriptome/RNA sequencing analysis of the DRG indicated that differentially expressed genes were enriched in energy regulation and complement and coagulation cascades at the early phase of CB1cKO, whereas pain regulation and nerve conduction pathways were affected at the late phase of CB1cKO. Chronic constriction injury in mice induced neuropathic pain and changed transcriptome expression in the DRG of CB1cKO mice, and differentially expressed genes were mainly associated with inflammatory and immune-related pathways. Nerve injury caused a much larger increase in CB2 expression in the DRG in CB1cKO than in wildtype mice. Interfering with downstream target genes of CB1, such as antagonizing CB2, inhibited activation of astrocytes, reduced neuroinflammation, and alleviated neuropathic pain. Our results demonstrate that CB1 in primary sensory neurons functions as an endogenous analgesic mediator. CB2 expression is regulated by CB1 and may be targeted for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Yongmin Liu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathophysiology, Medical College of Shihezi University, Shihezi, China
| | - Min Jia
- Clinical Laboratories, Wuhan First Hospital, Wuhan, China
| | - Caihua Wu
- Department of Acupuncture, Wuhan First Hospital, Wuhan, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Chen
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqiang Ge
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexing Wan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuye Lan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiya Liu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanheng Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyue Fang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiexi He
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Fowler C. The Use of Marijuana Derivatives in Primary Care: An Evidence-Based Approach to Cannabidiol. J Nurse Pract 2021. [DOI: 10.1016/j.nurpra.2021.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Hashiesh HM, Sharma C, Goyal SN, Sadek B, Jha NK, Kaabi JA, Ojha S. A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid. Biomed Pharmacother 2021; 140:111639. [PMID: 34091179 DOI: 10.1016/j.biopha.2021.111639] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS), a conserved physiological system emerged as a novel pharmacological target for its significant role and potential therapeutic benefits ranging from neurological diseases to cancer. Among both, CB1 and CB2R types, CB2R have received attention for its pharmacological effects as antioxidant, anti-inflammatory, immunomodulatory and antiapoptotic that can be achieved without causing psychotropic adverse effects through CB1R. The ligands activate CB2R are of endogenous, synthetic and plant origin. In recent years, β-caryophyllene (BCP), a natural bicyclic sesquiterpene in cannabis as well as non-cannabis plants, has received attention due to its selective agonist property on CB2R. BCP has been well studied in a variety of pathological conditions mediating CB2R selective agonist property. The focus of the present manuscript is to represent the CB2R selective agonist mediated pharmacological mechanisms and therapeutic potential of BCP. The present narrative review summarizes insights into the CB2R-selective pharmacological properties and therapeutic potential of BCP such as cardioprotective, hepatoprotective, neuroprotective, nephroprotective, gastroprotective, chemopreventive, antioxidant, anti-inflammatory, and immunomodulator. The available evidences suggest that BCP, can be an important candidate of plant origin endowed with CB2R selective properties that may provide a pharmacological rationale for its pharmacotherapeutic application and pharmaceutical development like a drug. Additionally, given the wide availability in edible plants and dietary use, with safety, and no toxicity, BCP can be promoted as a nutraceutical and functional food for general health and well-being. Further, studies are needed to explore pharmacological and pharmaceutical opportunities for therapeutic and preventive applications of use of BCP in human diseases.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
13
|
Chen J, Hasanein P, Komaki A, Yari S. Effects of GABAA receptors in nucleus cuneiformis on the cannabinoid antinociception using the formalin test. Psychopharmacology (Berl) 2021; 238:1657-1669. [PMID: 33715044 DOI: 10.1007/s00213-021-05800-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/09/2021] [Indexed: 10/21/2022]
Abstract
RATIONALE Nucleus cuneiformis (NC), a reticular nucleus of the midbrain, is a part of the descending pain modulatory system and therefore has an important role in pain perception. OBJECTIVES Considering the abundance of GABAA and cannabinoid receptors in the NC and also the bidirectional roles for GABA in controlling nociception, the present study examined the effects of bilateral intra-NC microinjection of different doses of the GABAA receptor agonist, muscimol, and the GABAA receptor antagonist, bicuculline, on pain modulation using formalin test. We also assessed interaction between canabinergic and GABAergic systems in the NC during this test. METHODS Rats were exposed to intra-NC microinjection of bicuculline (50,100, and 200 ng/side) or muscimol (60, 120, and 240 ng/side) and then subjected to the formalin test. In another set of experiments, the effects of muscimol (60 ng/side) or bicuculline (50 ng/side) administration 5 min before a cannabinoid receptor agonist WIN 55,212-2 (5, 10, and 20 μg/side) microinjection into NC on the formalin test were evaluated. RESULTS Microinjection of bicuculline and muscimol into the NC decreased and increased pain responses, respectively, in a dose-dependent manner during both phases of the test. Microinjection of WIN 55,212-2 into the NC significantly reduced pain responses in a dose-dependent manner. Microinjection of bicuculline or muscimol in combination with WIN 55,212-2 into the NC respectively potentiated and attenuated WIN 55,212-2-induced antinociception in the formalin test. CONCLUSIONS This study shows that GABA in the NC is involved in pain modulation and suggests the existence of a GABAA-mediated inhibitory system in the NC on pain control. Furthermore, it seems that the antinociceptive effect of WIN 55,212-2 in the formalin test is mediated partly by the activity of local GABAA receptors in the NC.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Parisa Hasanein
- Department of Biology, School of Basic Sciences, University of Zabol, Po. Box: 98615-538, Zabol, 9861335856, Iran.
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Yari
- Department of Biology, School of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
14
|
Tang Y, Wolk B, Britch SC, Craft RM, Kendall DA. Anti-inflammatory and antinociceptive effects of the selective cannabinoid CB 2 receptor agonist ABK5. J Pharmacol Sci 2021; 145:319-326. [PMID: 33712283 PMCID: PMC8376191 DOI: 10.1016/j.jphs.2020.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cannabinoid receptors are a potential target for anti-inflammatory and pain therapeutics. There are two subtypes, CB1 and CB2, and Δ9-tetrahydrocannabinol activates both of them, providing an analgesic effect but also psychoactive side effects. The psychoactive side effects are considered to be caused by activation of CB1, but not CB2. ABK5 is a CB2 subtype selective agonist that has a very different structure from known cannabinoid receptor agonists. Here, we report anti-inflammatory effects of ABK5 using the T-cell line Jurkat cells, and antinociceptive effect in an inflammatory pain model in rats. Production of the cytokines IL-2 and TNF-α was measured in stimulated Jurkat cells and MOLT-4 cells, and CXCL12-mediated chemotaxis of Jurkat cells was evaluated by a transwell migration assay. Anti-inflammatory and antinociceptive effects of ABK5 were also evaluated in a hindpaw CFA model in rats. ABK5 significantly decreased production of IL-2 and TNF-α measured as both mRNA and protein levels, and reduced chemotaxis towards CXCL12. It also attenuated edema and increased mechanical threshold in the hindpaw of CFA-treated rats. These results suggest that ABK5 is a good lead compound for the development of potential anti-inflammatory and analgesic agents.
Collapse
Affiliation(s)
- Yaliang Tang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Barbara Wolk
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Stevie C Britch
- Department of Psychology, Washington State University, Pullman, WA, 99164, USA
| | - Rebecca M Craft
- Department of Psychology, Washington State University, Pullman, WA, 99164, USA
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
15
|
Jergova S, Perez C, Imperial JS, Gajavelli S, Jain A, Abin A, Olivera BM, Sagen J. Cannabinoid receptor agonists from Conus venoms alleviate pain-related behavior in rats. Pharmacol Biochem Behav 2021; 205:173182. [PMID: 33774007 DOI: 10.1016/j.pbb.2021.173182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/18/2021] [Accepted: 03/18/2021] [Indexed: 11/28/2022]
Abstract
Cannabinoid (CB) receptor agonists show robust antinociceptive effects in various pain models. However, most of the clinically potent CB1 receptor-active drugs derived from cannabis are considered concerning due to psychotomimetic side effects. Selective CB receptor ligands that do not induce CNS side effects are of clinical interest. The venoms of marine snail Conus are a natural source of various potent analgesic peptides, some of which are already FDA approved. In this study we evaluated the ability of several Conus venom extracts to interact with CB1 receptor. HEK293 cells expressing CB1 receptors were treated with venom extracts and CB1 receptor internalization was analyzed by immunofluorescence. Results showed C. textile (C. Tex) and C. miles (C. Mil) samples as the most potent. These were serially subfractionated by HPLC for subsequent analysis by internalization assays and for analgesic potency evaluated in the formalin test and after peripheral nerve injury. Intrathecal injection of C. Tex and C. Mil subfractions reduced flinching/licking behavior during the second phase of formalin test and attenuated thermal and mechanical allodynia in nerve injury model. Treatment with proteolytic enzymes reduced CB1 internalization of subfractions, indicating the peptidergic nature of CB1 active component. Further HPLC purification revealed two potent antinociceptive subfractions within C. Tex with CB1 and possible CB2 activity, with mild to no side effects in the CB tetrad assessment. CB conopeptides can be isolated from these active Conus venom-derived samples and further developed as novel analgesic agents for the treatment of chronic pain using cell based or gene therapy approaches.
Collapse
Affiliation(s)
- Stanislava Jergova
- University of Miami, Miller School of Medicine, Miami Project, 1095 NW 14(th) terrace, Miami, FL 33136, USA.
| | - Cecilia Perez
- University of Miami, Miller School of Medicine, Miami Project, 1095 NW 14(th) terrace, Miami, FL 33136, USA
| | - Julita S Imperial
- University of Utah, School of Biological Sciences, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Shyam Gajavelli
- University of Miami, Miller School of Medicine, Miami Project, 1095 NW 14(th) terrace, Miami, FL 33136, USA
| | - Aakangsha Jain
- University of Miami, Miller School of Medicine, Miami Project, 1095 NW 14(th) terrace, Miami, FL 33136, USA
| | - Adam Abin
- University of Miami, Miller School of Medicine, Miami Project, 1095 NW 14(th) terrace, Miami, FL 33136, USA
| | - Baldomero M Olivera
- University of Utah, School of Biological Sciences, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Jacqueline Sagen
- University of Miami, Miller School of Medicine, Miami Project, 1095 NW 14(th) terrace, Miami, FL 33136, USA
| |
Collapse
|
16
|
Le Foll B. Opioid-sparing effects of cannabinoids: Myth or reality? Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110065. [PMID: 32828853 DOI: 10.1016/j.pnpbp.2020.110065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/09/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
A converging line of evidence is indicating that cannabinoids may have an opioid-sparing effect. This property, well validated in preclinical studies, allow when both drugs are co-administered to reduce the dose of opioids without loss of analgesic effects. A meta-analysis of pre-clinical studies indicated in 2017 that the median effective dose (ED50) of morphine administered in combination with delta-9-tetrahydrocannabinol (delta-9-THC) is 3.6 times lower than the ED50 of morphine alone (Nielsen et al., 2017). However, very few studies have been conducted in humans to validate this effect. This narrative review provides an update on whether or not cannabinoid drugs can be used to produce an opioid sparing effect. For this, various lines of evidence ranging from preclinical, epidemiological and human studies will be summarized. Overall, this review indicates that the preclinical results are strongly and consistently supportive of the presence of an opioid sparing effect of cannabinoid drugs. However, to date the clinical studies have been mostly negative; and, the evidence collected in humans so far is so limited that it is premature to conclude. Therefore, prospective high quality controlled clinical trials are still required to validate this. Priorities for future research are also discussed.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada; Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON, Canada.; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
The Effect of Cannabis on the Clinical and Cytokine Profiles in Patients with Multiple Sclerosis. Mult Scler Int 2021; 2021:6611897. [PMID: 33628507 PMCID: PMC7884151 DOI: 10.1155/2021/6611897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Background Multiple studies have reported that cannabis administration in multiple sclerosis patients is associated with decreased symptom severity. This study was conducted to evaluate the prevalence of cannabis abuse in multiple sclerosis cases and to evaluate the effect of cannabis on serum cytokines in such cases. Patients and Methods. A total of 150 multiple sclerosis cases along with 150 healthy controls were included during the study period. All cases were subjected to history taking, neurological examination, and routine investigations. Cases were asked about cannabis intake which was confirmed by a urine test. Serum cytokines including IL-1, IL-2, IL-4, IL-10, IL-12, IL-17, IL-22, IFN-γ, IFN-β1, and TNF-α were ordered for all cases and controls. Results Twenty-eight cases were cannabis abusers (MS/cannabis group, 18.67%). The remaining 122 cases represented the MS group. There was no significant difference between the three groups regarding age, disease duration, or MS type. Male gender was more predominant in the MS/cannabis group, and the number of relapses was significantly lower in the same group. Fifteen cases (53.6%) reported that their symptoms were improved by cannabis. Proinflammatory cytokines were significantly elevated in the MS group compared to the MS/cannabis and control groups. Additionally, anti-inflammatory cytokines had significantly lower values in the MS group compared to the MS/cannabis and control groups. Most clinical symptoms were significantly improved in the MS/cannabis group compared to the MS group apart from sexual dysfunction, bladder symptoms, and visual disturbances. Mild side effects of cannabis were also reported. Conclusion Cannabis may have a positive impact on the cytokine and clinical profiles in cases with multiple sclerosis.
Collapse
|
18
|
Meng H, Page MG, Ajrawat P, Deshpande A, Samman B, Dominicis M, Ladha KS, Fiorellino J, Huang A, Kotteeswaran Y, McClaren-Blades A, Kotra LP, Clarke H. Patient-reported outcomes in those consuming medical cannabis: a prospective longitudinal observational study in chronic pain patients. Can J Anaesth 2021; 68:633-644. [PMID: 33469735 DOI: 10.1007/s12630-020-01903-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022] Open
Abstract
PURPOSE We investigated patients with chronic pain seeking medical cannabis. We assessed their demographics, patterns of cannabis use, and the long-term effectiveness of cannabis on their pain and functional domains. METHODS This observational study enrolled patients between 8 September 2015 and 31 July 2018 from community-based cannabis clinics in Ontario, Canada. In addition to collecting demographic information, the primary outcomes studied were pain intensity and pain-related interference scores assessed at baseline, three, six, and 12 months. Using validated questionnaires, we also assessed anxiety, depression, quality of life (QoL), general health symptoms, neuropathic pain, self-reported opioid consumption, and adverse events. RESULTS Of the 1,000 patients consented, 757 (76%) participated at one or more of the study time points. At six and 12 months, 230 (30.4%) and 104 (13.7%) of participants were followed up, respectively. Most participants were female (62%), Caucasian (91%), and sought cannabis for pain relief (88%). Time was a significant factor associated with improvement in pain intensity (P < 0.001), pain-related interference scores (P < 0.001), QoL (P < 0.001), and general health symptoms (P < 0.001). Female sex was significantly associated with worse outcomes than male sex including pain intensity (P < 0.001) and pain-related interference (P < 0.001). The proportion of individuals who reported using opioids decreased by half, from 40.8% at baseline to 23.9% at 12 months. CONCLUSION Despite significant challenges to collecting long-term observational data on patients who attempted a trial of cannabis products, approximately one-third of patients in the cohort remained on medical cannabis for six months. In this cohort, pain intensity and pain-related interference scores were reduced and QoL and general health symptoms scores were improved compared with baseline.
Collapse
Affiliation(s)
- Howard Meng
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| | - M Gabrielle Page
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Département d'anesthésiology et médecine de la douleur, Faculté de médecine, Université de Montréal, Montreal, QC, Canada
| | - Prabjit Ajrawat
- Department of Anesthesia, Toronto General Hospital, Toronto, ON, Canada
| | | | - Bana Samman
- Department of Anesthesia, Toronto General Hospital, Toronto, ON, Canada
| | - Mary Dominicis
- Department of Anesthesia, Toronto General Hospital, Toronto, ON, Canada
| | - Karim S Ladha
- Department of Anesthesia, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Centre For Cannabinoid Therapeutics, Toronto, ON, Canada
| | - Joseph Fiorellino
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, Toronto General Hospital, Toronto, ON, Canada
- Centre For Cannabinoid Therapeutics, Toronto, ON, Canada
- Transitional Pain Service, Toronto General Hospital, Toronto, ON, Canada
| | - Alexander Huang
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, Toronto General Hospital, Toronto, ON, Canada
- Transitional Pain Service, Toronto General Hospital, Toronto, ON, Canada
| | - Yuvaraj Kotteeswaran
- Department of Anesthesia, Northern Ontario School of Medicine, Thunder Bay, ON, Canada
| | - Alex McClaren-Blades
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, Toronto General Hospital, Toronto, ON, Canada
- Transitional Pain Service, Toronto General Hospital, Toronto, ON, Canada
| | - Lakshmi P Kotra
- Centre For Cannabinoid Therapeutics, Toronto, ON, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Hance Clarke
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Anesthesia, Toronto General Hospital, Toronto, ON, Canada.
- Centre For Cannabinoid Therapeutics, Toronto, ON, Canada.
- Transitional Pain Service, Toronto General Hospital, Toronto, ON, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Pain Research Unit, Department of Anesthesia and Pain Management, GoodHope Ehlers Danlos Clinic, Toronto General Hospital, Toronto, ON, M5G 2C4, Canada.
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
19
|
Amalraj A, Jacob J, Varma K, Gopi S. Preparation and Characterization of Liposomal β-Caryophyllene (Rephyll) by Nanofiber Weaving Technology and Its Effects on Delayed Onset Muscle Soreness (DOMS) in Humans: A Randomized, Double-Blinded, Crossover-Designed, and Placebo-Controlled Study. ACS OMEGA 2020; 5:24045-24056. [PMID: 32984726 PMCID: PMC7513359 DOI: 10.1021/acsomega.0c03456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/26/2020] [Indexed: 05/08/2023]
Abstract
Delayed onset muscle soreness (DOMS) is a complex spreading out, which is related to swelling of muscles, tenderness, rigidity, pain, disruption of muscle fiber, alteration in the kinematics of joint, acute tissue damage, and reduction in power and strength. β-Caryophyllene (BCP), a potent phytocannabinoid, could play an important role in managing DOMS because of its wide diversity of biological activities, particularly its anti-inflammatory activity; however, its poor stability in light, temperature, high volatility, and insolubility can restrict the medical practices. In this study, liposomal β-caryophyllene (Rephyll) was designed and established in powder form constructed by the nanofiber weaving technology to improve the bioavailability of BCP with improved stability. Rephyll was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and differential scanning calorimetry studies. Encapsulation efficiency, loading capacity, and in vitro release studies revealed that Rephyll can be an auspicious drug delivery arrangement for BCP. The effects of Rephyll were evaluated by a randomized, double-blinded, crossover-designed, placebo-controlled study. The oral consumption of Rephyll significantly reduced the pain visual assessment score, revealing that Rephyll effectively reduced DOMS with improved recovery without any side effects due to the bioavailable form of the phytocannabinoid BCP in the liposomal powder formulation.
Collapse
|
20
|
Chisari CG, Sgarlata E, Arena S, D’Amico E, Toscano S, Patti F. An update on the pharmacological management of pain in patients with multiple sclerosis. Expert Opin Pharmacother 2020; 21:2249-2263. [DOI: 10.1080/14656566.2020.1757649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Clara G. Chisari
- Department “GF Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Eleonora Sgarlata
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
- Stroke Unit, Department of Medicine, Umberto I Hospital, Siracusa, Italy
| | - Sebastiano Arena
- Department “GF Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Emanuele D’Amico
- Department “GF Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Simona Toscano
- Department “GF Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Francesco Patti
- Department “GF Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| |
Collapse
|
21
|
Thompson AL, Grenald SA, Ciccone HA, BassiriRad N, Niphakis MJ, Cravatt BF, Largent-Milnes TM, Vanderah TW. The Endocannabinoid System Alleviates Pain in a Murine Model of Cancer-Induced Bone Pain. J Pharmacol Exp Ther 2020; 373:230-238. [PMID: 32054717 DOI: 10.1124/jpet.119.262337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/10/2020] [Indexed: 12/22/2022] Open
Abstract
Metastatic breast cancer is prevalent worldwide, and one of the most common sites of metastasis is long bones. Of patients with disease, the major symptom is pain, yet current medications fail to adequately result in analgesic efficacy and present major undesirable adverse effects. In our study, we investigate the potential of a novel monoacylglycerol lipase (MAGL) inhibitor, MJN110, in a murine model of cancer-induced bone pain. Literature has previously demonstrated that MAGL inhibitors function to increase the endogenous concentrations of 2-arachydonylglycerol, which then activates CB1 and CB2 receptors to inhibit inflammation and pain. We demonstrate that administration of MJN110 significantly and dose dependently alleviates spontaneous pain behavior during acute administration compared with vehicle control. In addition, MJN110 maintains its efficacy in a chronic-dosing paradigm over the course of 7 days without signs of receptor sensitization. In vitro analysis of MJN110 demonstrated a dose-dependent and significant decrease in cell viability and proliferation of 66.1 breast adenocarcinoma cells to a greater extent than KML29, an alternate MAGL inhibitor, or the CB2 agonist JWH015. Chronic administration of the compound did not appear to affect tumor burden, as evidenced by radiograph or histologic analysis. Together, these data support the application for MJN110 as a novel therapeutic for cancer-induced bone pain. SIGNIFICANCE STATEMENT: Current standard of care for metastatic breast cancer pain is opioid-based therapies with adjunctive chemotherapy, which have highly addictive and other deleterious side effects. The need for effective, non-opioid-based therapies is essential, and harnessing the endogenous cannabinoid system is proving to be a new target to treat various types of pain conditions. We present a novel drug targeting the endogenous cannabinoid system that is effective at reducing pain in a mouse model of metastatic breast cancer to bone.
Collapse
Affiliation(s)
- A L Thompson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona (A.L.T., S.A.G., H.A.C., N.B., T.M.L.-M., T.W.V); Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland (S.A.G.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - S A Grenald
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona (A.L.T., S.A.G., H.A.C., N.B., T.M.L.-M., T.W.V); Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland (S.A.G.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - H A Ciccone
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona (A.L.T., S.A.G., H.A.C., N.B., T.M.L.-M., T.W.V); Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland (S.A.G.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - N BassiriRad
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona (A.L.T., S.A.G., H.A.C., N.B., T.M.L.-M., T.W.V); Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland (S.A.G.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - M J Niphakis
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona (A.L.T., S.A.G., H.A.C., N.B., T.M.L.-M., T.W.V); Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland (S.A.G.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - B F Cravatt
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona (A.L.T., S.A.G., H.A.C., N.B., T.M.L.-M., T.W.V); Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland (S.A.G.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - T M Largent-Milnes
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona (A.L.T., S.A.G., H.A.C., N.B., T.M.L.-M., T.W.V); Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland (S.A.G.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - T W Vanderah
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona (A.L.T., S.A.G., H.A.C., N.B., T.M.L.-M., T.W.V); Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland (S.A.G.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| |
Collapse
|
22
|
Danner E, Hoffmann F, Lee SY, Cordes F, Orban S, Dauber K, Chudziak D, Spohn G, Wiercinska E, Tast B, Karpova D, Bonig H. Modest and nonessential roles of the endocannabinoid system in immature hematopoiesis of mice. Exp Hematol 2019; 78:35-45. [PMID: 31562901 DOI: 10.1016/j.exphem.2019.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
Abstract
Endocannabinoids are lipid mediators that signal via several seven-transmembrane domain G protein-coupled receptors. The endocannabinoid receptor CB2 is expressed on blood cells, including stem cells, and mediates the effects of cannabinoids on the immune system. The role of the endocannabinoid system in immature hematopoiesis is largely elusive. Both direct effects of endocannabinoids on stem cells and indirect effects through endocannabinoid-responsive niche cells like macrophages have been reported. Using two different CB2-deficient mouse models, we studied the role of the endocannabinoid system in immature hematopoiesis. Moreover, we utilized both models to assess the specificity of putative CB2 agonists. As heterodimerization of CB2 and CXCR4, which is highly expressed on hematopoietic stem cells, has already been described, we also assessed potential consequences of CB2 loss for CXCR4/CXCL12 signaling. Overall, no differential effects were observed with any of the compounds tested; the compounds barely induced signaling by themselves, whereas they attenuated CXCL12-induced signals in both CB2-competent and CB2-deficient cells. In vivo experiments were therefore by necessity restricted to loss-of-function studies in knockout (CB2-/-) mice: Except for mild lymphocytosis and slightly elevated circulating progenitor cells, homeostatic hematopoiesis in CB2-/- mice appears to be entirely normal. Mobilization in response to pharmacological stimuli, Plerixafor or G-CSF, was equally potent in wild-type and CB2-/- mice. CB2-/- bone marrow cells reconstituted hematopoiesis in lethally irradiated recipients with engraftment kinetics indistinguishable from those of wild-type grafts. In summary, we found the endocannabinoid system to be largely dispensable for normal murine hematopoiesis.
Collapse
Affiliation(s)
- Eva Danner
- German Red Cross Blood Donor Service Baden-Wuerttemberg-Hessen, Frankfurt, Germany; Goethe University Frankfurt, Faculty of Biological Sciences, Frankfurt, Germany
| | - Frauke Hoffmann
- German Red Cross Blood Donor Service Baden-Wuerttemberg-Hessen, Frankfurt, Germany
| | - Seo-Youn Lee
- German Red Cross Blood Donor Service Baden-Wuerttemberg-Hessen, Frankfurt, Germany
| | - Fabian Cordes
- German Red Cross Blood Donor Service Baden-Wuerttemberg-Hessen, Frankfurt, Germany
| | - Sabine Orban
- German Red Cross Blood Donor Service Baden-Wuerttemberg-Hessen, Frankfurt, Germany
| | - Katrin Dauber
- German Red Cross Blood Donor Service Baden-Wuerttemberg-Hessen, Frankfurt, Germany
| | - Doreen Chudziak
- German Red Cross Blood Donor Service Baden-Wuerttemberg-Hessen, Frankfurt, Germany
| | - Gabriele Spohn
- German Red Cross Blood Donor Service Baden-Wuerttemberg-Hessen, Frankfurt, Germany
| | - Eliza Wiercinska
- German Red Cross Blood Donor Service Baden-Wuerttemberg-Hessen, Frankfurt, Germany
| | - Benjamin Tast
- German Red Cross Blood Donor Service Baden-Wuerttemberg-Hessen, Frankfurt, Germany
| | - Darja Karpova
- German Red Cross Blood Donor Service Baden-Wuerttemberg-Hessen, Frankfurt, Germany
| | - Halvard Bonig
- German Red Cross Blood Donor Service Baden-Wuerttemberg-Hessen, Frankfurt, Germany; Goethe University Medical School, Institute for Transfusion Medicine and Immunohematology, Frankfurt, Germany.
| |
Collapse
|
23
|
Picardo S, Kaplan GG, Sharkey KA, Seow CH. Insights into the role of cannabis in the management of inflammatory bowel disease. Therap Adv Gastroenterol 2019; 12:1756284819870977. [PMID: 31523278 PMCID: PMC6727090 DOI: 10.1177/1756284819870977] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/26/2019] [Indexed: 02/04/2023] Open
Abstract
Over the last decade, interest in the therapeutic potential of cannabis and its constituents (e.g. cannabidiol) in the management of inflammatory bowel diseases (IBD) has escalated. Cannabis has been increasingly approved for a variety of medical conditions in several jurisdictions around the world. In animal models, cannabinoids have been shown to improve intestinal inflammation in experimental models of IBD through their interaction with the endocannabinoid system. However, the few randomized controlled trials of cannabis or cannabidiol in patients with IBD have not demonstrated efficacy in modulating inflammatory disease activity. Cannabis may be effective in the symptomatic management of IBD. Given the increasing utilization and cultural acceptance of cannabis, physicians need to be aware of its safety and efficacy in order to better counsel patients. The aim of this review is to provide an overview of the role of cannabis in the management of patients with IBD.
Collapse
Affiliation(s)
- Sherman Picardo
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Gilaad G. Kaplan
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Cumming School of Medicine, University of Calgary, AB, Canada,Department of Community Health Sciences, University of Calgary, AB, Canada
| | - Keith A. Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, AB, Canada
| | | |
Collapse
|
24
|
Liu CW, Bhatia A, Buzon-Tan A, Walker S, Ilangomaran D, Kara J, Venkatraghavan L, Prabhu AJ. Weeding Out the Problem: The Impact of Preoperative Cannabinoid Use on Pain in the Perioperative Period. Anesth Analg 2019; 129:874-881. [PMID: 31425232 DOI: 10.1213/ane.0000000000003963] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The recreational and medical use of cannabinoids has been increasing. While most studies and reviews have focused on the role of cannabinoids in the management of acute pain, no study has examined the postoperative outcomes of surgical candidates who are on cannabinoids preoperatively. This retrospective cohort study examined the impact of preoperative cannabinoid use on postoperative pain scores and pain-related outcomes in patients undergoing major orthopedic surgery. METHODS Outcomes of patients who had major orthopedic surgery at our hospital between April 1, 2015 and June 30, 2017 were reviewed. Data were obtained from Networked Online Processing of Acute Pain Information, a locally developed database for our Acute Pain Service. Propensity score matching was used to balance baselines variables including age, sex, type of surgery, history of depression or anxiety, and perioperative use of regional anesthesia between patients who reported use of cannabinoids and those not on this substance. Intensity of pain with movement in the early postoperative period (defined as up to 36 hours after surgery) was the primary outcome of this study. The secondary outcomes (all in early postoperative period) were pain at rest, opioid consumption, incidence of pruritus, nausea and vomiting, sedation, delirium, constipation, impairment of sleep and physical activity, patient satisfaction with analgesia, and the length of Acute Pain Service follow-up. RESULTS A total of 3793 patients were included in the study. Of these, 155 patients were identified as being on cannabinoids for recreational or medical indications in the preoperative period. After propensity score matching, we compared data from 155 patients who were on cannabinoids and 155 patients who were not on cannabinoids. Patients who were on preoperative cannabinoids had higher pain numerical rating score (median [25th, 75th percentiles]) at rest (5.0 [3.0, 6.1] vs 3.0 [2.0, 5.5], P = .010) and with movement (8.0 [6.0, 9.0] vs 7.0 [3.5, 8.5], P = .003), and a higher incidence of moderate-to-severe pain at rest (62.3% vs 45.5%, respectively, P = .004; odds ratio, 1.98; 95% CI, 1.25-3.14) and with movement (85.7% vs 75.2% respectively, P = .021; odds ratio, 1.98; 95% CI, 1.10-3.57) in the early postoperative period compared to patients who were not on cannabinoids. There was also a higher incidence of sleep interruption in the early postoperative period for patients who used cannabinoids. CONCLUSIONS This retrospective study with propensity-matched cohorts showed that cannabinoid use was associated with higher pain scores and a poorer quality of sleep in the early postoperative period in patients undergoing major orthopedic surgery.
Collapse
Affiliation(s)
- Christopher W Liu
- From the Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
- Department of Pain Medicine, Singapore General Hospital, Singapore
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Anuj Bhatia
- From the Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, Toronto, Ontario, Canada
- Institute of Health Policy Management and Evaluation, University of Toronto, Ontario, Canada
| | - Arlene Buzon-Tan
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Susan Walker
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Dharini Ilangomaran
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Jamal Kara
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Lakshmikumar Venkatraghavan
- From the Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Atul J Prabhu
- From the Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Chinnadurai A, Berger G, Burkovskiy I, Zhou J, Cox A, Lynch M, Lehmann C. Monoacylglycerol lipase inhibition as potential treatment for interstitial cystitis. Med Hypotheses 2019; 131:109321. [PMID: 31443753 DOI: 10.1016/j.mehy.2019.109321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
Abstract
Interstitial cystitis is a chronic inflammatory condition of the urinary bladder with an unclear etiology. Currently, there are no widely accepted long-term treatment options available for patients with IC, with the European Association of Urology (EAU, 2017 guidelines), American Urology Association (AUA, 2014 guidelines), and the Royal College of Obstetricians and Gynaecologists (RCOG, 2016 guidelines) all suggesting various different conservative, pharmacological, intravesical, and surgical interventions. The endocannabinoid system represents a potential target for IC treatment and management. Activation of cannabinoid receptor 2 (CBR2) with various agonists has previously been shown to reduce leukocyte differentiation and migration, in addition to inhibiting the release of pro-inflammatory cytokines at the site of inflammation. These receptors have been identified in the detrusor and sensory nerves of the urothelium in various mammalian species, including humans. We hypothesize that by inhibiting the enzymes responsible for the catabolism of endogenous cannabinoids locally, bladder concentrations of CBR2 agonists will increase, particularly 2-arachidonyl glycerol, resulting in a diminished inflammatory response.
Collapse
Affiliation(s)
- Anu Chinnadurai
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Geraint Berger
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian Burkovskiy
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Ashley Cox
- Department of Urology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mary Lynch
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
26
|
Abstract
Despite greater chronic pain prevalence in females compared with males, and the analgesic potential of cannabinoid receptor type 2 (CB2) agonists, CB2 agonists have rarely been tested in females. The aim of the present study was to compare the antinociceptive effects of a CB2-preferring agonist, (2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenylmethanone (JWH015), in female and male rats against acute pain and persistent inflammatory pain. JWH015 (5-20 mg/kg, intraperitoneally) produced dose-dependent and time-dependent increases in latency to respond on the tail withdrawal and paw pressure tests that did not differ statistically between the sexes. JWH015 dose-dependently decreased locomotor activity in both sexes, but was more potent in females than males. JWH015 produced little catalepsy in either sex. In females, the antinociceptive effects of JWH015 against acute pain were blocked by rimonabant and SR144528, whereas locomotor suppression was antagonized by rimonabant. When administered 3 days after intraplantar injection of complete Freund's adjuvant, JWH015 produced a significantly greater antiallodynic effect in females at the highest dose tested (10 mg/kg, intraperitoneally). Antiallodynic effects of JWH015 were antagonized by rimonabant and SR144528 in both sexes. These studies indicate that systemically administered JWH015 produced antinociception that was both CB1 and CB2 receptor-mediated in both sexes. Unlike [INCREMENT]-9-tetrahydrocannabinol and other nonselective cannabinoid agonists, the CB2-preferring agonist JWH015 may produce more equivalent antinociception in females and males.
Collapse
|
27
|
Cohen K, Weizman A, Weinstein A. Modulatory effects of cannabinoids on brain neurotransmission. Eur J Neurosci 2019; 50:2322-2345. [DOI: 10.1111/ejn.14407] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Koby Cohen
- Department of Behavioral Science Ariel University Science Park 40700 Ariel Israel
| | | | - Aviv Weinstein
- Department of Behavioral Science Ariel University Science Park 40700 Ariel Israel
| |
Collapse
|
28
|
Scott CE, Tang Y, Alt A, Burford NT, Gerritz SW, Ogawa LM, Zhang L, Kendall DA. Identification and biochemical analyses of selective CB 2 agonists. Eur J Pharmacol 2019; 854:1-8. [PMID: 30951717 DOI: 10.1016/j.ejphar.2019.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
Cannabinoid CB1 and CB2 receptors are activated by Δ9-tetrahydrocannabinol, a psychoactive component of marijuana. The cannabinoid CB1 receptor is primarily located in the brain and is responsible for the psychoactive side effects, whereas the cannabinoid CB2 receptor is located in immune cells and is an attractive target for immune-related maladies. We identify small molecules that selectively bind to the cannabinoid CB2 receptor and can be further developed into therapeutics. The affinity of three molecules, ABK5, ABK6, and ABK7, to the cannabinoid CB2 receptor was determined with radioligand competition binding. The potency of G-protein coupling was determined with GTPγS binding. The three compounds bound selectively to the cannabinoid CB2 receptor, and no binding to the cannabinoid CB1 receptor was detected up to 10 μM. Immunoblotting studies show that the amount of ERK1/2 and MEK phosphorylation increased in a Gi/o-dependent manner. Furthermore, an immune cell line (Jurkat cells) was treated with ABK5, and as a result, inhibited cell proliferation. These three compounds are novel cannabinoid CB2 receptor agonists and hold promise to be further developed to treat inflammation and the often-associated pain.
Collapse
Affiliation(s)
- Caitlin E Scott
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Storrs, CT, 06269, USA
| | - Yaliang Tang
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Storrs, CT, 06269, USA
| | - Andrew Alt
- Bristol-Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Neil T Burford
- Bristol-Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Samuel W Gerritz
- Bristol-Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Lisa M Ogawa
- Bristol-Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Litao Zhang
- Bristol-Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Storrs, CT, 06269, USA.
| |
Collapse
|
29
|
Indomethacin plus minocycline coadministration relieves chemotherapy and antiretroviral drug-induced neuropathic pain in a cannabinoid receptors-dependent manner. J Pharmacol Sci 2019; 139:325-332. [PMID: 30871874 DOI: 10.1016/j.jphs.2019.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Neuropathic pain sometimes occurs during chemotherapy with paclitaxel or HIV/AIDS antiretroviral therapy with nucleoside reverse transcriptase inhibitors (NRTIs). We previously reported that coadministration of indomethacin plus minocycline (IPM) was antihyperalgesic in a cannabinoid type 1 (CB1) receptor-dependent manner in a mouse model of paclitaxel-induced neuropathic pain. We evaluated if IPM combination has antihyperalgesic and antiallodynic activities in animal models of paclitaxel or NRTI (ddC, zalcitabine)-induced neuropathic pain, and whether antagonists of CB1, CB2 receptors or G protein-coupled receptor 55 (GPR55) can inhibit these activities of IPM. IPM produced antihyperalgesic and antiallodynic effects against paclitaxel and ddC-induced thermal hyperalgesia and mechanical allodynia. WIN 55,212-2, a cannabinoid receptor agonist, also had antihyperalgesic activity. The antihyperalgesic and antiallodynic activities of IPM were antagonized by a CB1 receptor antagonist AM251 and a CB2 receptor antagonist AM630, but not a GPR55 antagonist ML193. IPM had no effects on the mean time spent on the rotarod, whereas WIN 55,212-2 reduced it in a dose-dependent manner. These results show that IPM at a fixed ratio produces antihyperalgesic and antiallodynic effects in mice models of both paclitaxel and NRTI-induced neuropathic pain which is dependent on both CB1 and CB2 receptors, without causing the typical cannabinoid receptor agonist-induced motor impairment.
Collapse
|
30
|
Modulation of Opioid Transport at the Blood-Brain Barrier by Altered ATP-Binding Cassette (ABC) Transporter Expression and Activity. Pharmaceutics 2018; 10:pharmaceutics10040192. [PMID: 30340346 PMCID: PMC6321372 DOI: 10.3390/pharmaceutics10040192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022] Open
Abstract
Opioids are highly effective analgesics that have a serious potential for adverse drug reactions and for development of addiction and tolerance. Since the use of opioids has escalated in recent years, it is increasingly important to understand biological mechanisms that can increase the probability of opioid-associated adverse events occurring in patient populations. This is emphasized by the current opioid epidemic in the United States where opioid analgesics are frequently abused and misused. It has been established that the effectiveness of opioids is maximized when these drugs readily access opioid receptors in the central nervous system (CNS). Indeed, opioid delivery to the brain is significantly influenced by the blood-brain barrier (BBB). In particular, ATP-binding cassette (ABC) transporters that are endogenously expressed at the BBB are critical determinants of CNS opioid penetration. In this review, we will discuss current knowledge on the transport of opioid analgesic drugs by ABC transporters at the BBB. We will also examine how expression and trafficking of ABC transporters can be modified by pain and/or opioid pharmacotherapy, a novel mechanism that can promote opioid-associated adverse drug events and development of addiction and tolerance.
Collapse
|
31
|
Elliott MB, Ward SJ, Abood ME, Tuma RF, Jallo JI. Understanding the endocannabinoid system as a modulator of the trigeminal pain response to concussion. Concussion 2018; 2:CNC49. [PMID: 30202590 PMCID: PMC6122691 DOI: 10.2217/cnc-2017-0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/29/2017] [Indexed: 12/29/2022] Open
Abstract
Post-traumatic headache is the most common symptom of postconcussion syndrome and becomes a chronic neurological disorder in a substantial proportion of patients. This review provides a brief overview of the epidemiology of postconcussion headache, research models used to study this disorder, as well as the proposed mechanisms. An objective of this review is to enhance the understanding of how the endogenous cannabinoid system is essential for maintaining the balance of the CNS and regulating inflammation after injury, and in turn making the endocannabinoid system a potential modulator of the trigeminal response to concussion. The review describes the role of endocannabinoid modulation of pain and the potential for use of phytocannabinoids to treat pain, migraine and concussion.
Collapse
Affiliation(s)
- Melanie B Elliott
- Department of Neurosurgery, Vickie & Jack Farber Institute for Neuroscience Thomas Jefferson University, PA 19107, USA.,Department of Neurosurgery, Vickie & Jack Farber Institute for Neuroscience Thomas Jefferson University, PA 19107, USA
| | - Sara J Ward
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, PA 19140, USA
| | - Mary E Abood
- Department of Anatomy & Cell Biology, Lewis Katz School of Medicine, Temple University, PA 19140, USA.,Department of Anatomy & Cell Biology, Lewis Katz School of Medicine, Temple University, PA 19140, USA
| | - Ronald F Tuma
- Department of Physiology Lewis Katz School of Medicine, Temple University, PA 19140, USA.,Department of Physiology Lewis Katz School of Medicine, Temple University, PA 19140, USA
| | - Jack I Jallo
- Department of Neurosurgery, Vickie & Jack Farber Institute for Neuroscience Thomas Jefferson University, PA 19107, USA.,Department of Neurosurgery, Vickie & Jack Farber Institute for Neuroscience Thomas Jefferson University, PA 19107, USA
| |
Collapse
|
32
|
Linagliptin attenuates chronic post-ischemia pain: Possible anti-inflammatory and anti-oxidant mechanisms. Eur J Pharmacol 2018; 828:110-118. [DOI: 10.1016/j.ejphar.2018.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/08/2023]
|
33
|
Zhang M, Dong L, Zou H, Li J, Li Q, Wang G, Li H. Effects of Cannabinoid Type 2 Receptor Agonist AM1241 on Morphine-Induced Antinociception, Acute and Chronic Tolerance, and Dependence in Mice. THE JOURNAL OF PAIN 2018; 19:1113-1129. [PMID: 29729431 DOI: 10.1016/j.jpain.2018.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/13/2018] [Accepted: 04/12/2018] [Indexed: 12/18/2022]
Abstract
Morphine is a potent opioid analgesic used to alleviate moderate or severe pain, but the development of drug tolerance and dependence limits its use in pain management. Previous studies showed that cannabinoid type 2 (CB2) receptor ligands may modulate opioid effects. However, there is no report of the effect of CB2 receptor agonist on acute morphine tolerance and physical dependence. We therefore investigated the effect of a CB2 receptor agonist (AM1241) on morphine-induced morphine tolerance and physical dependence in mice. Repeated coadministration of AM1241 (1 or 3mg/kg intraperitoneally) and morphine (10mg/kg subcutaneously) for 7days increased the mechanical paw withdrawal threshold in mice as measured by the von Frey filament test, and 3mg/kg AM1241 in combination with morphine increased the thermal paw withdrawal latency as measured by the hot-plate test. Combination with 3mg/kg AM1241 and morphine increased acute morphine antinociception. Coadministration of 1 or 3mg/kg AM1241 and morphine reduced acute morphine tolerance, and 3mg/kg AM1241 reduced chronic morphine tolerance. Coadministration of 1 or 3mg/kg AM1241 and morphine reduced naloxone-precipitated withdrawal jumping, but not diarrhea. Coadministration of AM1241 and morphine did not inhibit spontaneous locomotor activity. Pretreatment with 3mg/kg AM1241 decreased the chronic morphine-induced Iba1 expression in spinal cord. Coadministration of AM1241 (3 mg/kg) reduced the production of interleukin-1β, tumor necrosis factor-α, and interleukin-6 induced by long-term and acute morphine treatment. Our findings suggest that the coadministration of the CB2 receptor agonist and morphine could increase morphine antinociception and reduce morphine tolerance and physical dependence in mice. PERSPECTIVE The combination of a CB2 agonist and morphine may provide a new strategy for better treatment of acute and chronic pain and prevention of opioid tolerance and dependence. This finding may also provide a clue for the treatment of opioid tolerance and dependence in clinics.
Collapse
Affiliation(s)
- Mingyue Zhang
- Department of Anesthesiology, Harbin Medical University, Harbin, China
| | - Linlin Dong
- Department of Anesthesiology, Harbin Medical University, Harbin, China
| | - Huichao Zou
- Department of Pain, Cancer Hospital, Harbin Medical University, Harbin, China
| | - Junnan Li
- Department of Statistics, Harbin Medical University, Harbin, China
| | - Quanyi Li
- Department of Anesthesiology, Harbin Medical University, Harbin, China
| | - Guonian Wang
- Department of Anesthesiology, Harbin Medical University, Harbin, China; Pain Research Institute of Heilongjiang Academy of Medical Sciences, Harbin, China.
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Harbin, China.
| |
Collapse
|
34
|
Nielsen S, Germanos R, Weier M, Pollard J, Degenhardt L, Hall W, Buckley N, Farrell M. The Use of Cannabis and Cannabinoids in Treating Symptoms of Multiple Sclerosis: a Systematic Review of Reviews. Curr Neurol Neurosci Rep 2018; 18:8. [PMID: 29442178 DOI: 10.1007/s11910-018-0814-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Pharmaceutical cannabinoids such as nabiximols, nabilone and dronabinol, and plant-based cannabinoids have been investigated for their therapeutic potential in treating multiple sclerosis (MS) symptoms. This review of reviews aimed to synthesise findings from high quality systematic reviews that examined the safety and effectiveness of cannabinoids in multiple sclerosis. We examined the outcomes of disability and disability progression, pain, spasticity, bladder function, tremor/ataxia, quality of life and adverse effects. RECENT FINDINGS We identified 11 eligible systematic reviews providing data from 32 studies, including 10 moderate to high quality RCTs. Five reviews concluded that there was sufficient evidence that cannabinoids may be effective for symptoms of pain and/or spasticity in MS. Few reviews reported conclusions for other symptoms. Recent high quality reviews find cannabinoids may have modest effects in MS for pain or spasticity. Future research should include studies with non-cannabinoid comparators; this is an important gap in the evidence.
Collapse
Affiliation(s)
- Suzanne Nielsen
- National Drug and Alcohol Research Centre, University of New South Wales Sydney, Sydney, NSW, 2052, Australia.
| | - Rada Germanos
- National Drug and Alcohol Research Centre, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Megan Weier
- National Drug and Alcohol Research Centre, University of New South Wales Sydney, Sydney, NSW, 2052, Australia.,Centre for Youth Substance Abuse Research, The University of Queensland, Royal Brisbane and Women's Hospital Brisbane, Brisbane, QLD, 4006, Australia
| | - John Pollard
- School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Wayne Hall
- Centre for Youth Substance Abuse Research, The University of Queensland, Royal Brisbane and Women's Hospital Brisbane, Brisbane, QLD, 4006, Australia
| | - Nicholas Buckley
- School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael Farrell
- National Drug and Alcohol Research Centre, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
35
|
Ogawa LM, Burford NT, Liao YH, Scott CE, Hine AM, Dowling C, Chin J, Power M, Hunnicutt EJ, Emerick VL, Banks M, Zhang L, Gerritz SW, Alt A, Kendall DA. Discovery of Selective Cannabinoid CB 2 Receptor Agonists by High-Throughput Screening. SLAS DISCOVERY 2017; 23:375-383. [PMID: 29257918 DOI: 10.1177/2472555217748403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The endocannabinoid system (ECS) plays a diverse role in human physiology ranging from the regulation of mood and appetite to immune modulation and the response to pain. Drug development that targets the cannabinoid receptors (CB1 and CB2) has been explored; however, success in the clinic has been limited by the psychoactive side effects associated with modulation of the neuronally expressed CB1 that are enriched in the CNS. CB2, however, are expressed in peripheral tissues, primarily in immune cells, and thus development of CB2-selective drugs holds the potential to modulate pain among other indications without eliciting anxiety and other undesirable side effects associated with CB1 activation. As part of a collaborative effort among industry and academic laboratories, we performed a high-throughput screen designed to discover selective agonists or positive allosteric modulators (PAMs) of CB2. Although no CB2 PAMs were identified, 167 CB2 agonists were discovered here, and further characterization of four select compounds revealed two with high selectivity for CB2 versus CB1. These results broaden drug discovery efforts aimed at the ECS and may lead to the development of novel therapies for immune modulation and pain management with improved side effect profiles.
Collapse
Affiliation(s)
- Lisa M Ogawa
- 1 Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Neil T Burford
- 2 Bristol-Myers Squibb, Research and Development, Wallingford, CT, USA
| | - Yu-Hsien Liao
- 3 Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Caitlin E Scott
- 3 Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Ashley M Hine
- 3 Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Craig Dowling
- 2 Bristol-Myers Squibb, Research and Development, Wallingford, CT, USA
| | - Jefferson Chin
- 2 Bristol-Myers Squibb, Research and Development, Wallingford, CT, USA
| | - Mike Power
- 2 Bristol-Myers Squibb, Research and Development, Wallingford, CT, USA
| | | | | | - Martyn Banks
- 2 Bristol-Myers Squibb, Research and Development, Wallingford, CT, USA
| | - Litao Zhang
- 2 Bristol-Myers Squibb, Research and Development, Wallingford, CT, USA
| | - Samuel W Gerritz
- 2 Bristol-Myers Squibb, Research and Development, Wallingford, CT, USA
| | - Andrew Alt
- 2 Bristol-Myers Squibb, Research and Development, Wallingford, CT, USA
| | - Debra A Kendall
- 3 Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
36
|
Lötsch J, Weyer-Menkhoff I, Tegeder I. Current evidence of cannabinoid-based analgesia obtained in preclinical and human experimental settings. Eur J Pain 2017; 22:471-484. [PMID: 29160600 DOI: 10.1002/ejp.1148] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
Cannabinoids have a long record of recreational and medical use and become increasingly approved for pain therapy. This development is based on preclinical and human experimental research summarized in this review. Cannabinoid CB1 receptors are widely expressed throughout the nociceptive system. Their activation by endogenous or exogenous cannabinoids modulates the release of neurotransmitters. This is reflected in antinociceptive effects of cannabinoids in preclinical models of inflammatory, cancer and neuropathic pain, and by nociceptive hypersensitivity of cannabinoid receptor-deficient mice. Cannabis-based medications available for humans mainly comprise Δ9 -tetrahydrocannabinol (THC), cannabidiol (CBD) and nabilone. During the last 10 years, six controlled studies assessing analgesic effects of cannabinoid-based drugs in human experimental settings were reported. An effect on nociceptive processing could be translated to the human setting in functional magnetic resonance imaging studies that pointed at a reduced connectivity within the pain matrix of the brain. However, cannabinoid-based drugs heterogeneously influenced the perception of experimentally induced pain including a reduction in only the affective but not the sensory perception of pain, only moderate analgesic effects, or occasional hyperalgesic effects. This extends to the clinical setting. While controlled studies showed a lack of robust analgesic effects, cannabis was nearly always associated with analgesia in open-label or retrospective reports, possibly indicating an effect on well-being or mood, rather than on sensory pain. Thus, while preclinical evidence supports cannabinoid-based analgesics, human evidence presently provides only reluctant support for a broad clinical use of cannabinoid-based medications in pain therapy. SIGNIFICANCE Cannabinoids consistently produced antinociceptive effects in preclinical models, whereas they heterogeneously influenced the perception of experimentally induced pain in humans and did not provide robust clinical analgesia, which jeopardizes the translation of preclinical research on cannabinoid-mediated antinociception into the human setting.
Collapse
Affiliation(s)
- J Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - I Weyer-Menkhoff
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - I Tegeder
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| |
Collapse
|
37
|
Meng H, Johnston B, Englesakis M, Moulin DE, Bhatia A. Selective Cannabinoids for Chronic Neuropathic Pain. Anesth Analg 2017; 125:1638-1652. [DOI: 10.1213/ane.0000000000002110] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Nielsen S, Sabioni P, Trigo JM, Ware MA, Betz-Stablein BD, Murnion B, Lintzeris N, Khor KE, Farrell M, Smith A, Le Foll B. Opioid-Sparing Effect of Cannabinoids: A Systematic Review and Meta-Analysis. Neuropsychopharmacology 2017; 42:1752-1765. [PMID: 28327548 PMCID: PMC5520783 DOI: 10.1038/npp.2017.51] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/31/2017] [Accepted: 03/07/2017] [Indexed: 11/09/2022]
Abstract
Cannabinoids, when co-administered with opioids, may enable reduced opioid doses without loss of analgesic efficacy (ie, an opioid-sparing effect). The aim of this study was to conduct a systematic review to determine the opioid-sparing potential of cannabinoids. Eligible studies included pre-clinical and clinical studies for which the outcome was either analgesia or opioid dose requirements. Clinical studies included controlled studies and case series. We searched Scopus, Cochrane Database of Systematic Reviews, Medline, and Embase. Nineteen pre-clinical and nine clinical studies met the search criteria. Seventeen of the 19 pre-clinical studies provided evidence of synergistic effects from opioid and cannabinoid co-administration. Our meta-analysis of pre-clinical studies indicated that the median effective dose (ED50) of morphine administered in combination with delta-9-tetrahydrocannabinol (delta-9-THC) is 3.6 times lower (95% confidence interval (CI) 1.95, 6.76; n=6) than the ED50 of morphine alone. In addition, the ED50 for codeine administered in combination with delta-9-THC was 9.5 times lower (95% CI 1.6, 57.5, n=2) than the ED50 of codeine alone. One case series (n=3) provided very-low-quality evidence of a reduction in opioid requirements with cannabinoid co-administration. Larger controlled clinical studies showed some clinical benefits of cannabinoids; however, opioid dose changes were rarely reported and mixed findings were observed for analgesia. In summary, pre-clinical studies provide robust evidence of the opioid-sparing effect of cannabinoids, whereas one of the nine clinical studies identified provided very-low-quality evidence of such an effect. Prospective high-quality-controlled clinical trials are required to determine the opioid-sparing effect of cannabinoids.
Collapse
Affiliation(s)
- Suzanne Nielsen
- The National Drug and Alcohol Research Centre, The University of New South Wales, Sydney, NSW, Australia,Drug and Alcohol Services, South Eastern Sydney Local Health District, Surry Hills, NSW, Australia,The National Drug and Alcohol Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia, Tel: +61 2 89361017, Fax: +61 2 9385 0222, E-mail:
| | - Pamela Sabioni
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jose M Trigo
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mark A Ware
- Departments of Anaesthesia and Family Medicine, McGill University, Montreal, QC, Canada
| | - Brigid D Betz-Stablein
- School of Public Health and Community Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Bridin Murnion
- Discipline of Addiction Medicine, University of Sydney, Sydney, NSW, Australia,Pain Management Centre, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Nicholas Lintzeris
- Drug and Alcohol Services, South Eastern Sydney Local Health District, Surry Hills, NSW, Australia,Discipline of Addiction Medicine, University of Sydney, Sydney, NSW, Australia
| | - Kok Eng Khor
- Department of Pain Management, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Michael Farrell
- The National Drug and Alcohol Research Centre, The University of New South Wales, Sydney, NSW, Australia
| | - Andrew Smith
- Pain and Addiction Medicine, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
39
|
Zheng T, Zhang T, Zhang R, Wang ZL, Han ZL, Li N, Li XH, Zhang MN, Xu B, Yang XL, Fang Q, Wang R. Pharmacological characterization of rat VD-hemopressin(α), an α-hemoglobin-derived peptide exhibiting cannabinoid agonist-like effects in mice. Neuropeptides 2017; 63:83-90. [PMID: 28010996 DOI: 10.1016/j.npep.2016.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022]
Abstract
Hemopressin and related peptides have shown to function as the endogenous ligands or the regulator of cannabinoid receptors. Moreover, hemopressin and its truncated peptides were also reported to produce a slight modulatory effect on opioid system. In the present work, based on the amino acid sequence analyses of hemoglobin subunit α, rat VD-hemopressin(α) [(r)VD-Hpα] was predicted as a cannabinoid peptide derived from rat α-hemoglobin. Furthermore, (r)VD-Hpα was synthesized and characterized in a series of in vitro and in vivo assays. Our results demonstrated that (r)VD-Hpα induced neurite outgrowth in Neuro 2A cells via CB1 receptor. In the tail-flick assay, (r)VD-Hpα dose-dependently exerted central antinociception through CB1 receptor, but not CB2 and opioid receptors. In mice, supraspinal administration of (r)VD-Hpα produced dose-dependent hypothermia, which was partially reduced by the CB1 receptor antagonist AM251, but not by the antagonists of CB2 and opioid receptors. In addition, (r)VD-Hpα caused hypoactivity after intracerebroventricular injection, and this effect was insensitive to the antagonists of cannabinoid and opioid receptors. Further assessment of the side-effects demonstrated that (r)VD-Hpα evoked the limited effects on gastrointestinal transit at antinociceptive doses, but repeated i.c.v. injection of (r)VD-Hpα induced development of antinociceptive tolerance. Taken together, these data suggest that the predicted peptide (r)VD-Hpα produces antinociception, hypothermia and hypoactivity via different pharmacological mechanisms, at least partially, which may offer an attractive strategy for separating cannabinoid analgesia from hypoactivity. Moreover, it implies that (r)VD-Hpα has therapeutic potential in pain management with limited side-effects.
Collapse
Affiliation(s)
- Ting Zheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Zi-Long Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Zheng-Lan Han
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Xu-Hui Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Meng-Na Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Xiong-Li Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China.
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China.
| |
Collapse
|
40
|
Grenald SA, Young MA, Wang Y, Ossipov MH, Ibrahim MM, Largent-Milnes TM, Vanderah TW. Synergistic attenuation of chronic pain using mu opioid and cannabinoid receptor 2 agonists. Neuropharmacology 2017; 116:59-70. [PMID: 28007501 PMCID: PMC5385155 DOI: 10.1016/j.neuropharm.2016.12.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/22/2016] [Accepted: 12/11/2016] [Indexed: 12/22/2022]
Abstract
The misuse of prescription opiates is on the rise with combination therapies (e.g. acetaminophen or NSAIDs) resulting in severe liver and kidney damage. In recent years, cannabinoid receptors have been identified as potential modulators of pain and rewarding behaviors associated with cocaine, nicotine and ethanol in preclinical models. Yet, few studies have identified whether mu opioid agonists and CB2 agonists act synergistically to inhibit chronic pain while reducing unwanted side effects including reward liability. We determined if analgesic synergy exists between the mu-opioid agonist morphine and the selective CB2 agonist, JWH015, in rodent models of acute and chronic inflammatory, post-operative, and neuropathic pain using isobolographic analysis. We also investigated if the MOR-CB2 agonist combination decreased morphine-induced conditioned place preference (CPP) and slowing of gastrointestinal transit. Co-administration of morphine with JWH015 synergistically inhibited preclinical inflammatory, post-operative and neuropathic-pain in a dose- and time-dependent manner; no synergy was observed for nociceptive pain. Opioid-induced side effects of impaired gastrointestinal transit and CPP were significantly reduced in the presence of JWH015. Here we show that MOR + CB2 agonism results in a significant synergistic inhibition of preclinical pain while significantly reducing opioid-induced unwanted side effects. The opioid sparing effect of CB2 receptor agonism strongly supports the advancement of a MOR-CB2 agonist combinatorial pain therapy for clinical trials.
Collapse
MESH Headings
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Animals
- Cannabinoid Receptor Agonists/pharmacology
- Chronic Pain/drug therapy
- Chronic Pain/metabolism
- Constipation/chemically induced
- Constipation/drug therapy
- Constipation/metabolism
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Disease Models, Animal
- Dopamine/metabolism
- Dose-Response Relationship, Drug
- Drug Synergism
- Indoles/pharmacology
- Male
- Mice, Inbred ICR
- Morphine/adverse effects
- Morphine/pharmacology
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Reward
Collapse
Affiliation(s)
- Shaness A Grenald
- Department of Pharmacology, College of Medicine, The University of Arizona Tucson, AZ 85724, United States
| | - Madison A Young
- Department of Pharmacology, College of Medicine, The University of Arizona Tucson, AZ 85724, United States
| | - Yue Wang
- Department of Pharmacology, College of Medicine, The University of Arizona Tucson, AZ 85724, United States
| | - Michael H Ossipov
- Department of Pharmacology, College of Medicine, The University of Arizona Tucson, AZ 85724, United States
| | - Mohab M Ibrahim
- Department of Pharmacology, College of Medicine, The University of Arizona Tucson, AZ 85724, United States
| | - Tally M Largent-Milnes
- Department of Pharmacology, College of Medicine, The University of Arizona Tucson, AZ 85724, United States
| | - Todd W Vanderah
- Department of Pharmacology, College of Medicine, The University of Arizona Tucson, AZ 85724, United States.
| |
Collapse
|
41
|
Abstract
Prevalence of psychiatric disorders continues to rise globally, yet remission rates and patient outcome remain less than ideal. As a result, novel treatment approaches for these disorders are necessary to decrease societal economic burden, as well as increase individual functioning. The recent discovery of the endocannabinoid system has provided an outlet for further research into its role in psychiatric disorders, because efficacy of targeted treatments have been demonstrated in medical illnesses, including cancers, neuropathic pain, and multiple sclerosis. The present review will investigate the role of the endocannabinoid system in psychiatric disorders, specifically schizophrenia, depressive, anxiety, and posttraumatic stress disorders, as well as attention-deficit hyperactivity disorder. Controversy remains in prescribing medicinal cannabinoid treatments due to the fear of adverse effects. However, one must consider all potential limitations when determining the safety and tolerability of cannabinoid products, specifically cannabinoid content (ie, Δ-tetrahydrocannabinol vs cannabidiol) as well as study design. The potential efficacy of cannabinoid treatments in the psychiatric population is an emerging topic of interest that provides potential value going forward in medicine.
Collapse
|
42
|
Malek N, Kostrzewa M, Makuch W, Pajak A, Kucharczyk M, Piscitelli F, Przewlocka B, Di Marzo V, Starowicz K. The multiplicity of spinal AA-5-HT anti-nociceptive action in a rat model of neuropathic pain. Pharmacol Res 2016; 111:251-263. [PMID: 27326920 DOI: 10.1016/j.phrs.2016.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/25/2016] [Accepted: 06/11/2016] [Indexed: 11/27/2022]
Abstract
There is considerable evidence to support the role of anandamide (AEA), an endogenous ligand of cannabinoid receptors, in neuropathic pain modulation. AEA also produces effects mediated by other biological targets, of which the transient receptor potential vanilloid type 1 (TRPV1) has been the most investigated. Both, inhibition of AEA breakdown by fatty acid amide hydrolase (FAAH) and blockage of TRPV1 have been shown to produce anti-nociceptive effects. Recent research suggests the usefulness of dual-action compounds, which may afford greater anti-allodynic efficacy. Therefore, in the present study, we examined the effect of N-arachidonoyl-serotonin (AA-5-HT), a blocker of FAAH and TRPV1, in a rat model of neuropathic pain after intrathecal administration. We found that treatment with AA-5-HT increased the pain threshold to mechanical and thermal stimuli, with highest effect at the dose of 500nM, which was most strongly attenuated by AM-630, CB2 antagonist, administration. The single action blockers PF-3845 (1000nM, for FAAH) and I-RTX (1nM, for TRPV1) showed lower efficacy than AA-5-HT. Moreover AA-5-HT (500nM) elevated AEA and palmitoylethanolamide (PEA) levels. Among the possible targets of these mediators, only the mRNA levels of CB2, GPR18 and GPR55, which are believed to be novel cannabinoid receptors, were upregulated in the spinal cord and/or DRG of CCI rats. It was previously reported that AA-5-HT acts in CB1 and TRPV1-dependent manner after systemic administration, but here for the first time we show that AA-5-HT action at the spinal level involves CB2, with potential contributions from GRP18 and/or GPR55 receptors.
Collapse
Affiliation(s)
- Natalia Malek
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland; Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Magdalena Kostrzewa
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland; Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Agnieszka Pajak
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland; Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Mateusz Kucharczyk
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland; Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular ChemistryC.N.R., Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli (NA), Italy.
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular ChemistryC.N.R., Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli (NA), Italy.
| | - Katarzyna Starowicz
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland; Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW To provide an overview on drug targets and emerging pharmacological treatment options for chronic pain. RECENT FINDINGS Chronic pain poses an enormous socioeconomic burden for the more than 30% of people who suffer from it, costing over $600 billion per year in the USA. In recent years, there has been a surge in preclinical and clinical research endeavors to try to stem this epidemic. Preclinical studies have identified a wide array of potential targets, with some of the most promising translational research being performed on novel opioid receptors, cannabinoid receptors, selective ion channel blockers, cytokine inhibitors, nerve growth factor inhibitors, N-methyl-D-aspartate receptor antagonists, glial cell inhibitors, and bisphosphonates. SUMMARY There are many obstacles for the development of effective medications to treat chronic pain, including the inherent challenges in identifying pathophysiological mechanisms, the overlap and multiplicity of pain pathways, and off-target adverse effects stemming from the ubiquity of drug target receptor sites and the lack of highly selective receptor ligands. Despite these barriers, the number and diversity of potential therapies have continued to grow, to include disease-modifying and individualized drug treatments.
Collapse
|
44
|
Reiss CS. Innate Immunity in Viral Encephalitis. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153449 DOI: 10.1007/978-3-319-33189-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
45
|
Meng H, Hanlon JG, Katznelson R, Ghanekar A, McGilvray I, Clarke H. The prescription of medical cannabis by a transitional pain service to wean a patient with complex pain from opioid use following liver transplantation: a case report. Can J Anaesth 2015; 63:307-10. [DOI: 10.1007/s12630-015-0525-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/16/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022] Open
|
46
|
Cabral GA, Rogers TJ, Lichtman AH. Turning Over a New Leaf: Cannabinoid and Endocannabinoid Modulation of Immune Function. J Neuroimmune Pharmacol 2015; 10:193-203. [PMID: 26054900 PMCID: PMC4469415 DOI: 10.1007/s11481-015-9615-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023]
Abstract
Cannabis is a complex substance that harbors terpenoid-like compounds referred to as phytocannabinoids. The major psychoactive phytocannabinoid found in cannabis ∆(9)-tetrahydrocannabinol (THC) produces the majority of its pharmacological effects through two cannabinoid receptors, termed CB1 and CB2. The discovery of these receptors as linked functionally to distinct biological effects of THC, and the subsequent development of synthetic cannabinoids, precipitated discovery of the endogenous cannabinoid (or endocannabinoid) system. This system consists of the endogenous lipid ligands N- arachidonoylethanolamine (anandamide; AEA) and 2-arachidonylglycerol (2-AG), their biosynthetic and degradative enzymes, and the CB1 and CB2 receptors that they activate. Endocannabinoids have been identified in immune cells such as monocytes, macrophages, basophils, lymphocytes, and dendritic cells and are believed to be enzymatically produced and released "on demand" in a similar fashion as the eicosanoids. It is now recognized that other phytocannabinoids such as cannabidiol (CBD) and cannabinol (CBN) can alter the functional activities of the immune system. This special edition of the Journal of Neuroimmune Pharmacology (JNIP) presents a collection of cutting edge original research and review articles on the medical implications of phytocannabinoids and the endocannabinoid system. The goal of this special edition is to provide an unbiased assessment of the state of research related to this topic from leading researchers in the field. The potential untoward effects as well as beneficial uses of marijuana, its phytocannabinoid composition, and synthesized cannabinoid analogs are discussed. In addition, the role of the endocannabinoid system and approaches to its manipulation to treat select human disease processes are addressed.
Collapse
Affiliation(s)
- Guy A Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, 23298, USA,
| | | | | |
Collapse
|
47
|
Khasabova IA, Yao X, Paz J, Lewandowski CT, Lindberg AE, Coicou L, Burlakova N, Simone DA, Seybold VS. JZL184 is anti-hyperalgesic in a murine model of cisplatin-induced peripheral neuropathy. Pharmacol Res 2014; 90:67-75. [PMID: 25304184 DOI: 10.1016/j.phrs.2014.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 12/28/2022]
Abstract
Cisplatin has been used effectively to treat a variety of cancers but its use is limited by the development of painful peripheral neuropathy. Because the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG) is anti-hyperalgesic in several preclinical models of chronic pain, the anti-hyperalgesic effect of JZL184, an inhibitor of 2-AG hydrolysis, was tested in a murine model of cisplatin-induced hyperalgesia. Systemic injection of cisplatin (1mg/kg) produced mechanical hyperalgesia when administered daily for 7 days. Daily peripheral administration of a low dose of JZL184 in conjunction with cisplatin blocked the expression of mechanical hyperalgesia. Acute injection of a cannabinoid (CB)-1 but not a CB2 receptor antagonist reversed the anti-hyperalgesic effect of JZL184 indicating that downstream activation of CB1 receptors suppressed the expression of mechanical hyperalgesia. Components of endocannabinoid signaling in plantar hind paw skin and lumbar dorsal root ganglia (DRGs) were altered by treatments with cisplatin and JZL184. Treatment with cisplatin alone reduced levels of 2-AG and AEA in skin and DRGs as well as CB2 receptor protein in skin. Combining treatment of JZL184 with cisplatin increased 2-AG in DRGs compared to cisplatin alone but had no effect on the amount of 2-AG in skin. Evidence that JZL184 decreased the uptake of [(3)H]AEA into primary cultures of DRGs at a concentration that also inhibited the enzyme fatty acid amide hydrolase, in conjunction with data that 2-AG mimicked the effect of JZL184 on [(3)H]AEA uptake support the conclusion that AEA most likely mediates the anti-hyperalgesic effect of JZL184 in this model.
Collapse
MESH Headings
- Amides
- Analgesics/pharmacology
- Analgesics/therapeutic use
- Animals
- Antineoplastic Agents
- Arachidonic Acids/metabolism
- Arachidonic Acids/pharmacology
- Benzodioxoles/pharmacology
- Benzodioxoles/therapeutic use
- Cells, Cultured
- Cisplatin
- Disease Models, Animal
- Endocannabinoids/metabolism
- Endocannabinoids/pharmacology
- Ethanolamines/metabolism
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Glycerides/metabolism
- Glycerides/pharmacology
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- Indoles/pharmacology
- Male
- Mesencephalon/drug effects
- Mesencephalon/metabolism
- Mice
- Mice, Inbred C3H
- Monoacylglycerol Lipases/antagonists & inhibitors
- Morpholines/pharmacology
- Neuralgia/chemically induced
- Neuralgia/drug therapy
- Neuralgia/metabolism
- Palmitic Acids/metabolism
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Polyunsaturated Alkamides/metabolism
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Skin/drug effects
- Skin/metabolism
- Spinal Cord/drug effects
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- Iryna A Khasabova
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, USA
| | - Xu Yao
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, USA
| | - Justin Paz
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, USA
| | | | - Amy E Lindberg
- Pharmacology Graduate Program, University of Minnesota, USA
| | - Lia Coicou
- Department of Neuroscience, Medical School, University of Minnesota, USA
| | - Natasha Burlakova
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, USA
| | - Don A Simone
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, USA
| | - Virginia S Seybold
- Department of Neuroscience, Medical School, University of Minnesota, USA.
| |
Collapse
|
48
|
Hu SSJ, Ho YC, Chiou LC. No more pain upon Gq-protein-coupled receptor activation: role of endocannabinoids. Eur J Neurosci 2014; 39:467-84. [PMID: 24494686 DOI: 10.1111/ejn.12475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 01/24/2023]
Abstract
Marijuana has been used to relieve pain for centuries. The analgesic mechanism of its constituents, the cannabinoids, was only revealed after the discovery of cannabinoid receptors (CB1 and CB2) two decades ago. The subsequent identification of the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), and their biosynthetic and degradation enzymes discloses the therapeutic potential of compounds targeting the endocannabinoid system for pain control. Inhibitors of the anandamide and 2-AG degradation enzymes, fatty acid amide hydrolase and monoacylglycerol lipase, respectively, may be superior to direct cannabinoid receptor ligands as endocannabinoids are synthesized on demand and rapidly degraded, focusing action at generating sites. Recently, a promising strategy for pain relief was revealed in the periaqueductal gray (PAG). It is initiated by Gq-protein-coupled receptor (Gq PCR) activation of the phospholipase C-diacylglycerol lipase enzymatic cascade, generating 2-AG that produces inhibition of GABAergic transmission (disinhibition) in the PAG, thereby leading to analgesia. Here, we introduce the antinociceptive properties of exogenous cannabinoids and endocannabinoids, involving their biosynthesis and degradation processes, particularly in the PAG. We also review recent studies disclosing the Gq PCR-phospholipase C-diacylglycerol lipase-2-AG retrograde disinhibition mechanism in the PAG, induced by activating several Gq PCRs, including metabotropic glutamatergic (type 5 metabotropic glutamate receptor), muscarinic acetylcholine (M1/M3), and orexin 1 receptors. Disinhibition mediated by type 5 metabotropic glutamate receptor can be initiated by glutamate transporter inhibitors or indirectly by substance P, neurotensin, cholecystokinin and capsaicin. Finally, the putative role of 2-AG generated after activating the above neurotransmitter receptors in stress-induced analgesia is discussed.
Collapse
Affiliation(s)
- Sherry Shu-Jung Hu
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
49
|
In vitro and in vivo characterization of the new analgesic combination Beta-caryophyllene and docosahexaenoic Acid. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:596312. [PMID: 25097659 PMCID: PMC4109702 DOI: 10.1155/2014/596312] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/07/2014] [Indexed: 12/29/2022]
Abstract
Beta-caryophyllene (BCP) and docosahexaenoic acid (DHA) are components of several plants with documented anti-inflammatory and analgesic effects in animal pain models. In the present study, in vitro and in vivo tests were carried out to evaluate their effects, alone or in combination, during long-lasting administration in a model of persistent pain. IR spectra of the two compounds were obtained to determine their chemical stability and then in vitro toxicity was evaluated in fibroblasts and astrocytes. In the in vivo tests, the analgesic effects of BCP and BCP+DHA were determined in male rats subjected to a model of persistent recurrent pain (three repetitions of the formalin test once a week) to mimic recurrent pain. Both substances were administered per os in almond oil for 2 weeks. Gonadal hormones were determined at the end of the tests to evaluate treatment-induced effects on their levels. BCP changed fibroblast and astrocyte survival in a dose-dependent manner and the effect was counteracted by DHA coadministration. In the in vivo tests, pain responses were significantly decreased in the BCP and BCP+DHA groups with respect to OIL after 1 and 2 weeks of treatment. Estradiol and testosterone levels were increased only in the BCP group. In conclusion, BCP alone or at lower concentration in combination with DHA was efficacious in modulating pain, showing a clear analgesic activity.
Collapse
|
50
|
Makriyannis A. 2012 Division of medicinal chemistry award address. Trekking the cannabinoid road: a personal perspective. J Med Chem 2014; 57:3891-911. [PMID: 24707904 DOI: 10.1021/jm500220s] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
My involvement with the field of cannabinoids spans close to 3 decades and covers a major part of my scientific career. It also reflects the robust progress in this initially largely unexplored area of biology. During this period of time, I have witnessed the growth of modern cannabinoid biology, starting from the discovery of its two receptors and followed by the characterization of its endogenous ligands and the identification of the enzyme systems involved in their biosynthesis and biotransformation. I was fortunate enough to start at the beginning of this new era and participate in a number of the new discoveries. It has been a very exciting journey. With coverage of some key aspects of my work during this period of "modern cannabinoid research," this Award Address, in part historical, intends to give an account of how the field grew, the key discoveries, and the most promising directions for the future.
Collapse
Affiliation(s)
- Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|