1
|
Pyeon GH, Kim JH, Choi JS, Jo YS. Activation of CGRP neurons in the parabrachial nucleus suppresses addictive behavior. Proc Natl Acad Sci U S A 2024; 121:e2401929121. [PMID: 38843183 PMCID: PMC11181112 DOI: 10.1073/pnas.2401929121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 06/18/2024] Open
Abstract
Punishment such as electric shock or physical discipline employs a mixture of physical pain and emotional distress to induce behavior modification. However, a neural circuit that produces behavior modification by selectively focusing the emotional component, while bypassing the pain typically induced by peripheral nociceptor activation, is not well studied. Here, we show that genetically silencing the activity of neurons expressing calcitonin gene-related peptide (CGRP) in the parabrachial nucleus blocks the suppression of addictive-like behavior induced by footshock. Furthermore, activating CGRP neurons suppresses not only addictive behavior induced by self-stimulating dopamine neurons but also behavior resulting from self-administering cocaine, without eliciting nocifensive reactions. Moreover, among multiple downstream targets of CGRP neurons, terminal activation of CGRP in the central amygdala is effective, mimicking the results of cell body stimulation. Our results indicate that unlike conventional electric footshock, stimulation of CGRP neurons does not activate peripheral nociceptors but effectively curb addictive behavior.
Collapse
Affiliation(s)
- Gyeong Hee Pyeon
- School of Psychology, Korea University, Seoul02841, Republic of Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - June-Seek Choi
- School of Psychology, Korea University, Seoul02841, Republic of Korea
| | - Yong Sang Jo
- School of Psychology, Korea University, Seoul02841, Republic of Korea
| |
Collapse
|
2
|
Liebmann K, Castillo MA, Jergova S, Best TM, Sagen J, Kouroupis D. Modification of Mesenchymal Stem/Stromal Cell-Derived Small Extracellular Vesicles by Calcitonin Gene Related Peptide (CGRP) Antagonist: Potential Implications for Inflammation and Pain Reversal. Cells 2024; 13:484. [PMID: 38534328 PMCID: PMC10969778 DOI: 10.3390/cells13060484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
During the progression of knee osteoarthritis (OA), the synovium and infrapatellar fat pad (IFP) can serve as source for Substance P (SP) and calcitonin gene-related peptide (CGRP), two important pain-transmitting, immune, and inflammation modulating neuropeptides. Our previous studies showed that infrapatellar fat pad-derived mesenchymal stem/stromal cells (MSC) acquire a potent immunomodulatory phenotype and actively degrade Substance P via CD10 both in vitro and in vivo. On this basis, our hypothesis is that CD10-bound IFP-MSC sEVs can be engineered to target CGRP while retaining their anti-inflammatory phenotype. Herein, human IFP-MSC cultures were transduced with an adeno-associated virus (AAV) vector carrying a GFP-labelled gene for a CGRP antagonist peptide (aCGRP). The GFP positive aCGRP IFP-MSC were isolated and their sEVs' miRNA and protein cargos were assessed using multiplex methods. Our results showed that purified aCGRP IFP-MSC cultures yielded sEVs with cargo of 147 distinct MSC-related miRNAs. Reactome analysis of miRNAs detected in these sEVs revealed strong involvement in the regulation of target genes involved in pathways that control pain, inflammation and cartilage homeostasis. Protein array of the sEVs cargo demonstrated high presence of key immunomodulatory and reparative proteins. Stimulated macrophages exposed to aCGRP IFP-MSC sEVs demonstrated a switch towards an alternate M2 status. Also, stimulated cortical neurons exposed to aCGRP IFP-MSC sEVs modulate their molecular pain signaling profile. Collectively, our data suggest that yielded sEVs can putatively target CGRP in vivo, while containing potent anti-inflammatory and analgesic cargo, suggesting the promise for novel sEVs-based therapeutic approaches to diseases such as OA.
Collapse
Affiliation(s)
- Kevin Liebmann
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (K.L.); (M.A.C.); (T.M.B.)
- Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.J.); (J.S.)
| | - Mario A. Castillo
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (K.L.); (M.A.C.); (T.M.B.)
- Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Stanislava Jergova
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.J.); (J.S.)
| | - Thomas M. Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (K.L.); (M.A.C.); (T.M.B.)
| | - Jacqueline Sagen
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.J.); (J.S.)
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (K.L.); (M.A.C.); (T.M.B.)
- Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
3
|
Luo L, Qi W, Zhang Y, Wang J, Guo L, Wang M, Wang HB, Yu LC. Calcitonin gene-related peptide and its receptor plays important role in nociceptive regulation in the arcuate nucleus of hypothalamus of rats with inflammatory pain. Behav Brain Res 2023; 443:114351. [PMID: 36804439 DOI: 10.1016/j.bbr.2023.114351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/06/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
The present study has explored the role of calcitonin gene-related peptide (CGRP) and its receptor in inflammatory pain modulation in arcuate nucleus of hypothalamus (ARC). Our study demonstrated that intra-ARC injection of CGRP induced antinociceptive effects to naïve rats and rats with inflammatory pain, the effect could be inhibited by the selective CGRP receptor antagonist CGRP8-37. Interestingly, the CGRP-induced antinociception effect was decreased in rats with inflammatory pain compared to naïve rats. Similarly, we found that calcitonin receptor like receptor (CLR), a main component of CGRP receptor, had a low decreased expression levels in the ARC regions of rats with inflammatory pain. The CGRP-induced antinociceptive effect was significantly impaired after reducing CLR expression by intra-ARC administration of CLR targeted siRNA. These findings demonstrated that CGRP might play a crucial role in nociceptive modulation in the ARC during inflammatory pain, which was mediated by CGRP receptor in the ARC. This study shed light upon CGRP and its receptor interaction might be valuable strategies for the alleviation of inflammatory pain.
Collapse
Affiliation(s)
- Laixi Luo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Wentao Qi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Yuyan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Jingyi Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Li Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Milin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Hong-Bo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Long-Chuan Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China; Neurobiology Laboratory, School of Life Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
4
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Reducha PV, Bömers JP, Edvinsson L, Haanes KA. Rodent behavior following a dural inflammation model with anti-CGRP migraine medication treatment. Front Neurol 2023; 14:1082176. [PMID: 36908624 PMCID: PMC9995475 DOI: 10.3389/fneur.2023.1082176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Background Migraine is a widespread and prevalent disease with a complex pathophysiology, of which neuroinflammation and increased pain sensitivity have been suggested to be involved. Various studies have investigated the presence of different inflammatory markers in migraineurs and investigated the role of inflammation in inflammatory models with complete Freund's adjuvant (CFA) or inflammatory soup added to the dura mater. Objective The aim of the current study was to examine whether application of CFA to the dura mater would cause behavioral alterations that are migraine relevant. In addition, we investigated the potential mitigating effects of fremanezumab, a CGRP (calcitonin gene-related peptide) specific antibody, following CFA application. Methods Male Sprague-Dawley rats were randomly divided into six groups: fresh (n = 7), fresh + carprofen (n = 6), fresh + anti-CGRP (n = 6), sham (n = 7), CFA (n = 16), CFA + anti-CGRP (n = 8). CFA was applied for 15 min on a 3 × 3 mm clearing of the skull exposing the dura mater of male Sprague-Dawley rats. We applied the Light/Dark box and Open Field test, combined with the electronic von Frey test to evaluate outcomes. Finally, we observed CGRP immunoreactivity in the trigeminal ganglion. Results No differences were observed in the Light/Dark box test. The Open Field test detected behavior differences, notably that sham rats spend less time in the central zone, reared less and groomed more than fresh + carprofen rats. The other groups were not significantly different compared to sham rats, indicating that activation of the TGVS is present in sham surgery and cannot be exacerbated by CFA. However, for the allodynia, we observed specific periorbital sensitization, not observed in the sham animals. This could not be mitigated by fremanezumab, although it clearly reduced the amount of CGRP positive fibers. Conclusion CFA surgically administered to the dura causes periorbital allodynia and increases CGRP positive fibers in the trigeminal ganglion. Fremanezumab does not reduce periorbital allodynia even though it reduces CGRP positive fibers in the TG. Further work is needed to investigate whether CFA administered to the dura could be used as a non-CGRP inflammatory migraine model.
Collapse
Affiliation(s)
- Philip V Reducha
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Glostrup, Denmark.,Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jesper P Bömers
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Glostrup, Denmark.,Department of Neurosurgery, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Glostrup, Denmark.,Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Glostrup, Denmark.,Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Reducha PV, Edvinsson L, Haanes KA. Could Experimental Inflammation Provide Better Understanding of Migraines? Cells 2022; 11:cells11152444. [PMID: 35954288 PMCID: PMC9368653 DOI: 10.3390/cells11152444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Migraines constitute a common neurological and headache disorder affecting around 15% of the world’s population. In addition to other mechanisms, neurogenic neuroinflammation has been proposed to play a part in migraine chronification, which includes peripheral and central sensitization. There is therefore considerable evidence suggesting that inflammation in the intracranial meninges could be a key element in addition to calcitonin gene-related peptide (CGRP), leading to sensitization of trigeminal meningeal nociceptors in migraines. There are several studies that have utilized this approach, with a strong focus on using inflammatory animal models. Data from these studies show that the inflammatory process involves sensitization of trigeminovascular afferent nerve terminals. Further, by applying a wide range of different pharmacological interventions, insight has been gained on the pathways involved. Importantly, we discuss how animal models should be used with care and that it is important to evaluate outcomes in the light of migraine pathology.
Collapse
Affiliation(s)
- Philip Victor Reducha
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, 2600 Glostrup, Denmark
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, 1017 Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, 2600 Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, 221 00 Lund, Sweden
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, 2600 Glostrup, Denmark
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, 1017 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
7
|
Seidel MF, Hügle T, Morlion B, Koltzenburg M, Chapman V, MaassenVanDenBrink A, Lane NE, Perrot S, Zieglgänsberger W. Neurogenic inflammation as a novel treatment target for chronic pain syndromes. Exp Neurol 2022; 356:114108. [PMID: 35551902 DOI: 10.1016/j.expneurol.2022.114108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Chronic pain syndrome is a heterogeneous group of diseases characterized by several pathological mechanisms. One in five adults in Europe may experience chronic pain. In addition to the individual burden, chronic pain has a significant societal impact because of work and school absences, loss of work, early retirement, and high social and healthcare costs. Several anti-inflammatory treatments are available for patients with inflammatory or autoimmune diseases to control their symptoms, including pain. However, patients with degenerative chronic pain conditions, some with 10-fold or more elevated incidence relative to these manageable diseases, have few long-term pharmacological treatment options, limited mainly to non-steroidal anti-inflammatory drugs or opioids. For this review, we performed multiple PubMed searches using keywords such as "pain," "neurogenic inflammation," "NGF," "substance P," "nociception," "BDNF," "inflammation," "CGRP," "osteoarthritis," and "migraine." Many treatments, most with limited scientific evidence of efficacy, are available for the management of chronic pain through a trial-and-error approach. Although basic science and pre-clinical pain research have elucidated many biomolecular mechanisms of pain and identified promising novel targets, little of this work has translated into better clinical management of these conditions. This state-of-the-art review summarizes concepts of chronic pain syndromes and describes potential novel treatment strategies.
Collapse
Affiliation(s)
- Matthias F Seidel
- Department of Rheumatology, Spitalzentrum Biel-Centre Hospitalier Bienne, 2501 Biel-Bienne, Switzerland.
| | - Thomas Hügle
- Department of Rheumatology, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Barton Morlion
- The Leuven Center for Algology and Pain Management, University of Leuven, Leuven, Belgium
| | - Martin Koltzenburg
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Victoria Chapman
- Pain Centre Versus Arthritis, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California Davis School of Medicine, Sacramento, CA, USA; Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Serge Perrot
- Unité INSERM U987, Hôpital Ambroise Paré, Paris Descartes University, Boulogne Billancourt, France; Centre d'Evaluation et Traitement de la Douleur, Hôpital Cochin, Paris Descartes University, Paris, France
| | | |
Collapse
|
8
|
Kim MS, Kim BY, Saghetlians A, Zhang X, Okida T, Kim SY. Anti-nociceptive effects of dual neuropeptide antagonist therapy in mouse model of neuropathic and inflammatory pain. Korean J Pain 2022; 35:173-182. [PMID: 35354680 PMCID: PMC8977203 DOI: 10.3344/kjp.2022.35.2.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/05/2022] Open
Abstract
Background Neurokinin-1 (NK1) and calcitonin gene-related peptide (CGRP) play a vital role in pain pathogenesis, and these proteins' antagonists have attracted attention as promising pharmaceutical candidates. The authors investigated the antinociceptive effect of co-administration of the CGRP antagonist and an NK1 antagonist on pain models compared to conventional single regimens. Methods C57Bl/6J mice underwent sciatic nerve ligation for the neuropathic pain model and were injected with 4% formalin into the hind paw for the inflammatory pain model. Each model was divided into four groups: vehicle, NK1 antagonist, CGRP antagonist, and combination treatment groups. The NK1 antagonist aprepitant (BIBN4096, 1 mg/kg) or the CGRP antagonist olcegepant (MK-0869, 10 mg/kg) was injected intraperitoneally. Mechanical allodynia, thermal hypersensitivity, and anxiety-related behaviors were assessed using the von Frey, hot plate, and elevated plus-maze tests. The flinching and licking responses were also evaluated after formalin injection. Results Co-administration of aprepitant and olcegepant more significantly alleviated pain behaviors than administration of single agents or vehicle, increasing the mechanical threshold and improving the response latency. Anxiety-related behaviors were also markedly improved after dual treatment compared with either naive mice or the neuropathic pain model in the dual treatment group. Flinching frequency and licking response after formalin injection decreased significantly in the dual treatment group. Isobolographic analysis showed a meaningful additive effect between the two compounds. Conclusions A combination pharmacological therapy comprised of multiple neuropeptide antagonists could be a more effective therapeutic strategy for alleviating neuropathic or inflammatory pain.
Collapse
Affiliation(s)
- Min Su Kim
- Department of Rehabilitation Medicine, Wonkwang University College of Medicine, Iksan, Korea
| | - Bo Yeon Kim
- Department of Rehabilitation Medicine, Wonkwang University College of Medicine, Iksan, Korea.,Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Xiang Zhang
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Takuya Okida
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - So Yeon Kim
- Department of Rehabilitation Medicine, Wonkwang University College of Medicine, Iksan, Korea.,Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
9
|
Abstract
We aimed to investigate a sexually dimorphic role of calcitonin gene-related peptide (CGRP) in rodent models of pain. Based on findings in migraine where CGRP has a preferential pain-promoting effect in female rodents, we hypothesized that CGRP antagonists and antibodies would attenuate pain sensitization more efficaciously in female than male mice and rats. In hyperalgesic priming induced by activation of interleukin 6 signaling, CGRP receptor antagonists olcegepant and CGRP8-37 both given intrathecally, blocked, and reversed hyperalgesic priming only in females. A monoclonal antibody against CGRP, given systemically, blocked priming specifically in female rodents but failed to reverse it. In the spared nerve injury model, there was a transient effect of both CGRP antagonists, given intrathecally, on mechanical hypersensitivity in female mice only. Consistent with these findings, intrathecally applied CGRP caused a long-lasting, dose-dependent mechanical hypersensitivity in female mice but more transient effects in males. This CGRP-induced mechanical hypersensitivity was reversed by olcegepant and the KCC2 enhancer CLP257, suggesting a role for anionic plasticity in the dorsal horn in the pain-promoting effects of CGRP in females. In spinal dorsal horn slices, CGRP shifted GABAA reversal potentials to significantly more positive values, but, again, only in female mice. Therefore, CGRP may regulate KCC2 expression and/or activity downstream of CGRP receptors specifically in females. However, KCC2 hypofunction promotes mechanical pain hypersensitivity in both sexes because CLP257 alleviated hyperalgesic priming in male and female mice. We conclude that CGRP promotes pain plasticity in female rodents but has a limited impact in males.SIGNIFICANCE STATEMENT The majority of patients impacted by chronic pain are women. Mechanistic studies in rodents are creating a clear picture that molecular events promoting chronic pain are different in male and female animals. We sought to build on evidence showing that CGRP is a more potent and efficacious promoter of headache in female than in male rodents. To test this, we used hyperalgesic priming and the spared nerve injury neuropathic pain models in mice. Our findings show a clear sex dimorphism wherein CGRP promotes pain in female but not male mice, likely via a centrally mediated mechanism of action. Our work suggests that CGRP receptor antagonists could be tested for efficacy in women for a broader variety of pain conditions.
Collapse
|
10
|
Rees T, Hendrikse E, Hay D, Walker C. Beyond CGRP: The calcitonin peptide family as targets for migraine and pain. Br J Pharmacol 2022; 179:381-399. [PMID: 34187083 PMCID: PMC9441195 DOI: 10.1111/bph.15605] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023] Open
Abstract
The CGRP system has emerged as a key pharmacological target for the treatment of migraine. However, some individuals who suffer from migraine have low or no response to anti-CGRP or other treatments, suggesting the need for additional clinical targets. CGRP belongs to the calcitonin family of peptides, which includes calcitonin, amylin, adrenomedullin and adrenomedullin 2. These peptides display a range of pro-nociceptive and anti-nociceptive actions, in primary headache conditions such as migraine. Calcitonin family peptides also show expression at sites relevant to migraine and pain. This suggests that calcitonin family peptides and their receptors, beyond CGRP, may be therapeutically useful in the treatment of migraine and other pain disorders. This review considers the localisation of the calcitonin family in peripheral pain pathways and discusses how they may contribute to migraine and pain. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.
Collapse
Affiliation(s)
- T.A. Rees
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - E.R Hendrikse
- School of Biological Science, University of Auckland, Auckland, NZ
| | - D.L. Hay
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.,Corresponding author(s): Christopher S Walker, , Debbie L. Hay,
| | - C.S Walker
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Corresponding author(s): Christopher S Walker, , Debbie L. Hay,
| |
Collapse
|
11
|
CGRP Regulates Nucleus Pulposus Cell Apoptosis and Inflammation via the MAPK/NF- κB Signaling Pathways during Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:2958584. [PMID: 34987701 PMCID: PMC8720589 DOI: 10.1155/2021/2958584] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022]
Abstract
Chronic low back pain (CLBP) has been proved to be the dominating cause of disability in patients with lumbar degenerative diseases. Of the various etiological factors, intervertebral disc degeneration (IVDD) has been the dominating cause. In the past few decades, the role and changes of nerve systems, especially the peripheral sensory fibers and their neurotransmitters, in the induction and progression of IVDD have attracted growing concerns. The expression of many neuropeptides, such as SP, NPY, and CGRP, in the nociceptive pathways is increased during the progression of IVDD and responsible for the discogenic pain. Here, the role of CGRP in the progression of IVDD was firstly investigated both in vitro and in vivo. Firstly, we confirmed that human degenerated intervertebral disc tissue exhibited elevated expression of CGRP and its receptor. Secondly, in vitro experiments suggested that CGRP could inhibit the proliferation and induce apoptosis in human nucleus pulposus (NP) cells, as well as promote inflammation and degenerated phenotypes through activating NF-κB and MAPK signaling pathways. Thirdly, CGRP receptor antagonist, Rimegepant, can ameliorate the adverse effects of CGRP imposed on NP cells, which were confirmed in vitro and in vivo. Our results will bring about a brand-new insight into the roles of neuromodulation in IVDD and related therapeutic attempts.
Collapse
|
12
|
Maegawa H, Yoshikawa C, Usami N, Hanamoto H, Kudo C, Niwa H. Anti-calcitonin gene-related peptide antibody attenuates orofacial mechanical and heat hypersensitivities induced by infraorbital nerve injury. Biochem Biophys Res Commun 2021; 569:147-153. [PMID: 34245979 DOI: 10.1016/j.bbrc.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 01/06/2023]
Abstract
Currently, limited information regarding the role of calcitonin gene-related peptide (CGRP) in neuropathic pain is available. Intracerebroventricular administrations of an anti-CGRP antibody were performed in rats with infraorbital nerve ligation. Anti-CGRP antibody administration attenuated mechanical and heat hypersensitivities induced by nerve ligation and decreased the phosphorylated extracellular signal-regulated kinase expression levels in the trigeminal spinal subnucleus caudalis (Vc) following mechanical or heat stimulation. An increased CGRP immunoreactivity in the Vc appeared after nerve ligation. A decreased CGRP immunoreactivity resulted from anti-CGRP antibody administration. Our findings suggest that anti-CGRP antibody administration attenuates the symptoms of trigeminal neuropathic pain by acting on CGRP in the Vc.
Collapse
Affiliation(s)
- Hiroharu Maegawa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Chiaki Yoshikawa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Nayuka Usami
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Hanamoto
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Chiho Kudo
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
13
|
In Vitro Model to Investigate Communication between Dorsal Root Ganglion and Spinal Cord Glia. Int J Mol Sci 2021; 22:ijms22189725. [PMID: 34575886 PMCID: PMC8470479 DOI: 10.3390/ijms22189725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic discogenic back pain is associated with increased inflammatory cytokine levels that can influence the proximal peripheral nervous system, namely the dorsal root ganglion (DRG). However, transition to chronic pain is widely thought to involve glial activation in the spinal cord. In this study, an in vitro model was used to evaluate the communication between DRG and spinal cord glia. Primary neonatal rat DRG cells were treated with/without inflammatory cytokines (TNF-α, IL-1β, and IL-6). The conditioned media were collected at two time points (12 and 24 h) and applied to spinal cord mixed glial culture (MGC) for 24 h. Adult bovine DRG and spinal cord cell cultures were also tested, as an alternative large animal model, and results were compared with the neonatal rat findings. Compared with untreated DRG-conditioned medium, the second cytokine-treated DRG-conditioned medium (following medium change, thus containing solely DRG-derived molecules) elevated CD11b expression and calcium signal in neonatal rat microglia and enhanced Iba1 expression in adult bovine microglia. Cytokine treatment induced a DRG-mediated microgliosis. The described in vitro model allows the use of cells from large species and may represent an alternative to animal pain models (3R principles).
Collapse
|
14
|
Maleitzke T, Hildebrandt A, Weber J, Dietrich T, Appelt J, Jahn D, Zocholl D, Baranowsky A, Duda GN, Tsitsilonis S, Keller J. Proinflammatory and bone protective role of calcitonin gene-related peptide alpha in collagen antibody-induced arthritis. Rheumatology (Oxford) 2021; 60:1996-2009. [PMID: 33221885 DOI: 10.1093/rheumatology/keaa711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Calcitonin gene-related peptide alpha (αCGRP) represents an immunomodulatory neuropeptide implicated in pain perception. αCGRP also functions as a critical regulator of bone formation and is overexpressed in patients with rheumatoid arthritis (RA). In the present study, we investigated the role of αCGRP in experimental RA regarding joint inflammation and bone remodelling. METHODS Collagen II-antibody-induced arthritis (CAIA) was induced in wild type (WT) and αCGRP-deficient (αCGRP-/-) mice. Animals were monitored over 10 and 48 days with daily assessments of the semiquantitative arthritis score and grip strength test. Joint inflammation, cartilage degradation and bone erosions were assessed by histology, gene expression analysis and µCT. RESULTS CAIA was accompanied by an overexpression of αCGRP in WT joints. αCGRP-/- mice displayed reduced arthritic inflammation and cartilage degradation. Congruently, the expression of TNF-α, IL-1β, CD80 and MMP13 was induced in WT, but not αCGRP-/- animals. WT mice displayed an increased bone turnover during the acute inflammatory phase, which was not the case in αCGRP-/- mice. Interestingly, WT mice displayed a full recovery from the inflammatory bone disease, whereas αCGRP-/- mice exhibited substantial bone loss over time. CONCLUSION This study demonstrates a proinflammatory and bone protective role of αCGRP in CAIA. Our data indicate that αCGRP not only enhances joint inflammation, but also controls bone remodelling as part of arthritis resolution. As novel αCGRP inhibitors are currently introduced clinically for the treatment of migraine, their potential impact on RA progression warrants further clinical investigation.
Collapse
Affiliation(s)
- Tazio Maleitzke
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Alexander Hildebrandt
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jérôme Weber
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tamara Dietrich
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jessika Appelt
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Denise Jahn
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dario Zocholl
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Keller
- Berlin Institute of Health (BIH), Berlin, Germany.,Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Iljazi A, Ashina H, Zhuang ZA, Lopez Lopez C, Snellman J, Ashina M, Schytz HW. Hypersensitivity to calcitonin gene-related peptide in chronic migraine. Cephalalgia 2020; 41:701-710. [PMID: 33322922 DOI: 10.1177/0333102420981666] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate if calcitonin gene-related peptide infusion induces migraine-like attacks in chronic migraine patients. METHODS Fifty-eight patients with chronic migraine, either with or without headache on the experimental day, were assessed for the incidence of migraine-like attacks after an intravenous infusion with calcitonin gene-related peptide 1.5 µg/min over 20 min. The primary endpoint was the incidence of migraine-like attacks after calcitonin gene-related peptide. Exploratory endpoints were the association between the incidence of migraine-like attacks and presence of headache on the experimental day, and headache frequency in the past month. Migraine-like attack data was compared to a historic cohort of 91 episodic migraine patients without headache on the experimental day. Total tenderness score, pressure-pain threshold and supra-threshold pressure pain at baseline were investigated in relation to incidence of migraine-like attacks and presence of headache on the experimental day. RESULTS In total, 83% of the 58 chronic migraine patients developed migraine-like attacks after calcitonin gene-related peptide infusion. Migraine-like attacks were found in 92% of chronic migraine patients with headache on the experimental day compared to 65% of chronic migraine patients without headache on the experimental day (p = 0.035). No differences were observed in total tenderness score and pressure-pain threshold between chronic migraine patients with and without headache on the experimental day. The incidence of migraine-like attacks following calcitonin gene-related peptide in chronic migraine patients without headache (65%) was equal to the historic cohort of 91 episodic migraine patients without headache (67%) on the experimental day. CONCLUSIONS Chronic migraine patients are hypersensitive to calcitonin gene-related peptide. The potency of calcitonin gene-related peptide as a migraine inductor is increased in chronic migraine patients with ongoing headache. We suggest that calcitonin gene-related peptide, besides being a migraine trigger also acts as a modulator of nociceptive transmission in the trigeminal system.
Collapse
Affiliation(s)
- Afrim Iljazi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Capital Region of Denmark and the Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Håkan Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Capital Region of Denmark and the Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zixuan Alice Zhuang
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Capital Region of Denmark and the Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Capital Region of Denmark and the Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Winther Schytz
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Capital Region of Denmark and the Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Examining the role of transient receptor potential canonical 5 (TRPC5) in osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100119. [PMID: 33381767 PMCID: PMC7762818 DOI: 10.1016/j.ocarto.2020.100119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 01/09/2023] Open
Abstract
Introduction Osteo-arthritis (OA) involves joint degradation and usually pain; with mechanisms poorly understood and few treatment options. There is evidence that the transient receptor potential canonical 5 (TRPC5) mRNA expression is reduced in OA patients’ synovia. Here we examine the profile of TRPC5 in DRG and involvement in murine models of OA. Design TRPC5 KO mice were subjected to partial meniscectomy (PMNX) or injected with monoiodoacetate (MIA) and pain-related behaviours were determined. Knee joint pathological scores were analysed and gene expression changes in ipsilateral synovium and dorsal root ganglia (DRG) determined. c-Fos protein expression in the ipsilateral dorsal horn of the spinal cord was quantified. Results TRPC5 KO mice developed a discrete enhanced pain-related phenotype. In the MIA model, the pain-related phenotype correlated with c-Fos expression in the dorsal horn and increased expression of nerve injury markers ATF3, CSF1 and galanin in the ipsilateral DRG. There were negligible differences in the joint pathology between WT and TRPC5 KO mice, however detailed gene expression analysis determined increased expression of the mast cell marker CD117 as well as extracellular matrix remodelling proteinases MMP2, MMP13 and ADAMTS4 in MIA-treated TRPC5 KO mice. TRPC5 expression was defined to sensory subpopulations in DRG. Conclusions Deletion of TRPC5 receptor signalling is associated with exacerbation of pain-like behaviour in OA which correlates with increased expression of enzymes involved in extracellular remodelling, inflammatory cells in the synovium and increased neuronal activation and injury in DRG. Together, these results identify a modulating role for TRPC5 in OA-induced pain-like behaviours.
Collapse
|
17
|
Mulder IA, Li M, de Vries T, Qin T, Yanagisawa T, Sugimoto K, van den Bogaerdt A, Danser AHJ, Wermer MJH, van den Maagdenberg AMJM, MaassenVanDenBrink A, Ferrari MD, Ayata C. Anti-migraine Calcitonin Gene-Related Peptide Receptor Antagonists Worsen Cerebral Ischemic Outcome in Mice. Ann Neurol 2020; 88:771-784. [PMID: 32583883 PMCID: PMC7540520 DOI: 10.1002/ana.25831] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 06/11/2020] [Accepted: 06/21/2020] [Indexed: 12/31/2022]
Abstract
Objective Calcitonin gene–related peptide (CGRP) pathway inhibitors are emerging treatments for migraine. CGRP‐mediated vasodilation is, however, a critical rescue mechanism in ischemia. We, therefore, investigated whether gepants, small molecule CGRP receptor antagonists, worsen cerebral ischemia. Methods Middle cerebral artery was occluded for 12 to 60 minutes in mice. We compared infarct risk and volumes, collateral flow, and neurological deficits after pretreatment with olcegepant (single or 10 daily doses of 0.1–1mg/kg) or rimegepant (single doses of 10–100mg/kg) versus vehicle. We also determined their potency on CGRP‐induced relaxations in mouse and human vessels, in vitro. Results Olcegepant (1mg/kg, single dose) increased infarct risk after 12‐ to 20‐minute occlusions mimicking transient ischemic attacks (14/19 vs 6/18 with vehicle, relative risk = 2.21, p < 0.022), and doubled infarct volumes (p < 0.001) and worsened neurological deficits (median score = 9 vs 5 with vehicle, p = 0.008) after 60‐minute occlusion. Ten daily doses of 0.1 to 1mg/kg olcegepant yielded similar results. Rimegepant 10mg/kg increased infarct volumes by 60% after 20‐minute ischemia (p = 0.03); 100mg/kg caused 75% mortality after 60‐minute occlusion. In familial hemiplegic migraine type 1 mice, olcegepant 1mg/kg increased infarct size after 30‐minute occlusion (1.6‐fold, p = 0.017). Both gepants consistently diminished collateral flow and reduced reperfusion success. Olcegepant was 10‐fold more potent than rimegepant on CGRP‐induced relaxations in mouse aorta. Interpretation Gepants worsened ischemic stroke in mice via collateral dysfunction. CGRP pathway blockers might thus aggravate coincidental cerebral ischemic events. The cerebrovascular safety of these agents must therefore be better delineated, especially in patients at increased risk of ischemic events or on prophylactic CGRP inhibition. ANN NEUROL 2020;88:771–784
Collapse
Affiliation(s)
- Inge A Mulder
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mei Li
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tessa de Vries
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tao Qin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takeshi Yanagisawa
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kazutaka Sugimoto
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Antoinette MaassenVanDenBrink
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Cenk Ayata
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Liu Z, Murphy SF, Huang J, Zhao L, Hall CC, Schaeffer AJ, Schaeffer EM, Thumbikat P. A novel immunocompetent model of metastatic prostate cancer-induced bone pain. Prostate 2020; 80:782-794. [PMID: 32407603 PMCID: PMC7375026 DOI: 10.1002/pros.23993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Over 70% to 85% of men with advanced prostate cancer (PCa) develop bone metastases characterized by severe bone pain and increased likelihood of bone fracture. These clinical features result in decreased quality of life and act as a predictor of higher mortality. Mechanistically, the skeletal pathologies such as osteolytic lesions and abnormal osteoblastic activity drive these symptoms. The role of immune cells in bone cancer pain remains understudied, here we sought to recapitulate this symptomology in a murine model. METHODS The prostate cancer bone metastasis-induced pain model (CIBP) was established by transplanting a mouse prostate cancer cell line into the femur of immunocompetent mice. Pain development, gait dynamics, and the changes in emotional activities like depression and anxiety were evaluated. Animal tissues including femurs, dorsal root ganglion (DRG), and spinal cord were collected at killing and microcomputed tomography (μCT), histology/immunohistochemistry, and quantitative immunofluorescent analysis were performed. RESULTS Mice receiving prostate cancer cells showed a significantly lower threshold for paw withdrawal responses induced by mechanical stimulation compared with their control counterparts. Zero maze and DigiGait analyses indicated reduced and aberrant movement associated emotional activity compared with sham control at 8-weeks postinjection. The μCT analysis showed osteolytic and osteoblastic changes and a 50% reduction of the trabecular volumes within the prostate cancer group. Neurologically we demonstrated, increased calcitonin gene-related peptide (CGRP) and neuronal p75NTR immune-reactivities in both the projected terminals of the superficial dorsal horn and partial afferent neurons in DRG at L2 to L4 level in tumor-bearing mice. Furthermore, our data show elevated nerve growth factor (NGF) and TrkA immunoreactivities in the same segment of the superficial dorsal horn that were, however, not colocalized with CGRP and p75NTR . CONCLUSIONS This study describes a novel immunocompetent model of CIBP and demonstrates the contribution of NGF and p75NTR to chronic pain in bone metastasis.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Stephen F. Murphy
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, USA
| | - Christel C. Hall
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Anthony J. Schaeffer
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Edward M. Schaeffer
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Praveen Thumbikat
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
19
|
Female-Specific Effects of CGRP Suggest Limited Efficacy of New Migraine Treatments in Males. J Neurosci 2020; 39:9062-9064. [PMID: 31723033 DOI: 10.1523/jneurosci.1254-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/12/2019] [Accepted: 09/21/2019] [Indexed: 11/21/2022] Open
|
20
|
He L, Liu L, Guan S, Zheng X, Ge H, Yin C, Shen Y, Tan M, Wang C, Gao Y, Xiong W. Palmatine alleviates hyperalgesia by inhibiting the expression of calcitonin gene-related peptide in the trigeminal ganglion of rats with chronic constriction injury of the infraorbital nerve. Br J Oral Maxillofac Surg 2020; 58:443-450. [PMID: 32139146 DOI: 10.1016/j.bjoms.2020.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/31/2020] [Indexed: 12/22/2022]
Abstract
Trigeminal neuralgia is one of the most common of the neuropathic pains, and it can seriously influence patients' quality of life. Calcitonin gene-related peptide (CGRP) is a type of nociceptive neurotransmitter that is expressed in neurons of the trigeminal ganglion and plays a major part in transmitting pain. The rat model of trigeminal neuralgia was established by causing a chronic constriction injury of the infraorbital nerve (CCI-ION). Male Sprague-Dawley rats (n=24) were randomly divided into a sham control group (sham, n=6), sham-treated with palmatine group (sham+palmatine, n=6), trigeminal nerve model group (TN, n=6), and trigeminal nerve treated with palmatine group (TN+palmatine, n=6). Fifteen days after the operation the mechanical response threshold was decreased in the TN group compared with the sham group. From postoperative day 7 to day 15, the mechanical response threshold in the TN+palmatine group significantly increased compared with the TN group. On postoperative day 15 the results of quantitative polymerase chain reaction (qPCR), immunohistochemical staining, and western blotting showed an obvious increase in expression of CGRP and its receptors, serum concentrations of interleukin-1β (IL-1β), and tumour necrosis factor-α (TNF-α), and phosphorylation of protein kinase C (PKC) in the trigeminal ganglia of the TN group compared with the sham group, but these increases could be down-regulated by treatment with palmatine. Palmatine might therefore have therapeutic potential for the treatment of trigeminal neuralgia by inhibiting the expression of CGRP and its receptors in trigeminal ganglia, suppressing the serum concentrations of IL-1β and TNF-α, and decreasing the phosphorylation of PKC in the trigeminal ganglia of affected rats.
Collapse
Affiliation(s)
- L He
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - L Liu
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - S Guan
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - X Zheng
- Queen Mary college of grade 2015, Nanchang University, Nanchang, Jiangxi, China
| | - H Ge
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - C Yin
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Y Shen
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - M Tan
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - C Wang
- Second Clinic Medical College of Grade 2017, Nanchang University, Nanchang, Jiangxi, China
| | - Y Gao
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, China
| | - W Xiong
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China.
| |
Collapse
|
21
|
Safety and tolerability of monthly galcanezumab injections in patients with migraine: integrated results from migraine clinical studies. BMC Neurol 2020; 20:25. [PMID: 31952501 PMCID: PMC6966798 DOI: 10.1186/s12883-020-1609-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Galcanezumab, a humanized monoclonal antibody that selectively binds to calcitonin gene-related peptide, has demonstrated a significant reduction in monthly migraine headache days in phase 2 and 3 trials. In these analyses, we aimed to evaluate the safety and tolerability of galcanezumab compared with placebo for prevention of episodic or chronic migraine. METHODS Data were integrated from three double-blind clinical studies for the up to 6-month galcanezumab exposure group (N = 1435), and from five clinical studies for the up to 1-year all-galcanezumab exposure group (N = 2276). Patients received a monthly 120 mg subcutaneous injection of galcanezumab (with a 240 mg loading dose in month 1), 240 mg galcanezumab, or placebo. Outcomes measured were treatment-emergent adverse events (TEAEs), serious AEs (SAEs), and discontinuation due to AEs (DCAEs). Laboratory results, vital signs, electrocardiogram (ECG), suicidal ideation and behavior results were evaluated. RESULTS TEAEs that occurred more frequently in galcanezumab-treated patients included injection site pain, injection site reactions excluding pain, constipation, vertigo, and pruritus. The proportion of DCAEs among galcanezumab-treated patients ranged between 1.8 and 3.0%, and differed from placebo group for galcanezumab 240 mg (P < 0.05). Fewer than 2.0% of patients in either galcanezumab dose-group compared with 1.0% of placebo-treated patients reported a SAE. There were no clinically meaningful differences between galcanezumab and placebo in laboratory measures, vital signs including blood pressure, ECGs, cardiovascular-related AEs, or suicidal ideation and behavior. CONCLUSIONS Galcanezumab demonstrated a favorable safety and tolerability profile for up to 1 year of treatment for the prevention of migraine. TRIAL REGISTRATION Clinical Trials CGAB = NCT02163993, EVOLVE-1 = NCT02614183, EVOLVE-2 = NCT02614196, REGAIN = NCT02614261, and CGAJ = NCT02614287. All were first posted on 25 November 2015, except CGAB posted on 16 June 2014, and before enrolling the first patient.
Collapse
|
22
|
Abstract
Adrenomedullin, a peptide with multiple physiological functions in nervous system injury and disease, has aroused the interest of researchers. This review summarizes the role of adrenomedullin in neuropathological disorders, including pathological pain, brain injury and nerve regeneration, and their treatment. As a newly characterized pronociceptive mediator, adrenomedullin has been shown to act as an upstream factor in the transmission of noxious information for various types of pathological pain including acute and chronic inflammatory pain, cancer pain, neuropathic pain induced by spinal nerve injury and diabetic neuropathy. Initiation of glia-neuron signaling networks in the peripheral and central nervous system by adrenomedullin is involved in the formation and maintenance of morphine tolerance. Adrenomedullin has been shown to exert a facilitated or neuroprotective effect against brain injury including hemorrhagic or ischemic stroke and traumatic brain injury. Additionally, adrenomedullin can serve as a regulator to promote nerve regeneration in pathological conditions. Therefore, adrenomedullin is an important participant in nervous system diseases.
Collapse
Affiliation(s)
- Feng-Jiao Li
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Si-Ru Zheng
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Dong-Mei Wang
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| |
Collapse
|
23
|
Wang D, Yang H, Liang Y, Wang X, Du X, Li R, Jiang Y, Ye J. Antinociceptive Effect of Spirocyclopiperazinium Salt Compound DXL-A-24 and the Underlying Mechanism. Neurochem Res 2019; 44:2786-2795. [PMID: 31691883 DOI: 10.1007/s11064-019-02899-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 01/05/2023]
Abstract
The antinociceptive effects of spirocyclopiperazinium salt compound DXL-A-24 on neuropathic pain and chemical-stimulated pain were investigated in this study. After the administration of DXL-A-24, the paw withdrawal latency (PWL) and mechanical withdrawal threshold (MWT) were increased in rats suffering from neuropathic pain (chronic constriction injury, CCI) on days 1, 3, 5, 7 and 14 after surgery, and pain responses were inhibited in mice stimulated with chemicals (formalin or acetic acid). In the analysis of antinociceptive targets, the effect of DXL-A-24 was blocked by a peripheral nicotinic acetylcholine receptor (nAChR) antagonist (hexamethonium, Hex) or α7 nAChR antagonist (methyllycaconitine, MLA) in the formalin test. Meanwhile, the effect of DXL-A-24 was also blocked by a peripheral muscarinic acetylcholine receptor (mAChR) antagonist (atropine methylnitrate, Amn) or M4 mAChR antagonist (tropicamide, TRO). The antinociceptive signalling pathway was explored using molecular biology methods in ipsilateral dorsal root ganglions (DRGs) of CCI rats after the administration of DXL-A-24 for 7 days. Western blot analyses showed that the increased levels of phosphorylation of calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα) and cAMP response element-binding protein (CREB) were eliminated, and the qRT-PCR assay showed that the increase in the expression of Tumor necrosis factor alpha (TNF-α) mRNA was reduced. Meanwhile, immunofluorescence staining revealed that the increase in calcitonin gene related peptide (CGRP) expression was inhibited by the administration of DXL-A-24, and the effect was blocked by MLA or TRO. In conclusion, DXL-A-24 exerts significant antinociceptive effects on neuropathic pain and chemical-stimulated pain. The antinociceptive effect of DXL-A-24 is probably attributed to the activation of peripheral α7 nAChR and M4 mAChR, the subsequent inhibition of the CaMKIIα/CREB signalling pathway, and finally the inhibition of TNF-α and CGRP expression.
Collapse
Affiliation(s)
- Ding Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hua Yang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Medical Laboratory, Hunan University of Medicine, Huaihua, China
| | - Yingying Liang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xin Wang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaolei Du
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Runtao Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yimin Jiang
- Medical and Healthy Analysis Center, Peking University, Beijing, China
| | - Jia Ye
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
24
|
Optogenetic Inhibition of CGRPα Sensory Neurons Reveals Their Distinct Roles in Neuropathic and Incisional Pain. J Neurosci 2019; 38:5807-5825. [PMID: 29925650 DOI: 10.1523/jneurosci.3565-17.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/29/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Cutaneous somatosensory neurons convey innocuous and noxious mechanical, thermal, and chemical stimuli from peripheral tissues to the CNS. Among these are nociceptive neurons that express calcitonin gene-related peptide-α (CGRPα). The role of peripheral CGRPα neurons (CANs) in acute and injury-induced pain has been studied using diphtheria toxin ablation, but their functional roles remain controversial. Because ablation permanently deletes a neuronal population, compensatory changes may ensue that mask the physiological or pathophysiological roles of CANs, particularly for injuries that occur after ablation. Therefore, we sought to define the role of intact CANs in vivo under baseline and injury conditions by using noninvasive transient optogenetic inhibition. We assessed pain behavior longitudinally from acute to chronic time points. We generated adult male and female mice that selectively express the outward rectifying proton pump archaerhodopsin-3 (Arch) in CANs, and inhibited their peripheral cutaneous terminals in models of neuropathic (spared nerve injury) and inflammatory (skin-muscle incision) pain using transdermal light activation of Arch. After nerve injury, brief activation of Arch reversed the chronic mechanical, cold, and heat hypersensitivity, alleviated the spontaneous pain, and reversed the sensitized mechanical currents in primary afferent somata. In contrast, Arch inhibition of CANs did not alter incision-induced hypersensitivity. Instead, incision-induced mechanical and heat hypersensitivity was alleviated by peripheral blockade of CGRPα peptide-receptor signaling. These results reveal that CANs have distinct roles in the time course of pain during neuropathic and incisional injuries and suggest that targeting peripheral CANs or CGRPα peptide-receptor signaling could selectively treat neuropathic or postoperative pain, respectively.SIGNIFICANCE STATEMENT The contribution of sensory afferent CGRPα neurons (CANs) to neuropathic and inflammatory pain is controversial. Here, we left CANs intact during neuropathic and perioperative incision injury by using transient transdermal optogenetic inhibition of CANs. We found that peripheral CANs are required for neuropathic mechanical, cold, and heat hypersensitivity, spontaneous pain, and sensitization of mechanical currents in afferent somata. However, they are dispensable for incisional pain transmission. In contrast, peripheral pharmacological inhibition of CGRPα peptide-receptor signaling alleviated the incisional mechanical and heat hypersensitivity, but had no effect on neuropathic pain. These results show that CANs have distinct roles in neuropathic and incisional pain and suggest that their targeting via novel peripheral treatments may selectively alleviate neuropathic versus incisional pain.
Collapse
|
25
|
de Sousa Valente J. The Pharmacology of Pain Associated With the Monoiodoacetate Model of Osteoarthritis. Front Pharmacol 2019; 10:974. [PMID: 31619987 PMCID: PMC6759799 DOI: 10.3389/fphar.2019.00974] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022] Open
Abstract
The high incidence of osteoarthritis (OA) in an increasingly elderly population anticipates a dramatic rise in the number of people suffering from this disease in the near future. Because pain is the main reason patients seek medical help, effective pain management-which is currently lacking-is paramount to improve the quality of life that OA sufferers desperately seek. Good animal models are, in this day and age, fundamental tools for basic research of new therapeutic pathways. Several animal models of OA have been characterized, but none of them reproduces entirely all symptoms of the disease. Choosing between different animal models depends largely on which aspect of OA one aims to study. Here, we review the current understanding of the monoiodoacetate (MIA) model of OA. MIA injection in the knee joint leads to the progressive disruption of cartilage, which, in turn, is associated with the development of pain-like behavior. There are several reasons why the MIA model of OA seems to be the most adequate to study the pharmacological effect of new drugs in pain associated with OA. First, the pathological changes induced by MIA share many common traits with those observed in human OA (Van Der Kraan et al., 1989; Guingamp et al., 1997; Guzman et al., 2003), including loss of cartilage and alterations in the subchondral bone. The model has been extensively utilized in basic research, which means that the time course of pain-related behaviors and histopathological changes, as well as pharmacological profile, namely of commonly used pain-reducing drugs, is now moderately understood. Also, the severity of the progression of pathological changes can be controlled by grading the concentration of MIA administered. Further, in contrast with other OA models, MIA offers a rapid induction of pain-related phenotypes, with the cost-saving consequence in new drug screening. This model, therefore, may be more predictive of clinical efficacy of novel pharmacological tools than other chronic or acute OA models.
Collapse
Affiliation(s)
- João de Sousa Valente
- Vascular Biology and Inflammation Section, Cardiovascular School of Medicine and Sciences, British Heart Foundation Centre of Excellence, King's College London, London, United Kingdom
| |
Collapse
|
26
|
Wilhelms DB, Dock H, Brito HO, Pettersson E, Stojakovic A, Zajdel J, Engblom D, Theodorsson E, Hammar ML, Spetz Holm ACE. CGRP Is Critical for Hot Flushes in Ovariectomized Mice. Front Pharmacol 2019; 9:1452. [PMID: 30662401 PMCID: PMC6328451 DOI: 10.3389/fphar.2018.01452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/26/2018] [Indexed: 11/13/2022] Open
Abstract
Hot flushes are common and troublesome symptoms of menopause. The neuropeptide calcitonin gene-related peptide (CGRP) is increased in plasma during hot flushes but it has not been clear if CGRP is causally involved in the mechanism underpinning the flushes. Here, we examined the effect of interventions with CGRP in a mouse model of hot flushes based on flush-like temperature increases triggered by forced physical activity in ovariectomized mice. Compared to normal mice, ovariectomized mice reacted with an exaggerated, flush-like, temperature increase after physical exercise. This increase was completely blocked by the non-peptide CGRP-antagonist MK-8825 (-0.41 degrees Celsius, 95% CI: -0,83 to 0,012, p < 0.0001) at a dose that had no obvious effects on locomotor activity (50 mg/kg). Further, the flush-like temperature increases were strongly attenuated in ovariectomized mice lacking αCGRP due to a genetic modification. Collectively, our findings suggest that CGRP is an important mediator of experimentally induced hot flushes and they identify CGRP antagonists as promising treatment candidates for women and possibly also men with hot flushes.
Collapse
Affiliation(s)
- Daniel B. Wilhelms
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Department of Emergency Medicine, Local Health Care Services in Central Östergötland, Linköping, Sweden
| | - Hua Dock
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Haissa O. Brito
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Emma Pettersson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Andrea Stojakovic
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Joanna Zajdel
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - David Engblom
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mats L. Hammar
- Division of Childrens and Womens Health, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Department of Gynaecology and Obstetrics in Linköping, Center of Paediatrics and Gynaecology and Obstetrics, Linköping, Sweden
| | - Anna-Clara E. Spetz Holm
- Division of Childrens and Womens Health, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Department of Gynaecology and Obstetrics in Linköping, Center of Paediatrics and Gynaecology and Obstetrics, Linköping, Sweden
| |
Collapse
|
27
|
Abstract
CGRP has long been suspected as a mediator of arthritis pain, although evidence that CGRP directly mediates human musculoskeletal pain remains circumstantial. This chapter describes in depth the evidence surrounding CGRP's association with pain in musculoskeletal disorders and also summarises evidence for CGRP being a direct cause of pain in other conditions. CGRP-immunoreactive nerves are present in musculoskeletal tissues, and CGRP expression is altered in musculoskeletal pain. CGRP modulates musculoskeletal pain through actions both in the periphery and central nervous system. Human observational studies, research on animal arthritis models and the few reported randomised controlled trials in humans of treatments that target CGRP provide the context of CGRP as a possible pain biomarker or mediator in conditions other than migraine.
Collapse
Affiliation(s)
- David A Walsh
- Pain Centre Versus Arthritis, NIHR Nottingham Biomedical Research Centre and Division of ROD, University of Nottingham, Nottingham, UK.
- Rheumatology, Sherwood Forest Hospitals NHS Foundation Trust, Nottinghamshire, UK.
| | - Daniel F McWilliams
- Pain Centre Versus Arthritis, NIHR Nottingham Biomedical Research Centre and Division of ROD, University of Nottingham, Nottingham, UK
| |
Collapse
|
28
|
Jin Y, Smith C, Monteith D, Brown R, Camporeale A, McNearney TA, Deeg MA, Raddad E, Xiao N, de la Peña A, Kivitz AJ, Schnitzer TJ. CGRP blockade by galcanezumab was not associated with reductions in signs and symptoms of knee osteoarthritis in a randomized clinical trial. Osteoarthritis Cartilage 2018; 26:1609-1618. [PMID: 30240937 DOI: 10.1016/j.joca.2018.08.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study tested whether galcanezumab, a humanized monoclonal antibody with efficacy against migraine, was superior to placebo for the treatment of mild or moderate osteoarthritis (OA) knee pain. METHOD In a multicenter, double-blind, placebo- and celecoxib-controlled trial, patients with moderate to severe OA pain were randomized to placebo; celecoxib 200 mg daily for 16 weeks; or galcanezumab 5, 50, 120, and 300 mg subcutaneously every 4 weeks, twice. The primary outcome was change from baseline at Week 8 in Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscore measured by 100 mm visual analog scale (VAS). The trial was considered positive if ≥1 dose of galcanezumab demonstrated ≥95% Bayesian posterior probability of superiority to placebo and ≥50% posterior probability of superiority to placebo by ≥9 mm. A planned interim analysis allowed termination of the study if posterior probability of superiority to placebo by ≥9 mm was ≤5%. Secondary endpoints included WOMAC function subscore and Patient Global Assessment (PGA) of OA. Safety and tolerability were also assessed. RESULTS The study was terminated after interim analysis suggested inadequate efficacy. Celecoxib significantly reduced WOMAC pain subscore compared with placebo [-12.0 mm; 95% confidence interval (CI) -23 to -2 mm]. None of the galcanezumab arms demonstrated clinically meaningful improvement (range: 1.5 to -5.0 mm) or met the prespecified success criteria. No improvement in any secondary objective was observed. Galcanezumab was well tolerated by OA patients. CONCLUSIONS This study failed to demonstrate sufficient statistical evidence that galcanezumab was efficacious for treating OA knee pain. STUDY IDENTIFICATION NCT02192190.
Collapse
Affiliation(s)
- Y Jin
- Eli Lilly and Company, Indianapolis, IN, USA.
| | - C Smith
- Eli Lilly and Company, Erl Wood Manor, Windlesham, UK.
| | - D Monteith
- Eli Lilly and Company, Indianapolis, IN, USA.
| | - R Brown
- Eli Lilly and Company, Indianapolis, IN, USA.
| | - A Camporeale
- Eli Lilly Italia SpA, 50019 Sesto Fiorentino (FI), Italy.
| | | | - M A Deeg
- Eli Lilly and Company, Indianapolis, IN, USA.
| | - E Raddad
- Eli Lilly and Company, Indianapolis, IN, USA.
| | - N Xiao
- Novartis, Cambridge, MA, USA.
| | | | - A J Kivitz
- Altoona Center for Clinical Research, Duncansville, PA, USA.
| | - T J Schnitzer
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
29
|
Kodji X, Arkless KL, Kee Z, Cleary SJ, Aubdool AA, Evans E, Caton P, Pitchford SC, Brain SD. Sensory nerves mediate spontaneous behaviors in addition to inflammation in a murine model of psoriasis. FASEB J 2018; 33:1578-1594. [PMID: 30204499 PMCID: PMC6338626 DOI: 10.1096/fj.201800395rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Psoriasis is characterized by keratinocyte hyperproliferation, erythema, as well as a form of pruritus, involving cutaneous discomfort. There is evidence from both clinical and murine models of psoriasis that chemical or surgical depletion of small-diameter sensory nerves/nociceptors benefits the condition, but the mechanisms are unclear. Hence, we aimed to understand the involvement of sensory nerve mediators with a murine model of psoriasis and associated spontaneous behaviors, indicative of cutaneous discomfort. We have established an Aldara model of psoriasis in mice and chemically depleted the small-diameter nociceptors in a selective manner. The spontaneous behaviors, in addition to the erythema and skin pathology, were markedly improved. Attenuated inflammation was associated with reduced dermal macrophage influx and production of reactive oxygen/nitrogen species (peroxynitrite and protein nitrosylation). Subsequently, this directly influenced observed behavioral responses. However, the blockade of common sensory neurogenic mechanisms for transient receptor potential (TRP)V1, TRPA1, and neuropeptides (substance P and calcitonin gene-related peptide) using genetic and pharmacological approaches inhibited the behaviors but not the inflammation. Thus, a critical role of the established sensory TRP-neuropeptide pathway in influencing cutaneous discomfort is revealed, indicating the therapeutic potential of agents that block that pathway. The ongoing inflammation is mediated by a distinct sensory pathway involving macrophage activation.-Kodji, X., Arkless, K. L., Kee, Z., Cleary, S. J., Aubdool, A. A., Evans, E., Caton, P., Pitchford, S. C., Brain, S. D. Sensory nerves mediate spontaneous behaviors in addition to inflammation in a murine model of psoriasis.
Collapse
Affiliation(s)
- Xenia Kodji
- British Heart Foundation (BHF) Cardiovascular Centre of Research Excellence, Vascular Biology and Inflammation Section, King's College London, London, United Kingdom
| | - Kate L Arkless
- British Heart Foundation (BHF) Cardiovascular Centre of Research Excellence, Vascular Biology and Inflammation Section, King's College London, London, United Kingdom
| | - Zizheng Kee
- British Heart Foundation (BHF) Cardiovascular Centre of Research Excellence, Vascular Biology and Inflammation Section, King's College London, London, United Kingdom
| | - Simon J Cleary
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Aisah A Aubdool
- British Heart Foundation (BHF) Cardiovascular Centre of Research Excellence, Vascular Biology and Inflammation Section, King's College London, London, United Kingdom
| | - Elizabeth Evans
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, London, United Kingdom
| | - Paul Caton
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, London, United Kingdom
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Susan D Brain
- British Heart Foundation (BHF) Cardiovascular Centre of Research Excellence, Vascular Biology and Inflammation Section, King's College London, London, United Kingdom
| |
Collapse
|
30
|
Arreola-Peralta LD, Altamirano-Reyna F, Galindo-González DM, Solis-Anguiano JG, Lacivita E, Leopoldo M, Terrón JA. Potentiation of capsaicin-induced neurogenic inflammation by 5-HT7 receptors in the rat hind paw: Involvement of calcitonin gen-related peptide. Peptides 2018; 105:1-6. [PMID: 29730242 DOI: 10.1016/j.peptides.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022]
Abstract
A decrease in the activation threshold of primary sensory neurons to transient receptor potential V1 (TRPV1) stimulation by serotonin 5-HT7 receptors has been reported but no confirmation if this might translate into facilitation of neurogenic inflammation has been provided. We analysed the modulation of capsaicin (CAP)-induced neurogenic inflammation in the rat hind paw by the selective 5-HT7 receptor agonist, LP-44, and the involvement of calcitonin gen-related peptide (CGRP) in this effect. Animals received intra-plantar injections (30 μL) of vehicle, CAP (0.05%, 0.1% and 0.2%), LP-44 (7.5 and 15 nmol) and the combination of LP-44 + CAP; then, the time course of the inflammatory responses was measured. The effect of the 5-HT7 receptor antagonist, SB-269970 (3 mg/kg, s.c.), on responses produced by LP-44 alone and combined with CAP was tested. As expected, CAP produced concentration- and time-dependent inflammatory responses in the hind paw. Interestingly, LP-44 by itself also produced inflammation in a concentration- and time-dependent manner, and magnified CAP-induced responses. Systemic pre-treatment with SB-269970 significantly blunted LP-44 (15 nmol)-induced inflammation as well as magnified inflammatory responses produced by the combination of LP-44 (7.5 and 15 nmol) + CAP (0.1%) thus confirming the involvement of 5-HT7 receptors. Finally, the non-peptide CGRP receptor antagonist, BIBN4096 (3 mg/kg, s.c.), strongly inhibited the potentiated inflammatory responses induced by LP-44 (7.5 and 15 nmol) + CAP (0.1%) thus substantiating their neurogenic nature. Thus, sensitization of CAP-sensitive primary sensory neurons by 5-HT7 receptors may result in facilitation of neurogenic inflammation involving CGRP in the rat hind paw.
Collapse
Affiliation(s)
- Luis D Arreola-Peralta
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Frida Altamirano-Reyna
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Deni M Galindo-González
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Jessica G Solis-Anguiano
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari Aldo Moro, Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari Aldo Moro, Bari, Italy
| | - José A Terrón
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Osteoarthritis (OA) is the most common form of arthritis and a major source of pain and disability worldwide. OA-associated pain is usually refractory to classically used analgesics, and disease-modifying therapies are still lacking. Therefore, a better understanding of mechanisms and mediators contributing to the generation and maintenance of OA pain is critical for the development of efficient and safe pain-relieving therapies. RECENT FINDINGS Both peripheral and central mechanisms contribute to OA pain. Clinical evidence suggests that a strong peripheral nociceptive drive from the affected joint maintains pain and central sensitization associated with OA. Mediators present in the OA joint, including nerve growth factor, chemokines, cytokines, and inflammatory cells can contribute to sensitization. Furthermore, structural alterations in joint innervation and nerve damage occur in the course of OA. Several interrelated pathological processes, including joint damage, structural reorganization of joint afferents, low-grade inflammation, neuroplasticity, and nerve damage all contribute to the pain observed in OA. It can be anticipated that elucidating exactly how these mechanisms are operational in the course of progressive OA may lead to the identification of novel targets for intervention.
Collapse
Affiliation(s)
- Delfien Syx
- Center for Medical Genetics, Ghent University, De Pintelaan 185, Ghent, Belgium
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1611 W. Harrison St, Suite 510, Chicago, IL, 60612, USA
| | - Phuong B Tran
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1611 W. Harrison St, Suite 510, Chicago, IL, 60612, USA
| | - Rachel E Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1611 W. Harrison St, Suite 510, Chicago, IL, 60612, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1611 W. Harrison St, Suite 510, Chicago, IL, 60612, USA.
| |
Collapse
|
32
|
Hou M, Xing H, Cai Y, Li B, Wang X, Li P, Hu X, Chen J. The effect and safety of monoclonal antibodies to calcitonin gene-related peptide and its receptor on migraine: a systematic review and meta-analysis. J Headache Pain 2017; 18:42. [PMID: 28389966 PMCID: PMC5383797 DOI: 10.1186/s10194-017-0750-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/22/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Migraine has been recognized as one of the leading causes of disability in the 2013 Global Burden of Disease Study and seriously affects the quality of patients' life, current treatment options are not ideal. Monoclonal antibodies to calcitonin gene-related peptide and its receptor (CGRP-mAbs) appear more promising for migraine because of considerably better effect and safety profiles. The objective of this study is to systematically assess the clinical efficacy and safety of CGRP-mAbs for migraine therapy. METHODS A systematic literature search in PubMed, Cochrane Library and Baidu Scholar was performed to identify randomized controlled trials (RCTs), which compared the effect and safety of CGRP-mAbs with placebo on migraine. Regarding the efficacy, the reduction of monthly migraine days from baseline to weeks 1-4, 5-8, and 9-12; responder rates were extracted as the outcome measures of the effects of CGRP-mAbs. Regarding the safety, total adverse events, the main adverse events, and other adverse events were evaluated. RESULTS We found significant reduction of monthly migraine days in CGRP-mAbs vs. placebo (weeks 1-4: SMD -0.49, 95% CI -0.61 to -0.36; weeks 5-8: SMD -0.43, 95% CI -0.56 to -0.30; weeks 9-12: SMD -0.37, 95% CI -0.49 to -0.24). 50% and 75% responder rates (OR 2.59, 95% CI 1.99 to 3.37; and OR 2.91, 95% CI 2.06 to 4.10) were significantly increased compared with placebo. There was no significant difference in total adverse events (OR 1.17, 95% CI 0.91 to 1.51), and the main adverse events including upper respiratory tract infection (OR 1.44, 95% CI 0.82 to 2.55), nasopharyngitis (OR 0.59, 95% CI 0.30 to 1.16), nausea (OR 0.61, 95% CI 0.29 to 1.32), injection-site pain (OR 1.73, 95% CI 0.95 to 3.16) and back pain (OR 0.97, 95% CI 0.49 to 1.90) were not obviously changed compared with placebo control, but the results showed significant increase of dizziness in CGRP-mAbs vs. placebo (OR 3.22, 95% CI 1.09 to 9.45). CONCLUSIONS This meta-analysis suggests that CGRP-mAbs are effective in anti-migraine therapy with few adverse reactions, but more and larger sample-size RCTs are required to verify the current findings.
Collapse
Affiliation(s)
- Min Hou
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Haiyan Xing
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Yongqing Cai
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Bin Li
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Xianfeng Wang
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Pan Li
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Xiaolin Hu
- China Pharmacy Publishing House, Chongqing, 500000, People's Republic of China
| | - Jianhong Chen
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
33
|
Peng X, Studholme K, Kanjiya MP, Luk J, Bogdan D, Elmes MW, Carbonetti G, Tong S, Gary Teng YH, Rizzo RC, Li H, Deutsch DG, Ojima I, Rebecchi MJ, Puopolo M, Kaczocha M. Fatty-acid-binding protein inhibition produces analgesic effects through peripheral and central mechanisms. Mol Pain 2017; 13:1744806917697007. [PMID: 28326944 PMCID: PMC5407663 DOI: 10.1177/1744806917697007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Fatty-acid-binding proteins (FABPs) are intracellular carriers for endocannabinoids, N-acylethanolamines, and related lipids. Previous work indicates that systemically administered FABP5 inhibitors produce analgesia in models of inflammatory pain. It is currently not known whether FABP inhibitors exert their effects through peripheral or central mechanisms. Here, we examined FABP5 distribution in dorsal root ganglia and spinal cord and examined the analgesic effects of peripherally and centrally administered FABP5 inhibitors. Results Immunofluorescence revealed robust expression of FABP5 in lumbar dorsal root ganglia. FABP5 was distributed in peptidergic calcitonin gene-related peptide-expressing dorsal root ganglia and non-peptidergic isolectin B4-expressing dorsal root ganglia. In addition, the majority of dorsal root ganglia expressing FABP5 also expressed transient receptor potential vanilloid 1 (TRPV1) and peripherin, a marker of nociceptive fibers. Intraplantar administration of FABP5 inhibitors reduced thermal and mechanical hyperalgesia in the complete Freund’s adjuvant model of chronic inflammatory pain. In contrast to its robust expression in dorsal root ganglia, FABP5 was sparsely distributed in the lumbar spinal cord and intrathecal administration of FABP inhibitor did not confer analgesic effects. Administration of FABP inhibitor via the intracerebroventricular (i.c.v.) route reduced thermal hyperalgesia. Antagonists of peroxisome proliferator-activated receptor alpha blocked the analgesic effects of peripherally and i.c.v. administered FABP inhibitor while antagonism of cannabinoid receptor 1 blocked the effects of peripheral FABP inhibition and a TRPV1 antagonist blocked the effects of i.c.v. administered inhibitor. Although FABP5 and TRPV1 were co-expressed in the periaqueductal gray region of the brain, which is known to modulate pain, knockdown of FABP5 in the periaqueductal gray using adeno-associated viruses and pharmacological FABP5 inhibition did not produce analgesic effects. Conclusions This study demonstrates that FABP5 is highly expressed in nociceptive dorsal root ganglia neurons and FABP inhibitors exert peripheral and supraspinal analgesic effects. This indicates that peripherally restricted FABP inhibitors may serve as a new class of analgesic and anti-inflammatory agents.
Collapse
Affiliation(s)
- Xiaoxue Peng
- 1 Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Keith Studholme
- 1 Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Martha P Kanjiya
- 1 Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Jennifer Luk
- 1 Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Diane Bogdan
- 1 Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Matthew W Elmes
- 2 Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Gregory Carbonetti
- 2 Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Simon Tong
- 3 Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.,4 Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - Yu-Han Gary Teng
- 3 Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.,4 Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - Robert C Rizzo
- 4 Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA.,5 Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Huilin Li
- 2 Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.,4 Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - Dale G Deutsch
- 2 Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.,4 Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - Iwao Ojima
- 3 Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.,4 Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - Mario J Rebecchi
- 1 Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Michelino Puopolo
- 1 Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Martin Kaczocha
- 1 Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA.,2 Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.,4 Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
34
|
Shinohara K, Watabe AM, Nagase M, Okutsu Y, Takahashi Y, Kurihara H, Kato F. Essential role of endogenous calcitonin gene-related peptide in pain-associated plasticity in the central amygdala. Eur J Neurosci 2017; 46:2149-2160. [PMID: 28833700 PMCID: PMC5698701 DOI: 10.1111/ejn.13662] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/04/2017] [Accepted: 08/14/2017] [Indexed: 12/16/2022]
Abstract
The role of the neuropeptide calcitonin gene‐related peptide (CGRP) is well established in nociceptive behaviors. CGRP is highly expressed in the projection pathway from the parabrachial nucleus to the laterocapsular region of the central amygdala (CeC), which plays a critical role in relaying nociceptive information. The CeC is a key structure in pain behavior because it integrates and modulates nociceptive information along with other sensory signals. Previous studies have demonstrated that blockade of the amygdalar CGRP‐signaling cascade attenuates nociceptive behaviors in pain models, while CGRP application facilitates amygdalar synaptic transmission and induces pain behaviors. Despite these lines of evidence, it remains unclear whether endogenous CGRP is involved in the development of nociceptive behaviors accompanied with amygdalar plasticity in a peripheral inflammation model in vivo. To directly address this, we utilized a previously generated CGRP knockout (KO) mouse to longitudinally study formalin‐induced plasticity and nociceptive behavior. We found that synaptic potentiation in the right PB‐CeC pathway that was observed in wild‐type mice was drastically attenuated in the CGRP KO mice 6 h post‐inflammation, when acute nociceptive behavior was no longer observed. Furthermore, the bilateral tactile allodynia 6 h post‐inflammation was significantly decreased in the CGRP KO mice. In contrast, the acute nociceptive behavior immediately after the formalin injection was reduced only at 20–25 min post‐injection in the CGRP KO mice. These results suggest that endogenous CGRP contributes to peripheral inflammation‐induced synaptic plasticity in the amygdala, and this plasticity may underlie the exaggerated nociception–emotion linkage in pain chronification.
Collapse
Affiliation(s)
- Kei Shinohara
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Department of Orthopaedic Surgery, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Ayako M Watabe
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Masashi Nagase
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Yuya Okutsu
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Department of Orthopaedic Surgery, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Yukari Takahashi
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Hiroki Kurihara
- Department of Molecular Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fusao Kato
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|
35
|
Takano S, Uchida K, Inoue G, Minatani A, Miyagi M, Aikawa J, Iwase D, Onuma K, Mukai M, Takaso M. Increase and regulation of synovial calcitonin gene-related peptide expression in patients with painful knee osteoarthritis. J Pain Res 2017; 10:1099-1104. [PMID: 28546767 PMCID: PMC5436753 DOI: 10.2147/jpr.s135939] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Recent studies suggest that the vasodilatory neuropeptide calcitonin gene-related peptide (CGRP) is localized in the synovial tissue and may be involved in the pathology of hip and knee osteoarthritis (OA). However, the regulation and relationship between pain and CGRP expression levels in the synovial tissue of human OA patients are not fully understood. Methods Synovial tissues were harvested from 74 participants with radiographic knee OA (unilateral Kellgren/Lawrence grades 3–4) during total knee arthroplasty. CGRP-expressing cells in the resected tissue were identified by immunohistochemical analyses. To examine CGRP expression levels, CD14-positive (CD14+) (macrophage-rich cell fraction) and CD14-negative (CD14−; fibroblast-rich cell fraction) cells were isolated from the synovial tissue. To investigate the involvement of prostaglandin E2 (PGE2) in the regulation of CGRP expression, cultured CD14− and CD14+ cells were stimulated with PGE2. In addition, CGRP expression levels in the synovial tissue of OA patients with strong/severe (visual analog scale [VAS]≥6) and mild/moderate pain (VAS<6) were compared. Results CGRP-positive cells were detected in the intimal lining layer and comprised both CD14− and CD14+ cells. CGRP expression in non-cultured CD14− fractions was significantly higher than that in CD14+ fractions. The expression levels of CGRP were significantly increased in cultured CD14− cell fractions treated with exogenous PGE2, compared to untreated CD14− cell fractions. In contrast, treatment with PGE2 did not increase CGRP regardless of whether or not CD14+ cells expressed CGRP. Furthermore, CGRP expression in the VAS≥6 group was also significantly higher than that in the VAS<6 group. Conclusion These findings suggest that CGRP expression in the synovial fibroblasts is regulated by the COX-2/PGE2 pathway and that elevation of synovial CGRP levels may contribute to OA pain.
Collapse
Affiliation(s)
- Shotaro Takano
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Atsushi Minatani
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Jun Aikawa
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Dai Iwase
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kenji Onuma
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Manabu Mukai
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
36
|
Lin YT, Liu HL, Day YJ, Chang CC, Hsu PH, Chen JC. Activation of NPFFR2 leads to hyperalgesia through the spinal inflammatory mediator CGRP in mice. Exp Neurol 2017; 291:62-73. [DOI: 10.1016/j.expneurol.2017.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 01/22/2023]
|
37
|
Iyengar S, Ossipov MH, Johnson KW. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 2017; 158:543-559. [PMID: 28301400 PMCID: PMC5359791 DOI: 10.1097/j.pain.0000000000000831] [Citation(s) in RCA: 378] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide found primarily in the C and Aδ sensory fibers arising from the dorsal root and trigeminal ganglia, as well as the central nervous system. Calcitonin gene-related peptide was found to play important roles in cardiovascular, digestive, and sensory functions. Although the vasodilatory properties of CGRP are well documented, its somatosensory function regarding modulation of neuronal sensitization and of enhanced pain has received considerable attention recently. Growing evidence indicates that CGRP plays a key role in the development of peripheral sensitization and the associated enhanced pain. Calcitonin gene-related peptide is implicated in the development of neurogenic inflammation and it is upregulated in conditions of inflammatory and neuropathic pain. It is most likely that CGRP facilitates nociceptive transmission and contributes to the development and maintenance of a sensitized, hyperresponsive state not only of the primary afferent sensory neurons but also of the second-order pain transmission neurons within the central nervous system, thus contributing to central sensitization as well. The maintenance of a sensitized neuronal condition is believed to be an important factor underlying migraine. Recent successful clinical studies have shown that blocking the function of CGRP can alleviate migraine. However, the mechanisms through which CGRP may contribute to migraine are still not fully understood. We reviewed the role of CGRP in primary afferents, the dorsal root ganglion, and in the trigeminal system as well as its role in peripheral and central sensitization and its potential contribution to pain processing and to migraine.
Collapse
|
38
|
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) is known to play a major role in the pathogenesis of pain syndromes, in particular migraine pain; however, its implication in inflammatory processes is not well known. The CGRP receptor antagonist BIBN4096BS was shown to reduce migraine pain and trigeminal neuronal activity. An analgesic action of this compound can also be found in rats with induced acute inflammation by injection of complete Freund's adjuvant (CFA) in one hindpaw. In this model the compound reduced inflammatory pain and spinal neuronal activity. Behavioral experiments (Randall-Selitto test) revealed a reversal of the CFA-induced mechanical hyperalgesia in rats after systemic drug administration. In vivo electrophysiological studies performed in rats injected with CFA using recordings of wide dynamic range neurons in deep dorsal horn layers of the lumbar spinal cord, confirmed a reduction of neuronal activity after systemic drug administration. The same considerable amount of reduction occurred after topical administration onto the paw with resulting systemic plasma concentrations in the low nanomolar range. Spinal administration of BIBN4096BS did not modify the neuronal activity in the CFA model which suggests that peripheral blockade of CGRP receptors by BIBN4096BS significantly alleviates inflammatory pain.
Collapse
|
39
|
Su D, Zhao H, Hu J, Tang D, Cui J, Zhou M, Yang J, Wang S. TRPA1 and TRPV1 contribute to iodine antiseptics-associated pain and allergy. EMBO Rep 2016; 17:1422-1430. [PMID: 27566753 PMCID: PMC5048374 DOI: 10.15252/embr.201642349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 11/09/2022] Open
Abstract
Iodine antiseptics exhibit superior antimicrobial efficacy and do not cause acquired microbial resistance. However, they are underused in comparison with antibiotics in infection treatments, partly because of their adverse effects such as pain and allergy. The cause of these noxious effects is not fully understood, and no specific molecular targets or mechanisms have been discovered. In this study, we show that iodine antiseptics cause pain and promote allergic contact dermatitis in mouse models, and iodine stimulates a subset of sensory neurons that express TRPA1 and TRPV1 channels. In vivo pharmacological inhibition or genetic ablation of these channels indicates that TRPA1 plays a major role in iodine antiseptics-induced pain and the adjuvant effect of iodine antiseptics on allergic contact dermatitis and that TRPV1 is also involved. We further demonstrate that iodine activates TRPA1 through a redox mechanism but has no direct effects on TRPV1. Our study improves the understanding of the adverse effects of iodine antiseptics and suggests a means to minimize their side effects through local inhibition of TRPA1 and TRPV1 channels.
Collapse
Affiliation(s)
- Deyuan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Hong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jinsheng Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Dan Tang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jianmin Cui
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, USA
| | - Ming Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jian Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Shu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
40
|
Capsaicin-Sensitive Sensory Nerves Mediate the Cellular and Microvascular Effects of H2S via TRPA1 Receptor Activation and Neuropeptide Release. J Mol Neurosci 2016; 60:157-70. [PMID: 27525636 DOI: 10.1007/s12031-016-0802-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 07/28/2016] [Indexed: 12/28/2022]
Abstract
It is supposed that TRPA1 receptor can be activated by hydrogen sulphide (H2S). Here, we have investigated the role of TRPA1 receptor in H2S-induced [Ca(2+)]i increase in trigeminal ganglia (TRG) neurons, and the involvement of capsaicin-sensitive sensory nerves in H2S-evoked cutaneous vasodilatation. [Ca(2+)]i was measured with ratiometric technique on TRG neurons of TRPA1(+/+) and TRPA1(-/-) mice after NaHS, Na2S, allylisothiocyanate (AITC) or KCl treatment. Microcirculatory changes in the ear were detected by laser Doppler imaging in response to topical NaHS, AITC, NaOH, NaSO3 or NaCl. Mice were either treated with resiniferatoxin (RTX), or CGRP antagonist BIBN4096, or NK1 receptor antagonist CP99994, or K(+) ATP channel blocker glibenclamide. Alpha-CGRP(-/-) and NK1 (-/-) mice were also investigated. NaHS and Na2S increased [Ca(2+)]i in TRG neurons derived from TRPA(+/+) but not from TRPA1(-/-) mice. NaHS increased cutaneous blood flow, while NaOH, NaSO3 and NaCl did not cause significant changes. NaHS-induced vasodilatation was reduced in RTX-treated animals, as well as by pre-treatment with BIBN4096 or CP99994 alone or in combination. NaHS-induced vasodilatation was significantly smaller in alpha-CGRP(-/-) or NK1 (-/-) mice compared to wild-types. H2S activates capsaicin-sensitive sensory nerves through TRPA1 receptors and the resultant vasodilatation is mediated by the release of vasoactive sensory neuropeptides CGRP and substance P.
Collapse
|
41
|
Borbély É, Sándor K, Markovics A, Kemény Á, Pintér E, Szolcsányi J, Quinn JP, McDougall JJ, Helyes Z. Role of capsaicin-sensitive nerves and tachykinins in mast cell tryptase-induced inflammation of murine knees. Inflamm Res 2016; 65:725-36. [PMID: 27251170 DOI: 10.1007/s00011-016-0954-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/10/2016] [Accepted: 05/18/2016] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE, DESIGN Mast cell tryptase (MCT) is elevated in arthritic joints, but its direct effects are not known. Here, we investigated MCT-evoked acute inflammatory and nociceptive mechanisms with behavioural, in vivo imaging and immunological techniques. MATERIAL AND SUBJECTS Neurogenic inflammation involving capsaicin-sensitive afferents, transient receptor potential vanilloid 1 receptor (TRPV1), substance P (SP), neurokinin A (NKA) and their NK1 tachykinin receptor were studied using gene-deleted mice compared to C57Bl/6 wildtypes (n = 5-8/group). TREATMENT MCT was administered intraarticularly or topically (20 μl, 12 μg/ml). Capsaicin-sensitive afferents were defunctionalized with the TRPV1 agonist resiniferatoxin (RTX; 30-70-100 μg/kg s.c. pretreatment). METHODS Knee diameter was measured with a caliper, synovial perfusion with laser Doppler imaging, mechanonociception with aesthesiometry and weight distribution with incapacitance tester over 6 h. Cytokines and neuropeptides were determined with immunoassays. RESULTS MCT induced synovial vasodilatation, oedema, impaired weight distribution and mechanical hyperalgesia, but cytokine or neuropeptide levels were not altered at the 6-h timepoint. Hyperaemia was reduced in RTX-treated and TRPV1-deleted animals, and oedema was absent in NK1-deficient mice. Hyperalgesia was decreased in SP/NKA- and NK1-deficient mice, weight bearing impairment in RTX-pretreated, TRPV1- and NK1-deficient animals. CONCLUSIONS MCT evokes synovial hyperaemia, oedema, hyperalgesia and spontaneous pain. Capsaicin-sensitive afferents and TRPV1 receptors are essential for vasodilatation, while tachykinins mediate oedema and pain.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - Katalin Sándor
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary
| | - Adrienn Markovics
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - John P Quinn
- School of Biomedical Sciences, Liverpool University, Liverpool, UK
| | - Jason J McDougall
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary. .,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary. .,MTA-PTE NAP B Chronic Pain Research Group, Pecs, Hungary.
| |
Collapse
|
42
|
Affiliation(s)
- Matthew C T Fyfe
- Topivert Limited, Imperial College Incubator, London, United Kingdom
| |
Collapse
|
43
|
Wan D, Wang D, Sun Q, Song Y, Jiang Y, Li R, Ye J. Antinociception of spirocyclopiperazinium salt compound LXM-10-M targeting α7 nicotinic receptor and M4 muscarinic receptor and inhibiting CaMKIIα/CREB/CGRP signaling pathway in mice. Eur J Pharmacol 2015; 770:92-8. [PMID: 26658370 DOI: 10.1016/j.ejphar.2015.11.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
Abstract
The present study was designed to investigate the antinociception of spirocyclopiperazinium salt compound LXM-10-M (2,4-dimethyl-9-β-m-hydroxyphenylethyl-3-oxo-6, 9-diazaspiro [5.5] undecane chloride) in thermal and chemical pain models, and further to explore the molecular target and potential signal pathway. We assessed the antinociception of LXM-10-M in hot-plate test, formalin test and acetic acid writhing test in mice. The possible changes of calcium/calmodulin-dependent protein kinase IIα (CaMKIIα)/cAMP response element-binding protein (CREB)/calcitonin gene related peptide (CGRP) signaling pathway were detected by Western Blot in mice. Administration of LXM-10-M produced significant antinociception in hot-plate test, formalin test and acetic acid writhing test in mice, with no obvious toxicity. The antinociceptive effects were blocked by pretreatment with methyllycaconitine citrate (MLA, α7 nicotinic receptor antagonist) or tropicamide (TRO, M4 muscarinic receptor antagonist). Western blot analysis showed that the upregulations of p-CaMKIIα, p-CREB and CGRP in the spinal cord were reduced by LXM-10-M in chemical pain model in mice, and the effects were blocked by MLA or TRO pretreatment. This is the first paper to report that LXM-10-M exerted significant antinociception, which may be attributed to the activation of α7 nicotinic receptor and M4 muscarinic receptor and thereby triggering the inhibition of CaMKIIα/CREB/CGRP signaling pathway in mice.
Collapse
Affiliation(s)
- Dan Wan
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ding Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qi Sun
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yan Song
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - YiMin Jiang
- Medical and Healthy Analysis Center, Peking University, Beijing, China
| | - RunTao Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jia Ye
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
44
|
Takano S, Uchida K, Miyagi M, Inoue G, Aikawa J, Fujimaki H, Minatani A, Sato M, Iwabuchi K, Takaso M. Synovial macrophage-derived IL-1β regulates the calcitonin receptor in osteoarthritic mice. Clin Exp Immunol 2015; 183:143-9. [PMID: 26400621 DOI: 10.1111/cei.12712] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2015] [Indexed: 12/26/2022] Open
Abstract
Recent studies have reported that calcitonin gene-related peptide (CGRP) contributes to joint pain. However, regulation of the CGRP/CGRP receptor signalling in osteoarthritis (OA) is not fully understood. To investigate the regulation of CGRP/CGRP receptor signalling by macrophages in the synovial tissue (ST) of OA joints, we characterized the gene expression profiles of CGRP and CGRP receptors in the ST of OA mice (STR/Ort). In addition, we examined whether macrophage depletion by the systemic injection of clodronate-laden liposomes affected the expression of CGRP and CGRP receptors in ST. CD11c(+) macrophages in the ST of STR/Ort and C57BL/6J mice were analysed by flow cytometry. Real-time polymerase chain reaction (PCR) was used to evaluate the expression of interleukin (IL)-1β, CGRP, calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) in F4/80(+) and F4/80(-) cells. The effects of IL-1β on the expression of CGRP and CLR by cultured synovial cells were also examined. The percentage of CD11c(+) macrophages in the ST of STR/Ort was higher than that in C57/BL6J mice. Notably, the F4/80(+) cell fraction expressed IL-1β highly, whereas the F4/80(-) cell fraction expressed CGRP, CLR, and RAMP1 highly. In addition, expression of the IL-1β and CLR genes was increased in ST, but was decreased upon macrophage depletion, and the IL-1β treatment of cultured synovial cells up-regulated CLR. Taken together, the present findings suggest that synovial macrophages are the major producers of IL-1β and regulators of CLR in OA mice. Therefore, macrophages and IL-1β may be suitable therapeutic targets for treating OA pain.
Collapse
Affiliation(s)
- S Takano
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - K Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - M Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - G Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - J Aikawa
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - H Fujimaki
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - A Minatani
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - M Sato
- Department of Immunology, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - K Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - M Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| |
Collapse
|
45
|
Han S, Soleiman MT, Soden ME, Zweifel LS, Palmiter RD. Elucidating an Affective Pain Circuit that Creates a Threat Memory. Cell 2015; 162:363-374. [PMID: 26186190 DOI: 10.1016/j.cell.2015.05.057] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/28/2015] [Accepted: 05/27/2015] [Indexed: 12/24/2022]
Abstract
Animals learn to avoid harmful situations by associating a neutral stimulus with a painful one, resulting in a stable threat memory. In mammals, this form of learning requires the amygdala. Although pain is the main driver of aversive learning, the mechanism that transmits pain signals to the amygdala is not well resolved. Here, we show that neurons expressing calcitonin gene-related peptide (CGRP) in the parabrachial nucleus are critical for relaying pain signals to the central nucleus of amygdala and that this pathway may transduce the affective motivational aspects of pain. Genetic silencing of CGRP neurons blocks pain responses and memory formation, whereas their optogenetic stimulation produces defensive responses and a threat memory. The pain-recipient neurons in the central amygdala expressing CGRP receptors are also critical for establishing a threat memory. The identification of the neural circuit conveying affective pain signals may be pertinent for treating pain conditions with psychiatric comorbidities.
Collapse
Affiliation(s)
- Sung Han
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Matthew T Soleiman
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Marta E Soden
- Departments of Psychiatry and Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Larry S Zweifel
- Departments of Psychiatry and Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
46
|
Lukács M, Haanes KA, Majláth Z, Tajti J, Vécsei L, Warfvinge K, Edvinsson L. Dural administration of inflammatory soup or Complete Freund's Adjuvant induces activation and inflammatory response in the rat trigeminal ganglion. J Headache Pain 2015; 16:564. [PMID: 26329487 PMCID: PMC4556720 DOI: 10.1186/s10194-015-0564-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/19/2015] [Indexed: 03/31/2024] Open
Abstract
Background Migraine is a painful disorder with a huge impact on individual and public health. We hypothesize that migraine pain originates from a central mechanism that results secondarily in hypersensitivity in peripheral afferents associated with the cerebral and cranial blood vessels. It has previously been shown that application of inflammatory or algesic substances onto the dura mater or chemical stimulation of the dural receptive fields causes hypersensitivity to mechanical and thermal stimulation together with direct activation of the TG. We asked whether local inflammation of dura mater induces inflammatory activation in the trigeminal ganglion. Methods We performed topical administration of inflammatory soup (IS) or Complete Freund’s Adjuvant (CFA) onto an exposed area of the rat dura mater in vivo for 20 min. The window was closed and the rats were sacrificed after 4 h and up to 7 days. Myography was performed on middle meningeal arteries. The trigeminal ganglia were removed and processed for immunohistochemistry or Western blot. Results Both CFA and IS induced enhanced expression of pERK1/2, IL-1β and CGRP in the trigeminal ganglia. The pERK1/2 immunoreactivity was mainly seen in the satellite glial cells, while IL-1β reactivity was observed in the neuronal cytoplasm, close to the cell membrane, seemingly as sign of neuro-glial interaction. The CGRP expression in the neurons and nerve fibres was enhanced after the application of either inflammatory agent. Myography resulted in a strong vasoconstrictor response to IS, but not to CFA. Conclusions These results suggest that the application of IS or CFA onto the dura mater causes long-term activation of the TG and demonstrate the importance of the neuro-glial interaction in the activation of the trigeminovascular system. Electronic supplementary material The online version of this article (doi:10.1186/s10194-015-0564-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Lukács
- Department of Medicine, Institute of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Sölvegatan 17, SE 221 84, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
47
|
Favero M, Giusti A, Geusens P, Goldring SR, Lems W, Schett G, Bianchi G. OsteoRheumatology: a new discipline? RMD Open 2015; 1:e000083. [PMID: 26557384 PMCID: PMC4632147 DOI: 10.1136/rmdopen-2015-000083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/28/2015] [Accepted: 05/01/2015] [Indexed: 12/20/2022] Open
Abstract
This review summarises recent evidence about the interaction between bone, the immune system and cartilage in disabling conditions such as osteoarthritis, rheumatoid arthritis and spondyloarthritis. These topics have been recently discussed at the ‘OsteoRheumatology’ conference held in Genoa in October 2014. The meeting, at its 10th edition, has been conceived to bring together distinguished international experts in the fields of rheumatic and metabolic bone diseases with the aim of discussing emerging knowledge regarding the role of the bone tissue in rheumatic diseases. Moreover, this review focuses on new treatments based on underlying the pathophysiological processes in rheumatic diseases. Although, a number of issues still remain to be clarified, it seems quite clear that in clinical practice, as well as in basic and translational research, there is a need for more knowledge of the interactions between the cartilage, the immune system and the bone. In this context, ‘OsteoRheumatology’ represents a potential new discipline providing a greater insight into this interplay, in order to face the multifactorial and complex issues underlying common and disabling rheumatic diseases.
Collapse
Affiliation(s)
- Marta Favero
- Rheumatology Unit, Department of Medicine-DIMED , University Hospital of Padova , Padova , Italy ; Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES , Rizzoli Orthopedic Research Institute , Bologna , Italy
| | - Andrea Giusti
- Bone Clinic, Department of Gerontology and Musculoskeletal Sciences , Galliera Hospital , Genoa , Italy
| | - Piet Geusens
- Department of Internal Medicine, Subdivision of Rheumatology , CAPHRI/NUTRIM, Maastricht University Medical Centre , Maastricht , The Netherlands & UHasselt, Belgium
| | - Steven R Goldring
- Hospital for Special Surgery and Weill Cornell Medical College , New York, New York , USA
| | - Willem Lems
- Department of Rheumatology , VU Medical Centre , Amsterdam , The Netherlands
| | - Georg Schett
- Department of Internal Medicine 3 , University of Erlangen-Nuremberg , Erlangen , Germany
| | - Gerolamo Bianchi
- Department of Locomotor System, Division of Rheumatology , ASL3 Genovese , Genoa , Italy
| |
Collapse
|
48
|
Long H, Liao L, Gao M, Ma W, Zhou Y, Jian F, Wang Y, Lai W. Periodontal CGRP contributes to orofacial pain following experimental tooth movement in rats. Neuropeptides 2015; 52:31-7. [PMID: 26164378 DOI: 10.1016/j.npep.2015.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/15/2022]
Abstract
Calcitonin-related gene peptide (CGRP) plays an important role in orofacial inflammatory pain. The aim of this study was to determine whether periodontal CGRP contributes to orofacial pain induced by experimental tooth movement in rats. Male Sprague-Dawley rats were used in this study. Closed coil springs were used to deliver forces. Rats were euthanized on 0d, 1d, 3d, 5d, 7d, and 14d following experimental tooth movement. Then, alveolar bones were obtained for immunostaining of periodontal tissues against CGRP. Two hours prior to euthanasia on each day, orofacial pain levels were assessed through rat grimace scale. CGRP and olcegepant (CGRP receptor antagonist) were injected into periodontal tissues to verify the roles of periodontal CGRP in orofacial pain induced by experimental tooth movement. Periodontal CGRP expression levels and orofacial pain levels were elevated on 1d, 3d, 5d, and 7d following experimental tooth movement. The two indices were significantly correlated with each other and fitted into a dose-response model. Periodontal administration of CGRP could elevate periodontal CGRP expressions and exacerbate orofacial pain. Moreover, olcegepant administration could decrease periodontal CGRP expressions and alleviate orofacial pain. Therefore, periodontal CGRP plays an important role in pain transmission and modulation following experimental tooth movement. We suggest that it may participate in a positive feedback aiming to amplify orofacial pain signals.
Collapse
Affiliation(s)
- Hu Long
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lina Liao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meiya Gao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenqiang Ma
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Zhou
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Fan Jian
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
49
|
Walsh DA, Mapp PI, Kelly S. Calcitonin gene-related peptide in the joint: contributions to pain and inflammation. Br J Clin Pharmacol 2015; 80:965-78. [PMID: 25923821 DOI: 10.1111/bcp.12669] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/31/2015] [Accepted: 04/27/2015] [Indexed: 12/15/2022] Open
Abstract
Arthritis is the commonest cause of disabling chronic pain, and both osteoarthritis (OA) and rheumatoid arthritis (RA) remain major burdens on both individuals and society. Peripheral release of calcitonin gene-related peptide (CGRP) contributes to the vasodilation of acute neurogenic inflammation. Contributions of CGRP to the pain and inflammation of chronic arthritis, however, are only recently being elucidated. Animal models of arthritis are revealing the molecular and pathophysiological events that accompany and lead to progression of both arthritis and pain. Peripheral actions of CGRP in the joint might contribute to both inflammation and joint afferent sensitization. CGRP and its specific receptors are expressed in joint afferents and up-regulated following arthritis induction. Peripheral CGRP release results in activation of synovial vascular cells, through which acute vasodilatation is followed by endothelial cell proliferation and angiogenesis, key features of chronic inflammation. Local administration of CGRP to the knee also increases mechanosensitivity of joint afferents, mimicking peripheral sensitization seen in arthritic joints. Increased mechanosensitivity in OA knees and pain behaviour can be reduced by peripherally acting CGRP receptor antagonists. Effects of CGRP pathway blockade on arthritic joint afferents, but not in normal joints, suggest contributions to sensitization rather than normal joint nociception. CGRP therefore might make key contributions to the transition from normal to persistent synovitis, and the progression from nociception to sensitization. Targeting CGRP or its receptors within joint tissues to prevent these undesirable transitions during early arthritis, or suppress them in established disease, might prevent persistent inflammation and relieve arthritis pain.
Collapse
Affiliation(s)
- David A Walsh
- Professor of Rheumatology, Director Arthritis Research UK Pain Centre University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB
| | - Paul I Mapp
- Research Fellow, Arthritis UK Pain Centre, University of Nottingham, NG5 1PB
| | - Sara Kelly
- Assistant Professor in Neuroscience, School of Biosciences, University of Nottingham, Sutton Bonnington Campus, Nr Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
50
|
Vermeersch S, Benschop RJ, Van Hecken A, Monteith D, Wroblewski VJ, Grayzel D, de Hoon J, Collins EC. Translational Pharmacodynamics of Calcitonin Gene-Related Peptide Monoclonal Antibody LY2951742 in a Capsaicin-Induced Dermal Blood Flow Model. J Pharmacol Exp Ther 2015; 354:350-7. [PMID: 26116630 DOI: 10.1124/jpet.115.224212] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/26/2015] [Indexed: 01/06/2023] Open
Abstract
LY2951742, a monoclonal antibody targeting calcitonin gene-related peptide (CGRP), is being developed for migraine prevention and osteoarthritis pain. To support the clinical development of LY2951742, capsaicin-induced dermal blood flow (DBF) was used as a target engagement biomarker to assess CGRP activity in nonhuman primates and healthy volunteers. Inhibition of capsaicin-induced DBF in nonhuman primates, measured with laser Doppler imaging, was dose dependent and sustained for at least 29 days after a single intravenous injection of the CGRP antibody. This information was used to generate a pharmacokinetic/pharmacodynamic model, which correctly predicted inhibition of capsaicin-induced DBF in humans starting at a single subcutaneous 5-mg dose. As expected, the degree of inhibition in capsaicin-induced DBF increased with higher LY2951742 plasma concentrations. Utilization of this pharmacodynamic biomarker with pharmacokinetic data collected in phase I studies provided the dose-response relationship that assisted in dose selection for the phase II clinical development of LY2951742.
Collapse
Affiliation(s)
- Steve Vermeersch
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - Robert J Benschop
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - Anne Van Hecken
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - David Monteith
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - Victor J Wroblewski
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - David Grayzel
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - Jan de Hoon
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - Emily C Collins
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| |
Collapse
|