1
|
Nishimura H, Layne J, Yamaura K, Marcucio R, Morioka K, Basbaum AI, Weinrich JAP, Bahney CS. A bad break: mechanisms and assessment of acute and chronic pain after bone fracture. Pain 2025:00006396-990000000-00920. [PMID: 40408239 DOI: 10.1097/j.pain.0000000000003646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/25/2025] [Indexed: 05/25/2025]
Abstract
ABSTRACT Pain is one of the primary indicators of a bone fracture and serves both a functional and practical role in guiding recovery. However, fracture pain can persist long after the fracture itself has clinically healed. The neural and molecular mechanisms that drive acute pain postfracture, and how these mechanisms are pathologically usurped to trap patients into persistent, debilitating, and often difficult to treat, chronic pain, are not well understood. The aim of this review is to provide insight into the risk factors for pain persistence after fracture, review the physiological and pathophysiological mechanisms of fracture pain, and critically evaluate the literature around fracture pain assessment techniques/models. Taken together, the concepts covered herein will provide a strong foundation to support the development of more effective treatments to better alleviate postfracture pain.
Collapse
Affiliation(s)
- Haruki Nishimura
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
- Department of Orthopaedic Surgery, University Hospital of Occupational and Environmental Health, Fukuoka, Japan
| | - Jonathan Layne
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
- The Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Kohei Yamaura
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ralph Marcucio
- The Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Kazuhito Morioka
- The Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Allan I Basbaum
- Department of Anatomy, UCSF, San Francisco, CA, United States
| | - Jarret A P Weinrich
- Department of Anatomy, UCSF, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, United States
| | - Chelsea S Bahney
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
- The Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
2
|
Ebersberger A, Schaible HG. Do cytokines play a role in the transition from acute to chronic musculoskeletal pain? Pharmacol Res 2025; 212:107585. [PMID: 39778638 DOI: 10.1016/j.phrs.2025.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Musculoskeletal pain has a high prevalence of transition to chronic pain and/or persistence as chronic pain for years or even a lifetime. Possible mechanisms for the development of such pain states are often reflected in inflammatory or neuropathic processes involving, among others, cytokines and other molecules. Since biologics such as blockers of TNF or IL-6 can attenuate inflammation and pain in a subset of patients with rheumatoid arthritis, the question arises to what extent cytokines are involved in the generation of pain in human musculoskeletal diseases. In numerous experimental non-human studies, cytokines have been shown to alter neuronal sensitivity in the peripheral and central nociceptive systems. In this review, we addressed the involvement of cytokines in postoperative pain, complex regional pain syndrome, rheumatoid arthritis, osteoarthritis, temporomandibular joint disease, low back pain and fibromyalgia using PubMed searches including meta-analyses of data. There is evidence that certain pro- and anti-inflammatory cytokines are regulated in all of these diseases, often in both acute and chronic disease states. However, within these data, we found a great deal of heterogeneity in the association between cytokine levels and pain. Neutralization of cytokines showed antinociceptive effects in subgroups of patients with chronic pain (e.g., in a proportion of patients with rheumatoid arthritis), but failed to reduce chronic pain in other diseases (e.g., osteoarthritis). More systematic studies are needed to unravel the pathogenic role of cytokines in human musculoskeletal pain, taking into account the disease process and the mechanisms of pain initiation and maintenance.
Collapse
Affiliation(s)
- Andrea Ebersberger
- University Hospital of Jena, Institute of Physiology 1, Jena D-07740, Germany.
| | - Hans-Georg Schaible
- University Hospital of Jena, Institute of Physiology 1, Jena D-07740, Germany.
| |
Collapse
|
3
|
Jin Z, Chen Z, Liang T, Liu W, Shan Z, Tan D, Chen J, Hu J, Qin L, Xu J. Accelerated fracture healing accompanied with traumatic brain injury: A review of clinical studies, animal models and potential mechanisms. J Orthop Translat 2025; 50:71-84. [PMID: 39868349 PMCID: PMC11763218 DOI: 10.1016/j.jot.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 01/28/2025] Open
Abstract
The orthopaedic community frequently encounters polytrauma individuals with concomitant traumatic brain injury (TBI) and their fractures demonstrate accelerated fracture union, but the mechanisms remain far from clear. Animal and clinical studies demonstrate robust callus formation at the early healing process and expedited radiographical union. In humans, robust callus formation in TBI occurs independently of fracture fixation methods across multiple fracture sites. Animal studies of TBI replicate clinically relevant enlarged fracture callus as characterized by increased tissue volume and bone volume at the early stages. However, refinement and standardization of the TBI models requires further research. The quest for its underlying mechanisms began with the finding of increased osteogenesis in vitro using the serum and cerebral spinal fluid (CSF) from TBI individuals. This has led to the investigation of myriads of brain-derived factors including humoral factors, cytokines, exosomes, and mi-RNAs. Further, the emerging information of interplay between the skeletal system and central nervous system, the roles of peripheral nerves and their neuropeptides in regulating bone regeneration, offers valuable insights for future research. This review consolidates the findings from both experimental and clinical studies, elucidating the potential mechanisms underlying enhanced fracture healing in concurrent TBI scenarios that may lay down a foundation to develop innovative therapies for fracture healing enhancement and conquer fracture non-union. The translational potential of this article. This review comprehensively summarizes the observations of accelerated fracture healing in the presence of traumatic brain injury from both preclinical and clinical studies. In addition, it also delineates potential cellular and molecular mechanisms. Further detailed investigation into its underlying mechanisms may reveal innovative orthopaedic intervention strategies to improve fracture healing and thus offering promising avenues for future translational applications.
Collapse
Affiliation(s)
- Zheyu Jin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tongzhou Liang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Weiyang Liu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhengming Shan
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dianhui Tan
- Department of Neurosurgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiechen Chen
- Department of Orthopaedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Orthopaedic Medical Research Centre, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jun Hu
- Department of Orthopaedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Orthopaedic Medical Research Centre, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Rosini S, Rosini S, Saviola G, Molfetta L. Adenosine triphosphate: a new player in complex regional pain syndrome type 1. Minerva Med 2024; 115:651-659. [PMID: 39101383 DOI: 10.23736/s0026-4806.24.09345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The complex regional pain syndrome type 1 (CRPS-1) is one of the most discussed painful syndromes due to the variability and severity of its symptoms. CRPS-1 generally occurs after a trauma, a fracture or a sprain followed by an immobilization. Classical diagnostic criteria are not always clear; hence, the diagnosis is difficult. The definition of CRPS itself defines and considers the pain as key symptom neglecting the bone damage. Early CRPS involves the activation of the innate cutaneous immune system with altered sensory and sympathetic signaling, activation and proliferation of keratinocytes and mast cells in addition to the release of inflammatory mediators and pain. The role of the immune system and the response to the disease is becoming clearer as the microglia is activated as a result of injury and can induce a central sensitization while astrocytes can maintain the process. Adenosine triphosphate (ATP) exerts a fundamental role in the activation of innate cutaneous immune system, in the proliferation of keratinocytes and mast cells, in the release of several proinflammatory cytokines and in the microglia activation. It is essential to intervene on this pathology as soon as possible with drugs, as clodronate, able to reduce bone marrow edema and pain through the inhibition of the primary inflammatory process and the immune reaction, limiting the activation of macrophages and the release of cytokines activating nuclear growth factor (NGF). In this review the role of ATP, bisphosphonates and rehabilitation are discussed.
Collapse
Affiliation(s)
| | | | - Gianantonio Saviola
- Unit of Rheumatology, Istituti Clinici Scientifici (ICS) Maugeri, IRCCS Istituto di Castel Goffredo, Castel Goffredo, Mantua, Italy -
| | - Luigi Molfetta
- School of Medical and Pharmaceutical Sciences, Department of Surgical Sciences and Integrated Diagnostics (DISC), Research Center of Osteoporosis and Osteoarticular Pathologies, University of Genoa, Genoa, Italy
| |
Collapse
|
5
|
Park SH, Tsuzuki S, Contino KF, Ollodart J, Eber MR, Yu Y, Steele LR, Inaba H, Kamata Y, Kimura T, Coleman I, Nelson PS, Muñoz-Islas E, Jiménez-Andrade JM, Martin TJ, Mackenzie KD, Stratton JR, Hsu FC, Peters CM, Shiozawa Y. Crosstalk between bone metastatic cancer cells and sensory nerves in bone metastatic progression. Life Sci Alliance 2024; 7:e202302041. [PMID: 39266299 PMCID: PMC11393574 DOI: 10.26508/lsa.202302041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
Although the role of peripheral nerves in cancer progression has been appreciated, little is known regarding cancer/sensory nerve crosstalk and its contribution to bone metastasis and associated pain. In this study, we revealed that the cancer/sensory nerve crosstalk plays a crucial role in bone metastatic progression. We found that (i) periosteal sensory nerves expressing calcitonin gene-related peptide (CGRP) are enriched in mice with bone metastasis; (ii) cancer patients with bone metastasis have elevated CGRP serum levels; (iii) bone metastatic patient tumor samples express elevated calcitonin receptor-like receptor (CRLR, a CGRP receptor component); (iv) higher CRLR levels in cancer patients are negatively correlated with recurrence-free survival; (v) CGRP induces cancer cell proliferation through the CRLR/p38/HSP27 pathway; and (vi) blocking sensory neuron-derived CGRP reduces cancer cell proliferation in vitro and bone metastatic progression in vivo. This suggests that CGRP-expressing sensory nerves are involved in bone metastatic progression and that the CGRP/CRLR axis may serve as a potential therapeutic target for bone metastasis.
Collapse
Affiliation(s)
- Sun H Park
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Shunsuke Tsuzuki
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Kelly F Contino
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jenna Ollodart
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Matthew R Eber
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yang Yu
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Laiton R Steele
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hiroyuki Inaba
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Yuko Kamata
- Department of Oncology, Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Enriqueta Muñoz-Islas
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Mexico
| | | | - Thomas J Martin
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | - Fang-Chi Hsu
- Department of Biostatistics and Data Science Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Christopher M Peters
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
6
|
Yeh TT, Chen CK, Kuthati Y, Mende LK, Wong CS, Kong ZL. Amorphous Calcium Carbonate Enhances Fracture Healing in a Rat Fracture Model. Nutrients 2024; 16:4089. [PMID: 39683484 DOI: 10.3390/nu16234089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Delayed and failed fracture repair and bone healing remain significant public health issues. Dietary supplements serve as a safe, inexpensive, and non-surgical means to aid in different stages of fracture repair. Studies have shown that amorphous calcium carbonate (ACC) is absorbed 2 to 4.6 times more than crystalline calcium carbonate in humans. Objectives: In the present study, we assessed the efficacy of ACC on femoral fracture healing in a male Wistar rat model. Methods: Eighty male Wistar rats were randomly divided into five groups (n = six per group): sham, fracture + water, fracture + 0.5× (206 mg/kg) ACC, fracture + 1× ACC (412 mg/kg), and fracture + 1.5× (618 mg/kg) ACC, where ACC refers to the equivalent supplemental dose of ACC for humans. A 21-gauge needle was placed in the left femoral shaft, and we then waited for three weeks. After three weeks, the sham group of rats was left without fractures, while the remaining animals had their left mid-femur fractured with an impactor, followed by treatment with different doses of oral ACC for three weeks. Weight-bearing capacity, microcomputed tomography, and serum biomarkers were evaluated weekly. After three weeks, the rats were sacrificed, and their femur bones were isolated to conduct an evaluation of biomechanical strength and histological analysis. Results: Weight-bearing tests showed that treatment with ACC at all the tested doses led to a significant increase in weight-bearing capacity compared to the controls. In addition, microcomputed tomography and histological studies revealed that ACC treatment improved callus formation dose-dependently. Moreover, biomechanical strength was improved in a dose-dependent fashion in ACC-treated rats compared to the controls. In addition, supplementation with ACC significantly lowered bone formation and resorption marker levels two-three weeks post-fracture induction, indicating accelerated fracture recovery. Conclusions: Our preliminary data demonstrate that ACC supplementation improves fracture healing, with ACC-supplemented rats healing in a shorter time than control rats.
Collapse
Affiliation(s)
- Tsu-Te Yeh
- Department of Orthopedic Surgery, Tri-Service General Hospital and National Defense Medical Center, 325 Cheng-Kung Road, Section 2, Taipei 114, Taiwan
| | - Chun-Kai Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan
| | - Lokesh Kumar Mende
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan
- National Defense Medical Center, Institute of Medical Sciences, Taipei 114, Taiwan
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| |
Collapse
|
7
|
Rodriguez-Maruri G, Celotto S, Guidi D, Hirschmüller A, Sosa González G. Expert opinion on heat therapy for teenagers' musculoskeletal pain management. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:84. [PMID: 39507458 PMCID: PMC11534756 DOI: 10.21037/atm-23-1931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/14/2024] [Indexed: 11/08/2024]
Abstract
Background Among children and adolescents, up to 40% will experience musculoskeletal pain (MP), which can significantly impair functional ability, reduce quality of life, cause emotional distress, and lead to sleeping disorders for both patients and their families. The first-line treatment often involves pharmacological interventions, even though there is a lack of evidence supporting the efficacy or the safety of this approach in this specific age group. Recent guidelines recommend the implementation of preventative strategies and physical tools as the first option to minimize the use of medications. We aimed to provide an expert opinion on the use of heat therapy for MP management in young patients. Methods This paper is the result of a virtual advisory board held by the authors in order to discuss and provide an expert opinion about the use of heat therapy in MP in children and adolescents. Results MP is a significant burden affecting children and adolescents. While non-steroidal anti-inflammatory drugs are currently the first-choice treatment of acute and chronic MP in children and adolescents, avoiding or reducing them in such patients is advisable, to reduce side effects and to prevent the development of chronic pain and medication overuse headaches. Heat therapy can be an additional treatment option due to its ability to promote muscle relaxation, enhance blood circulation, and modulate nociceptors with a good safety profile. Conclusions MP in children and adolescents is a common condition that should be approached multidisciplinary, including information, therapeutic exercise and physical therapies like hot or cold therapies. Future studies should be conducted to evaluate the safety, efficacy and indications of each treatment in MP.
Collapse
Affiliation(s)
- Guillermo Rodriguez-Maruri
- Primary Care Musculoskeletal Unit, Area V, Health Service of the Principality of Asturias (Servicio de Salud del Principado de Asturias, SESPA), Gijón, Spain
| | - Stefano Celotto
- Primary Care Department, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | | | - Anja Hirschmüller
- ALTIUS Swiss Sportmed Center, Rheinfelden, Switzerland
- Department of Orthopaedic Surgery and Traumatology, Albert-Ludwigs University Freiburg, Faculty of Medicine, Medical Center, Freiburg, Germany
| | - Guillermo Sosa González
- Department of Orthopedic Surgery and Traumatology, Pediatric Orthopedics Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
8
|
Rangel-Sosa MM, Mann F, Chauvet S. Pancreatic Schwann cell reprogramming supports cancer-associated neuronal remodeling. Glia 2024; 72:1840-1861. [PMID: 38961612 DOI: 10.1002/glia.24586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
The peripheral nervous system is a key regulator of cancer progression. In pancreatic ductal adenocarcinoma (PDAC), the sympathetic branch of the autonomic nervous system inhibits cancer development. This inhibition is associated with extensive sympathetic nerve sprouting in early pancreatic cancer precursor lesions. However, the underlying mechanisms behind this process remain unclear. This study aimed to investigate the roles of pancreatic Schwann cells in the structural plasticity of sympathetic neurons. We examined the changes in the number and distribution of Schwann cells in a transgenic mouse model of PDAC and in a model of metaplastic pancreatic lesions induced by chronic inflammation. Schwann cells proliferated and expanded simultaneously with new sympathetic nerve sprouts in metaplastic/neoplastic pancreatic lesions. Sparse genetic labeling showed that individual Schwann cells in these lesions had a more elongated and branched structure than those under physiological conditions. Schwann cells overexpressed neurotrophic factors, including glial cell-derived neurotrophic factor (GDNF). Sympathetic neurons upregulated the GDNF receptors and exhibited enhanced neurite growth in response to GDNF in vitro. Selective genetic deletion of Gdnf in Schwann cells completely blocked sympathetic nerve sprouting in metaplastic pancreatic lesions in vivo. This study demonstrated that pancreatic Schwann cells underwent adaptive reprogramming during early cancer development, supporting a protective antitumor neuronal response. These finding could help to develop new strategies to modulate cancer associated neural plasticity.
Collapse
Affiliation(s)
| | - Fanny Mann
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | |
Collapse
|
9
|
Qi G, Jiang Z, Niu J, Jiang C, Zhang J, Pei J, Wang X, An S, Yu T, Wang X, Zhang Y, Ma T, Zhang X, Yuan G, Wang Z. SrHPO 4-coated Mg alloy implant attenuates postoperative pain by suppressing osteoclast-induced sensory innervation in osteoporotic fractures. Mater Today Bio 2024; 28:101227. [PMID: 39290467 PMCID: PMC11405936 DOI: 10.1016/j.mtbio.2024.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Osteoporotic fractures have become a common public health problem and are usually accompanied by chronic pain. Mg and Mg-based alloys are considered the next-generation orthopedic implants for their excellent osteogenic inductivity, biocompatibility, and biodegradability. However, Mg-based alloy can initiate aberrant activation of osteoclasts and modulate sensory innervation into bone callus resulting in postoperative pain at the sequential stage of osteoporotic fracture healing. Its mechanism is going to be investigated. Strontium hydrogen phosphate (SrHPO4) coating to delay the Mg-based alloy degradation, can reduce the osteoclast formation and inhibit the growth of sensory nerves into bone callus, dorsal root ganglion hyperexcitability, and pain hypersensitivity at the early stage. Liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis of bone marrow-derived macrophages (BMMs) treated with SrHPO4-coated Mg alloy extracts shows the potential effect of increased metabolite levels of AICAR (an activator of the AMPK pathway). We demonstrate a possible modulated secretion of AICAR and osteoclast differentiation from BMMs, which inhibits sensory innervation and postoperative pain through the AMPK/mTORc1/S6K pathway. Importantly, supplementing with AICAR in Mg-activated osteoclasts attenuates postoperative pain. These results suggest that Mg-induced postoperative pain is related to the osteoclastogenesis and sensory innervation at the early stage in the osteoporotic fractures and the SrHPO4 coating on Mg-based alloys can reduce the pain by upregulating AICAR secretion from BMMs or preosteoclasts.
Collapse
Affiliation(s)
- Guobin Qi
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Zengxin Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chang Jiang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Zhang
- Shanghai Innovation Medical Technology Co., Ltd, 600 Xinyuan South Road, Lingang New Area, Pudong New District, Shanghai, 201306, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao Wang
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Senbo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Tao Yu
- Department of Spine Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xiuhui Wang
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated to Zhoupu Hospital, Shanghai, 201318, China
| | - Yueqi Zhang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Tianle Ma
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaotian Zhang
- Orthpaedic Trauma, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhe Wang
- Orthpaedic Trauma, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
10
|
Li X, Martinez-Ramos S, Heedge FT, Pitsillides A, Bou-Gharios G, Poulet B, Chenu C. Expression of semaphorin-3A in the joint and role in osteoarthritis. Cell Biochem Funct 2024; 42:e4012. [PMID: 38584583 DOI: 10.1002/cbf.4012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Osteoarthritis (OA) is characterised by the deterioration of cartilage in the joints and pain. We hypothesise that semaphorin-3A (sema-3A), a chemorepellent for sensory nerves, plays a role in joint degradation and pain. We used the mechanical joint loading (MJL) model of OA to investigate sema-3A expression in the joint and examine its association with the development of OA and pain. We also analyse its effect on chondrocyte differentiation using the ATDC5 cell line. We demonstrate that sema-3A is present in most tissues in the healthy joint and its expression increases in highly innervated tissues, such as cruciate ligaments, synovial lining and subchondral bone, in loaded compared to nonloaded control joints. In contrast, sema-3A expression in cartilage was decreased in the severe OA induced by the application of high loads. There was a significant increase in circulating sema-3A, 6 weeks after MJL compared to the nonloaded mice. mRNA for sema-3A and its receptor Plexin A1 were upregulated in the dorsal root ganglia of mice submitted to MJL. These increases were supressed by zoledronate, an inhibitor of bone pain. Sema-3A was expressed at all stages of Chondrocyte maturation and, when added exogenously, stimulated expression of markers of chondrocyte differentiation. This indicates that sema-3A could affect joint tissues distinctively during the development of OA. In highly innervated joint tissues, sema-3A could control innervation and/or induce pain-associated neuronal changes. In cartilage, sema-3A could favour its degeneration by modifying chondrocyte differentiation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Sara Martinez-Ramos
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Freija T Heedge
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Andrew Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - George Bou-Gharios
- Musculoskeletal and Ageing Sciences Department, Institute of Lifecourse and Medical Science, University of Liverpool, Liverpool, UK
| | - Blandine Poulet
- Musculoskeletal and Ageing Sciences Department, Institute of Lifecourse and Medical Science, University of Liverpool, Liverpool, UK
| | - Chantal Chenu
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
11
|
Ma J, Eglauf J, Grad S, Alini M, Serra T. Engineering Sensory Ganglion Multicellular System to Model Tissue Nerve Ingrowth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308478. [PMID: 38113315 PMCID: PMC10953573 DOI: 10.1002/advs.202308478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Discogenic pain is associated with deep nerve ingrowth in annulus fibrosus tissue (AF) of intervertebral disc (IVD). To model AF nerve ingrowth, primary bovine dorsal root ganglion (DRG) micro-scale tissue units are spatially organised around an AF explant by mild hydrodynamic forces within a collagen matrix. This results in a densely packed multicellular system mimicking the native DRG tissue morphology and a controlled AF-neuron distance. Such a multicellular organisation is essential to evolve populational-level cellular functions and in vivo-like morphologies. Pro-inflammatory cytokine-primed AF demonstrates its neurotrophic and neurotropic effects on nociceptor axons. Both effects are dependent on the AF-neuron distance underpinning the role of recapitulating inter-tissue/organ anatomical proximity when investigating their crosstalk. This is the first in vitro model studying AF nerve ingrowth by engineering mature and large animal tissues in a morphologically and physiologically relevant environment. The new approach can be used to biofabricate multi-tissue/organ models for untangling pathophysiological conditions and develop novel therapies.
Collapse
Affiliation(s)
- Junxuan Ma
- AO Research InstituteClavadelerstrasse 8Davos7270Switzerland
| | - Janick Eglauf
- AO Research InstituteClavadelerstrasse 8Davos7270Switzerland
- ETH ZürichRämistrasse 101Zürich8092Switzerland
| | - Sibylle Grad
- AO Research InstituteClavadelerstrasse 8Davos7270Switzerland
| | - Mauro Alini
- AO Research InstituteClavadelerstrasse 8Davos7270Switzerland
| | - Tiziano Serra
- AO Research InstituteClavadelerstrasse 8Davos7270Switzerland
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ETNetherlands
| |
Collapse
|
12
|
Parker RS, Nazzal MK, Morris AJ, Fehrenbacher JC, White FA, Kacena MA, Natoli RM. Role of the Neurologic System in Fracture Healing: An Extensive Review. Curr Osteoporos Rep 2024; 22:205-216. [PMID: 38236509 PMCID: PMC10912173 DOI: 10.1007/s11914-023-00844-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW Despite advances in orthopedics, there remains a need for therapeutics to hasten fracture healing. However, little focus is given to the role the nervous system plays in regulating fracture healing. This paucity of information has led to an incomplete understanding of fracture healing and has limited the development of fracture therapies that integrate the importance of the nervous system. This review seeks to illuminate the integral roles that the nervous system plays in fracture healing. RECENT FINDINGS Preclinical studies explored several methodologies for ablating peripheral nerves to demonstrate ablation-induced deficits in fracture healing. Conversely, activation of peripheral nerves via the use of dorsal root ganglion electrical stimulation enhanced fracture healing via calcitonin gene related peptide (CGRP). Investigations into TLR-4, TrkB agonists, and nerve growth factor (NGF) expression provide valuable insights into molecular pathways influencing bone mesenchymal stem cells and fracture repair. Finally, there is continued research into the connections between pain and fracture healing with findings suggesting that anti-NGF may be able to block pain without affecting healing. This review underscores the critical roles of the central nervous system (CNS), peripheral nervous system (PNS), and autonomic nervous system (ANS) in fracture healing, emphasizing their influence on bone cells, neuropeptide release, and endochondral ossification. The use of TBI models contributes to understanding neural regulation, though the complex influence of TBI on fracture healing requires further exploration. The review concludes by addressing the neural connection to fracture pain. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Reginald S Parker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ashlyn J Morris
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fletcher A White
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
13
|
Nazzal MK, Morris AJ, Parker RS, White FA, Natoli RM, Kacena MA, Fehrenbacher JC. Do Not Lose Your Nerve, Be Callus: Insights Into Neural Regulation of Fracture Healing. Curr Osteoporos Rep 2024; 22:182-192. [PMID: 38294715 PMCID: PMC10912323 DOI: 10.1007/s11914-023-00850-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE OF REVIEW Fractures are a prominent form of traumatic injury and shall continue to be for the foreseeable future. While the inflammatory response and the cells of the bone marrow microenvironment play significant roles in fracture healing, the nervous system is also an important player in regulating bone healing. RECENT FINDINGS Considerable evidence demonstrates a role for nervous system regulation of fracture healing in a setting of traumatic injury to the brain. Although many of the impacts of the nervous system on fracture healing are positive, pain mediated by the nervous system can have detrimental effects on mobilization and quality of life. Understanding the role the nervous system plays in fracture healing is vital to understanding fracture healing as a whole and improving quality of life post-injury. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ashlyn J Morris
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reginald S Parker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fletcher A White
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
14
|
Morris AJ, Parker RS, Nazzal MK, Natoli RM, Fehrenbacher JC, Kacena MA, White FA. Cracking the Code: The Role of Peripheral Nervous System Signaling in Fracture Repair. Curr Osteoporos Rep 2024; 22:193-204. [PMID: 38236511 PMCID: PMC10912155 DOI: 10.1007/s11914-023-00846-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW The traditionally understated role of neural regulation in fracture healing is gaining prominence, as recent findings underscore the peripheral nervous system's critical contribution to bone repair. Indeed, it is becoming more evident that the nervous system modulates every stage of fracture healing, from the onset of inflammation to repair and eventual remodeling. RECENT FINDINGS Essential to this process are neurotrophins and neuropeptides, such as substance P, calcitonin gene-related peptide, and neuropeptide Y. These molecules fulfill key roles in promoting osteogenesis, influencing inflammation, and mediating pain. The sympathetic nervous system also plays an important role in the healing process: while local sympathectomies may improve fracture healing, systemic sympathetic denervation impairs fracture healing. Furthermore, chronic activation of the sympathetic nervous system, often triggered by stress, is a potential impediment to effective fracture healing, marking an important area for further investigation. The potential to manipulate aspects of the nervous system offers promising therapeutic possibilities for improving outcomes in fracture healing. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Ashlyn J Morris
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reginald S Parker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| | - Fletcher A White
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
15
|
Sun W, Ye B, Chen S, Zeng L, Lu H, Wan Y, Gao Q, Chen K, Qu Y, Wu B, Lv X, Guo X. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res 2023; 11:65. [PMID: 38123549 PMCID: PMC10733346 DOI: 10.1038/s41413-023-00302-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
The skeleton is a highly innervated organ in which nerve fibers interact with various skeletal cells. Peripheral nerve endings release neurogenic factors and sense skeletal signals, which mediate bone metabolism and skeletal pain. In recent years, bone tissue engineering has increasingly focused on the effects of the nervous system on bone regeneration. Simultaneous regeneration of bone and nerves through the use of materials or by the enhancement of endogenous neurogenic repair signals has been proven to promote functional bone regeneration. Additionally, emerging information on the mechanisms of skeletal interoception and the central nervous system regulation of bone homeostasis provide an opportunity for advancing biomaterials. However, comprehensive reviews of this topic are lacking. Therefore, this review provides an overview of the relationship between nerves and bone regeneration, focusing on tissue engineering applications. We discuss novel regulatory mechanisms and explore innovative approaches based on nerve-bone interactions for bone regeneration. Finally, the challenges and future prospects of this field are briefly discussed.
Collapse
Affiliation(s)
- Wenzhe Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bing Ye
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Siyue Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lian Zeng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongwei Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yizhou Wan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaifang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanzhen Qu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
16
|
Shih YV, Kingsley D, Newman H, Hoque J, Gupta A, Lascelles BDX, Varghese S. Multi-Functional Small Molecule Alleviates Fracture Pain and Promotes Bone Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303567. [PMID: 37939302 PMCID: PMC10754086 DOI: 10.1002/advs.202303567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Bone injuries such as fractures are one major cause of morbidities worldwide. A considerable number of fractures suffer from delayed healing, and the unresolved acute pain may transition to chronic and maladaptive pain. Current management of pain involves treatment with NSAIDs and opioids with substantial adverse effects. Herein, we tested the hypothesis that the purine molecule, adenosine, can simultaneously alleviate pain and promote healing in a mouse model of tibial fracture by targeting distinctive adenosine receptor subtypes in different cell populations. To achieve this, a biomaterial-assisted delivery of adenosine is utilized to localize and prolong its therapeutic effect at the injury site. The results demonstrate that local delivery of adenosine inhibited the nociceptive activity of peripheral neurons through activation of adenosine A1 receptor (ADORA1) and mitigated pain as demonstrated by weight bearing and open field movement tests. Concurrently, local delivery of adenosine at the fracture site promoted osteogenic differentiation of mesenchymal stromal cells through adenosine A2B receptor (ADORA2B) resulting in improved bone healing as shown by histological analyses and microCT imaging. This study demonstrates the dual role of adenosine and its material-assisted local delivery as a feasible therapeutic approach to treat bone trauma and associated pain.
Collapse
Affiliation(s)
- Yu‐Ru V. Shih
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNC27710USA
| | - David Kingsley
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNC27710USA
| | - Hunter Newman
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNC27710USA
| | - Jiaul Hoque
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNC27710USA
| | - Ankita Gupta
- Translational Research in Pain ProgramDepartment of Clinical SciencesCollege of Veterinary MedicineNorth Carolina State UniversityRaleighNC27607USA
| | - B. Duncan X. Lascelles
- Translational Research in Pain ProgramDepartment of Clinical SciencesCollege of Veterinary MedicineNorth Carolina State UniversityRaleighNC27607USA
- Thurston Arthritis CenterUniversity of North Carolina School of MedicineChapel HillNC27599USA
- Center for Translational Pain MedicineDepartment of AnesthesiologyDuke University School of MedicineDurhamNC27710USA
- Comparative Pain Research and Education CenterCollege of Veterinary MedicineNorth Carolina State UniversityRaleighNC27607USA
| | - Shyni Varghese
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNC27710USA
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNC27710USA
- Department of Biomedical EngineeringDuke UniversityDurhamNC27710USA
| |
Collapse
|
17
|
Thompson AL, Grenald SA, Ciccone HA, Mohty D, Smith AF, Coleman DL, Bahramnejad E, De Leon E, Kasper-Conella L, Uhrlab JL, Margolis DS, Salvemini D, Largent-Milnes TM, Vanderah TW. Morphine-induced osteolysis and hypersensitivity is mediated through toll-like receptor-4 in a murine model of metastatic breast cancer. Pain 2023; 164:2463-2476. [PMID: 37326644 PMCID: PMC10578422 DOI: 10.1097/j.pain.0000000000002953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
ABSTRACT The propensity for breast cancer to metastasize to bone is coupled to the most common complaint among breast cancer patients: bone pain. Classically, this type of pain is treated using escalating doses of opioids, which lack long-term efficacy due to analgesic tolerance, opioid-induced hypersensitivity, and have recently been linked to enhanced bone loss. To date, the molecular mechanisms underlying these adverse effects have not been fully explored. Using an immunocompetent murine model of metastatic breast cancer, we demonstrated that sustained morphine infusion induced a significant increase in osteolysis and hypersensitivity within the ipsilateral femur through the activation of toll-like receptor-4 (TLR4). Pharmacological blockade with TAK242 (resatorvid) as well as the use of a TLR4 genetic knockout ameliorated the chronic morphine-induced osteolysis and hypersensitivity. Genetic MOR knockout did not mitigate chronic morphine hypersensitivity or bone loss. In vitro studies using RAW264.7 murine macrophages precursor cells demonstrated morphine-enhanced osteoclastogenesis that was inhibited by the TLR4 antagonist. Together, these data indicate that morphine induces osteolysis and hypersensitivity that are mediated, in part, through a TLR4 receptor mechanism.
Collapse
Affiliation(s)
- Austen L. Thompson
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Shaness A. Grenald
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Haley A. Ciccone
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Dieter Mohty
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Angela F. Smith
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Deziree L. Coleman
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Erfan Bahramnejad
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Erick De Leon
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Logan Kasper-Conella
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | | | - David S. Margolis
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
- Orthopaedic Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Tally M. Largent-Milnes
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ, United States
| | - Todd W. Vanderah
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
18
|
Hassan MG, Horenberg AL, Coler-Reilly A, Grayson WL, Scheller EL. Role of the Peripheral Nervous System in Skeletal Development and Regeneration: Controversies and Clinical Implications. Curr Osteoporos Rep 2023; 21:503-518. [PMID: 37578676 PMCID: PMC10543521 DOI: 10.1007/s11914-023-00815-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE OF REVIEW This review examines the diverse functional relationships that exist between the peripheral nervous system (PNS) and bone, including key advances over the past century that inform our efforts to translate these discoveries for skeletal repair. RECENT FINDINGS The innervation of the bone during development, homeostasis, and regeneration is highly patterned. Consistent with this, there have been nearly 100 studies over the past century that have used denervation approaches to isolate the effects of the different branches of the PNS on the bone. Overall, a common theme of balance emerges whereby an orchestration of both local and systemic neural functions must align to promote optimal skeletal repair while limiting negative consequences such as pain. An improved understanding of the functional bidirectional pathways linking the PNS and bone has important implications for skeletal development and regeneration. Clinical advances over the next century will necessitate a rigorous identification of the mechanisms underlying these effects that is cautious not to oversimplify the in vivo condition in diverse states of health and disease.
Collapse
Affiliation(s)
- Mohamed G Hassan
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA
| | - Allison L Horenberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ariella Coler-Reilly
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Erica L Scheller
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University, MO, St. Louis, USA.
- Department of Cell Biology and Physiology, Washington University, MO, St. Louis, USA.
| |
Collapse
|
19
|
Mei H, Wu Y, Feng Q, Li X, Zhou J, Jiang F, Huang S, Li J. The interplay between the nerves and skeleton: a 30-year bibliometric analysis. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:9. [PMID: 36760256 PMCID: PMC9906194 DOI: 10.21037/atm-22-3323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/18/2022] [Indexed: 01/15/2023]
Abstract
Background The mechanisms and effects of the interplay between the nerves and skeleton remain a popular research topic. This study aimed to analyze and evaluate publications on nerve-bone interactions using bibliometrics and to identify the state of the art of current research, hotspots, and future directions. Methods This study included 1989 articles and reviews from the Web of Science Core Collection (WoSCC) published from January 1, 1991, to June 22, 2022. The Bibliometrix package of R 4.2.0 (The R Foundation for Statistical Computing, Vienna, Austria) was used to analyze basic information about the publications, including the annual number of publications, institution analysis, author influence analysis, journal analysis, and the national cooperation network. We also used CiteSpace 5.8.R3 for bibliometric analysis, including co-occurrence, co-citation, and cluster analysis. Results We discovered a significant increase in the number of articles on nerve-bone interactions published over the last 10 years. The most active country and institution were the United States and the University of Minnesota, respectively. In terms of journals and cocited journals, Bone was ranked highest with respect to the number of publications, while Journal of Bone and Mineral Research was ranked highest among cited journals. Wang Lei was the author with the most publications, and Bjurholm A was the most cited author. The analysis of references and keywords revealed that the impact of nerve- and neuromodulation-related factors on stem cell differentiation was a persistently hot topic. Osteoarthritis, neuropeptide Y, and osteoclastogenic process are likely to be the next era of research hotspots. The neurovascular crosstalk within bone has received great attention, especially in skeletal diseases, which may provide potential targets for future treatments. Conclusions We used a bibliometric method to provide an efficient, objective, and comprehensive assessment of existing research about the interplay between the skeletal and nervous systems and to accurately identify hotspots and research frontiers, providing valuable information for future research.
Collapse
Affiliation(s)
- Hongxiang Mei
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yumeng Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingchen Feng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingjian Li
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiawei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fulin Jiang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Tao R, Mi B, Hu Y, Lin S, Xiong Y, Lu X, Panayi AC, Li G, Liu G. Hallmarks of peripheral nerve function in bone regeneration. Bone Res 2023; 11:6. [PMID: 36599828 PMCID: PMC9813170 DOI: 10.1038/s41413-022-00240-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
Skeletal tissue is highly innervated. Although different types of nerves have been recently identified in the bone, the crosstalk between bone and nerves remains unclear. In this review, we outline the role of the peripheral nervous system (PNS) in bone regeneration following injury. We first introduce the conserved role of nerves in tissue regeneration in species ranging from amphibians to mammals. We then present the distribution of the PNS in the skeletal system under physiological conditions, fractures, or regeneration. Furthermore, we summarize the ways in which the PNS communicates with bone-lineage cells, the vasculature, and immune cells in the bone microenvironment. Based on this comprehensive and timely review, we conclude that the PNS regulates bone regeneration through neuropeptides or neurotransmitters and cells in the peripheral nerves. An in-depth understanding of the roles of peripheral nerves in bone regeneration will inform the development of new strategies based on bone-nerve crosstalk in promoting bone repair and regeneration.
Collapse
Affiliation(s)
- Ranyang Tao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Xuan Lu
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, 02215, MA, USA
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China.
| |
Collapse
|
21
|
Aßmann AD, Fürst AE, Bischofberger AS. Standing osteosynthesis of an accessory carpal bone fracture in a Warmblood mare with a 6‐hole 3.5 talonavicular fusion plate and 3.5‐mm screws. EQUINE VET EDUC 2022. [DOI: 10.1111/eve.13716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anton D. Aßmann
- The Equine Hospital, Vetsuisse‐Faculty University of Zurich Zurich Switzerland
| | - Anton E. Fürst
- The Equine Hospital, Vetsuisse‐Faculty University of Zurich Zurich Switzerland
| | | |
Collapse
|
22
|
Neto E, Leitão L, Mateus JC, Sousa DM, Alves CJ, Aroso M, Monteiro AC, Conceição F, Oreffo ROC, West J, Aguiar P, Lamghari M. Osteoclast-derived extracellular vesicles are implicated in sensory neurons sprouting through the activation of epidermal growth factor signaling. Cell Biosci 2022; 12:127. [PMID: 35965312 PMCID: PMC9375906 DOI: 10.1186/s13578-022-00864-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Different pathologies, affecting the skeletal system, were reported to display altered bone and/or cartilage innervation profiles leading to the deregulation of the tissue homeostasis. The patterning of peripheral innervation is achieved through the tissue-specific expression of attractive or repulsive axonal guidance cues in specific space and time frames. During the last decade, emerging findings attributed to the extracellular vesicles (EV) trading a central role in peripheral tissue innervation. However, to date, the contribution of EV in controlling bone innervation is totally unknown. RESULTS Here we show that sensory neurons outgrowth induced by the bone resorbing cells-osteoclasts-is promoted by osteoclast-derived EV. The EV induced axonal growth is achieved by targeting epidermal growth factor receptor (EGFR)/ErbB2 signaling/protein kinase C phosphorylation in sensory neurons. In addition, our data also indicate that osteoclasts promote sensory neurons electrophysiological activity reflecting a possible pathway in nerve sensitization in the bone microenvironment, however this effect is EV independent. CONCLUSIONS Overall, these results identify a new mechanism of sensory bone innervation regulation and shed the light on the role of osteoclast-derived EV in shaping/guiding bone sensory innervation. These findings provide opportunities for exploitation of osteoclast-derived EV based strategies to prevent and/or mitigate pathological uncontrolled bone innervation.
Collapse
Affiliation(s)
- Estrela Neto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.
| | - Luís Leitão
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - José C Mateus
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - Daniela M Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal
| | - Cecília J Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal
| | - Miguel Aroso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal
| | - Ana C Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal
| | - Francisco Conceição
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Tremona Rd, Southampton, SO16 6YD, UK
| | - Jonathan West
- Institute for Life Sciences and Cancer Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Paulo Aguiar
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal
| | - Meriem Lamghari
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.
| |
Collapse
|
23
|
Zheng Q, Dong X, Green DP, Dong X. Peripheral mechanisms of chronic pain. MEDICAL REVIEW 2022; 2:251-270. [PMID: 36067122 PMCID: PMC9381002 DOI: 10.1515/mr-2022-0013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Acutely, pain serves to protect us from potentially harmful stimuli, however damage to the somatosensory system can cause maladaptive changes in neurons leading to chronic pain. Although acute pain is fairly well controlled, chronic pain remains difficult to treat. Chronic pain is primarily a neuropathic condition, but studies examining the mechanisms underlying chronic pain are now looking beyond afferent nerve lesions and exploring new receptor targets, immune cells, and the role of the autonomic nervous system in contributing chronic pain conditions. The studies outlined in this review reveal how chronic pain is not only confined to alterations in the nervous system and presents findings on new treatment targets and for this debilitating disease.
Collapse
Affiliation(s)
- Qin Zheng
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xintong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dustin P. Green
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Howard Hughes Medical Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
24
|
Neto E, Monteiro AC, Leite Pereira C, Simões M, Conde JP, Chu V, Sarmento B, Lamghari M. Micropathological Chip Modeling the Neurovascular Unit Response to Inflammatory Bone Condition. Adv Healthc Mater 2022; 11:e2102305. [PMID: 35158409 PMCID: PMC11468530 DOI: 10.1002/adhm.202102305] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/12/2022] [Indexed: 12/17/2022]
Abstract
Organ-on-a-chip in vitro platforms accurately mimic complex microenvironments offering the ability to recapitulate and dissect mechanisms of physiological and pathological settings, revealing their major importance to develop new therapeutic targets. Bone diseases, such as osteoarthritis, are extremely complex, comprising of the action of inflammatory mediators leading to unbalanced bone homeostasis and de-regulation of sensory innervation and angiogenesis. Although there are models to mimic bone vascularization or innervation, in vitro platforms merging the complexity of bone, vasculature, innervation, and inflammation are missing. Therefore, in this study a microfluidic-based neuro-vascularized bone chip (NVB chip) is proposed to 1) model the mechanistic interactions between innervation and angiogenesis in the inflammatory bone niche, and 2) explore, as a screening tool, novel strategies targeting inflammatory diseases, using a nano-based drug delivery system. It is possible to set the design of the platform and achieve the optimized conditions to address the neurovascular network under inflammation. Moreover, this system is validated by delivering anti-inflammatory drug-loaded nanoparticles to counteract the neuronal growth associated with pain perception. This reliable in vitro tool will allow understanding the bone neurovascular system, enlightening novel mechanisms behind the inflammatory bone diseases, bone destruction, and pain opening new avenues for new therapies discovery.
Collapse
Affiliation(s)
- Estrela Neto
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Ana Carolina Monteiro
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Catarina Leite Pereira
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Miguel Simões
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - João Pedro Conde
- Instituto de Engenharia de Sistemas e Computadores (INESC)Microsystems and NanotechnologiesRua Alves Redol, 91000‐029LisboaPortugal
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores (INESC)Microsystems and NanotechnologiesRua Alves Redol, 91000‐029LisboaPortugal
| | - Bruno Sarmento
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- CESPUInstituto de Investigação e Formação Avançada em Ciências e Tecnologias da SaúdeRua Central da Gandra, 137Gandra4585‐116Portugal
| | - Meriem Lamghari
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| |
Collapse
|
25
|
Hansen RB, Sayilekshmy M, Sørensen MS, Jørgensen AH, Kanneworff IB, Bengtsson EKE, Grum-Schwensen TA, Petersen MM, Ejersted C, Andersen TL, Andreasen CM, Heegaard AM. Neuronal Sprouting and Reorganization in Bone Tissue Infiltrated by Human Breast Cancer Cells. FRONTIERS IN PAIN RESEARCH 2022; 3:887747. [PMID: 35712449 PMCID: PMC9197453 DOI: 10.3389/fpain.2022.887747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPain is a common complication for patients with metastatic bone disease. Animal models suggest that the pain, in part, is driven by pathological sprouting and reorganization of the nerve fibers innervating the bone. Here, we investigate how these findings translate to humans.MethodsBone biopsies were collected from healthy volunteers (n = 7) and patients with breast cancer and metastatic bone disease (permissions H-15000679, S-20180057 and S-20110112). Cancer-infiltrated biopsies were from patients without recent anticancer treatment (n = 10), patients with recent anticancer treatment (n = 10), and patients with joint replacement surgery (n = 9). Adjacent bone sections were stained for (1) protein gene product 9.5 and CD34, and (2) cytokeratin 7 and 19. Histomorphometry was used to estimate the area of bone marrow and tumor burden. Nerve profiles were counted, and the nerve profile density calculated. The location of each nerve profile within 25 μm of a vascular structure and/or cancer cells was determined.ResultsCancer-infiltrated bone tissue demonstrated a significantly higher nerve profile density compared to healthy bone tissue. The percentage of nerve profiles found close to vascular structures was significantly lower in cancer-infiltrated bone tissue. No difference was found in the percentage of nerve profiles located close to cancer between the subgroups of cancer-infiltrated bone tissue. Interestingly, no correlation was found between nerve profile density and tumor burden.ConclusionsTogether, the increased nerve profile density and the decreased association of nerve profiles to vasculature strongly suggests that neuronal sprouting and reorganization occurs in human cancer-infiltrated bone tissue.
Collapse
Affiliation(s)
- Rie B. Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Manasi Sayilekshmy
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Michala S. Sørensen
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Astrid H. Jørgensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ida B. Kanneworff
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Emma K. E. Bengtsson
- Clinical Cell Biology Group, Department of Pathology, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Tomas A. Grum-Schwensen
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Michael M. Petersen
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ejersted
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Thomas L. Andersen
- Clinical Cell Biology Group, Department of Pathology, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina M. Andreasen
- Clinical Cell Biology Group, Department of Pathology, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Anne-Marie Heegaard
| |
Collapse
|
26
|
Austah ON, Lillis KV, Akopian AN, Harris SE, Grinceviciute R, Diogenes A. Trigeminal neurons control immune-bone cell interaction and metabolism in apical periodontitis. Cell Mol Life Sci 2022; 79:330. [PMID: 35639178 PMCID: PMC9156470 DOI: 10.1007/s00018-022-04335-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
Abstract Apical periodontitis (AP) is an inflammatory disease occurring following tooth infection with distinct osteolytic activity. Despite increasing evidence that sensory neurons participate in regulation of non-neuronal cells, their role in the development of AP is largely unknown. We hypothesized that trigeminal ganglia (TG) Nav1.8+ nociceptors regulate bone metabolism changes in response to AP. A selective ablation of nociceptive neurons in Nav1.8Cre/Diphtheria toxin A (DTA)Lox mouse line was used to evaluate the development and progression of AP using murine model of infection-induced AP. Ablation of Nav1.8+ nociceptors had earlier progression of AP with larger osteolytic lesions. Immunohistochemical and RNAscope analyses demonstrated greater number of macrophages, T-cells, osteoclast and osteoblast precursors and an increased RANKL:OPG ratio at earlier time points among Nav1.8Cre/ DTALox mice. There was an increased expression of IL-1α and IL-6 within lesions of nociceptor-ablated mice. Further, co-culture experiments demonstrated that TG neurons promoted osteoblast mineralization and inhibited osteoclastic function. The findings suggest that TG Nav1.8+ neurons contribute to modulation of the AP development by delaying the influx of immune cells, promoting osteoblastic differentiation, and decreasing osteoclastic activities. This newly uncovered mechanism could become a therapeutic strategy for the treatment of AP and minimize the persistence of osteolytic lesions in refractory cases. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00018-022-04335-w.
Collapse
Affiliation(s)
- Obadah N Austah
- Department of Endodontics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.,Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Katherine V Lillis
- Department of Endodontics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Armen N Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Stephen E Harris
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ruta Grinceviciute
- Department of Endodontics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Anibal Diogenes
- Department of Endodontics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
| |
Collapse
|
27
|
Vasconcelos DP, Jabangwe C, Lamghari M, Alves CJ. The Neuroimmune Interplay in Joint Pain: The Role of Macrophages. Front Immunol 2022; 13:812962. [PMID: 35355986 PMCID: PMC8959978 DOI: 10.3389/fimmu.2022.812962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 12/29/2022] Open
Abstract
Chronic pain associated with joint disorders, such as rheumatoid arthritis (RA), osteoarthritis (OA) and implant aseptic loosening (AL), is a highly debilitating symptom that impacts mobility and quality of life in affected patients. The neuroimmune crosstalk has been demonstrated to play a critical role in the onset and establishment of chronic pain conditions. Immune cells release cytokines and immune mediators that can activate and sensitize nociceptors evoking pain, through interaction with receptors in the sensory nerve terminals. On the other hand, sensory and sympathetic nerve fibers release neurotransmitters that bind to their specific receptor expressed on surface of immune cells, initiating an immunomodulatory role. Macrophages have been shown to be key players in the neuroimmune crosstalk. Moreover, macrophages constitute the dominant immune cell population in RA, OA and AL. Importantly, the targeting of macrophages can result in anti-nociceptive effects in chronic pain conditions. Therefore, the aim of this review is to discuss the nature and impact of the interaction between the inflammatory response and nerve fibers in these joint disorders regarding the genesis and maintenance of pain. The role of macrophages is highlighted. The alteration in the joint innervation pattern and the inflammatory response are also described. Additionally, the immunomodulatory role of sensory and sympathetic neurotransmitters is revised.
Collapse
Affiliation(s)
- Daniela P Vasconcelos
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Clive Jabangwe
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar, Universidade de Porto, Porto, Portugal
| | - Cecília J Alves
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
Qiao W, Pan D, Zheng Y, Wu S, Liu X, Chen Z, Wan M, Feng S, Cheung KMC, Yeung KWK, Cao X. Divalent metal cations stimulate skeleton interoception for new bone formation in mouse injury models. Nat Commun 2022; 13:535. [PMID: 35087048 PMCID: PMC8795158 DOI: 10.1038/s41467-022-28203-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
Bone formation induced by divalent metal cations has been widely reported; however, the underlying mechanism is unclear. Here we report that these cations stimulate skeleton interoception by promoting prostaglandin E2 secretion from macrophages. This immune response is accompanied by the sprouting and arborization of calcitonin gene-related polypeptide-α+ nerve fibers, which sense the inflammatory cue with PGE2 receptor 4 and convey the interoceptive signals to the central nervous system. Activating skeleton interoception downregulates sympathetic tone for new bone formation. Moreover, either macrophage depletion or knockout of cyclooxygenase-2 in the macrophage abolishes divalent cation-induced skeleton interoception. Furthermore, sensory denervation or knockout of EP4 in the sensory nerves eliminates the osteogenic effects of divalent cations. Thus, our study reveals that divalent cations promote bone formation through the skeleton interoceptive circuit, a finding which could prompt the development of novel biomaterials to elicit the therapeutic power of these divalent cations. Mechanisms underlying bone formation induced by divalent metal cations remain largely unknown. Here the authors show that these cations can activate the skeleton interoceptive circuit through the immune-neural axis to initiate new bone formation.
Collapse
Affiliation(s)
- Wei Qiao
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R, People's Republic of China.,Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, People's Republic of China.,Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R, People's Republic of China
| | - Dayu Pan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Shuilin Wu
- School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.,Cixi Center of Biomaterials Surface Engineering, Ningbo, 315300, People's Republic of China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510000, People's Republic of China
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shiqin Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R, People's Republic of China.,Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, People's Republic of China
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R, People's Republic of China. .,Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, People's Republic of China.
| | - Xu Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
29
|
Radulescu A, White FA, Chenu C. What Did We Learn About Fracture Pain from Animal Models? J Pain Res 2022; 15:2845-2856. [PMID: 36124034 PMCID: PMC9482434 DOI: 10.2147/jpr.s361826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Progress in bone fracture repair research has been made possible due to the development of reproducible models of fracture in rodents with more clinically relevant fracture fixation, where there is considerably better assessment of the factors that affect fracture healing and/or novel therapeutics. However, chronic or persistent pain is one of the worst, longest-lasting and most difficult symptoms to manage after fracture repair, and an ongoing challenge remains for animal welfare as limited information exists regarding pain scoring and management in these rodent fracture models. This failure of adequate pre-clinical pain assessment following osteotomy in the rodent population may not only subject the animal to severe pain states but may also affect the outcome of the bone healing study. Animal models to study pain were also mainly developed in rodents, and there is increasing validation of fracture and pain models to quantitatively evaluate fracture pain and to study the factors that generate and maintain fracture pain and develop new therapies for treating fracture pain. This review aims to discuss the different animal models for fracture pain research and characterize what can be learned from using animal models of fracture regarding behavioral pain states and new molecular targets for future management of these behaviors.
Collapse
Affiliation(s)
- Andreea Radulescu
- Royal Veterinary College, Department of Comparative Biomedical Sciences, London, NW1 OTU, UK
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush Veterans Medical Center, Indianapolis, IN, USA
| | - Chantal Chenu
- Royal Veterinary College, Department of Comparative Biomedical Sciences, London, NW1 OTU, UK
- Correspondence: Chantal Chenu, Royal Veterinary College, Department of Comparative Biological Sciences, Royal College Street, London, NW1 0TU, UK, Tel +44 207 468 5045, Email
| |
Collapse
|
30
|
Assefa F, Kim JA, Lim J, Nam SH, Shin HI, Park EK. The Neuropeptide Spexin Promotes the Osteoblast Differentiation of MC3T3-E1 Cells via the MEK/ERK Pathway and Bone Regeneration in a Mouse Calvarial Defect Model. Tissue Eng Regen Med 2021; 19:189-202. [PMID: 34951679 PMCID: PMC8782952 DOI: 10.1007/s13770-021-00408-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The neural regulation of bone regeneration has emerged recently. Spexin (SPX) is a novel neuropeptide and regulates multiple biological functions. However, the effects of SPX on osteogenic differentiation need to be further investigated. Therefore, the aim of this study is to investigate the effects of SPX on osteogenic differentiation, possible underlying mechanisms, and bone regeneration. METHODS In this study, MC3T3-E1 cells were treated with various concentrations of SPX. Cell proliferation, osteogenic differentiation marker expressions, alkaline phosphatase (ALP) activity, and mineralization were evaluated using the CCK-8 assay, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), ALP staining, and alizarin red S staining, respectively. To determine the underlying molecular mechanism of SPX, the phosphorylation levels of signaling molecules were examined via western blot analysis. Moreover, in vivo bone regeneration by SPX (0.5 and 1 µg/µl) was evaluated in a calvarial defect model. New bone formation was analyzed using micro-computed tomography (micro-CT) and histology. RESULTS The results indicated that cell proliferation was not affected by SPX. However, SPX significantly increased ALP activity, mineralization, and the expression of genes for osteogenic differentiation markers, including runt-related transcription factor 2 (Runx2), Alp, collagen alpha-1(I) chain (Col1a1), osteocalcin (Oc), and bone sialoprotein (Bsp). In contrast, SPX downregulated the expression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1). Moreover, SPX upregulated phosphorylated mitogen-activated protein kinase kinase (MEK1/2) and extracellular signal-regulated kinase (ERK1/2). In vivo studies, micro-CT and histologic analysis revealed that SPX markedly increased a new bone formation. CONCLUSION Overall, these results demonstrated that SPX stimulated osteogenic differentiation in vitro and increased in vivo bone regeneration via the MEK/ERK pathway.
Collapse
Affiliation(s)
- Freshet Assefa
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Ju Ang Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Jiwon Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Sang-Hyeon Nam
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Hong-In Shin
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea.
| |
Collapse
|
31
|
Kasai Y, Aso K, Izumi M, Wada H, Dan J, Satake Y, Morimoto T, Ikeuchi M. Increased Calcitonin Gene-Related Peptide Expression in DRG and Nerve Fibers Proliferation Caused by Nonunion Fracture in Rats. J Pain Res 2021; 14:3565-3571. [PMID: 34815709 PMCID: PMC8604636 DOI: 10.2147/jpr.s327457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Nonunion bone fracture can be a cause of persistent pain, but the pathophysiology remains largely unknown. The objective of this study was to identify how nonunion affect persistent pain after fracture. Specifically, we evaluated the association of neuropeptide change in dorsal root ganglia (DRG) and nerve proliferation at fracture sites with pain. Methods Rat union and nonunion fracture models were created. A piece of latex glove was placed at the fracture site to create a nonunion model. At 6 weeks after surgery, bone healing was assessed using radiography. In addition, the presence of calcitonin gene-related peptide-immunoreactive (CGRP-IR) DRG at the level of L3 and anti-growth associated protein 43-immunoreactive (GAP43-IR) nerve fibers in the scar tissue between the bone fragments were evaluated. Pain-related behavior was assessed using forced treadmill running. Results In radiological images at 6 weeks after surgery, callus formation was formed continuously between bone fragments in the union models. On the one hand, a clear gap was detected between fragments in nonunion models. The percentage of CGRP-IR DRG cells and the density of GAP43-IR nerve fibers in the scar tissue between the bone fragments in nonunion models was significantly higher than that in union models (p < 0.05). An increase in inflammatory cell infiltrate was observed in scar tissues in the nonunion models. During forced treadmill running, rats in the union model could run significantly longer than those in the nonunion models. Conclusion Increased CGRP expression in DRG cells and abnormal nerve proliferation secondary to prolonged inflammation could lead to persistent pain after bone fracture. In clinical practice, early achievement of bone union may minimize the development of persistent pain after fractures.
Collapse
Affiliation(s)
- Yusuke Kasai
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, Nankoku, 783-8505, Japan
| | - Koji Aso
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, Nankoku, 783-8505, Japan
| | - Masashi Izumi
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, Nankoku, 783-8505, Japan
| | - Hiroyuki Wada
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, Nankoku, 783-8505, Japan
| | - Junpei Dan
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, Nankoku, 783-8505, Japan
| | - Yoshinori Satake
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, Nankoku, 783-8505, Japan
| | - Toru Morimoto
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, Nankoku, 783-8505, Japan
| | - Masahiko Ikeuchi
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, Nankoku, 783-8505, Japan
| |
Collapse
|
32
|
Magnusdottir R, Gohin S, Ter Heegde F, Hopkinson M, McNally IF, Fisher A, Upton N, Billinton A, Chenu C. Fracture-induced pain-like behaviours in a femoral fracture mouse model. Osteoporos Int 2021; 32:2347-2359. [PMID: 34080043 PMCID: PMC8563675 DOI: 10.1007/s00198-021-05991-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/03/2021] [Indexed: 11/25/2022]
Abstract
UNLABELLED This study is the first comprehensive characterisation of the pain phenotype after fracture using both evoked and naturalistic behaviours in adult male and ovariectomised female mice. It also shows that an anti-nerve growth factor (NGF) therapy could be considered to reduce pain after fracture surgery. INTRODUCTION Bone fractures are common due to the ageing population and very painful even after healing. The phenotype of this pain is still poorly understood. We aimed to characterise it in a femoral fracture model in mice. METHODS We employed both adult male, and female ovariectomised (OVX) mice to mimic osteoporotic fractures. Mice underwent a unilateral femoral fracture maintained by an external fixator or a sham surgery. Pain behaviours, including mechanical and thermal sensitivity, weight bearing and LABORAS, were measured from baseline to 6 weeks after fracture. The effect on pain of an antibody against nerve growth factor (anti-NGF) was assessed. Changes in nerve density at the fracture callus were analysed by immunohistochemistry. RESULTS Following surgery, all groups exhibited high levels of invoked nociception. Mechanical and thermal hyperalgesia were observed from 1 week after surgery, with nociceptive sensitization in the fracture group maintained for the 6 weeks, whereas it resolved in the sham group after 3 weeks. OVX induced reduction in pain thresholds, which was maintained after fracture. The frequency of naturalistic behaviours did not change between groups. Anti-NGF administered before and weekly after surgery alleviated fracture-induced mechanical nociception. The density of nerve fibres in the fracture callus was similar in all groups 6 weeks after surgery. CONCLUSIONS Fractures in rodent models are highly painful in both sexes. This pain-like phenotype is prolonged and should be routinely considered in fracture healing studies as it can affect the study outcome. The anti-NGF alleviates fracture-induced mechanical pain.
Collapse
Affiliation(s)
- R Magnusdottir
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London, NW1 0TU, UK
- Transpharmation Ltd., The London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH, UK
| | - S Gohin
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London, NW1 0TU, UK
| | - F Ter Heegde
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London, NW1 0TU, UK
| | - M Hopkinson
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London, NW1 0TU, UK
| | - I F McNally
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London, NW1 0TU, UK
| | - A Fisher
- Transpharmation Ltd., The London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH, UK
| | - N Upton
- Transpharmation Ltd., The London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH, UK
| | - A Billinton
- Astrazeneca, Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, CB21 6GH, UK
| | - C Chenu
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
33
|
Tang Q, Lombardi AF, Le N, Wong JH, Williams JL, Du J, Chang EY. Novel fluorescent staining protocol for thick sections of human osteochondral tissues to facilitate correlation with MRI and CT. Skeletal Radiol 2021; 50:2281-2288. [PMID: 33638655 PMCID: PMC8390588 DOI: 10.1007/s00256-021-03746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To describe a novel fluorescent histochemical protocol to visualize osteoclasts, vasculature, and nerves in thick sections of human osteochondral tissues and to demonstrate its feasibility for use in radiologic-pathologic research correlation studies. MATERIALS AND METHODS Consecutive patients scheduled for total knee arthroplasty surgeries underwent pre-operative MRI. CT imaging was performed after tissue collection, and abnormal osteochondral regions were sectioned to 1-2 mm in thickness and decalcified. Fluorescent labeling of osteoclasts was performed by staining for tartrate-resistant alkaline phosphatase activity with a fluorescent substrate. Vascular structure was visualized with fluorescently labeled lectin Ulex europaeus Agglutinin I (UEA-I). Immunostaining was performed for proteins including smooth muscle actin expressed in smooth muscle cells surrounding arterioles and fibrotic myofibroblasts, as well as for neuropeptide Y expressed in sympathetic nerves. Sections were then recut at 5 μm and stained with hematoxylin and eosin (H&E). RESULTS Edema-like and cyst-like regions identified with MRI and CT were easily located in fluorescent images and appeared to have increased osteoclast activity. Fibrotic regions were identified with thickened arterioles and increased myofibroblasts. Sympathetic nerve fibers traveled alongside arborizing blood vessels. Stained sections became transparent in a water-based refractive index-matched medium, permitting deep 3D visualization of the elaborate neurovascular network in bone. Sequential staining procedures were successfully performed with the same sections, demonstrating the potential to compare multiple cellular markers from the same locations. Routine H&E staining could be performed after the fluorescent staining protocol. CONCLUSION We have developed a multimodal framework to facilitate comparisons between histology and clinical MRI and CT.
Collapse
Affiliation(s)
- Qingbo Tang
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | - Alecio F Lombardi
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | - Nicole Le
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | - Jonathan H Wong
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | - Judith L Williams
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | - Eric Y Chang
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
- Department of Radiology, University of California, San Diego, CA, USA.
| |
Collapse
|
34
|
Park SH, Eber MR, Fonseca MM, Patel CM, Cunnane KA, Ding H, Hsu FC, Peters CM, Ko MC, Strowd RE, Wilson JA, Hsu W, Romero-Sandoval EA, Shiozawa Y. Usefulness of the measurement of neurite outgrowth of primary sensory neurons to study cancer-related painful complications. Biochem Pharmacol 2021; 188:114520. [PMID: 33741328 PMCID: PMC8154668 DOI: 10.1016/j.bcp.2021.114520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022]
Abstract
Abnormal outgrowth of sensory nerves is one of the important contributors to pain associated with cancer and its treatments. Primary neuronal cultures derived from dorsal root ganglia (DRG) have been widely used to study pain-associated signal transduction and electrical activity of sensory nerves. However, there are only a few studies using primary DRG neuronal culture to investigate neurite outgrowth alterations due to underlying cancer-related factors and chemotherapeutic agents. In this study, primary DRG sensory neurons derived from mouse, non-human primate, and human were established in serum and growth factor-free conditions. A bovine serum albumin gradient centrifugation method improved the separation of sensory neurons from satellite cells. The purified DRG neurons were able to maintain their heterogeneous subpopulations, and displayed an increase in neurite growth when exposed to cancer-derived conditioned medium, while they showed a reduction in neurite length when treated with a neurotoxic chemotherapeutic agent. Additionally, a semi-automated quantification method was developed to measure neurite length in an accurate and time-efficient manner. Finally, these exogenous factors altered the gene expression patterns of murine primary sensory neurons, which are related to nerve growth, and neuro-inflammatory pain and nociceptor development. Together, the primary DRG neuronal culture in combination with a semi-automated quantification method can be a useful tool for further understanding the impact of exogenous factors on the growth of sensory nerve fibers and gene expression changes in sensory neurons.
Collapse
Affiliation(s)
- Sun H Park
- Department of Cancer Biology and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Matthew R Eber
- Department of Cancer Biology and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Miriam M Fonseca
- Department of Anesthesiology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Chirayu M Patel
- Department of Cancer Biology and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Katharine A Cunnane
- Department of Anesthesiology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Christopher M Peters
- Department of Anesthesiology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Roy E Strowd
- Department of Neurology and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - John A Wilson
- Department of Neurosurgery, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Wesley Hsu
- Department of Neurosurgery, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | - Yusuke Shiozawa
- Department of Cancer Biology and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
35
|
Steverink JG, Oostinga D, van Tol FR, van Rijen MHP, Mackaaij C, Verlinde-Schellekens SAMW, Oosterman BJ, Van Wijck AJM, Roeling TAP, Verlaan JJ. Sensory Innervation of Human Bone: An Immunohistochemical Study to Further Understand Bone Pain. THE JOURNAL OF PAIN 2021; 22:1385-1395. [PMID: 33964414 DOI: 10.1016/j.jpain.2021.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
Skeletal diseases and their surgical treatment induce severe pain. The innervation density of bone potentially explains the severe pain reported. Animal studies concluded that sensory myelinated A∂-fibers and unmyelinated C-fibers are mainly responsible for conducting bone pain, and that the innervation density of these nerve fibers was highest in periosteum. However, literature regarding sensory innervation of human bone is scarce. This observational study aimed to quantify sensory nerve fiber density in periosteum, cortical bone, and bone marrow of axial and appendicular human bones using immunohistochemistry and confocal microscopy. Multivariate Poisson regression analysis demonstrated that the total number of sensory and sympathetic nerve fibers was highest in periosteum, followed by bone marrow, and cortical bone for all bones studied. Bone from thoracic vertebral bodies contained most sensory nerve fibers, followed by the upper extremity, lower extremity, and parietal neurocranium. The number of nerve fibers declined with age and did not differ between male and female specimens. Sensory nerve fibers were organized as a branched network throughout the periosteum. The current results provide an explanation for the severe pain accompanying skeletal disease, fracture, or surgery. Further, the results could provide more insight into mechanisms that generate and maintain skeletal pain and might aid in developing new treatment strategies. PERSPECTIVE: This article presents the innervation of human bone and assesses the effect of age, gender, bone compartment and type of bone on innervation density. The presented data provide an explanation for the severity of bone pain arising from skeletal diseases and their surgical treatment.
Collapse
Affiliation(s)
- Jasper G Steverink
- Department of Orthopedic Surgery, University Medical Center Utrecht, The Netherlands; SentryX B.V., Woudenbergseweg 41, Austerlitz, The Netherlands.
| | - Douwe Oostinga
- Department of Orthopedic Surgery, University Medical Center Utrecht, The Netherlands
| | - Floris R van Tol
- Department of Orthopedic Surgery, University Medical Center Utrecht, The Netherlands; SentryX B.V., Woudenbergseweg 41, Austerlitz, The Netherlands
| | - Mattie H P van Rijen
- Department of Orthopedic Surgery, University Medical Center Utrecht, The Netherlands
| | - Claire Mackaaij
- Department of Anatomy, University Medical Center Utrecht, The Netherlands
| | | | - Bas J Oosterman
- SentryX B.V., Woudenbergseweg 41, Austerlitz, The Netherlands
| | - Albert J M Van Wijck
- Department of Anesthesiology, University Medical Center Utrecht, The Netherlands
| | - Tom A P Roeling
- Department of Anatomy, University Medical Center Utrecht, The Netherlands
| | - Jorrit-Jan Verlaan
- Department of Orthopedic Surgery, University Medical Center Utrecht, The Netherlands; SentryX B.V., Woudenbergseweg 41, Austerlitz, The Netherlands
| |
Collapse
|
36
|
Lorenz MR, Brazill JM, Beeve AT, Shen I, Scheller EL. A Neuroskeletal Atlas: Spatial Mapping and Contextualization of Axon Subtypes Innervating the Long Bones of C3H and B6 Mice. J Bone Miner Res 2021; 36:1012-1025. [PMID: 33592122 PMCID: PMC8252627 DOI: 10.1002/jbmr.4273] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Nerves in bone play well-established roles in pain and vasoregulation and have been associated with progression of skeletal disorders, including osteoporosis, fracture, arthritis, and tumor metastasis. However, isolation of the region-specific mechanisms underlying these relationships is limited by our lack of quantitative methods for neuroskeletal analysis and precise maps of skeletal innervation. To overcome these limitations, we developed an optimized workflow for imaging and quantitative analysis of axons in and around the bone, including validation of Baf53b-Cre in concert with R26R-tdTomato (Ai9) as a robust pan-neuronal reporter system for use in musculoskeletal tissues. In addition, we created comprehensive maps of sympathetic adrenergic and sensory peptidergic axons within and around the full length of the femur and tibia in two strains of mice (B6 and C3H). In the periosteum, these maps were related to the surrounding musculature, including entheses and myotendinous attachments to bone. Three distinct patterns of periosteal innervation (termed type I, II, III) were defined at sites that are important for bone pain, bone repair, and skeletal homeostasis. For the first time, our results establish a gradient of bone marrow axon density that increases from proximal to distal along the length of the tibia and define key regions of interest for neuroskeletal studies. Lastly, this information was related to major nerve branches and local maps of specialized mechanoreceptors. This detailed mapping and contextualization of the axonal subtypes innervating the skeleton is intended to serve as a guide during the design, implementation, and interpretation of future neuroskeletal studies and was compiled as a resource for the field as part of the NIH SPARC consortium. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..
Collapse
Affiliation(s)
- Madelyn R Lorenz
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer M Brazill
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Alec T Beeve
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Ivana Shen
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Erica L Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
37
|
Puntillo F, Giglio M, Paladini A, Perchiazzi G, Viswanath O, Urits I, Sabbà C, Varrassi G, Brienza N. Pathophysiology of musculoskeletal pain: a narrative review. Ther Adv Musculoskelet Dis 2021; 13:1759720X21995067. [PMID: 33737965 PMCID: PMC7934019 DOI: 10.1177/1759720x21995067] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal pain (excluding bone cancer pain) affects more than 30% of the global population and imposes an enormous burden on patients, families, and caregivers related to functional limitation, emotional distress, effects on mood, loss of independence, and reduced quality of life. The pathogenic mechanisms of musculoskeletal pain relate to the differential sensory innervation of bones, joints, and muscles as opposed to skin and involve a number of peripheral and central nervous system cells and mediators. The interplay of neurons and non-neural cells (e.g. glial, mesenchymal, and immune cells) amplifies and sensitizes pain signals in a manner that leads to cortical remodeling. Moreover, sex, age, mood, and social factors, together with beliefs, thoughts, and pain behaviors influence the way in which musculoskeletal pain manifests and is understood and assessed. The aim of this narrative review is to summarize the different pathogenic mechanisms underlying musculoskeletal pain and how these mechanisms interact to promote the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Filomena Puntillo
- Department of Interdisciplinary Medicine, 'Aldo Moro' University of Bari, Piazza G. Cesare 11, Bari 70124, Italy
| | - Mariateresa Giglio
- Anesthesia, Intensive Care and Pain Unit, Policlinico Hospital, Bari, Italy
| | | | - Gaetano Perchiazzi
- Department of Surgical Science, Hedenstierna Laboratory, Uppsala University, Uppsala, Sweden
| | - Omar Viswanath
- Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE, USA
| | - Ivan Urits
- Department of Anesthesia, Beth Israel Deaconess Med Center, Harvard Medical School, Boston, MA, USA
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, 'Aldo Moro' University of Bari, Bari, Italy
| | | | - Nicola Brienza
- Department of Interdisciplinary Medicine, 'Aldo Moro' University of Bari, Bari, Italy
| |
Collapse
|
38
|
Xu J, Wang J, Chen X, Li Y, Mi J, Qin L. The Effects of Calcitonin Gene-Related Peptide on Bone Homeostasis and Regeneration. Curr Osteoporos Rep 2020; 18:621-632. [PMID: 33030684 DOI: 10.1007/s11914-020-00624-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The goals of this review are two folds: (1) to describe the recent understandings on the roles of calcitonin gene-related peptide-α (CGRP) in bone homeostasis and the underlying mechanisms of related neuronal regulation and (2) to propose innovative CGRP-modulated approaches for enhancing bone regeneration in challenging bone disorders. RECENT FINDINGS CGRP is predominantly produced by the densely distributed sensory neuronal fibers in bone, declining with age. Under mechanical and biochemical stimulations, CGRP releases and exerts either physiological or pathophysiological roles. CGRP at physiological level orchestrates the communications of bone cells with cells of other lineages, affecting not only osteogenesis, osteoclastogenesis, and adipogenesis but also angiogenesis, demonstrating with pronounced anabolic effect, thus is essential for maintaining bone homeostasis, with tuned nerve-vessel-bone network. In addition, its effects on immunity and cell recruitment are also crucial for bone fracture healing. Binding to the G protein-coupled receptor composited by calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1) on cellular surface, CGRP triggers various intracellular signaling cascades involving cyclic adenosine monophosphate (cAMP) and cAMP response element-binding protein (CREB). Peaking at early stage post-fracture, CGRP promotes bone formation, displaying with larger callus. Then CGRP gradually decreases over time, allowing normal or physiological bone remodeling. By elevating CGRP at early stage, low-intensity pulsed ultrasound (LIPUS), electrical stimulation, and magnesium-based bio-mineral products may promisingly accelerate bone regeneration experimentally in medical conditions like osteoporosis, osteoporotic fracture, and spine fusion. Excess CGRP expression is commonly observed in pathological conditions including cancer metastatic lesions in bone and fracture delayed- or non-healing, resulting in persistent chronic pain. To date, these discoveries have largely been limited to animal models. Clinical applications are highly desirable. Compelling evidence show the anabolic effects of CGRP on bone in animals. However, further validation on the role of CGRP and the underlying mechanisms in human skeletons is required. It remains unclear if it is type H vessel connecting neuronal CGRP to osteogenesis, and if there is only specific rather than all osteoprogenitors responsible to CGRP. Clear priority should be put to eliminate these knowledge gaps by integrating with high-resolution 3D imaging of transparent bulk bone and single-cell RNA-sequencing. Last but not the least, given that small molecule antagonists such as BIBN4096BS can block the beneficial effects of CGRP on bone, concerns on the potential side effects of humanized CGRP-neutralizing antibodies when systemically administrated to treat migraine in clinics are arising.
Collapse
Affiliation(s)
- Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Health and Science Institute, The Chinese University of Hong Kong, Hong Kong, China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiaodan Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Mi
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Health and Science Institute, The Chinese University of Hong Kong, Hong Kong, China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
39
|
Doménech-García V, Palsson TS, Boudreau SA, Bellosta-López P, Herrero P, Graven-Nielsen T. Healthy Pain-Free Individuals with a History of Distal Radius Fracture Demonstrate an Expanded Distribution of Experimental Referred Pain Toward the Wrist. PAIN MEDICINE 2020; 21:2850-2862. [PMID: 33146396 DOI: 10.1093/pm/pnaa228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Nociception caused by injuries may sensitize central mechanisms causing expanded pain areas. After recovery, the status of such pain distribution and sensitivity mechanisms is unknown. The present study investigated whether individuals who have fully recovered from a distal radius fracture demonstrate increased pain sensitivity and expanded distribution of pressure-induced pain. DESIGN Cross-sectional single-blinded study. SETTING Clinical setting. SUBJECTS Twenty-three pain-free individuals with a history of painful distal radius fracture and 22 nonfractured, age/gender-matched controls participated in two experimental sessions (day 0, day 1) 24 hours apart. METHODS Pressure pain thresholds (PPTs) were recorded bilaterally at the extensor carpi radialis longus (ECRL), infraspinatus, and gastrocnemius muscles. Spatial distribution of pain was assessed following 60-second painful pressure stimulation at the ECRL (bilateral) and the infraspinatus muscles on the fractured or dominant side. Participants drew pain areas on a body map. After day 0 assessments, prolonged pain was induced by eccentric exercise of wrist extensors on the fractured/dominant side. RESULTS Compared with controls, pressure-induced ECRL pain in the fracture group referred more frequently toward the distal forearm (P < 0.005) on day 0. Both groups showed larger pain areas on day 1 compared with day 0 (P < 0.005), although the fracture group showed a larger relative change between days (P < 0.005). The fracture group showed larger pain areas on the fracture side compared with the contralateral side on both days (P < 0.005). CONCLUSIONS Prolonged pain and recovered prior painful injuries like fractures may sensitize pain mechanisms manifested as expanded pain distribution. Pressure-induced referred pain can be a simple pain biomarker for clinical use.
Collapse
Affiliation(s)
- Víctor Doménech-García
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Universidad San Jorge, Campus Universitario, Villanueva de Gállego, Zaragoza, Spain
| | - Thorvalur S Palsson
- Department of Health Science and Technology, SMI, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Shellie A Boudreau
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Pablo Bellosta-López
- Universidad San Jorge, Campus Universitario, Villanueva de Gállego, Zaragoza, Spain
| | - Pablo Herrero
- Universidad San Jorge, Campus Universitario, Villanueva de Gállego, Zaragoza, Spain
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
40
|
Alves CJ, Couto M, Sousa DM, Magalhães A, Neto E, Leitão L, Conceição F, Monteiro AC, Ribeiro-da-Silva M, Lamghari M. Nociceptive mechanisms driving pain in a post-traumatic osteoarthritis mouse model. Sci Rep 2020; 10:15271. [PMID: 32943744 PMCID: PMC7499425 DOI: 10.1038/s41598-020-72227-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/20/2020] [Indexed: 11/29/2022] Open
Abstract
In osteoarthritis (OA), pain is the dominant clinical symptom, yet the therapeutic approaches remain inadequate. The knowledge of the nociceptive mechanisms in OA, which will allow to develop effective therapies for OA pain, is of utmost need. In this study, we investigated the nociceptive mechanisms involved in post-traumatic OA pain, using the destabilization of the medial meniscus (DMM) mouse model. Our results revealed the development of peripheral pain sensitization, reflected by augmented mechanical allodynia. Along with the development of pain behaviour, we observed an increase in the expression of calcitonin gene-related peptide (CGRP) in both the sensory nerve fibers of the periosteum and the dorsal root ganglia. Interestingly, we also observed that other nociceptive mechanisms commonly described in non-traumatic OA phenotypes, such as infiltration of the synovium by immune cells, neuropathic mechanisms and also central sensitization were not present. Overall, our results suggest that CGRP in the sensory nervous system is underlying the peripheral sensitization observed after traumatic knee injury in the DMM model, highlighting the CGRP as a putative therapeutic target to treat pain in post-traumatic OA. Moreover, our findings suggest that the nociceptive mechanisms involved in driving pain in post-traumatic OA are considerably different from those in non-traumatic OA.
Collapse
Affiliation(s)
- C J Alves
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.
| | - M Couto
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - D M Sousa
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - A Magalhães
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - E Neto
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - L Leitão
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
| | - F Conceição
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
| | - A C Monteiro
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - M Ribeiro-da-Silva
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Faculdade de Medicina, Universidade do Porto (FMUP), Porto, Portugal.,Serviço de Ortopedia e Traumatologia, Centro Hospitalar São João, Porto, Portugal
| | - M Lamghari
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
| |
Collapse
|
41
|
Aso K, Shahtaheri SM, Hill R, Wilson D, McWilliams DF, Nwosu LN, Chapman V, Walsh DA. Contribution of nerves within osteochondral channels to osteoarthritis knee pain in humans and rats. Osteoarthritis Cartilage 2020; 28:1245-1254. [PMID: 32470596 DOI: 10.1016/j.joca.2020.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Subchondral bone may contribute to knee osteoarthritis (OA) pain. Nerve growth factor (NGF) can stimulate nerve growth through TrkA. We aimed to identify how sensory nerve growth at the osteochondral junction in human and rat knees associates with OA pain. METHODS Eleven symptomatic chondropathy cases were selected from people undergoing total knee replacement for OA. Twelve asymptomatic chondropathy cases who had not presented with knee pain were selected post-mortem. OA was induced in rat knees by meniscal transection (MNX) and sham-operated rats were used as controls. Twice-daily oral doses (30 mg/kg) of TrkA inhibitor (AR786) or vehicle were administered from before and up to 28 days after OA induction. Joints were analysed for macroscopic appearances of articular surfaces, OA histopathology and calcitonin gene-related peptide-immunoreactive (CGRP-IR) sensory nerves in medial tibial plateaux, and rats were assessed for pain behaviors. RESULTS The percentage of osteochondral channels containing CGRP-IR nerves in symptomatic chondropathy was higher than in asymptomatic chondropathy (difference: 2.5% [95% CI: 1.1-3.7]), and in MNX-than in sham-operated rat knees (difference: 7.8% [95%CI: 1.7-15.0]). Osteochondral CGRP-IR innervation was significantly associated with pain behavior in rats. Treatment with AR786 prevented the increase in CGRP-IR nerves in osteochondral channels and reduced pain behavior in MNX-operated rats. Structural OA was not significantly affected by AR786 treatment. CONCLUSIONS CGRP-IR sensory nerves within osteochondral channels are associated with pain in human and rat knee OA. Reduced pathological innervation of the osteochondral junction might contribute to analgesic effects of reduced NGF activity achieved by blocking TrkA.
Collapse
Affiliation(s)
- K Aso
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK; Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku, 783-8505, Japan.
| | - S M Shahtaheri
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK
| | - R Hill
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK; Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK
| | - D Wilson
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK; Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK
| | - D F McWilliams
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK
| | - L N Nwosu
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, NE2 4HH, UK
| | - V Chapman
- Arthritis Research UK Pain Centre, School of Life Sciences, University of Nottingham, NG7 2UH, UK
| | - D A Walsh
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK; Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK
| |
Collapse
|
42
|
Nerve growth factor antibody for the treatment of osteoarthritis pain and chronic low-back pain: mechanism of action in the context of efficacy and safety. Pain 2020; 160:2210-2220. [PMID: 31145219 PMCID: PMC6756297 DOI: 10.1097/j.pain.0000000000001625] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic pain continues to be a significant global burden despite the availability of a variety of nonpharmacologic and pharmacologic treatment options. Thus, there is a need for new analgesics with novel mechanisms of action. In this regard, antibodies directed against nerve growth factor (NGF-Abs) are a new class of agents in development for the treatment of chronic pain conditions such as osteoarthritis and chronic low-back pain. This comprehensive narrative review summarizes evidence supporting pronociceptive functions for NGF that include contributing to peripheral and central sensitization through tropomyosin receptor kinase A activation and stimulation of local neuronal sprouting. The potential role of NGF in osteoarthritis and chronic low-back pain signaling is also examined to provide a mechanistic basis for the observed efficacy of NGF-Abs in clinical trials of these particular pain states. Finally, the safety profile of NGF-Abs in terms of common adverse events, joint safety, and nerve structure/function is discussed.
Collapse
|
43
|
Ma Y, Elefteriou F. Brain-Derived Acetylcholine Maintains Peak Bone Mass in Adult Female Mice. J Bone Miner Res 2020; 35:1562-1571. [PMID: 32282950 PMCID: PMC8087457 DOI: 10.1002/jbmr.4024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
Preclinical and clinical data support a role of the sympathetic nervous system in the regulation of bone remodeling, but the contribution of parasympathetic arm of the autonomic nervous system to bone homeostasis remains less studied. In this study, we sought to determine whether acetylcholine (ACh) contributes to the regulation of bone remodeling after peak bone mass acquisition. We show that reduced central ACh synthesis in mice heterozygous for the choline transporter (ChT) leads to a decrease in bone mass in young female mice, thus independently confirming the previously reported beneficial effect of ACh signaling on bone mass accrual. Increasing brain ACh levels through the use of the blood brain barrier (BBB)-permeable acetylcholinesterase inhibitor (AChEI) galantamine increased trabecular bone mass in adult female mice, whereas a peripheral increase in ACh levels induced by the BBB-impermeable AChEI pyridostigmine caused trabecular bone loss. AChEIs did not alter skeletal norepinephrine level, and induced an overall increase in osteoblast and osteoclast densities, two findings that do not support a reduction in sympathetic outflow as the mechanism involved in the pro-anabolic effect of galantamine on the skeleton. In addition, we did not detect changes in the commitment of skeletal progenitor cells to the osteoblast lineage in vivo in AChEI-treated mice, nor a direct impact of these drugs in vitro on the survival and differentiation of osteoblast and osteoclast progenitors. Last, ChT heterozygosity and galantamine treatment triggered bone changes in female mice only, thus revealing the existence of a gender-specific skeletal response to brain ACh level. In conclusion, this study supports the stimulatory effect of central ACh on bone mass accrual, shows that it also promotes peak bone mass maintenance in adult mice, and suggests that central ACh regulates bone mass via different mechanisms in growing versus sexually mature mice. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yun Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Florent Elefteriou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
44
|
Park JW, Kim JH, Woo KJ. Intraoperative Intercostal Nerve Block for Postoperative Pain Control in Pre-Pectoral versus Subpectoral Direct-to-Implant Breast Reconstruction: A Retrospective Study. ACTA ACUST UNITED AC 2020; 56:medicina56070325. [PMID: 32629834 PMCID: PMC7404693 DOI: 10.3390/medicina56070325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 11/20/2022]
Abstract
Background and Objectives: Patients undergoing mastectomy and implant-based breast reconstruction have significant acute postsurgical pain. The purpose of this study was to examine the efficacy of intercostal nerve blocks (ICNBs) for reducing pain after direct-to-implant (DTI) breast reconstruction. Materials and Methods: Between January 2019 and March 2020, patients who underwent immediate DTI breast reconstruction were included in this study. The patients were divided into the ICNB or control group. In the ICNB group, 4 cc of 0.2% ropivacaine was injected intraoperatively to the second, third, fourth, and fifth intercostal spaces just before implant insertion. The daily average and maximum visual analogue scale (VAS) scores were recorded by the patient from operative day to postoperative day (POD) seven. Pain scores were compared between the ICNB and control groups and analyzed according to the insertion plane of implants. Results: A total of 67 patients with a mean age of 47.9 years were included; 31 patients received ICNBs and 36 patients did not receive ICNBs. There were no complications related to ICNBs reported. The ICNB group showed a significantly lower median with an average VAS score on the operative day (4 versus 6, p = 0.047), lower maximum VAS scores on the operative day (5 versus 7.5, p = 0.030), and POD 1 (4 versus 6, p = 0.030) as compared with the control group. Among patients who underwent subpectoral reconstruction, the ICNB group showed a significantly lower median with an average VAS score on the operative day (4 versus 7, p = 0.005), lower maximum VAS scores on the operative day (4.5 versus 8, p = 0.004), and POD 1 (4 versus 6, p = 0.009), whereas no significant differences were observed among those who underwent pre-pectoral reconstruction. Conclusions: Intraoperative ICNBs can effectively reduce immediate postoperative pain in subpectoral DTI breast reconstruction; however, it may not be effective in pre-pectoral DTI reconstruction.
Collapse
|
45
|
Leitão L, Neto E, Conceição F, Monteiro A, Couto M, Alves CJ, Sousa DM, Lamghari M. Osteoblasts are inherently programmed to repel sensory innervation. Bone Res 2020; 8:20. [PMID: 32435517 PMCID: PMC7220946 DOI: 10.1038/s41413-020-0096-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/19/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue innervation is a complex process controlled by the expression profile of signaling molecules secreted by tissue-resident cells that dictate the growth and guidance of axons. Sensory innervation is part of the neuronal network of the bone tissue with a defined spatiotemporal occurrence during bone development. Yet, the current understanding of the mechanisms regulating the map of sensory innervation in the bone tissue is still limited. Here, we demonstrated that differentiation of human mesenchymal stem cells to osteoblasts leads to a marked impairment of their ability to promote axonal growth, evidenced under sensory neurons and osteoblastic-lineage cells crosstalk. The mechanisms by which osteoblast lineage cells provide this nonpermissive environment for axons include paracrine-induced repulsion and loss of neurotrophic factors expression. We identified a drastic reduction of NGF and BDNF production and stimulation of Sema3A, Wnt4, and Shh expression culminating at late stage of OB differentiation. We noted a correlation between Shh expression profile, OB differentiation stages, and OB-mediated axonal repulsion. Blockade of Shh activity and signaling reversed the repulsive action of osteoblasts on sensory axons. Finally, to strengthen our model, we localized the expression of Shh by osteoblasts in bone tissue. Overall, our findings provide evidence that the signaling profile associated with osteoblast phenotype differentiating program can regulate the patterning of sensory innervation, and highlight osteoblast-derived Shh as an essential player in this cue-induced regulation.
Collapse
Affiliation(s)
- Luís Leitão
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Estrela Neto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Francisco Conceição
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Monteiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Marina Couto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Cecília J. Alves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Daniela M. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
46
|
Oostinga D, Steverink JG, van Wijck AJM, Verlaan JJ. An understanding of bone pain: A narrative review. Bone 2020; 134:115272. [PMID: 32062002 DOI: 10.1016/j.bone.2020.115272] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022]
Abstract
Skeletal pathologies are often accompanied by bone pain, which has negative effects on the quality of life and functional status of patients. Bone pain can be caused by a wide variety of injuries and diseases including (poorly healed) fractures, bone cancer, osteoarthritis and also iatrogenic by skeletal interventions. Orthopedic interventions are considered to be the most painful surgical procedures overall. Two major groups of medication currently used to attenuate bone pain are NSAIDs and opioids. However, these systemic drugs frequently introduce adverse events, emphasizing the need for alternative therapies that are directed at the pathophysiological mechanisms underlying bone pain. The periosteum, cortical bone and bone marrow are mainly innervated by sensory A-delta fibers and C-fibers. These fibers are mostly present in the periosteum rendering this structure most sensitive to nociceptive stimuli. A-delta fibers and C-fibers can be activated upon mechanical distortion, acidic environment and increased intramedullary pressure. After activation, these fibers can be sensitized by inflammatory mediators, phosphorylation of acid-sensing ion channels and cytokine receptors, or by upregulation of transcription factors. This can result in a change of pain perception such that normally non-noxious stimuli are now perceived as noxious. Pathological conditions in the bone can produce neurotrophic factors that bind to receptors on A-delta fibers and C-fibers. These fibers then start to sprout and increase the innervation density of the bone, making it more sensitive to nociceptive stimuli. In addition, repetitive painful stimuli cause neurochemical and electrophysiological alterations in afferent sensory neurons in the spinal cord, which leads to central sensitization, and can contribute to chronic bone pain. Understanding the pathophysiological mechanisms underlying bone pain in different skeletal injuries and diseases is important for the development of alternative, targeted pain treatments. These pain mechanism-based alternatives have the potential to improve the quality of life of patients suffering from bone pain without introducing undesirable systemic effects.
Collapse
Affiliation(s)
- Douwe Oostinga
- Department of Orthopedics, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands.
| | - Jasper G Steverink
- Department of Orthopedics, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands.
| | - Albert J M van Wijck
- Department of Anesthesiology, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands.
| | - Jorrit-Jan Verlaan
- Department of Orthopedics, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands.
| |
Collapse
|
47
|
Ter Heegde F, Luiz AP, Santana-Varela S, Magnúsdóttir R, Hopkinson M, Chang Y, Poulet B, Fowkes RC, Wood JN, Chenu C. Osteoarthritis-related nociceptive behaviour following mechanical joint loading correlates with cartilage damage. Osteoarthritis Cartilage 2020; 28:383-395. [PMID: 31911151 DOI: 10.1016/j.joca.2019.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In osteoarthritis (OA), the pain-structure relationship remains complex and poorly understood. Here, we used the mechanical joint loading (MJL) model of OA to investigate both knee pathology and nociceptive behaviour. DESIGN MJL was used to induce OA in the right knees of 12-week-old male C57BL/6 mice (40 cycles, 9N, 3x/week for 2 weeks). Mechanical sensitivity thresholds and weight-bearing ratios were measured before loading and at weeks one, three and six post-loading. At these time points, separate groups of loaded and non-loaded mice (n = 12/group) were sacrificed, joints collected, and fur corticosterone levels measured. μCT analyses of subchondral bone integrity was performed before joint sections were prepared for nerve quantification, cartilage or synovium grading (scoring system from 0 to 6). RESULTS Loaded mice showed increased mechanical hypersensitivity paired with altered weight-bearing. Initial ipsilateral cartilage lesions 1-week post-loading (1.8 ± 0.4) had worsened at weeks three (3.0 ± 0.6, CI = -1.8-0.6) and six (2.8 ± 0.4, CI = -1.6-0.4). This increase in lesion severity correlated with mechanical hypersensitivity development (correlation; 0.729, P = 0.0071). Loaded mice displayed increased synovitis (3.6 ± 0.5) compared to non-loaded mice (1.5 ± 0.5, CI = -2.2-0.3) 1-week post-loading which returned to normal by weeks three and six. Similarly, corticosterone levels were only increased at week one post-loading (0.21 ± 0.04 ng/mg) compared to non-loaded controls (0.14 ± 0.01 ng/mg, CI = -1.8-0.1). Subchondral bone integrity and nerve volume remained unchanged. CONCLUSIONS Our data indicates that although the loading induces an initial stress reaction and local inflammation, these processes are not directly responsible for the nociceptive phenotype observed. Instead, MJL-induced allodynia is mainly associated with OA-like progression of cartilage lesions.
Collapse
Affiliation(s)
- F Ter Heegde
- Skeletal Biology Group, Comparative Biomedical Science, Royal Veterinary College, London NW1 0TU, UK; Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.
| | - A P Luiz
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.
| | - S Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.
| | - R Magnúsdóttir
- Skeletal Biology Group, Comparative Biomedical Science, Royal Veterinary College, London NW1 0TU, UK.
| | - M Hopkinson
- Skeletal Biology Group, Comparative Biomedical Science, Royal Veterinary College, London NW1 0TU, UK.
| | - Y Chang
- Research Office, Royal Veterinary College, London NW1 0TU, UK.
| | - B Poulet
- Muscoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3BX, UK.
| | - R C Fowkes
- Endocrine Signalling Group, Comparative Biomedical Science, Royal Veterinary College, London NW1 0TU, UK.
| | - J N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.
| | - C Chenu
- Skeletal Biology Group, Comparative Biomedical Science, Royal Veterinary College, London NW1 0TU, UK.
| |
Collapse
|
48
|
Sun S, Diggins NH, Gunderson ZJ, Fehrenbacher JC, White FA, Kacena MA. No pain, no gain? The effects of pain-promoting neuropeptides and neurotrophins on fracture healing. Bone 2020; 131:115109. [PMID: 31715336 PMCID: PMC6934100 DOI: 10.1016/j.bone.2019.115109] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022]
Abstract
Neuropeptides and neurotrophins are key regulators of peripheral nociceptive nerves and contribute to the induction, sensitization, and maintenance of pain. It is now known that these peptides also regulate non-neuronal tissues, including bone. Here, we review the effects of numerous neuropeptides and neurotrophins on fracture healing. The neuropeptides calcitonin-gene related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating peptide (PACAP) have varying effects on osteoclastic and osteoblastic activity. Ultimately, CGRP and SP both accelerate fracture healing, while VIP and PACAP seem to negatively impact healing. Unlike the aforementioned neuropeptides, the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have more uniform effects. Both factors upregulate osteoblastic activity, osteoclastic activity, and, in vivo, stimulate osteogenesis to promote fracture healing. Future research will need to clarify the exact mechanism by which the neuropeptides and neurotrophins influence fracture healing. Specifically, understanding the optimal expression patterns for these proteins in the fracture healing process may lead to therapies that can maximize their bone-healing capabilities and minimize their pain-promoting effects. Finally, further examination of protein-sequestering antibodies and/or small molecule agonists and antagonists may lead to new therapies that can decrease the rate of delayed union/nonunion outcomes and fracture-associated pain.
Collapse
Affiliation(s)
- Seungyup Sun
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Nicklaus H Diggins
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Zachary J Gunderson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, IN, USA
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA.
| |
Collapse
|
49
|
Thai J, Kyloh M, Travis L, Spencer NJ, Ivanusic JJ. Identifying spinal afferent (sensory) nerve endings that innervate the marrow cavity and periosteum using anterograde tracing. J Comp Neurol 2020; 528:1903-1916. [PMID: 31970770 DOI: 10.1002/cne.24862] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 01/04/2023]
Abstract
While sensory and sympathetic neurons are known to innervate bone, previous studies have found it difficult to unequivocally identify and characterize only those that are of sensory origin. In this study, we have utilized an in vivo anterograde tracing technique to selectively label spinal afferent (sensory) nerve endings that innervate the periosteum and marrow cavity of murine long bones. Unilateral injections of dextran-biotin (anterograde tracer; 20% in saline, 50-100 nl) were made into L3-L5 dorsal root ganglia. After a 10-day recovery period to allow sufficient time for selective anterograde transport of the tracer to nerve terminal endings in bone, the periosteum (whole-mount) and underlying bone were collected, processed to reveal anterograde labeling, and immuno-labeled with antibodies directed against protein gene product (pan-neuronal marker; PGP9.5), tyrosine hydroxylase (sympathetic neuron marker; TH), calcitonin gene-related protein (peptidergic nociceptor marker; CGRP), and/or neurofilament 200 (myelinated axon marker; NF200). Anterograde-labeled nerve endings were dispersed throughout the periosteum and marrow cavity and could be identified in close apposition to blood vessels and at sites distant from them. The periosteum and the marrow cavity were each innervated by myelinated (NF200+) sensory neurons, and unmyelinated (NF200-) sensory neurons that were either peptidergic (CGRP+) or nonpeptidergic (CGRP-). Spinal afferent nerve endings did not express TH, and lacked the cylindrical morphology around blood vessels characteristic of sympathetic innervation. This approach to selective labeling of sensory nerve terminal endings will help to better identify how different sub-populations of sensory neurons, and their peripheral nerve terminal endings, interact with bone.
Collapse
Affiliation(s)
- Jenny Thai
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Melinda Kyloh
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Lee Travis
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
50
|
Peters CM, Muñoz-Islas E, Ramírez-Rosas MB, Jiménez-Andrade JM. Mechanisms underlying non-malignant skeletal pain. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|