1
|
Abstract
The cerebral microcirculation undergoes dynamic changes in parallel with the development of neurons, glia, and their energy metabolism throughout gestation and postnatally. Cerebral blood flow (CBF), oxygen consumption, and glucose consumption are as low as 20% of adult levels in humans born prematurely but eventually exceed adult levels at ages 3 to 11 years, which coincide with the period of continued brain growth, synapse formation, synapse pruning, and myelination. Neurovascular coupling to sensory activation is present but attenuated at birth. By 2 postnatal months, the increase in CBF often is disproportionately smaller than the increase in oxygen consumption, in contrast to the relative hyperemia seen in adults. Vascular smooth muscle myogenic tone increases in parallel with developmental increases in arterial pressure. CBF autoregulatory response to increased arterial pressure is intact at birth but has a more limited range with arterial hypotension. Hypoxia-induced vasodilation in preterm fetal sheep with low oxygen consumption does not sustain cerebral oxygen transport, but the response becomes better developed for sustaining oxygen transport by term. Nitric oxide tonically inhibits vasomotor tone, and glutamate receptor activation can evoke its release in lambs and piglets. In piglets, astrocyte-derived carbon monoxide plays a central role in vasodilation evoked by glutamate, ADP, and seizures, and prostanoids play a large role in endothelial-dependent and hypercapnic vasodilation. Overall, homeostatic mechanisms of CBF regulation in response to arterial pressure, neuronal activity, carbon dioxide, and oxygenation are present at birth but continue to develop postnatally as neurovascular signaling pathways are dynamically altered and integrated. © 2021 American Physiological Society. Compr Physiol 11:1-62, 2021.
Collapse
|
2
|
Atlan LS, Margulies SS. Frequency-Dependent Changes in Resting State Electroencephalogram Functional Networks after Traumatic Brain Injury in Piglets. J Neurotrauma 2019; 36:2558-2578. [PMID: 30909806 PMCID: PMC6709726 DOI: 10.1089/neu.2017.5574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health concern in children, as it can cause chronic cognitive and behavioral deficits. The lack of objective involuntary metrics for the diagnosis of TBI makes prognosis more challenging, especially in the pediatric context, in which children are often unable to articulate their symptoms. Resting state electroencephalograms (EEG), which are inexpensive and non-invasive, and do not require subjects to perform cognitive tasks, have not yet been used to create functional brain networks in relation to TBI in children or non-human animals; here we report the first such study. We recorded resting state EEG in awake piglets before and after TBI, from which we generated EEG functional networks from the alpha (8-12 Hz), beta (16.5-25 Hz), broad (1-35 Hz), delta (1-3.5 Hz), gamma (30-35 Hz), sigma (13-16 Hz), and theta (4-7.5 Hz) frequency bands. We hypothesize that mild TBI will induce persistent frequency-dependent changes in the 4-week-old piglet at acute and chronic time points. Hyperconnectivity was found in several frequency band networks after TBI. This study serves as proof of concept that the study of EEG functional networks in awake piglets may be useful for the development of diagnostic metrics for TBI in children.
Collapse
Affiliation(s)
- Lorre S. Atlan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan S. Margulies
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Grandhi R, Peitz GW, Foley LM, Bonfield CM, Fellows-Mayle W, Hitchens TK, Mooney MP. The influence of suturectomy on age-related changes in cerebral blood flow in rabbits with familial bicoronal suture craniosynostosis: A quantitative analysis. PLoS One 2018; 13:e0197296. [PMID: 29856748 PMCID: PMC5983410 DOI: 10.1371/journal.pone.0197296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/30/2018] [Indexed: 11/23/2022] Open
Abstract
Background Coronal suture synostosis is a condition which can have deleterious physical and cognitive sequelae in humans if not corrected. A well-established animal model has previously demonstrated disruptions in intracranial pressure and developmental abnormalities in rabbits with congenital craniosynostosis compared to wild type rabbits. Objective The current study aimed to measure the cerebral blood flow (CBF) in developing rabbits with craniosynostosis who underwent suturectomy compared to those with no intervention and compared to wild type rabbits. Methods Rabbits with early onset coronal suture synostosis were assigned to have suturectomy at 10 days of age (EOCS-SU, n = 15) or no intervention (EOCS, n = 18). A subset of each group was randomly selected for measurement at 10 days of age, 25 days of age, and 42 days of age. Wild type rabbits (WT, n = 18) were also randomly assigned to measurement at each time point as controls. Cerebral blood flow at the bilateral hemispheres, cortices, thalami, and superficial cortices was measured in each group using arterial spin-labeling MRI. Results At 25 days of age, CBF at the superficial cortex was significantly higher in EOCS rabbits (192.6 ± 10.1 mL/100 mg/min on the left and 195 ± 9.5 mL/100 mg/min on the right) compared to WT rabbits (99.2 ± 29.1 mL/100 mg/min on the left and 96.2 ± 21.4 mL/100 mg/min on the right), but there was no significant difference in CBF between EOCS-SU (97.6 ± 11.3 mL/100 mg/min on the left and 99 ± 7.4 mL/100 mg/min on the right) and WT rabbits. By 42 days of age the CBF in EOCS rabbits was not significantly different than that of WT rabbits. Conclusion Suturectomy eliminated the abnormally increased CBF at the superficial cortex seen in EOCS rabbits at 25 days of age. This finding contributes to the evidence that suturectomy limits abnormalities of ICP and CBF associated with craniosynostosis.
Collapse
Affiliation(s)
- Ramesh Grandhi
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- * E-mail:
| | - Geoffrey W. Peitz
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Lesley M. Foley
- Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, PA, United States of America
- High Field Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christopher M. Bonfield
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Wendy Fellows-Mayle
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - T. Kevin Hitchens
- Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, PA, United States of America
- High Field Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mark P. Mooney
- Departments of Oral Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Deparment of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Deparment of Orthodontics, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
4
|
Atlan LS, Smith C, Margulies SS. Improved prediction of direction-dependent, acute axonal injury in piglets. J Neurosci Res 2017; 96:536-544. [PMID: 28833411 DOI: 10.1002/jnr.24108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/23/2017] [Accepted: 06/14/2017] [Indexed: 01/25/2023]
Abstract
To guide development of safety equipment that reduces sports-related head injuries, we sought to enhance predictive relationships between head movement and acute axonal injury severity. The severity of traumatic brain injury (TBI) is influenced by the magnitude and direction of head kinematics. Previous studies have demonstrated correlation between rotational head kinematics and symptom severity in the adult. More recent studies have demonstrated brain injury age- and direction-dependence, relating head kinematics to white matter tract-oriented strains. We have recently developed and assessed novel rotational head kinematic parameters as predictors of white matter damage in the female immature piglet. We show that many previously published rotational kinematic injury predictor metrics poorly predict acute axonal pathology induced by rapid, non-impact head rotations and that inclusion of cerebral moments of inertia (MOI) in rotational head injury metrics refines prediction of diffuse axonal injury following rapid head rotations for two immature age groups. Rotational Work (RotWork) was the best significant predictor of traumatic axonal injury in both newborn and pre-adolescent piglets following head rotations in the axial, coronal, and sagittal planes. An improvement over current metrics, we find that RotWork, which incorporates head rotation rate, direction, and brain shape, significantly enhanced acute traumatic axonal injury prediction. For similar injury extent, the RotWork threshold is lower for the newborn piglet than the pre-adolescent.
Collapse
Affiliation(s)
- Lorre S Atlan
- Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Colin Smith
- Academic Department of Neuropathology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Susan S Margulies
- Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
5
|
Ferguson MA, Sutton RM, Karlsson M, Sjövall F, Becker LB, Berg RA, Margulies SS, Kilbaugh TJ. Increased platelet mitochondrial respiration after cardiac arrest and resuscitation as a potential peripheral biosignature of cerebral bioenergetic dysfunction. J Bioenerg Biomembr 2016; 48:269-79. [PMID: 27020568 DOI: 10.1007/s10863-016-9657-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/15/2016] [Indexed: 02/02/2023]
Abstract
UNLABELLED Cardiac arrest (CA) results in a sepsis-like syndrome with activation of the innate immune system and increased mitochondrial bioenergetics. OBJECTIVE To determine if platelet mitochondrial respiration increases following CA in a porcine pediatric model of asphyxia-associated ventricular fibrillation (VF) CA, and if this readily obtained biomarker is associated with decreased brain mitochondrial respiration. CA protocol: 7 min of asphyxia, followed by VF, protocolized titration of compression depth to systolic blood pressure of 90 mmHg and vasopressor administration to a coronary perfusion pressure greater than 20 mmHg. PRIMARY OUTCOME platelet integrated mitochondrial electron transport system (ETS) function evaluated pre- and post-CA/ROSC four hours after return of spontaneous circulation (ROSC). Secondary outcome: correlation of platelet mitochondrial bioenergetics to cerebral bioenergetic function. Platelet maximal oxidative phosphorylation (OXPHOSCI+CII), P < 0.02, and maximal respiratory capacity (ETSCI+CII), P < 0.04, were both significantly increased compared to pre-arrest values. This was primarily due to a significant increase in succinate-supported respiration through Complex II (OXPHOSCII, P < 0.02 and ETSCII, P < 0.03). Higher respiration was not due to uncoupling, as the LEAKCI + CII respiration (mitochondrial respiration independent of ATP-production) was unchanged after CA/ROSC. Larger increases in platelet mitochondrial respiratory control ratio (RCR) compared to pre-CA RCR were significantly correlated with lower RCRs in the cortex (P < 0.03) and hippocampus (P < 0.04) compared to sham respiration. Platelet mitochondrial respiration is significantly increased four hours after ROSC. Future studies will identify mechanistic relationships between this serum biomarker and altered cerebral bioenergetics function following cardiac arrest.
Collapse
Affiliation(s)
- Michael A Ferguson
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 34th & Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Robert M Sutton
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 34th & Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Michael Karlsson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84, Lund, Sweden
| | - Fredrik Sjövall
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84, Lund, Sweden
| | - Lance B Becker
- Department of Emergency Medicine, Perelman School of Medicine at the University of Pennsylvania, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Robert A Berg
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 34th & Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Susan S Margulies
- School of Engineering and Applied Science, Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA, 19104, USA
| | - Todd J Kilbaugh
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 34th & Civic Center Blvd., Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Deer RR, Stallone JN. Effects of estrogen on cerebrovascular function: age-dependent shifts from beneficial to detrimental in small cerebral arteries of the rat. Am J Physiol Heart Circ Physiol 2016; 310:H1285-94. [PMID: 26993224 DOI: 10.1152/ajpheart.00645.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/14/2016] [Indexed: 02/06/2023]
Abstract
In the present study, interactions of age and estrogen in the modulation of cerebrovascular function were examined in small arteries <150 μM. The hypothesis tested was that age enhances deleterious effects of exogenous estrogen by augmenting constrictor prostanoid (CP)-potentiated reactivity of the female (F) cerebrovasculature. F Sprague-Dawley rats approximating key stages of "hormonal aging" in humans were studied: perimenopausal (mature multi-gravid, MA, cyclic, 5-6 mo of age) and postmenopausal (reproductively senescent, RS, acyclic 10-12 mo of age). Rats underwent bilateral ovariectomy and were given estrogen replacement therapy (E) or placebo (O) for 14-21 days. Vasopressin reactivity (VP, 10(-12)-10(-7) M) was measured in pressurized middle cerebral artery segments, alone or in the presence of COX-1- (SC560, 1 μM) or COX-2- (NS398, 10 μM) selective inhibitors. VP-stimulated release of prostacyclin (PGI2) and thromboxane (TXA2) were assessed by radioimmunoassay of 6-keto-PGF1α and TXB2 (stable metabolites). VP-induced vasoconstriction was attenuated in ovariectomized + estrogen-replaced, multigravid adult rats (5-6 mo; MAE) but potentiated in older ovariectomized + estrogen-replaced, reproductively senescent rats (12-14 mo; RSE). SC560 and NS398 reduced reactivity similarly in ovariectomized multigravid adult rats (5-6 mo; MAO) and ovariectomized reproductively senescent rat (12-14 mo; RSO). In MAE, reactivity to VP was reduced to a greater extent by SC560 than by NS398; however, in RSE, this effect was reversed. VP-stimulated PGI2 was increased by estrogen, yet reduced by age. VP-stimulated TXA2 was increased by estrogen and age in RSE but did not differ in MAO and RSO. Taken together, these data reveal that the vascular effects of estrogen are distinctly age-dependent in F rats. In younger MA, beneficial and protective effects of estrogen are evident (decreased vasoconstriction, increased dilator prostanoid function). Conversely, in older RS, detrimental effects of estrogen begin to be manifested (enhanced vasoconstriction and CP function). These findings may lead to age-specific estrogen replacement therapies that maximize beneficial and minimize detrimental effects of this hormone on small cerebral arteries that regulate blood flow.
Collapse
Affiliation(s)
- Rachel R Deer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; and
| | - John N Stallone
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; and Women's Health Division, Michael E. DeBakey Institute, Texas A&M University, College Station, Texas
| |
Collapse
|
7
|
Kilbaugh TJ, Karlsson M, Duhaime AC, Hansson MJ, Elmer E, Margulies SS. Mitochondrial response in a toddler-aged swine model following diffuse non-impact traumatic brain injury. Mitochondrion 2016; 26:19-25. [PMID: 26549476 PMCID: PMC4752861 DOI: 10.1016/j.mito.2015.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/19/2023]
Abstract
Traumatic brain injury (TBI) is an important health problem, and a leading cause of death in children worldwide. Mitochondrial dysfunction is a critical component of the secondary TBI cascades. Mitochondrial response in the pediatric brain has limited investigation, despite evidence that the developing brain's response differs from that of the adult, especially in diffuse non-impact TBI. We performed a detailed evaluation of mitochondrial bioenergetics using high-resolution respirometry in a swine model of diffuse TBI (rapid non-impact rotational injury: RNR), and examined the cortex and hippocampus. A substrate-uncoupler-inhibitor-titration protocol examined the role of the individual complexes as well as the uncoupled maximal respiration. Respiration per mg of tissue was also related to citrate synthase activity (CS) as an attempt to control for variability in mitochondrial content following injury. Diffuse RNR stimulated increased complex II-driven respiration relative to mitochondrial content in the hippocampus compared to shams. LEAK (State 4o) respiration increased in both regions, with decreased respiratory ratios of convergent oxidative phosphorylation through complex I and II, compared to sham animals, indicating uncoupling of oxidative phosphorylation at 24h. The study suggests that proportionately, complex I contribution to convergent mitochondrial respiration was reduced in the hippocampus after RNR, with a simultaneous increase in complex-II driven respiration. Mitochondrial respiration 24h after diffuse TBI varies by location within the brain. We concluded that significant uncoupling of oxidative phosphorylation and alterations in convergent respiration through complex I- and complex II-driven respiration reveals therapeutic opportunities for the injured at-risk pediatric brain.
Collapse
Affiliation(s)
- Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA.
| | - Michael Karlsson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden.
| | - Ann-Christine Duhaime
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| | - Magnus J Hansson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden.
| | - Eskil Elmer
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden.
| | - Susan S Margulies
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, Boston, MA 02114, USA.
| |
Collapse
|
8
|
Kilbaugh TJ, Sutton RM, Karlsson M, Hansson MJ, Naim MY, Morgan RW, Bratinov G, Lampe JW, Nadkarni VM, Becker LB, Margulies SS, Berg RA. Persistently Altered Brain Mitochondrial Bioenergetics After Apparently Successful Resuscitation From Cardiac Arrest. J Am Heart Assoc 2015; 4:e002232. [PMID: 26370446 PMCID: PMC4599507 DOI: 10.1161/jaha.115.002232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although advances in cardiopulmonary resuscitation have improved survival from cardiac arrest (CA), neurologic injury persists and impaired mitochondrial bioenergetics may be critical for targeted neuroresuscitation. The authors sought to determine if excellent cardiopulmonary resuscitation and postresuscitation care and good traditional survival rates result in persistently disordered cerebral mitochondrial bioenergetics in a porcine pediatric model of asphyxia-associated ventricular fibrillation CA. METHODS AND RESULTS After 7 minutes of asphyxia, followed by ventricular fibrillation, 5 female 1-month-old swine (4 sham) received blood pressure-targeted care: titration of compression depth to systolic blood pressure of 90 mm Hg and vasopressor administration to a coronary perfusion pressure >20 mm Hg. All animals received protocol-based vasopressor support after return of spontaneous circulation for 4 hours before they were killed. The primary outcome was integrated mitochondrial electron transport system (ETS) function. CA animals displayed significantly decreased maximal, coupled oxidative phosphorylating respiration (OXPHOSCI + CII) in cortex (P<0.02) and hippocampus (P<0.02), as well as decreased phosphorylation and coupling efficiency (cortex, P<0.05; hippocampus, P<0.05). Complex I- and complex II-driven respiration were both significantly decreased after CA (cortex: OXPHOSCI P<0.01, ETSCII P<0.05; hippocampus: OXPHOSCI P<0.03, ETSCII P<0.01). In the hippocampus, there was a significant decrease in maximal uncoupled, nonphosphorylating respiration (ETSCI + CII), as well as a 30% reduction in citrate synthase activity (P<0.04). CONCLUSIONS Mitochondria in both the cortex and hippocampus displayed significant alterations in respiratory function after CA despite excellent cardiopulmonary resuscitation and postresuscitation care in asphyxia-associated ventricular fibrillation CA. Analysis of integrated ETS function identifies mitochondrial bioenergetic failure as a target for goal-directed neuroresuscitation after CA. IACUC Protocol: IAC 13-001023.
Collapse
Affiliation(s)
- Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Michael Karlsson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden (M.K., M.J.H.)
| | - Magnus J Hansson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden (M.K., M.J.H.)
| | - Maryam Y Naim
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - George Bratinov
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Joshua W Lampe
- Department of Emergency Medicine, The Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (J.W.L., L.B.B.)
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Lance B Becker
- Department of Emergency Medicine, The Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (J.W.L., L.B.B.)
| | - Susan S Margulies
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA (S.S.M.)
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| |
Collapse
|
9
|
Margulies S, Anderson G, Atif F, Badaut J, Clark R, Empey P, Guseva M, Hoane M, Huh J, Pauly J, Raghupathi R, Scheff S, Stein D, Tang H, Hicks M. Combination Therapies for Traumatic Brain Injury: Retrospective Considerations. J Neurotrauma 2015; 33:101-12. [PMID: 25970337 DOI: 10.1089/neu.2014.3855] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Patients enrolled in clinical trials for traumatic brain injury (TBI) may present with heterogeneous features over a range of injury severity, such as diffuse axonal injury, ischemia, edema, hemorrhage, oxidative damage, mitochondrial and metabolic dysfunction, excitotoxicity, inflammation, and other pathophysiological processes. To determine whether combination therapies might be more effective than monotherapy at attenuating moderate TBI or promoting recovery, the National Institutes of Health funded six preclinical studies in adult and immature male rats to evaluate promising acute treatments alone and in combination. Each of the studies had a solid rationale for its approach based on previous research, but only one reported significant improvements in long-term outcomes across a battery of behavioral tests. Four studies had equivocal results because of a lack of sensitivity of the outcome assessments. One study demonstrated worse results with the combination in comparison with monotherapies. While specific research findings are reported elsewhere, this article provides an overview of the study designs, insights, and recommendations for future research aimed at therapy development for TBI.
Collapse
Affiliation(s)
- Susan Margulies
- 1 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Gail Anderson
- 2 Department of Pharmacy, Pharmaceutics, and Neurological Surgery, University of Washington , Seattle, Washington
| | - Fahim Atif
- 3 Department of Emergency Medicine, Emory University , Atlanta, Georgia
| | - Jerome Badaut
- 4 Institut of Neuroscience Cognitive and Integrative of Aquitaine (INCIA), University of Bordeaux , Bordeaux, France
| | - Robert Clark
- 5 Safar Center for Resuscitation Research and Department of Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Philip Empey
- 6 Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy , Pittsburgh, Pennsylvania
| | - Maria Guseva
- 7 Fresenius Kabi USA, LLC , Lake Zurich, Illinois
| | - Michael Hoane
- 8 Department of Psychology, Southern Illinois University , Carbondale, Illinois
| | - Jimmy Huh
- 9 Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| | - Jim Pauly
- 10 Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky
| | - Ramesh Raghupathi
- 11 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Stephen Scheff
- 12 Center on Aging, University of Kentucky , Lexington, Kentucky
| | - Donald Stein
- 3 Department of Emergency Medicine, Emory University , Atlanta, Georgia
| | - Huiling Tang
- 3 Department of Emergency Medicine, Emory University , Atlanta, Georgia
| | | |
Collapse
|
10
|
Kilbaugh TJ, Karlsson M, Byro M, Bebee A, Ralston J, Sullivan S, Duhaime AC, Hansson MJ, Elmér E, Margulies SS. Mitochondrial bioenergetic alterations after focal traumatic brain injury in the immature brain. Exp Neurol 2015; 271:136-44. [PMID: 26028309 DOI: 10.1016/j.expneurol.2015.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/30/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death in children worldwide. Emerging evidence suggests that alterations in mitochondrial function are critical components of secondary injury cascade initiated by TBI that propogates neurodegeneration and limits neuroregeneration. Unfortunately, there is very little known about the cerebral mitochondrial bioenergetic response from the immature brain triggered by traumatic biomechanical forces. Therefore, the objective of this study was to perform a detailed evaluation of mitochondrial bioenergetics using high-resolution respirometry in a high-fidelity large animal model of focal controlled cortical impact injury (CCI) 24h post-injury. This novel approach is directed at analyzing dysfunction in electron transport, ADP phosphorylation and leak respiration to provide insight into potential mechanisms and possible interventions for mitochondrial dysfunction in the immature brain in focal TBI by delineating targets within the electron transport system (ETS). Development and application of these methodologies have several advantages, and adds to the interpretation of previously reported techniques, by having the added benefit that any toxins or neurometabolites present in the ex-vivo samples are not removed during the mitochondrial isolation process, and simulates the in situ tricarboxylic acid (TCA) cycle by maximizing key substrates for convergent flow of electrons through both complexes I and II. To investigate alterations in mitochondrial function after CCI, ipsilateral tissue near the focal impact site and tissue from the corresponding contralateral side were examined. Respiration per mg of tissue was also related to citrate synthase activity (CS) and calculated flux control ratios (FCR), as an attempt to control for variability in mitochondrial content. Our biochemical analysis of complex interdependent pathways of electron flow through the electron transport system, by most measures, reveals a bilateral decrease in complex I-driven respiration and an increase in complex II-driven respiration 24h after focal TBI. These alterations in convergent electron flow though both complex I and II-driven respiration resulted in significantly lower maximal coupled and uncoupled respiration in the ipsilateral tissue compared to the contralateral side, for all measures. Surprisingly, increases in complex II and complex IV activities were most pronounced in the contralateral side of the brain from the focal injury, and where oxidative phosphorylation was increased significantly compared to sham values. We conclude that 24h after focal TBI in the immature brain, there are significant alterations in cerebral mitochondrial bioenergetics, with pronounced increases in complex II and complex IV respiration in the contralateral hemisphere. These alterations in mitochondrial bioenergetics present multiple targets for therapeutic intervention to limit secondary brain injury and support recovery.
Collapse
Affiliation(s)
- Todd J Kilbaugh
- Perelman School of Medicine at the University of Pennsylvania, Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 34th & Civic Center Blvd., Philadelphia, PA 19104, USA.
| | - Michael Karlsson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden.
| | - Melissa Byro
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| | - Ashley Bebee
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| | - Jill Ralston
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| | - Sarah Sullivan
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| | - Ann-Christine Duhaime
- Department of Neurosurgery, Massachusetts General Hospital, 15 Parkman Street, Boston, MA 02114, USA.
| | - Magnus J Hansson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden.
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden.
| | - Susan S Margulies
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Weeks D, Sullivan S, Kilbaugh T, Smith C, Margulies SS. Influences of developmental age on the resolution of diffuse traumatic intracranial hemorrhage and axonal injury. J Neurotrauma 2013; 31:206-14. [PMID: 23984914 DOI: 10.1089/neu.2013.3113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This study investigated the age-dependent injury response of diffuse traumatic axonal injury (TAI) and regional subdural and subarachnoid intracranial hemorrhage (ICH) in two pediatric age groups using a porcine head injury model. Fifty-five 5-day-old and 40 four-week-old piglets-which developmentally correspond to infants and toddlers, respectively-underwent either a sham injury or a single rapid non-impact rotational injury in the sagittal plane and were grouped by post-TBI survival time (sham, 3-8 h, one day, 3-4 days, and 5-6 days). Both age groups exhibited similar initial levels of ICH and a significant reduction of ICH over time (p<0.0001). However, ICH took longer to resolve in the five-day-old age group. At 5-6 days post-injury, ICH in the cerebrum had returned to sham levels in the four-week-old piglets, while the five-day-olds still had significantly elevated cerebral ICH (p=0.012). Both ages also exhibited similar resolution of axonal injury with a peak in TAI at one day post-injury (p<0.03) and significantly elevated levels even at 5-6 days after the injury (p<0.008), which suggests a window of vulnerability to a second insult at one day post-injury that may extend for a prolonged period of time. However, five-day-old piglets had significantly more TAI than four-week-olds overall (p=0.016), which presents some evidence for an increased vulnerability to brain injury in this age group. These results provide insight into an optimal window for clinical intervention, the period of increased susceptibility to a second injury, and an age dependency in brain injury tolerance within the pediatric population.
Collapse
Affiliation(s)
- Dianne Weeks
- 1 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
12
|
Armstead WM, Riley J, Vavilala MS. Dopamine prevents impairment of autoregulation after traumatic brain injury in the newborn pig through inhibition of Up-regulation of endothelin-1 and extracellular signal-regulated kinase mitogen-activated protein kinase. Pediatr Crit Care Med 2013; 14:e103-11. [PMID: 23314184 PMCID: PMC3567252 DOI: 10.1097/pcc.0b013e3182712b44] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Traumatic brain injury contributes to morbidity in children and boys are disproportionately represented. Autoregulation is impaired more in male compared with female piglets after traumatic brain injury through sex-dependent up-regulation of the spasmogen endothelin-1 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK), a family of three kinases: ERK, p38, and JNK). Elevation of mean arterial pressure leading to increased cerebral perfusion pressure via phenylephrine improves impairment of autoregulation after traumatic brain injury in female but not male piglets through modulation of endothelin-1 and ERK MAPK up-regulation, blocked in females, but aggravated in males. We hypothesized that pressor choice to elevate cerebral perfusion pressure is important in improving cerebral hemodynamics after traumatic brain injury and that dopamine will prevent impairment of autoregulation in both male and female piglets through blockade of endothelin-1 and ERK MAPK. DESIGN Prospective, randomized animal study. SETTING University laboratory. SUBJECTS Newborn (1-5 days old) pigs. INTERVENTIONS Cerebral perfusion pressure and pial artery diameter were determined before and after lateral fluid percussion brain injury was produced in piglets equipped with a closed cranial window. Dopamine (15 µg/kg/min IV) was administered 30 mins post fluid percussion injury. Cerebrospinal fluid ERK MAPK was determined by enzyme-linked immunosorbent assay. MEASUREMENTS AND MAIN RESULTS Dopamine increased cerebral perfusion pressure equivalently in both sexes and prevented sex-dependent reductions in pial artery diameter after fluid percussion injury. Loss of pial artery dilation during hypotension was greater in male than in female piglets after fluid percussion injury, but dopamine prevented such impairment equivalently in both sexes post injury. endothelin-1 and ERK MAPK release was greater in male compared to female piglets after fluid percussion injury, but dopamine also blocked their up-regulation equivalently in male and female piglets after fluid percussion injury. CONCLUSIONS These data indicate that dopamine is protective of autoregulation after fluid percussion injury in both sexes. These observations advocate for the consideration of development of sex based therapies for treatment of hemodynamic sequalae of pediatric traumatic brain injury.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | |
Collapse
|
13
|
de Vries HE, Kooij G, Frenkel D, Georgopoulos S, Monsonego A, Janigro D. Inflammatory events at blood-brain barrier in neuroinflammatory and neurodegenerative disorders: implications for clinical disease. Epilepsia 2013; 53 Suppl 6:45-52. [PMID: 23134495 DOI: 10.1111/j.1528-1167.2012.03702.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proper function of the neurovasculature is required for optimal brain function and preventing neuroinflammation and neurodegeneration. Within this review, we discuss alterations of the function of the blood-brain barrier in neurologic disorders such as multiple sclerosis, epilepsy, and Alzheimer's disease and address potential underlying mechanisms.
Collapse
Affiliation(s)
- Helga E de Vries
- Blood-Brain Barrier Research Group, Department of Molecular Cell Biology and Immunology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
14
|
Armstead WM, Riley J, Yarovoi S, Cines DB, Smith DH, Higazi AAR. tPA-S481A prevents neurotoxicity of endogenous tPA in traumatic brain injury. J Neurotrauma 2012; 29:1794-802. [PMID: 22435890 PMCID: PMC3360893 DOI: 10.1089/neu.2012.2328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with loss of autoregulation due to impaired responsiveness to cerebrovascular dilator stimuli, which leads to cerebral hypoperfusion and neuronal impairment or death. Upregulation of tissue plasminogen activator (tPA) post-TBI exacerbates loss of cerebral autoregulation and NMDA-receptor-mediated impairment of cerebral hemodynamics, and enhances excitotoxic neuronal death. However, the relationship between NMDA-receptor activation, loss of autoregulation, and neurological dysfunction is unclear. Here, we evaluated the potential therapeutic efficacy of a catalytically inactive tPA variant, tPA S481A, that acts by competing with wild-type tPA for binding, cleavage, and activation of NMDA receptors. Lateral fluid percussion brain injury was produced in anesthetized piglets. Pial artery reactivity was measured via a closed cranial window, and cerebrospinal fluid (CSF) extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) was quantified by enzyme-linked immunosorbent assay (ELISA). tPA-S481A prevented impairment of cerebral autoregulation and reduced histopathologic changes after TBI by inhibiting upregulation of the ERK isoform of MAPK. Treatment with this tPA variant provides a novel approach for limiting neuronal toxicity caused by untoward NMDA-receptor activation mediated by increased tPA and glutamate following TBI.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Armstead WM, Riley J, Cines DB, Higazi AAR. Combination therapy with glucagon and a novel plasminogen activator inhibitor-1-derived peptide enhances protection against impaired cerebrovasodilation during hypotension after traumatic brain injury through inhibition of ERK and JNK MAPK. Neurol Res 2012; 34:530-7. [PMID: 22642975 DOI: 10.1179/1743132812y.0000000039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Outcome of traumatic brain injury (TBI) is impaired by hypotension and glutamate, and TBI-associated release of endogenous tissue plasminogen activator (tPA) impairs cerebral autoregulation. Glucagon decreases central nervous system glutamate, lessens neuronal cell injury, and improves neurological score in mice after TBI. Glucagon partially protects against impaired cerebrovasodilation during hypotension after TBI in piglets by upregulating cAMP which decreases release of tPA. Pial artery dilation during hypotension is due to release of cAMP-dependent dilator prostaglandins (PG), such as PGE2 and PGI2. TBI impairs PGE2 and PGI2-mediated pial artery dilation, which contributes to disturbed cerebral autoregulation post-insult, by upregulating mitogen-activated protein kinase (MAPK). This study was designed to investigate relationships between tPA, prostaglandins, and MAPK as a mechanism to improve the efficacy of glucagon-mediated preservation of cerebrovasodilation during hypotension after TBI. METHODS Lateral fluid percussion brain injury (FPI) was induced in piglets equipped with a closed cranial window. ERK and JNK MAPK concentrations in cerebrospinal fluid were quantified by enzyme-linked immunosorbent assay. RESULTS Cerebrospinal fluid JNK MAPK was increased by FPI, but blunted by glucagon and the novel plasminogen activator inhibitor-1-derived peptide (PAI-1DP), Ac-RMAPEEIIMDRPFLYVVR-amide. FPI modestly increased, while glucagon and PAI-1DP decreased ERK MAPK. PGE2, PGI2, N-methyl-D-aspartate, and hypotension-induced pial artery dilation was blunted after FPI, partially protected by glucagon, and fully protected by glucagon+PAI-1DP, glucagon+JNK antagonist SP600125 or glucagon+ERK inhibitor U 0126. DISCUSSION Glucagon+PAI-1DP act in concert to protect against impairment of cerebrovasodilation during hypotension after TBI via inhibition of ERK and JNK MAPK.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
16
|
Armstead WM, Riley J, Vavilala MS. TBI sex dependently upregulates ET-1 to impair autoregulation, which is aggravated by phenylephrine in males but is abrogated in females. J Neurotrauma 2012; 29:1483-90. [PMID: 22335188 PMCID: PMC3335106 DOI: 10.1089/neu.2011.2248] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Traumatic brain injury (TBI) contributes to morbidity in children, and boys are disproportionately represented. Endothelin-1 (ET-1) contributes to impaired autoregulation via oxygen (O₂⁻) after TBI in piglets, but its relative role in males compared with females has not been previously investigated. Increased cerebral perfusion pressure (CPP) via phenylephrine (Phe) sex dependently improves impairment of autoregulation after TBI through modulation of extracellular signal-related kinase (ERK) mitogen-activated protein kinase (MAPK) upregulation, aggravated in males, but blocked in females. Activation of adenosine-5'-triphosphate (ATP) and Ca sensitive K channels produce vasodilation, contributing to autoregulation. We hypothesized that ET-1 upregulation is greater in males after TBI and that disturbed autoregulation will be prevented by Phe in a sex-dependent manner through modulation of ET-1, O₂⁻, and ERK. Results show that ET-1 release was greater in males after fluid percussion injury (FPI), blunted by Phe in females, but aggravated in males. K channel vasodilation was impaired more in males than in females after TBI. Phe prevented reductions in K channel vasodilation in females, but further reduced dilation in males after TBI. Co-administration of BQ-123, U0126, or PEG-SOD (ET-1, ERK antagonist, and O₂⁻ scavenger) with Phe restored dilation to K agonists and hypotension in males after TBI. ERK upregulation was blocked by BQ-123 and PEG-SOD. These data indicate that TBI upregulates ET-1 more in males than in females. Elevation of CPP with Phe sex dependently prevents impairment of cerebral autoregulation after TBI through modulation of ET-1, O₂⁻, and ERK mediated impairment of K channel vasodilation. These observations advocate for the consideration of development of sex-based therapies for the treatment of hemodynamic sequelae of pediatric TBI.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care, 3620 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
17
|
Cernak I, Chang T, Ahmed FA, Cruz MI, Vink R, Stoica B, Faden AI. Pathophysiological response to experimental diffuse brain trauma differs as a function of developmental age. Dev Neurosci 2010; 32:442-53. [PMID: 20948187 DOI: 10.1159/000320085] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 08/02/2010] [Indexed: 12/28/2022] Open
Abstract
The purpose of experimental models of traumatic brain injury (TBI) is to reproduce selected aspects of human head injury such as brain edema, contusion or concussion, and functional deficits, among others. As the immature brain may be particularly vulnerable to injury during critical periods of development, and pediatric TBI may cause neurobehavioral deficits, our aim was to develop and characterize as a function of developmental age a model of diffuse TBI (DTBI) with quantifiable functional deficits. We modified a DTBI rat model initially developed by us in adult animals to study the graded response to injury as a function of developmental age - 7-, 14- and 21-day-old rats compared to young adult (3-month-old) animals. Our model caused motor deficits that persisted even after the pups reached adulthood, as well as reduced cognitive performance 2 weeks after injury. Moreover, our model induced prominent edema often seen in pediatric TBI, particularly evident in 7- and 14-day-old animals, as measured by both the wet weight/dry weight method and diffusion-weighted MRI. Blood-brain barrier permeability, as measured by the Evans blue dye technique, peaked at 20 min after trauma in all age groups, with a second peak found only in adult animals at 24 h after injury. Phosphorus MR spectroscopy showed no significant changes in the brain energy metabolism of immature rats with moderate DTBI, in contrast to significant decreases previously identified in adult animals.
Collapse
Affiliation(s)
- Ibolja Cernak
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C., USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Eucker SA, Smith C, Ralston J, Friess SH, Margulies SS. Physiological and histopathological responses following closed rotational head injury depend on direction of head motion. Exp Neurol 2010; 227:79-88. [PMID: 20875409 DOI: 10.1016/j.expneurol.2010.09.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/31/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Rotational inertial forces are thought to be the underlying mechanism for most severe brain injuries. However, little is known about the effect of head rotation direction on injury outcomes, particularly in the pediatric population. Neonatal piglets were subjected to a single non-impact head rotation in the horizontal, coronal, or sagittal direction, and physiological and histopathological responses were observed. Sagittal rotation produced the longest duration of unconsciousness, highest incidence of apnea, and largest intracranial pressure increase, while coronal rotation produced little change, and horizontal rotation produced intermediate and variable derangements. Significant cerebral blood flow reductions were observed following sagittal but not coronal or horizontal injury compared to sham. Subarachnoid hemorrhage, ischemia, and brainstem pathology were observed in the sagittal and horizontal groups but not in a single coronal animal. Significant axonal injury occurred following both horizontal and sagittal rotations. For both groups, the distribution of injury was greater in the frontal and parietotemporal lobes than in the occipital lobes, frequently occurred in the absence of ischemia, and did not correlate with regional cerebral blood flow reductions. We postulate that these direction-dependent differences in injury outcomes are due to differences in tissue mechanical loading produced during head rotation.
Collapse
Affiliation(s)
- Stephanie A Eucker
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
19
|
Donat CK, Walter B, Deuther-Conrad W, Wenzel B, Nieber K, Bauer R, Brust P. Alterations of cholinergic receptors and the vesicular acetylcholine transporter after lateral fluid percussion injury in newborn piglets. Neuropathol Appl Neurobiol 2010; 36:225-36. [DOI: 10.1111/j.1365-2990.2009.01050.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Effects of lateral fluid percussion injury on cholinergic markers in the newborn piglet brain. Int J Dev Neurosci 2009; 28:31-8. [DOI: 10.1016/j.ijdevneu.2009.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 09/03/2009] [Accepted: 10/04/2009] [Indexed: 11/18/2022] Open
|
21
|
Abstract
OBJECTIVE Craniosynostosis is the premature fusion of the calvarial sutures and is associated with aesthetic impairment and secondary damage to brain growth. Associated neurological injuries can result from increased intracranial pressure (ICP) and abnormal cerebral blood flow (CBF). Arterial spin-labeling (ASL) MRI was used to assess regional CBF in developing rabbits with early-onset coronal suture synostosis (EOCS) and age-matched wild-type controls (WT). METHODS Rabbits were subjected to ASL MRI at or near 10, 25, or 42 days of age. Differences in regional CBF were assessed using one-way ANOVA. CONCLUSION CBF was similar in WT and EOCS rabbits with the exception of the peridural surfaces in EOCS rabbits at 25 days of age. A twofold increase in peridural CBF at 25 days of age coincides with a transient increase in ICP. By 42 days of age, CBF in peridural surfaces had decreased.
Collapse
|
22
|
Abstract
Emerging evidence suggests unique age-dependent responses following pediatric traumatic brain injury. The anesthesiologist plays a pivotal role in the acute treatment of the head-injured pediatric patient. This review provides important updates on the pathophysiology, diagnosis, and age-appropriate acute management of infants and children with severe traumatic brain injury. Areas of important clinical and basic science investigations germane to the anesthesiologist, such as the role of anesthetics and apoptosis in the developing brain, are discussed.
Collapse
Affiliation(s)
- Jimmy W Huh
- Critical Care and Pediatrics, Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Critical Care Office, Philadelphia, PA 19104-4399, USA.
| | | |
Collapse
|
23
|
Hogan AM, Hill CM, Harrison D, Kirkham FJ. Cerebral blood flow velocity and cognition in children before and after adenotonsillectomy. Pediatrics 2008; 122:75-82. [PMID: 18595989 DOI: 10.1542/peds.2007-2540] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The goal was to determine whether amelioration of sleep-disordered breathing through adenotonsillectomy would reduce middle cerebral artery velocity in parallel with improvements in cognition and behavior. METHODS For 19 children (mean age: 6 years) with mild sleep-disordered breathing, and 14 healthy, ethnically similar and age-similar, control subjects, parents repeated the Pediatric Sleep Questionnaire an average of 12 months after adenotonsillectomy. Children with sleep-disordered breathing underwent repeated overnight measurement of mean oxyhemoglobin saturation. Neurobehavioral tests that yielded significant group differences preoperatively were readministered. Middle cerebral artery velocity measurements were repeated with blinding to sleep study and neuropsychological results, and mixed-design analyses of variance were performed. RESULTS The median Pediatric Sleep Questionnaire score significantly improved postoperatively, and there was a significant increase in mean overnight oxyhemoglobin saturation. The middle cerebral artery velocity decreased in the sleep-disordered breathing group postoperatively, whereas control subjects showed a slight increase. A preoperative group difference was reduced by the postoperative assessment, which suggests normalization of middle cerebral artery velocity in those with sleep-disordered breathing. The increase in mean overnight oxyhemoglobin saturation postoperatively was associated with a reduction in middle cerebral artery velocity in a subgroup of children. A preoperative group difference in processing speed was reduced postoperatively. Similarly, a trend for a preoperative group difference in visual attention was reduced postoperatively. Executive function remained significantly worse for the children with sleep-disordered breathing, compared with control subjects, although mean postoperative scores were lower than preoperative scores. CONCLUSIONS Otherwise-healthy young children with apparently mild sleep-disordered breathing have potentially reversible cerebral hemodynamic and neurobehavioral changes.
Collapse
Affiliation(s)
- Alexandra M Hogan
- Developmental Brain-Behaviour Unit, Neurosciences Unit, University College London Institute of Child Health, London, England
| | | | | | | |
Collapse
|
24
|
Udomphorn Y, Armstead WM, Vavilala MS. Cerebral blood flow and autoregulation after pediatric traumatic brain injury. Pediatr Neurol 2008; 38:225-34. [PMID: 18358399 PMCID: PMC2330089 DOI: 10.1016/j.pediatrneurol.2007.09.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 08/17/2007] [Accepted: 09/26/2007] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury is a global health concern and is the leading cause of traumatic morbidity and mortality in children. Despite a lower overall mortality than in adult traumatic brain injury, the cost to society from the sequelae of pediatric traumatic brain injury is very high. Predictors of poor outcome after traumatic brain injury include altered systemic and cerebral physiology, including altered cerebral hemodynamics. Cerebral autoregulation is often impaired after traumatic brain injury and may adversely impact the outcome. Although altered cerebrovascular hemodynamics early after traumatic brain injury may contribute to disability in children, there is little information regarding changes in cerebral blood flow and cerebral autoregulation after pediatric traumatic brain injury. This review addresses normal pediatric cerebral physiology and cerebrovascular pathophysiology after pediatric traumatic brain injury.
Collapse
Affiliation(s)
- Yuthana Udomphorn
- Department of Anesthesiology Harborview Medical Center, University of Washington Seattle, WA
| | - William M. Armstead
- Departments of Anesthesiology and Critical Care and Pharmacology University of Pennsylvania Philadelphia, PA
| | - Monica S. Vavilala
- Department of Anesthesiology Harborview Medical Center, University of Washington Seattle, WA
- Department of Pediatrics Harborview Medical Center, University of Washington Seattle, WA
| |
Collapse
|
25
|
Armstead WM, Vavilala MS. Adrenomedullin reduces gender-dependent loss of hypotensive cerebrovasodilation after newborn brain injury through activation of ATP-dependent K channels. J Cereb Blood Flow Metab 2007; 27:1702-9. [PMID: 17377515 DOI: 10.1038/sj.jcbfm.9600473] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cerebrovascular dysregulation during hypotension occurs after fluid percussion brain injury (FPI) in the newborn pig owing to impaired K channel function. This study was designed to (1) determine the role of gender and K channel activation in adrenomedullin (ADM) cerebrovasodilation, (2) characterize the role of gender in the loss of hypotensive cerebrovasodilation after FPI, and (3) determine the role of gender in the ability of exogenous ADM to modulate hypotensive dysregulation after FPI. Lateral FPI (2 atm) was induced in newborn male and female newborn pigs (1 to 5 days old) equipped with a closed cranial window, n=6 for each protocol. Adrenomedullin-induced pial artery dilation was significantly greater in female than male piglets and blocked by the K(ATP) channel antagonist glibenclamide, but not by the K(ca) channel antagonist iberiotoxin. Cerebrospinal fluid ADM was increased from 3.8+/-0.7 to 14.6+/-3.0 fmol/mL after FPI in female but was unchanged in male piglets. Hypotensive pial artery dilation was blunted to a significantly greater degree in male versus female piglets after FPI. Topical pretreatment with a subthreshold vascular concentration of ADM (10(-10) mol/L) before FPI reduced the loss of hypotensive pial artery dilation in both genders, but protection was significantly greater in male versus female piglets. These data show that hypotensive pial artery dilation is impaired after FPI in a gender-dependent manner. By unmasking a gender-dependent endogenous protectant, these data suggest novel gender-dependent approaches for clinical intervention in the treatment of perinatal traumatic brain injury.
Collapse
Affiliation(s)
- William M Armstead
- Departments of Anesthesiology and Critical Care and Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW This review will update the reader on the most significant recent findings with regards to both the clinical research and basic science of pediatric traumatic brain injury. RECENT FINDINGS The developing brain is not simply a smaller version of the mature brain. Studies have uncovered important distinctions of the younger brain after traumatic brain injury, including an increased propensity for apoptosis, age-dependent parameters for cerebral blood flow and metabolism, development-specific biomarkers, increased likelihood of early posttraumatic seizures, differential sensitivity to commonly used neuroactive medications and altered neuroplasticity during recovery from injury. Specifically, there is strong preclinical evidence for increased neuronal apoptosis in the developing brain being triggered by anesthetics and anticonvulsants, making it paramount that future studies more clearly delineate preferred agents and specific indications for use, incorporating long-term functional outcomes as well as short-term benefits. In addition, the young brain may actually benefit from therapeutic interventions that have been less effective following adult traumatic brain injury, such as decompressive craniectomy and hypothermia. SUMMARY An increasing body of evidence demonstrates the importance of establishing age-dependent guidelines for physiological monitoring, pharmacological intervention, management of intracranial pressure and facilitating recovery of function.
Collapse
Affiliation(s)
- Christopher C Giza
- Division of Neurology, Department of Pediatrics, Mattel Children's Hospital at UCLA, Los Angeles, California, USA.
| | | | | |
Collapse
|
27
|
Tontisirin N, Muangman SL, Suz P, Pihoker C, Fisk D, Moore A, Lam AM, Vavilala MS. Early childhood gender differences in anterior and posterior cerebral blood flow velocity and autoregulation. Pediatrics 2007; 119:e610-5. [PMID: 17283178 DOI: 10.1542/peds.2006-2110] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE We aimed to describe gender differences in blood flow velocity and autoregulation of the anterior and posterior cerebral circulations in prepubertal children. METHODS A prospective observational cohort study was performed at Harborview Medical Center's Cerebrovascular Laboratory after institutional review board approval, consent, and assent procedures. Children underwent measurement of middle cerebral and basilar artery flow velocities and cerebral autoregulation testing of the middle cerebral and basilar arteries. Cerebral autoregulation was quantified using the autoregulatory index, and estimated cerebrovascular resistance was calculated. Autoregulatory index <0.4 reflects impaired cerebral autoregulation. Data are presented as mean +/- SD. Patients were healthy 4- to 8-year-old children. RESULTS Forty-eight children (24 boys and 24 girls) 4 to 8 years of age (mean: 6 +/- 2 years) were enrolled. Middle cerebral artery flow velocity was higher than basilar artery flow velocity (96 +/- 13 vs 65 +/- 11 cm/s). Girls had higher middle cerebral artery flow velocity (99 +/- 11 vs 91 +/- 13 cm/s) and basilar artery flow velocity (70 +/- 10 vs 61 +/- 9 cm/s) than boys. Cerebral autoregulation was intact in all children. There was no gender difference in autoregulation between the middle cerebral artery (boys: 0.97 +/- 0.07; girls: 0.94 +/- 0.11) or basilar artery (boys: 0.94 +/- 0.13; girls: 0.94 +/- 0.11). CONCLUSIONS Similar to older children and adults, girls between 4 and 8 years of age had higher middle cerebral and basilar artery flow velocity than age-matched boys. This difference may reflect inherent differences in cerebral metabolic rate and/or estimated cerebrovascular resistance between the genders.
Collapse
Affiliation(s)
- Nuj Tontisirin
- Anesthesiology, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Dean JM, Gunn AJ, Wassink G, Bennet L. Transient NMDA receptor-mediated hypoperfusion following umbilical cord occlusion in preterm fetal sheep. Exp Physiol 2005; 91:423-33. [PMID: 16317084 DOI: 10.1113/expphysiol.2005.032375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Exposure to severe hypoxia leads to delayed cerebral and peripheral hypoperfusion. There is evidence in the very immature brain that transient abnormal glutaminergic receptor activity can occur during this phase of recovery. We therefore examined the role of N-methyl-D-aspartate (NMDA) receptor activity in mediating secondary hypoperfusion in preterm fetal sheep at 70% of gestation. Fetuses received either sham asphyxia or asphyxia and were studied for 12 h recovery. The specific, non-competitive NMDA receptor antagonist dizocilpine maleate (2 mg kg-1 bolus plus 0.07 mg kg h-1i.v.) or saline (vehicle) was infused from 15 min after asphyxia until 4 h. In the asphyxia-vehicle group abnormal epileptiform EEG transients were observed during the first 4 h of reperfusion, the peak of which corresponded approximately to the nadir in peripheral and cerebral hypoperfusion. Dizocilpine significantly suppressed this activity (2.7+/-1.3 versus 11.2+/-2.7 counts min-1 at peak frequency, P<0.05) and markedly delayed and attenuated the rise in vascular resistance in both peripheral and cerebral vascular beds observed after asphyxia, effectively preventing the initial deep period of hypoperfusion in carotid blood flow and femoral blood flow (P<0.01). However, while continued infusion did attenuate subsequent transient tachycardia, it did not prevent the development of a secondary phase of persistent but less profound hypoperfusion. In conclusion, the present studies suggest that in the immature brain the initial phase of delayed cerebral and peripheral hypoperfusion following exposure to severe hypoxia is mediated by NMDA receptor activity. The timing of this effect in the cerebral circulation corresponds closely to abnormal EEG activity, suggesting a pathological glutaminergic activation that we speculate is related to evolving brain injury.
Collapse
Affiliation(s)
- Justin M Dean
- Department of Physiology, Faculty of Medicine and Health Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | |
Collapse
|