1
|
Soe NN, Yu Z, Latt PM, Lee D, Samra RS, Ge Z, Rahman R, Sun J, Ong JJ, Fairley CK, Zhang L. Using AI to Differentiate Mpox From Common Skin Lesions in a Sexual Health Clinic: Algorithm Development and Validation Study. J Med Internet Res 2024; 26:e52490. [PMID: 39269753 PMCID: PMC11437223 DOI: 10.2196/52490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/11/2024] [Accepted: 06/10/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND The 2022 global outbreak of mpox has significantly impacted health facilities, and necessitated additional infection prevention and control measures and alterations to clinic processes. Early identification of suspected mpox cases will assist in mitigating these impacts. OBJECTIVE We aimed to develop and evaluate an artificial intelligence (AI)-based tool to differentiate mpox lesion images from other skin lesions seen in a sexual health clinic. METHODS We used a data set with 2200 images, that included mpox and non-mpox lesions images, collected from Melbourne Sexual Health Centre and web resources. We adopted deep learning approaches which involved 6 different deep learning architectures to train our AI models. We subsequently evaluated the performance of each model using a hold-out data set and an external validation data set to determine the optimal model for differentiating between mpox and non-mpox lesions. RESULTS The DenseNet-121 model outperformed other models with an overall area under the receiver operating characteristic curve (AUC) of 0.928, an accuracy of 0.848, a precision of 0.942, a recall of 0.742, and an F1-score of 0.834. Implementation of a region of interest approach significantly improved the performance of all models, with the AUC for the DenseNet-121 model increasing to 0.982. This approach resulted in an increase in the correct classification of mpox images from 79% (55/70) to 94% (66/70). The effectiveness of this approach was further validated by a visual analysis with gradient-weighted class activation mapping, demonstrating a reduction in false detection within the background of lesion images. On the external validation data set, ResNet-18 and DenseNet-121 achieved the highest performance. ResNet-18 achieved an AUC of 0.990 and an accuracy of 0.947, and DenseNet-121 achieved an AUC of 0.982 and an accuracy of 0.926. CONCLUSIONS Our study demonstrated it was possible to use an AI-based image recognition algorithm to accurately differentiate between mpox and common skin lesions. Our findings provide a foundation for future investigations aimed at refining the algorithm and establishing the place of such technology in a sexual health clinic.
Collapse
Affiliation(s)
- Nyi Nyi Soe
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
- School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Zhen Yu
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
- Augmented Intelligence and Multimodal analytics (AIM) for Health Lab, Faculty of Information Technology, Monash University, Melbourne, Australia
| | - Phyu Mon Latt
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
- School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - David Lee
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
| | - Ranjit Singh Samra
- Department of Infectious Diseases, Alfred Hospital, Alfred Health, Melbourne, Australia
| | - Zongyuan Ge
- Augmented Intelligence and Multimodal analytics (AIM) for Health Lab, Faculty of Information Technology, Monash University, Melbourne, Australia
| | - Rashidur Rahman
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
| | - Jiajun Sun
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
- School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Jason J Ong
- School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
| | - Christopher K Fairley
- School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
| | - Lei Zhang
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
- School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Clinical Medical Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Soe NN, Yu Z, Latt PM, Lee D, Ong JJ, Ge Z, Fairley CK, Zhang L. Evaluation of artificial intelligence-powered screening for sexually transmitted infections-related skin lesions using clinical images and metadata. BMC Med 2024; 22:296. [PMID: 39020355 PMCID: PMC11256573 DOI: 10.1186/s12916-024-03512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Sexually transmitted infections (STIs) pose a significant global public health challenge. Early diagnosis and treatment reduce STI transmission, but rely on recognising symptoms and care-seeking behaviour of the individual. Digital health software that distinguishes STI skin conditions could improve health-seeking behaviour. We developed and evaluated a deep learning model to differentiate STIs from non-STIs based on clinical images and symptoms. METHODS We used 4913 clinical images of genital lesions and metadata from the Melbourne Sexual Health Centre collected during 2010-2023. We developed two binary classification models to distinguish STIs from non-STIs: (1) a convolutional neural network (CNN) using images only and (2) an integrated model combining both CNN and fully connected neural network (FCN) using images and metadata. We evaluated the model performance by the area under the ROC curve (AUC) and assessed metadata contributions to the Image-only model. RESULTS Our study included 1583 STI and 3330 non-STI images. Common STI diagnoses were syphilis (34.6%), genital warts (24.5%) and herpes (19.4%), while most non-STIs (80.3%) were conditions such as dermatitis, lichen sclerosis and balanitis. In both STI and non-STI groups, the most frequently observed groups were 25-34 years (48.6% and 38.2%, respectively) and heterosexual males (60.3% and 45.9%, respectively). The Image-only model showed a reasonable performance with an AUC of 0.859 (SD 0.013). The Image + Metadata model achieved a significantly higher AUC of 0.893 (SD 0.018) compared to the Image-only model (p < 0.01). Out of 21 metadata, the integration of demographic and dermatological metadata led to the most significant improvement in model performance, increasing AUC by 6.7% compared to the baseline Image-only model. CONCLUSIONS The Image + Metadata model outperformed the Image-only model in distinguishing STIs from other skin conditions. Using it as a screening tool in a clinical setting may require further development and evaluation with larger datasets.
Collapse
Affiliation(s)
- Nyi N Soe
- Melbourne Sexual Health Centre, Alfred Health, 580 Swanston Street, Carlton, Melbourne, VIC, 3053, Australia
- School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Zhen Yu
- School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Phyu M Latt
- Melbourne Sexual Health Centre, Alfred Health, 580 Swanston Street, Carlton, Melbourne, VIC, 3053, Australia
- School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - David Lee
- Melbourne Sexual Health Centre, Alfred Health, 580 Swanston Street, Carlton, Melbourne, VIC, 3053, Australia
| | - Jason J Ong
- Melbourne Sexual Health Centre, Alfred Health, 580 Swanston Street, Carlton, Melbourne, VIC, 3053, Australia
- School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Zongyuan Ge
- Augmented Intelligence and Multimodal analytics (AIM) for Health Lab, Faculty of Information Technology, Monash University, Melbourne, Australia
| | - Christopher K Fairley
- Melbourne Sexual Health Centre, Alfred Health, 580 Swanston Street, Carlton, Melbourne, VIC, 3053, Australia
- School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Lei Zhang
- Melbourne Sexual Health Centre, Alfred Health, 580 Swanston Street, Carlton, Melbourne, VIC, 3053, Australia.
- School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
- Clinical Medical Research Centre, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210008, China.
| |
Collapse
|
3
|
Somayajula SA, Litake O, Liang Y, Hosseini R, Nemati S, Wilson DO, Weinreb RN, Malhotra A, Xie P. Improving long COVID-related text classification: a novel end-to-end domain-adaptive paraphrasing framework. Sci Rep 2024; 14:85. [PMID: 38168099 PMCID: PMC10761882 DOI: 10.1038/s41598-023-48594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
The emergence of long COVID during the ongoing COVID-19 pandemic has presented considerable challenges for healthcare professionals and researchers. The task of identifying relevant literature is particularly daunting due to the rapidly evolving scientific landscape, inconsistent definitions, and a lack of standardized nomenclature. This paper proposes a novel solution to this challenge by employing machine learning techniques to classify long COVID literature. However, the scarcity of annotated data for machine learning poses a significant obstacle. To overcome this, we introduce a strategy called medical paraphrasing, which diversifies the training data while maintaining the original content. Additionally, we propose a Data-Reweighting-Based Multi-Level Optimization Framework for Domain Adaptive Paraphrasing, supported by a Meta-Weight-Network (MWN). This innovative approach incorporates feedback from the downstream text classification model to influence the training of the paraphrasing model. During the training process, the framework assigns higher weights to the training examples that contribute more effectively to the downstream task of long COVID text classification. Our findings demonstrate that this method substantially improves the accuracy and efficiency of long COVID literature classification, offering a valuable tool for physicians and researchers navigating this complex and ever-evolving field.
Collapse
Affiliation(s)
- Sai Ashish Somayajula
- Department of Electrical and Computer Engineering, University of California, La Jolla, San Diego, USA
| | - Onkar Litake
- Department of Electrical and Computer Engineering, University of California, La Jolla, San Diego, USA
| | - Youwei Liang
- Department of Electrical and Computer Engineering, University of California, La Jolla, San Diego, USA
| | - Ramtin Hosseini
- Department of Electrical and Computer Engineering, University of California, La Jolla, San Diego, USA
| | - Shamim Nemati
- Division of Biomedical Informatics, University of California, La Jolla, San Diego, USA
| | - David O Wilson
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - Robert N Weinreb
- Hamilton Glaucoma Center, Shiley Eye Center and Department of Ophthalmology, University of California, La Jolla, San Diego, USA
| | - Atul Malhotra
- UC San Diego Health, Department of Medicine, La Jolla, San Diego, USA
| | - Pengtao Xie
- Department of Electrical and Computer Engineering, University of California, La Jolla, San Diego, USA.
| |
Collapse
|
4
|
Henao JAG, Depotter A, Bower DV, Bajercius H, Todorova PT, Saint-James H, de Mortanges AP, Barroso MC, He J, Yang J, You C, Staib LH, Gange C, Ledda RE, Caminiti C, Silva M, Cortopassi IO, Dela Cruz CS, Hautz W, Bonel HM, Sverzellati N, Duncan JS, Reyes M, Poellinger A. A Multiclass Radiomics Method-Based WHO Severity Scale for Improving COVID-19 Patient Assessment and Disease Characterization From CT Scans. Invest Radiol 2023; 58:882-893. [PMID: 37493348 PMCID: PMC10662611 DOI: 10.1097/rli.0000000000001005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/26/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the severity of COVID-19 patients' disease by comparing a multiclass lung lesion model to a single-class lung lesion model and radiologists' assessments in chest computed tomography scans. MATERIALS AND METHODS The proposed method, AssessNet-19, was developed in 2 stages in this retrospective study. Four COVID-19-induced tissue lesions were manually segmented to train a 2D-U-Net network for a multiclass segmentation task followed by extensive extraction of radiomic features from the lung lesions. LASSO regression was used to reduce the feature set, and the XGBoost algorithm was trained to classify disease severity based on the World Health Organization Clinical Progression Scale. The model was evaluated using 2 multicenter cohorts: a development cohort of 145 COVID-19-positive patients from 3 centers to train and test the severity prediction model using manually segmented lung lesions. In addition, an evaluation set of 90 COVID-19-positive patients was collected from 2 centers to evaluate AssessNet-19 in a fully automated fashion. RESULTS AssessNet-19 achieved an F1-score of 0.76 ± 0.02 for severity classification in the evaluation set, which was superior to the 3 expert thoracic radiologists (F1 = 0.63 ± 0.02) and the single-class lesion segmentation model (F1 = 0.64 ± 0.02). In addition, AssessNet-19 automated multiclass lesion segmentation obtained a mean Dice score of 0.70 for ground-glass opacity, 0.68 for consolidation, 0.65 for pleural effusion, and 0.30 for band-like structures compared with ground truth. Moreover, it achieved a high agreement with radiologists for quantifying disease extent with Cohen κ of 0.94, 0.92, and 0.95. CONCLUSIONS A novel artificial intelligence multiclass radiomics model including 4 lung lesions to assess disease severity based on the World Health Organization Clinical Progression Scale more accurately determines the severity of COVID-19 patients than a single-class model and radiologists' assessment.
Collapse
|
5
|
Rosen-Zvi M, Frimer M, Shoher A, Liel-Cohen N, Sprecher E, Reuveni MM, Shwarzman D, Onn AT, Voliovitch H. Nurturing next generation physicians: A new Israeli healthtech fellowship. iScience 2023; 26:107550. [PMID: 37744411 PMCID: PMC10517394 DOI: 10.1016/j.isci.2023.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
The Israeli Society for HealthTech aims at advancing the integration of innovation and healthcare entrepreneurship into medical practice and across traditional health professions, to benefit patients and improve quality of care. In 2021, the Society launched the first fellowship for board certified physicians in HealthTech. This backstory discusses the motivation of launching the program and reviews the design of the fellowship, including curriculum, the expertise of the lecturers, and initial tangible results of the program.
Collapse
Affiliation(s)
- Michal Rosen-Zvi
- AI for Accelerated Healthcare & Life Sciences Discovery, IBM R&D Laboratories, University of Haifa Campus, Mount Carmel, Haifa 3498825, Israel
- The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem, Israel
| | | | | | - Noah Liel-Cohen
- Israeli Society for HealthTech
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Eli Sprecher
- Israeli Society for HealthTech
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel and Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
6
|
Ahmadinejad N, Ayyoubzadeh SM, Zeinalkhani F, Delazar S, Javanmard Z, Ahmadinejad Z, Mohajeri A, Esmaeili M. Discovering associations between radiological features and COVID-19 patients' deterioration. Health Sci Rep 2023; 6:e1257. [PMID: 37711676 PMCID: PMC10497911 DOI: 10.1002/hsr2.1257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 09/16/2023] Open
Abstract
Background and Aims Data mining methods are effective and well-known tools for developing predictive models and extracting useful information from various data of patients. The present study aimed to predict the severity of patients with COVID-19 by applying the rule mining method using characteristics of medical images. Methods This retrospective study has analyzed the radiological data from 104 COVID-19 hospitalized patients diagnosed with COVID-19 in a hospital in Iran. A data set containing 75 binary features was generated. Apriori method is utilized for association rule mining on this data set. Only rules with confidence equal to one were generated. The performance of rules is calculated by support, coverage, and lift indexes. Results Ten rules were extracted with only X-ray-related features on cases referred to ICU. The Support and Coverage index of all of these rules was 0.087, and the Lift index of them was 1.58. Thirteen rules were extracted from only CT scan-related features on cases referred to ICU. The CXR_Pleural effusion feature has appeared in all the rules. The CXR_Left upper zone feature appears in 9 rules out of 10. The Support and Coverage index of all rules was 0.15, and the Lift index of all rules was 1.63. the CT_Adjacent pleura thickening feature has appeared in all rules, and the CT_Right middle lobe appeared in 9 rules out of 13. Conclusion This study could reveal the application and efficacy of CXR and CT scan imaging modalities in predicting ICU admission to a major COVID-19 infection via data mining methods. The findings of this study could help data scientists, radiologists, and clinicians in the future development and implementation of these methods in similar conditions and timely and appropriately save patients from adverse disease outcomes.
Collapse
Affiliation(s)
- Nasrin Ahmadinejad
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR)Tehran University of Medical SciencesTehranIran
- Radiology Department, Cancer Institute, Imam Khomeini Hospital ComplexTehran University of Medical ScienceTehranIran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical SciencesTehran University of Medical SciencesTehranIran
| | - Fahimeh Zeinalkhani
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR)Tehran University of Medical SciencesTehranIran
- Radiology Department, Cancer Institute, Imam Khomeini Hospital ComplexTehran University of Medical ScienceTehranIran
| | - Sina Delazar
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR)Tehran University of Medical SciencesTehranIran
| | - Zohreh Javanmard
- Department of Health Information Management, School of Allied Medical SciencesTehran University of Medical SciencesTehranIran
| | - Zahra Ahmadinejad
- Department of Infectious Diseases, Imam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
| | | | - Marzieh Esmaeili
- Department of Health Information Management, School of Allied Medical SciencesTehran University of Medical SciencesTehranIran
| |
Collapse
|
7
|
Zhang R, Griner D, Garrett JW, Qi Z, Chen GH. Training certified detectives to track down the intrinsic shortcuts in COVID-19 chest x-ray data sets. Sci Rep 2023; 13:12690. [PMID: 37542078 PMCID: PMC10403557 DOI: 10.1038/s41598-023-39855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023] Open
Abstract
Deep learning faces a significant challenge wherein the trained models often underperform when used with external test data sets. This issue has been attributed to spurious correlations between irrelevant features in the input data and corresponding labels. This study uses the classification of COVID-19 from chest x-ray radiographs as an example to demonstrate that the image contrast and sharpness, which are characteristics of a chest radiograph dependent on data acquisition systems and imaging parameters, can be intrinsic shortcuts that impair the model's generalizability. The study proposes training certified shortcut detective models that meet a set of qualification criteria which can then identify these intrinsic shortcuts in a curated data set.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Medical Physics, School of Medicine and Public Health, The University of Wisconsin in Madison, Madison, WI, 53705, USA
| | - Dalton Griner
- Department of Medical Physics, School of Medicine and Public Health, The University of Wisconsin in Madison, Madison, WI, 53705, USA
| | - John W Garrett
- Department of Medical Physics, School of Medicine and Public Health, The University of Wisconsin in Madison, Madison, WI, 53705, USA
- Department of Radiology, School of Medicine and Public Health, The University of Wisconsin in Madison, Madison, WI, 53792, USA
| | - Zhihua Qi
- Department of Radiology, Henry Ford Health, Detroit, MI, 48202, USA
| | - Guang-Hong Chen
- Department of Medical Physics, School of Medicine and Public Health, The University of Wisconsin in Madison, Madison, WI, 53705, USA.
- Department of Radiology, School of Medicine and Public Health, The University of Wisconsin in Madison, Madison, WI, 53792, USA.
| |
Collapse
|
8
|
Pershin I, Mustafaev T, Ibragimova D, Ibragimov B. Changes in Radiologists' Gaze Patterns Against Lung X-rays with Different Abnormalities: a Randomized Experiment. J Digit Imaging 2023; 36:767-775. [PMID: 36622464 PMCID: PMC9838425 DOI: 10.1007/s10278-022-00760-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
The workload of some radiologists increased dramatically in the last several, which resulted in a potentially reduced quality of diagnosis. It was demonstrated that diagnostic accuracy of radiologists significantly reduces at the end of work shifts. The study aims to investigate how radiologists cover chest X-rays with their gaze in the presence of different chest abnormalities and high workload. We designed a randomized experiment to quantitatively assess how radiologists' image reading patterns change with the radiological workload. Four radiologists read chest X-rays on a radiological workstation equipped with an eye-tracker. The lung fields on the X-rays were automatically segmented with U-Net neural network allowing to measure the lung coverage with radiologists' gaze. The images were randomly split so that each image was shown at a different time to a different radiologist. Regression models were fit to the gaze data to calculate the treads in lung coverage for individual radiologists and chest abnormalities. For the study, a database of 400 chest X-rays with reference diagnoses was assembled. The average lung coverage with gaze ranged from 55 to 65% per radiologist. For every 100 X-rays read, the lung coverage reduced from 1.3 to 7.6% for the different radiologists. The coverage reduction trends were consistent for all abnormalities ranging from 3.4% per 100 X-rays for cardiomegaly to 4.1% per 100 X-rays for atelectasis. The more image radiologists read, the smaller part of the lung fields they cover with the gaze. This pattern is very stable for all abnormality types and is not affected by the exact order the abnormalities are viewed by radiologists. The proposed randomized experiment captured and quantified consistent changes in X-ray reading for different lung abnormalities that occur due to high workload.
Collapse
Affiliation(s)
- Ilya Pershin
- Innopolis University, Republic of Tatarstan, Innopolis, Russia
| | - Tamerlan Mustafaev
- Innopolis University, Republic of Tatarstan, Innopolis, Russia
- Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
9
|
Bruno A, Ignesti G, Salvetti O, Moroni D, Martinelli M. Efficient Lung Ultrasound Classification. Bioengineering (Basel) 2023; 10:bioengineering10050555. [PMID: 37237625 DOI: 10.3390/bioengineering10050555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
A machine learning method for classifying lung ultrasound is proposed here to provide a point of care tool for supporting a safe, fast, and accurate diagnosis that can also be useful during a pandemic such as SARS-CoV-2. Given the advantages (e.g., safety, speed, portability, cost-effectiveness) provided by the ultrasound technology over other examinations (e.g., X-ray, computer tomography, magnetic resonance imaging), our method was validated on the largest public lung ultrasound dataset. Focusing on both accuracy and efficiency, our solution is based on an efficient adaptive ensembling of two EfficientNet-b0 models reaching 100% of accuracy, which, to our knowledge, outperforms the previous state-of-the-art models by at least 5%. The complexity is restrained by adopting specific design choices: ensembling with an adaptive combination layer, ensembling performed on the deep features, and minimal ensemble using two weak models only. In this way, the number of parameters has the same order of magnitude of a single EfficientNet-b0 and the computational cost (FLOPs) is reduced at least by 20%, doubled by parallelization. Moreover, a visual analysis of the saliency maps on sample images of all the classes of the dataset reveals where an inaccurate weak model focuses its attention versus an accurate one.
Collapse
Affiliation(s)
- Antonio Bruno
- Institute of Information Science and Technologies, National Research Council, 56124 Pisa, Italy
| | - Giacomo Ignesti
- Institute of Information Science and Technologies, National Research Council, 56124 Pisa, Italy
| | - Ovidio Salvetti
- Institute of Information Science and Technologies, National Research Council, 56124 Pisa, Italy
| | - Davide Moroni
- Institute of Information Science and Technologies, National Research Council, 56124 Pisa, Italy
| | - Massimo Martinelli
- Institute of Information Science and Technologies, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
10
|
Zhang R, Griner D, Garrett JW, Qi Z, Chen GH. Training certified detectives to track down the intrinsic shortcuts in COVID-19 chest x-ray data sets. RESEARCH SQUARE 2023:rs.3.rs-2818347. [PMID: 37162826 PMCID: PMC10168454 DOI: 10.21203/rs.3.rs-2818347/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Deep learning faces a significant challenge wherein the trained models often underperform when used with external test data sets. This issue has been attributed to spurious correlations between irrelevant features in the input data and corresponding labels. This study uses the classification of COVID-19 from chest x-ray radiographs as an example to demonstrate that the image contrast and sharpness, which are characteristics of a chest radiograph dependent on data acquisition systems and imaging parameters, can be intrinsic shortcuts that impair the model's generalizability. The study proposes training certified shortcut detective models that meet a set of qualification criteria which can then identify these intrinsic shortcuts in a curated data set.
Collapse
|
11
|
Du X, Chen Z, Li Q, Yang S, Jiang L, Yang Y, Li Y, Gu Z. Organoids revealed: morphological analysis of the profound next generation in-vitro model with artificial intelligence. Biodes Manuf 2023; 6:319-339. [PMID: 36713614 PMCID: PMC9867835 DOI: 10.1007/s42242-022-00226-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/06/2022] [Indexed: 01/21/2023]
Abstract
In modern terminology, "organoids" refer to cells that grow in a specific three-dimensional (3D) environment in vitro, sharing similar structures with their source organs or tissues. Observing the morphology or growth characteristics of organoids through a microscope is a commonly used method of organoid analysis. However, it is difficult, time-consuming, and inaccurate to screen and analyze organoids only manually, a problem which cannot be easily solved with traditional technology. Artificial intelligence (AI) technology has proven to be effective in many biological and medical research fields, especially in the analysis of single-cell or hematoxylin/eosin stained tissue slices. When used to analyze organoids, AI should also provide more efficient, quantitative, accurate, and fast solutions. In this review, we will first briefly outline the application areas of organoids and then discuss the shortcomings of traditional organoid measurement and analysis methods. Secondly, we will summarize the development from machine learning to deep learning and the advantages of the latter, and then describe how to utilize a convolutional neural network to solve the challenges in organoid observation and analysis. Finally, we will discuss the limitations of current AI used in organoid research, as well as opportunities and future research directions. Graphic abstract
Collapse
Affiliation(s)
- Xuan Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009 China
| | - Lincao Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Yi Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Yanhui Li
- State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210008 China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| |
Collapse
|
12
|
Huang SC, Chaudhari AS, Langlotz CP, Shah N, Yeung S, Lungren MP. Developing medical imaging AI for emerging infectious diseases. Nat Commun 2022; 13:7060. [PMID: 36400764 PMCID: PMC9672573 DOI: 10.1038/s41467-022-34234-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022] Open
Abstract
Very few of the COVID-19 ML models were fit for deployment in real-world settings. In this Comment, Huang et al. discuss the main steps required to develop clinically useful models in the context of an emerging infectious disease.
Collapse
Affiliation(s)
- Shih-Cheng Huang
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Center for Artificial Intelligence in Medicine & Imaging, Stanford University, Stanford, CA, USA.
| | - Akshay S Chaudhari
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Center for Artificial Intelligence in Medicine & Imaging, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Curtis P Langlotz
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Center for Artificial Intelligence in Medicine & Imaging, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Nigam Shah
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Serena Yeung
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Center for Artificial Intelligence in Medicine & Imaging, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Clinical Excellence Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew P Lungren
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Center for Artificial Intelligence in Medicine & Imaging, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Chen ZS, Kulkarni P(P, Galatzer-Levy IR, Bigio B, Nasca C, Zhang Y. Modern views of machine learning for precision psychiatry. PATTERNS (NEW YORK, N.Y.) 2022; 3:100602. [PMID: 36419447 PMCID: PMC9676543 DOI: 10.1016/j.patter.2022.100602] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In light of the National Institute of Mental Health (NIMH)'s Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. We further review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We also discuss explainable AI (XAI) and neuromodulation in a closed human-in-the-loop manner and highlight the ML potential in multi-media information extraction and multi-modal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | | | - Isaac R. Galatzer-Levy
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Meta Reality Lab, New York, NY, USA
| | - Benedetta Bigio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carla Nasca
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
14
|
Sheng B, Chen X, Li T, Ma T, Yang Y, Bi L, Zhang X. An overview of artificial intelligence in diabetic retinopathy and other ocular diseases. Front Public Health 2022; 10:971943. [PMID: 36388304 PMCID: PMC9650481 DOI: 10.3389/fpubh.2022.971943] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/04/2022] [Indexed: 01/25/2023] Open
Abstract
Artificial intelligence (AI), also known as machine intelligence, is a branch of science that empowers machines using human intelligence. AI refers to the technology of rendering human intelligence through computer programs. From healthcare to the precise prevention, diagnosis, and management of diseases, AI is progressing rapidly in various interdisciplinary fields, including ophthalmology. Ophthalmology is at the forefront of AI in medicine because the diagnosis of ocular diseases heavy reliance on imaging. Recently, deep learning-based AI screening and prediction models have been applied to the most common visual impairment and blindness diseases, including glaucoma, cataract, age-related macular degeneration (ARMD), and diabetic retinopathy (DR). The success of AI in medicine is primarily attributed to the development of deep learning algorithms, which are computational models composed of multiple layers of simulated neurons. These models can learn the representations of data at multiple levels of abstraction. The Inception-v3 algorithm and transfer learning concept have been applied in DR and ARMD to reuse fundus image features learned from natural images (non-medical images) to train an AI system with a fraction of the commonly used training data (<1%). The trained AI system achieved performance comparable to that of human experts in classifying ARMD and diabetic macular edema on optical coherence tomography images. In this study, we highlight the fundamental concepts of AI and its application in these four major ocular diseases and further discuss the current challenges, as well as the prospects in ophthalmology.
Collapse
Affiliation(s)
- Bin Sheng
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Beijing Retinal and Choroidal Vascular Diseases Study Group, Beijing Tongren Hospital, Beijing, China
| | - Xiaosi Chen
- Beijing Retinal and Choroidal Vascular Diseases Study Group, Beijing Tongren Hospital, Beijing, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Tingyao Li
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Beijing Retinal and Choroidal Vascular Diseases Study Group, Beijing Tongren Hospital, Beijing, China
| | - Tianxing Ma
- Chongqing University-University of Cincinnati Joint Co-op Institute, Chongqing University, Chongqing, China
| | - Yang Yang
- Beijing Retinal and Choroidal Vascular Diseases Study Group, Beijing Tongren Hospital, Beijing, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lei Bi
- School of Computer Science, University of Sydney, Sydney, NSW, Australia
| | - Xinyuan Zhang
- Beijing Retinal and Choroidal Vascular Diseases Study Group, Beijing Tongren Hospital, Beijing, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
An Empirical Analysis of an Optimized Pretrained Deep Learning Model for COVID-19 Diagnosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9771212. [PMID: 35928972 PMCID: PMC9344483 DOI: 10.1155/2022/9771212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
As a result of the COVID-19 outbreak, which has put the world in an unprecedented predicament, thousands of people have died. Data from structured and unstructured sources are combined to create user-friendly platforms for clinicians and researchers in an integrated bioinformatics approach. The diagnosis and treatment of COVID-19 disease can be accelerated using AI-based platforms. In the battle against the virus, however, researchers and decision-makers must contend with an ever-increasing volume of data, referred to as “big data.” VGG19 and ResNet152V2 pretrained deep learning architectures were used in this study. With these datasets, we could train and fine-tune our model on lung ultrasound frames from healthy people as well as from patients with COVID-19 and pneumonia. In two separate experiments, we evaluated two different classes of predictive models: one against pneumonia and the other against non-COVID-19. COVID-19 can be detected and diagnosed accurately and efficiently using these models, according to the findings. Therefore, the use of these inexpensive and affordable deep learning methods should be considered as a reliable method for the diagnosis of COVID-19.
Collapse
|
16
|
Toopaang W, Bunnak W, Srisuksam C, Wattananukit W, Tanticharoen M, Yang YL, Amnuaykanjanasin A. Microbial polyketides and their roles in insect virulence: from genomics to biological functions. Nat Prod Rep 2022; 39:2008-2029. [PMID: 35822627 DOI: 10.1039/d1np00058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: May 1966 up to January 2022Entomopathogenic microorganisms have potential for biological control of insect pests. Their main secondary metabolites include polyketides, nonribosomal peptides, and polyketide-nonribosomal peptide (PK-NRP) hybrids. Among these secondary metabolites, polyketides have mainly been studied for structural identification, pathway engineering, and for their contributions to medicine. However, little is known about the function of polyketides in insect virulence. This review focuses on the role of bacterial and fungal polyketides, as well as PK-NRP hybrids in insect infection and killing. We also discuss gene distribution and evolutional relationships among different microbial species. Further, the role of microbial polyketides and the hybrids in modulating insect-microbial symbiosis is also explored. Understanding the mechanisms of polyketides in insect pathogenesis, how compounds moderate the host-fungus interaction, and the distribution of PKS genes across different fungi and bacteria will facilitate the discovery and development of novel polyketide-derived bio-insecticides.
Collapse
Affiliation(s)
- Wachiraporn Toopaang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand. .,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Warapon Bunnak
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Chettida Srisuksam
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Wilawan Wattananukit
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Morakot Tanticharoen
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan. .,Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711010, Taiwan
| | - Alongkorn Amnuaykanjanasin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
17
|
Li MD, Chang K, Mei X, Bernheim A, Chung M, Steinberger S, Kalpathy-Cramer J, Little BP. Radiology Implementation Considerations for Artificial Intelligence (AI) Applied to COVID-19, From the AJR Special Series on AI Applications. AJR Am J Roentgenol 2022; 219:15-23. [PMID: 34612681 DOI: 10.2214/ajr.21.26717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hundreds of imaging-based artificial intelligence (AI) models have been developed in response to the COVID-19 pandemic. AI systems that incorporate imaging have shown promise in primary detection, severity grading, and prognostication of outcomes in COVID-19, and have enabled integration of imaging with a broad range of additional clinical and epidemiologic data. However, systematic reviews of AI models applied to COVID-19 medical imaging have highlighted problems in the field, including methodologic issues and problems in real-world deployment. Clinical use of such models should be informed by both the promise and potential pitfalls of implementation. How does a practicing radiologist make sense of this complex topic, and what factors should be considered in the implementation of AI tools for imaging of COVID-19? This critical review aims to help the radiologist understand the nuances that impact the clinical deployment of AI for imaging of COVID-19. We review imaging use cases for AI models in COVID-19 (e.g., diagnosis, severity assessment, and prognostication) and explore considerations for AI model development and testing, deployment infrastructure, clinical user interfaces, quality control, and institutional review board and regulatory approvals, with a practical focus on what a radiologist should consider when implementing an AI tool for COVID-19.
Collapse
Affiliation(s)
- Matthew D Li
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| | - Ken Chang
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| | - Xueyan Mei
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adam Bernheim
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Michael Chung
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sharon Steinberger
- Department of Radiology, NewYork-Presbyterian/Weill Cornell Medical Center, New York, NY
| | - Jayashree Kalpathy-Cramer
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| | - Brent P Little
- Department of Radiology, Mayo Clinic Florida, Jacksonville, FL
| |
Collapse
|
18
|
Pershin I, Kholiavchenko M, Maksudov B, Mustafaev T, Ibragimova D, Ibragimov B. Artificial Intelligence for the Analysis of Workload-Related Changes in Radiologists' Gaze Patterns. IEEE J Biomed Health Inform 2022; 26:4541-4550. [PMID: 35704540 DOI: 10.1109/jbhi.2022.3183299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Around 60-80% of radiological errors are attributed to overlooked abnormalities, the rate of which increases at the end of work shifts. In this study, we run an experiment to investigate if artificial intelligence (AI) can assist in detecting radiologists' gaze patterns that correlate with fatigue. A retrospective database of lung X-ray images with the reference diagnoses was used. The X-ray images were acquired from 400 subjects with a mean age of 49 ± 17, and 61% men. Four practicing radiologists read these images while their eye movements were recorded. The radiologists passed a series of concentration tests at prearranged breaks of the experiment. A U-Net neural network was adapted to annotate lung anatomy on X-rays and calculate coverage and information gain features from the radiologists' eye movements over lung fields. The lung coverage, information gain, and eye tracker-based features were compared with the cumulative work done (CDW) label for each radiologist. The gaze-traveled distance, X-ray coverage, and lung coverage statistically significantly (p < 0.01) deteriorated with cumulative work done (CWD) for three out of four radiologists. The reading time and information gain over lungs statistically significantly deteriorated for all four radiologists. We discovered a novel AI-based metric blending reading time, speed, and organ coverage, which can be used to predict changes in the fatigue-related image reading patterns.
Collapse
|
19
|
Abstract
Machine learning (ML) methods are pervading an increasing number of fields of application because of their capacity to effectively solve a wide variety of challenging problems. The employment of ML techniques in ultrasound imaging applications started several years ago but the scientific interest in this issue has increased exponentially in the last few years. The present work reviews the most recent (2019 onwards) implementations of machine learning techniques for two of the most popular ultrasound imaging fields, medical diagnostics and non-destructive evaluation. The former, which covers the major part of the review, was analyzed by classifying studies according to the human organ investigated and the methodology (e.g., detection, segmentation, and/or classification) adopted, while for the latter, some solutions to the detection/classification of material defects or particular patterns are reported. Finally, the main merits of machine learning that emerged from the study analysis are summarized and discussed.
Collapse
|
20
|
Wu W, Hu D, Cong W, Shan H, Wang S, Niu C, Yan P, Yu H, Vardhanabhuti V, Wang G. Stabilizing deep tomographic reconstruction: Part A. Hybrid framework and experimental results. PATTERNS (NEW YORK, N.Y.) 2022; 3:100474. [PMID: 35607623 PMCID: PMC9122961 DOI: 10.1016/j.patter.2022.100474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/24/2021] [Accepted: 03/01/2022] [Indexed: 12/16/2022]
Abstract
A recent PNAS paper reveals that several popular deep reconstruction networks are unstable. Specifically, three kinds of instabilities were reported: (1) strong image artefacts from tiny perturbations, (2) small features missed in a deeply reconstructed image, and (3) decreased imaging performance with increased input data. Here, we propose an analytic compressed iterative deep (ACID) framework to address this challenge. ACID synergizes a deep network trained on big data, kernel awareness from compressed sensing (CS)-inspired processing, and iterative refinement to minimize the data residual relative to real measurement. Our study demonstrates that the ACID reconstruction is accurate, is stable, and sheds light on the converging mechanism of the ACID iteration under a bounded relative error norm assumption. ACID not only stabilizes an unstable deep reconstruction network but also is resilient against adversarial attacks to the whole ACID workflow, being superior to classic sparsity-regularized reconstruction and eliminating the three kinds of instabilities.
Collapse
Affiliation(s)
- Weiwen Wu
- Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Dianlin Hu
- The Laboratory of Image Science and Technology, Southeast University, Nanjing, China
| | - Wenxiang Cong
- Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Hongming Shan
- Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Shaoyu Wang
- Department of Electrical & Computer Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| | - Chuang Niu
- Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Pingkun Yan
- Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Hengyong Yu
- Department of Electrical & Computer Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| | - Varut Vardhanabhuti
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Ge Wang
- Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
21
|
Let AI Perform Better Next Time—A Systematic Review of Medical Imaging-Based Automated Diagnosis of COVID-19: 2020–2022. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pandemic of COVID-19 has caused millions of infections, which has led to a great loss all over the world, socially and economically. Due to the false-negative rate and the time-consuming characteristic of the Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests, diagnosing based on X-ray images and Computed Tomography (CT) images has been widely adopted to confirm positive COVID-19 RT-PCR tests. Since the very beginning of the pandemic, researchers in the artificial intelligence area have proposed a large number of automatic diagnosing models, hoping to assist radiologists and improve the diagnosing accuracy. However, after two years of development, there are still few models that can actually be applied in real-world scenarios. Numerous problems have emerged in the research of the automated diagnosis of COVID-19. In this paper, we present a systematic review of these diagnosing models. A total of 179 proposed models are involved. First, we compare the medical image modalities (CT or X-ray) for COVID-19 diagnosis from both the clinical perspective and the artificial intelligence perspective. Then, we classify existing methods into two types—image-level diagnosis (i.e., classification-based methods) and pixel-level diagnosis (i.e., segmentation-based models). For both types of methods, we define universal model pipelines and analyze the techniques that have been applied in each step of the pipeline in detail. In addition, we also review some commonly adopted public COVID-19 datasets. More importantly, we present an in-depth discussion of the existing automated diagnosis models and note a total of three significant problems: biased model performance evaluation; inappropriate implementation details; and a low reproducibility, reliability and explainability. For each point, we give corresponding recommendations on how we can avoid making the same mistakes and let AI perform better in the next pandemic.
Collapse
|
22
|
Deep Learning Applied to Chest Radiograph Classification—A COVID-19 Pneumonia Experience. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Due to the recent COVID-19 pandemic, a large number of reports present deep learning algorithms that support the detection of pneumonia caused by COVID-19 in chest radiographs. Few studies have provided the complete source code, limiting testing and reproducibility on different datasets. This work presents Cimatec_XCOV19, a novel deep learning system inspired by the Inception-V3 architecture that is able to (i) support the identification of abnormal chest radiographs and (ii) classify the abnormal radiographs as suggestive of COVID-19. The training dataset has 44,031 images with 2917 COVID-19 cases, one of the largest datasets in recent literature. We organized and published an external validation dataset of 1158 chest radiographs from a Brazilian hospital. Two experienced radiologists independently evaluated the radiographs. The Cimatec_XCOV19 algorithm obtained a sensitivity of 0.85, specificity of 0.82, and AUC ROC of 0.93. We compared the AUC ROC of our algorithm with a well-known public solution and did not find a statistically relevant difference between both performances. We provide full access to the code and the test dataset, enabling this work to be used as a tool for supporting the fast screening of COVID-19 on chest X-ray exams, serving as a reference for educators, and supporting further algorithm enhancements.
Collapse
|
23
|
Jemioło P, Storman D, Orzechowski P. Artificial Intelligence for COVID-19 Detection in Medical Imaging-Diagnostic Measures and Wasting-A Systematic Umbrella Review. J Clin Med 2022; 11:2054. [PMID: 35407664 PMCID: PMC9000039 DOI: 10.3390/jcm11072054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has sparked a barrage of primary research and reviews. We investigated the publishing process, time and resource wasting, and assessed the methodological quality of the reviews on artificial intelligence techniques to diagnose COVID-19 in medical images. We searched nine databases from inception until 1 September 2020. Two independent reviewers did all steps of identification, extraction, and methodological credibility assessment of records. Out of 725 records, 22 reviews analysing 165 primary studies met the inclusion criteria. This review covers 174,277 participants in total, including 19,170 diagnosed with COVID-19. The methodological credibility of all eligible studies was rated as critically low: 95% of papers had significant flaws in reporting quality. On average, 7.24 (range: 0-45) new papers were included in each subsequent review, and 14% of studies did not include any new paper into consideration. Almost three-quarters of the studies included less than 10% of available studies. More than half of the reviews did not comment on the previously published reviews at all. Much wasting time and resources could be avoided if referring to previous reviews and following methodological guidelines. Such information chaos is alarming. It is high time to draw conclusions from what we experienced and prepare for future pandemics.
Collapse
Affiliation(s)
- Paweł Jemioło
- AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, al. A. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Dawid Storman
- Chair of Epidemiology and Preventive Medicine, Department of Hygiene and Dietetics, Jagiellonian University Medical College, ul. M. Kopernika 7, 31-034 Krakow, Poland;
| | - Patryk Orzechowski
- AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, al. A. Mickiewicza 30, 30-059 Krakow, Poland;
- Institute for Biomedical Informatics, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Fritsch S, Sharafutdinov K, Schuppert A, Bickenbach J. [Usage of Artificial Intelligence in the Combat against the COVID-19 Pandemic]. Anasthesiol Intensivmed Notfallmed Schmerzther 2022; 57:185-197. [PMID: 35320841 DOI: 10.1055/a-1423-8039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The COVID-19 pandemic is a global health emergency of historic dimension. In this situation, researchers worldwide wanted to help manage the pandemic by using artificial intelligence (AI). This narrative review aims to describe the usage of AI in the combat against COVID-19. The addressed aspects encompass AI algorithms for analysis of thoracic X-rays or CTs, prediction models for severity and outcome of the disease, AI applications in development of new drugs and vaccines as well as forecasting models for spread of the virus. The review shows, which approaches were pursued, and which were successful.
Collapse
|
25
|
Gillman AG, Lunardo F, Prinable J, Belous G, Nicolson A, Min H, Terhorst A, Dowling JA. Automated COVID-19 diagnosis and prognosis with medical imaging and who is publishing: a systematic review. Phys Eng Sci Med 2022; 45:13-29. [PMID: 34919204 PMCID: PMC8678975 DOI: 10.1007/s13246-021-01093-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To conduct a systematic survey of published techniques for automated diagnosis and prognosis of COVID-19 diseases using medical imaging, assessing the validity of reported performance and investigating the proposed clinical use-case. To conduct a scoping review into the authors publishing such work. METHODS The Scopus database was queried and studies were screened for article type, and minimum source normalized impact per paper and citations, before manual relevance assessment and a bias assessment derived from a subset of the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). The number of failures of the full CLAIM was adopted as a surrogate for risk-of-bias. Methodological and performance measurements were collected from each technique. Each study was assessed by one author. Comparisons were evaluated for significance with a two-sided independent t-test. FINDINGS Of 1002 studies identified, 390 remained after screening and 81 after relevance and bias exclusion. The ratio of exclusion for bias was 71%, indicative of a high level of bias in the field. The mean number of CLAIM failures per study was 8.3 ± 3.9 [1,17] (mean ± standard deviation [min,max]). 58% of methods performed diagnosis versus 31% prognosis. Of the diagnostic methods, 38% differentiated COVID-19 from healthy controls. For diagnostic techniques, area under the receiver operating curve (AUC) = 0.924 ± 0.074 [0.810,0.991] and accuracy = 91.7% ± 6.4 [79.0,99.0]. For prognostic techniques, AUC = 0.836 ± 0.126 [0.605,0.980] and accuracy = 78.4% ± 9.4 [62.5,98.0]. CLAIM failures did not correlate with performance, providing confidence that the highest results were not driven by biased papers. Deep learning techniques reported higher AUC (p < 0.05) and accuracy (p < 0.05), but no difference in CLAIM failures was identified. INTERPRETATION A majority of papers focus on the less clinically impactful diagnosis task, contrasted with prognosis, with a significant portion performing a clinically unnecessary task of differentiating COVID-19 from healthy. Authors should consider the clinical scenario in which their work would be deployed when developing techniques. Nevertheless, studies report superb performance in a potentially impactful application. Future work is warranted in translating techniques into clinical tools.
Collapse
Affiliation(s)
- Ashley G Gillman
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Surgical Treatment and Rehabilitation Service, 296 Herston Road, Brisbane, QLD, 4029, Australia.
| | - Febrio Lunardo
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Surgical Treatment and Rehabilitation Service, 296 Herston Road, Brisbane, QLD, 4029, Australia
- College of Science and Engineering, James Cook University, Australian Tropical Science Innovation Precinct, Townsville, QLD, 4814, Australia
| | - Joseph Prinable
- ACRF Image X Institute, University of Sydney, Level 2, Biomedical Building (C81), 1 Central Ave, Australian Technology Park, Eveleigh, Sydney, NSW, 2015, Australia
| | - Gregg Belous
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Surgical Treatment and Rehabilitation Service, 296 Herston Road, Brisbane, QLD, 4029, Australia
| | - Aaron Nicolson
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Surgical Treatment and Rehabilitation Service, 296 Herston Road, Brisbane, QLD, 4029, Australia
| | - Hang Min
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Surgical Treatment and Rehabilitation Service, 296 Herston Road, Brisbane, QLD, 4029, Australia
| | - Andrew Terhorst
- Data61, Commonwealth Scientific and Industrial Research Organisation, College Road, Sandy Bay, Hobart, TAS, 7005, Australia
| | - Jason A Dowling
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Surgical Treatment and Rehabilitation Service, 296 Herston Road, Brisbane, QLD, 4029, Australia
| |
Collapse
|
26
|
Kufel J, Bargieł K, Koźlik M, Czogalik Ł, Dudek P, Jaworski A, Cebula M, Gruszczyńska K. Application of artificial intelligence in diagnosing COVID-19 disease symptoms on chest X-rays: A systematic review. Int J Med Sci 2022; 19:1743-1752. [PMID: 36313227 PMCID: PMC9608047 DOI: 10.7150/ijms.76515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/07/2022] [Indexed: 11/06/2022] Open
Abstract
This systematic review focuses on using artificial intelligence (AI) to detect COVID-19 infection with the help of X-ray images. Methodology: In January 2022, the authors searched PubMed, Embase and Scopus using specific medical subject headings terms and filters. All articles were independently reviewed by two reviewers. All conflicts resulting from a misunderstanding were resolved by a third independent researcher. After assessing abstracts and article usefulness, eliminating repetitions and applying inclusion and exclusion criteria, six studies were found to be qualified for this study. Results: The findings from individual studies differed due to the various approaches of the authors. Sensitivity was 72.59%-100%, specificity was 79%-99.9%, precision was 74.74%-98.7%, accuracy was 76.18%-99.81%, and the area under the curve was 95.24%-97.7%. Conclusion: AI computational models used to assess chest X-rays in the process of diagnosing COVID-19 should achieve sufficiently high sensitivity and specificity. Their results and performance should be repeatable to make them dependable for clinicians. Moreover, these additional diagnostic tools should be more affordable and faster than the currently available procedures. The performance and calculations of AI-based systems should take clinical data into account.
Collapse
Affiliation(s)
- Jakub Kufel
- Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | - Katarzyna Bargieł
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Maciej Koźlik
- Division of Cardiology and Structural Heart Disease, Medical University of Silesia, 40-635 Katowice, Poland
| | - Łukasz Czogalik
- Professor Zbigniew Religa Student Scientific Association at the Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | - Piotr Dudek
- Professor Zbigniew Religa Student Scientific Association at the Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | - Aleksander Jaworski
- Professor Zbigniew Religa Student Scientific Association at the Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | - Maciej Cebula
- Department of Radiology and Nuclear Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-754 Katowice, Poland
| | - Katarzyna Gruszczyńska
- Department of Radiology and Nuclear Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-754 Katowice, Poland
| |
Collapse
|
27
|
Zokaeinikoo M, Kazemian P, Mitra P, Kumara S. AIDCOV: An Interpretable Artificial Intelligence Model for Detection of COVID-19 from Chest Radiography Images. ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS 2021. [DOI: 10.1145/3466690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
As the
Coronavirus Disease 2019 (COVID-19)
pandemic continues to grow globally, testing to detect COVID-19 and isolating individuals who test positive remains the primary strategy for preventing community spread of the disease. Therefore, automatic and accurate detection of COVID-19 using medical imaging modalities, which are more widely available and accessible, can be beneficial as an alternative diagnostic tool. In this study, an
Artificial Intelligence model for Detection of COVID-19 (AIDCOV)
is developed to classify chest radiography images as belonging to a person with either COVID-19, other infections, or no pneumonia (i.e., normal). The hierarchical structure in AIDCOV captures the dependencies among features and improves model performance while an attention mechanism makes the model interpretable and transparent. We used several publicly available datasets of both
computed tomography (CT)
and X-ray modalities. The main public dataset for chest X-ray images contains 475 COVID-19 samples, 3949 samples from other viral/bacterial infections, and 1583 normal samples. Our model achieves a mean cross-validation accuracy of 98.4%. AIDCOV has a sensitivity of 99.8%, a specificity of 100%, and an F1-score of 99.8% in detecting COVID-19 from X-ray images on that dataset. Using a large dataset of CT images, our model obtained mean cross-validation accuracy and sensitivity of 98.8% and 99.4%, respectively. Additionally, our interpretable model can distinguish subtle signs of infection within each radiography image. Assuming these results hold up in larger datasets obtained from a variety of patients over the world, AIDCOV can be used in conjunction with or instead of RT-PCR testing (where RT-PCR testing is unavailable) to detect and isolate individuals with COVID-19, prevent onward transmission to the general population and healthcare workers, and highlight the areas in the lungs that show signs of COVID-related damage.
Collapse
Affiliation(s)
- Maryam Zokaeinikoo
- Department of Supply Chain & Information Systems, Smeal College of Business, The Pennsylvania State University, State College, University Park, PA
| | - Pooyan Kazemian
- Department of Operations, Weatherhead School of Management, Case Western Reserve University, Cleveland, OH
| | - Prasenjit Mitra
- College of Information Sciences and Technology, The Pennsylvania State University, State College, University Park, PA
| | - Soundar Kumara
- Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, State College, University Park, PA
| |
Collapse
|
28
|
Altersberger M, Schneider M, Schiller M, Binder-Rodriguez C, Genger M, Khafaga M, Binder T, Prosch H. Point of care echocardiography and lung ultrasound in critically ill patients with COVID-19. Wien Klin Wochenschr 2021; 133:1298-1309. [PMID: 34714384 PMCID: PMC8553894 DOI: 10.1007/s00508-021-01968-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/25/2021] [Indexed: 01/08/2023]
Abstract
Hundreds of millions got infected, and millions have died worldwide and still the number of cases is rising.Chest radiographs and computed tomography (CT) are useful for imaging the lung but their use in infectious diseases is limited due to hygiene and availability.Lung ultrasound has been shown to be useful in the context of the pandemic, providing clinicians with valuable insights and helping identify complications such as pleural effusion in heart failure or bacterial superinfections. Moreover, lung ultrasound is useful for identifying possible complications of procedures, in particular, pneumothorax.Associations between coronavirus disease 2019 (COVID-19) and cardiac complications, such as acute myocardial infarction and myocarditis, have been reported. As such, point of care echocardiography as well as a comprehensive approach in later stages of the disease provide important information for optimally diagnosing and treating complications of COVID-19.In our experience, lung ultrasound in combination with echocardiography, has a great impact on treatment decisions. In the acute state as well as in the follow-up setting after a severe or critical state of COVID-19, ultrasound can be of great impact to monitor the progression and regression of disease.
Collapse
Affiliation(s)
- Martin Altersberger
- Rehabilitation Center Hochegg for Cardiovascular and Respiratory Diseases, Friedrich Hillegeist Straße 2, 2840 Grimmenstein, Austria
- Department of Cardiology, Nephrology and Intensive Care Medicine, State Hospital Steyr, Steyr, Austria
| | - Matthias Schneider
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria Waehringer Guertel 18–20, 1090
| | - Martina Schiller
- Department of Radiology, State hospital Neunkirchen, Neunkirchen, Austria
| | - Christina Binder-Rodriguez
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria Waehringer Guertel 18–20, 1090
| | - Martin Genger
- Department of Cardiology, Nephrology and Intensive Care Medicine, State Hospital Steyr, Steyr, Austria
| | - Mounir Khafaga
- Rehabilitation Center Hochegg for Cardiovascular and Respiratory Diseases, Friedrich Hillegeist Straße 2, 2840 Grimmenstein, Austria
| | - Thomas Binder
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria Waehringer Guertel 18–20, 1090
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Abstract
COVID-19, an infectious coronavirus disease, caused a pandemic with countless deaths. From the outset, clinical institutes have explored computed tomography as an effective and complementary screening tool alongside the reverse transcriptase-polymerase chain reaction. Deep learning techniques have shown promising results in similar medical tasks and, hence, may provide solutions to COVID-19 based on medical images of patients. We aim to contribute to the research in this field by: (i) Comparing different architectures on a public and extended reference dataset to find the most suitable; (ii) Proposing a patient-oriented investigation of the best performing networks; and (iii) Evaluating their robustness in a real-world scenario, represented by cross-dataset experiments. We exploited ten well-known convolutional neural networks on two public datasets. The results show that, on the reference dataset, the most suitable architecture is VGG19, which (i) Achieved 98.87% accuracy in the network comparison; (ii) Obtained 95.91% accuracy on the patient status classification, even though it misclassifies some patients that other networks classify correctly; and (iii) The cross-dataset experiments exhibit the limitations of deep learning approaches in a real-world scenario with 70.15% accuracy, which need further investigation to improve the robustness. Thus, VGG19 architecture showed promising performance in the classification of COVID-19 cases. Nonetheless, this architecture enables extensive improvements based on its modification, or even with preprocessing step in addition to it. Finally, the cross-dataset experiments exposed the critical weakness of classifying images from heterogeneous data sources, compatible with a real-world scenario.
Collapse
|