1
|
Meymandi MS, Sepehri G, Moslemizadeh A, Shahrbabaki SSV. Prenatal Pregabalin Exposure Alters Postnatal Pain Sensitivity and Some Behavioral Responses in Adult Offspring Rats. Curr Drug Saf 2021; 15:205-214. [PMID: 32598270 DOI: 10.2174/1574886315666200628114257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prenatal antiepileptic drug exposure could demonstrate both congenital malformations and behavioral impairments in offspring. OBJECTIVE This study was performed to assess the effects of prenatal exposure to pregabalin (PGB) on pain response, anxiety, motor activity and some behavior of adult offspring rats. METHODS Pregnant Wistar rats received PGB (7.5, 15 and 30 mg/kg/ip) during embryonic days 9.5- 15.5. The pain response, anxiety-like behaviors, locomotor activity, motor balance and coordination and anhedonia of adult offspring were examined by tail-flick and hot plate test, open field test, elevated plus maze (EPM), beam balance test and sucrose preference test in their 60th day of life, respectively. RESULTS Prenatal exposure to PGB revealed significant dose-dependent reduction in pain sensitivity (increase in pain latency response) in the hot plate test, especially in females, while anxiety-like behavior assessed in EPM and open field significantly reduced in males. In the open field, locomotor activity reduced significantly after exposure to PGB 30 mg/kg and motor coordination decreased dose-dependently, especially in males. Anhedonia, as an indication of sucrose preference or pleasure response, was not changed. CONCLUSION These findings suggest that prenatal PGB exposure could be associated with significant changes in pain response, anxiety, locomotor activity and coordination in adult offspring rats.
Collapse
Affiliation(s)
- Manzumeh-Shamsi Meymandi
- Pathology and Stem Cells Research Center, Kerman Medical School, Kerman University of Medical Sciences, Kerman, Iran,Physiology and Pharmacology Department, Kerman Medical School, Kerman University of Medical Sciences,
Kerman, Iran
| | - Gholamreza Sepehri
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical
Sciences, Kerman, Iran
| | | | | |
Collapse
|
2
|
Aoki S, Kaizaki-Mitsumoto A, Hattori N, Numazawa S. Fetal methylphenidate exposure induced ADHD-like phenotypes and decreased Drd2 and Slc6a3 expression levels in mouse offspring. Toxicol Lett 2021; 344:1-10. [PMID: 33647392 DOI: 10.1016/j.toxlet.2021.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022]
Abstract
Methylphenidate (MPD) is used as a first-line treatment for attention-deficit/hyperactivity disorder (ADHD). The number of prescriptions for ADHD patients is increasing, suggesting that the number of fertile women using such medication might be also increasing. The purpose of this study was to clarify the effects of MPD exposure during the fetal period on infant development, behavior, learning, and memory in mice. Expression levels of candidate genes associated with ADHD were also determined in the brain of pups born to MDP-treated dams who were administered MPD orally at a dose of 2.5, 7.5, or 15 mg/kg daily from gestational day 1 to the day before delivery. Offspring aged 6-8 weeks were subjected to the spontaneous locomotor activity, elevated plus-maze, and passive avoidance tests and therapeutic treatments with MPD or atomoxetine. Fetal MPD exposure induced ADHD-like phenotypes, such as hyperactivity and impulsivity, in mouse offspring, which were suppressed by treatment with MPD and atomoxetine. These mice showed decreased Drd2 and Slc6a3 expression levels in the brain, which are often observed in ADHD model animals. Our results suggest that continuous use of MPD during pregnancy induces ADHD phenotypes in the offspring.
Collapse
Affiliation(s)
- Satoru Aoki
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Asuka Kaizaki-Mitsumoto
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Natsumi Hattori
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
3
|
De Serrano AR, Hughes KA, Rodd FH. Paternal exposure to a common pharmaceutical (Ritalin) has transgenerational effects on the behaviour of Trinidadian guppies. Sci Rep 2021; 11:3985. [PMID: 33597600 PMCID: PMC7889922 DOI: 10.1038/s41598-021-83448-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/02/2021] [Indexed: 01/04/2023] Open
Abstract
Evidence is emerging that paternal effects, the nongenetic influence of fathers on their offspring, can be transgenerational, spanning several generations. Methylphenidate hydrochloride (MPH; e.g. Ritalin) is a dopaminergic drug that is highly prescribed to adolescent males for the treatment of Attention-deficit/hyperactivity disorder. It has been suggested that MPH could cause transgenerational effects because MPH can affect the male germline in rodents and because paternal effects have been observed in individuals taking similar drugs (e.g. cocaine). Despite these concerns, the transgenerational effects of paternal MPH exposure are unknown. Therefore, we exposed male and female Trinidadian guppies (Poecilia reticulata) to a low, chronic dose of MPH and observed that MPH affected the anxiety/exploratory behaviour of males, but not females. Because of this male-specific effect, we investigated the transgenerational effects of MPH through the paternal line. We observed behavioural effects of paternal MPH exposure on offspring and great-grandoffspring that were not directly administered the drug, making this the first study to demonstrate that paternal MPH exposure can affect descendants. These effects were not due to differential mortality or fecundity between control and MPH lines. These results highlight the transgenerational potential of MPH.
Collapse
Affiliation(s)
- Alex R De Serrano
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada.
| | - Kimberly A Hughes
- Department of Biological Science, Florida State University, 319 Stadium Dr, Tallahassee, FL, 32304, USA
| | - F Helen Rodd
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
4
|
Lima KS, Salles AES, de Araújo Costa G, Yokoyama MF, de Paula Ramos S, Paixão-Côrtes VR, de Lima RLLF, Salles MJS. Methylphenidate effects on mice odontogenesis and connections with human odontogenesis. Odontology 2020; 109:336-348. [PMID: 32869117 DOI: 10.1007/s10266-020-00548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/17/2020] [Indexed: 11/29/2022]
Abstract
The purpose of this study is to evaluate the effects of Methylphenidate exposure on mice odontogenesis and connect them by bioinformatics with human odontogenesis. Thirty-two pregnant Swiss mice were divided into treated group and control group, which received, respectively, 5 mg/kg of Methylphenidate and saline solution from the 5th to the 17th day of pregnancy. The mouse embryos tooth germs were analyzed through optical microscopy, and the data collected were analyzed statistically by Fisher's exact test. The presence and similarity of Methylphenidate-associated genes (Pharmgkb database) in both organisms and their interaction with dental development genes (AmiGO2 database) were verified on STRING database. Rates of tooth germ malformations were higher in treated than in control group (Control: 18; Treated: 27; p = 0.035). Mouse embryo malformations were connected with 238 interactions between 69 dental development genes with 35 Methylphenidate genes. Fourteen interactions for four Methylphenidate genes with four dental development genes, with human experimental data, were connected with mouse phenotype data. By homology, the interactions and conservation of proteins/genes may indicate similar outcomes for both organisms. The exposure to Methylphenidate during pregnancy affected odontogenesis in mouse embryos and may affect human odontogenesis. The study of malformations in mice, with a bioinformatics approach, could contribute to understanding of the Methylphenidate effect on embryo development. These results may provide novel hypotheses for further testing and reinforce the FDA protocol: as Methylphenidate is included in category C, its use during pregnancy should be considered if the benefits outweigh the risks.
Collapse
Affiliation(s)
- Karol Sartori Lima
- Department of General Biology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil
| | - Antônio Eduardo Sparça Salles
- Department of General Biology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil
| | - Gabriel de Araújo Costa
- Department of General Biology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil
| | - Márjori Frítola Yokoyama
- Department of General Biology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil.
| | - Solange de Paula Ramos
- Department of Histology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil
| | - Vanessa Rodrigues Paixão-Côrtes
- PPGBioEvo, Institute of Biology, Federal University of Bahia (UFBA), 668, Barão de Jeremoabo Street, Salvador, 40170-115, Brazil
| | | | - Maria José Sparça Salles
- Department of General Biology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil
| |
Collapse
|
5
|
Li L, Sujan AC, Butwicka A, Chang Z, Cortese S, Quinn P, Viktorin A, Öberg AS, D'Onofrio BM, Larsson H. Associations of Prescribed ADHD Medication in Pregnancy with Pregnancy-Related and Offspring Outcomes: A Systematic Review. CNS Drugs 2020; 34:731-747. [PMID: 32333292 PMCID: PMC7338246 DOI: 10.1007/s40263-020-00728-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Increasing numbers of reproductive-aged women are using attention-deficit/hyperactivity disorder (ADHD) medications. Findings from studies exploring the safety of these medications during pregnancy are mixed, and it is unclear whether associations reflect causal effects or could be partially or fully explained by other factors that differ between exposed and unexposed offspring. OBJECTIVES The aim of this systematic review was to evaluate the adverse pregnancy-related and offspring outcomes associated with exposure to prescribed ADHD medication during pregnancy with a focus on how studies to date have handled the influence of confounding. METHODS We searched PubMed, Embase, PsycINFO, and Web of Science up to 1 July 2019 without any restrictions on language or date of publication. We included all observational studies (e.g., cohort studies, case-control studies, case-crossover studies, cross-sectional studies, and registry-based studies) with pregnant women of any age or from any setting who were prescribed ADHD medications and evaluated any outcome, including both short- and long-term maternal and offspring outcomes. Two independent authors then used the Newcastle-Ottawa Scale to rate the quality of the included studies. RESULTS Eight cohort studies that estimated adverse pregnancy-related and offspring outcomes associated with exposure to ADHD medication during pregnancy were included in the qualitative review. The included studies had substantial methodological differences in data sources, type of medications examined, definitions of studied pregnancy-related and offspring outcomes, types of control groups, and confounding adjustment. There was no convincing evidence for teratogenic effects according to the relative risk of pregnancy-related and offspring outcomes, and the observed differences in absolute risks were overall small in magnitude. Adjustment for confounding was inadequate in most studies, and none of the included studies adjusted for ADHD severity in the mothers. CONCLUSION The current evidence does not suggest that the use of ADHD medication during pregnancy results in significant adverse consequences for mother or offspring. However, the data are too limited to make an unequivocal recommendation. Therefore, physicians should consider whether the advantages of using ADHD medication outweigh the potential risks for the developing fetus according to each woman's specific circumstances. Future research should attempt to triangulate research findings based on a combination of different designs that differ in their underlying strengths and limitations and should investigate specific confounding factors, the potential impact of timing of exposure, and potential long-term outcomes in the offspring.
Collapse
Affiliation(s)
- Lin Li
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ayesha C Sujan
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington, IN, 47405, USA
| | - Agnieszka Butwicka
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Child and Adolescent Psychiatry Stockholm, Stockholm Health Care Services, Stockholm, Region Stockholm, Sweden
- Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Zheng Chang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Life and Environmental Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK
- New York University Child Study Center, New York, NY, USA
| | - Patrick Quinn
- Department of Applied Health Science, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Alexander Viktorin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - A Sara Öberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology, T.H. Chan School of Public Health, Harvard, Boston, MA, USA
| | - Brian M D'Onofrio
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington, IN, 47405, USA.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Henrik Larsson
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Kalinowski L, Connor C, Somanesan R, Carias E, Richer K, Smith L, Martin C, Mackintosh M, Popoola D, Hadjiargyrou M, Komatsu DE, Thanos PK. Brief and extended abstinence from chronic oral methylphenidate treatment produces reversible behavioral and physiological effects. Dev Psychobiol 2020; 62:170-180. [PMID: 31456229 PMCID: PMC7028498 DOI: 10.1002/dev.21902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023]
Abstract
Methylphenidate (MP) is a commonly prescribed psychostimulant to individuals with Attention Deficit Hyperactivity Disorder, and is often used illicitly among healthy individuals with intermittent breaks to coincide with breaks from school. This study examined how intermittent abstinence periods impact the physiological and behavioral effects of chronic oral MP self-administration in rats, and whether these effects persist following prolonged abstinence from the drug. Rats were treated orally with water, low-dose (LD), or high-dose (HD) MP, beginning at PND 28. This daily access continued for three consecutive weeks followed by a 1-week abstinence; after three repeats of this cycle, there was a 5-week abstinence period. Throughout the study, we examined body weight, food intake, locomotor activity, and anxiety- and depressive-like behaviors. During the treatment phase, HD MP decreased body weight, food intake, and depressive- and anxiety-like behaviors, while it increased locomotor activity. During intermittent abstinence, the effects of MP on locomotor activity were eliminated. During prolonged abstinence, most of the effects of HD MP were ameliorated to control levels, with the exception of weight loss and anxiolytic effects. These findings suggest that intermittent exposure to chronic MP causes physiological and behavioral effects that are mostly reversible following prolonged abstinence.
Collapse
Affiliation(s)
- Leanna Kalinowski
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA
- University at Buffalo, Department of Psychology, Buffalo, NY, USA
| | - Carly Connor
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA
| | - Rathini Somanesan
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA
| | - Emily Carias
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA
| | - Kaleigh Richer
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA
- University at Buffalo, Department of Psychology, Buffalo, NY, USA
| | - Lauren Smith
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA
| | - Connor Martin
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA
| | - Macauley Mackintosh
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA
| | - Daniel Popoola
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA
| | - Michael Hadjiargyrou
- New York Institute of Technology, Department of Life Sciences, Old Westbury, NY, USA
| | - David E. Komatsu
- Stony Brook University, Department of Orthopedics, Stony Brook, NY, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA
- University at Buffalo, Department of Psychology, Buffalo, NY, USA
| |
Collapse
|
7
|
LIMA KS, SALLES AE, COSTA GA, RAMOS SP, SALLES MJS. Efeitos do metilfenidato sobre as glândulas salivares maternas de camundongos. REVISTA DE ODONTOLOGIA DA UNESP 2016. [DOI: 10.1590/1807-2577.19415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo Introdução O metilfenidato (MFD) é um derivado anfetamínico estimulante do sistema nervoso central, que vem sendo cada vez mais consumido pela população mundial, incluindo as mulheres em idade fértil. Ainda não foram estabelecidos os efeitos deste medicamento nas glândulas salivares, durante a gestação. Objetivo Identificar alterações histomorfológicas em glândulas salivares maternas expostas ao metilfenidato. Material e método Para análise histológica, foram utilizadas 32 fêmeas de camundongos Swiss prenhes, distribuídas em um grupo controle e um grupo tratado. A administração foi realizada do quinto ao 17º dia de gestação, via injeção subcutânea; o grupo tratado recebeu 5 mg/kg de metilfenidato, enquanto o grupo controle recebeu o mesmo volume de solução salina estéril. As fêmeas foram eutanasiadas e tiveram suas glândulas salivares removidas e incluídas em parafina para análise em microscopia óptica. Para avaliar a associação entre as variáveis dos grupos, o teste de Kolmogorov-Smirnov e o teste T foram utilizados. Resultado As glândulas parótidas do grupo tratado apresentaram alterações no raio dos ductos e na quantidade de ácinos, quando comparadas às glândulas parótidas do grupo controle. A glândula submandibular do grupo tratado foi a mais afetada: mostrou diferença estatisticamente significativa na espessura da parede dos ductos secretores, no raio dos ductos e no raio dos ácinos, quando comparada à glândula submandibular do grupo controle. A glândula sublingual não apresentou alterações significativas. Conclusão Neste delineamento experimental, o metilfenidato apresentou-se como agente indutor de alterações morfológicas das glândulas salivares, promovendo alterações significativas nos raios de ductos e ácinos das mesmas, sendo a glândula submandibular a mais susceptível a este fármaco.
Collapse
|
8
|
Methylphenidate Causes Behavioral Impairments and Neuron and Astrocyte Loss in the Hippocampus of Juvenile Rats. Mol Neurobiol 2016; 54:4201-4216. [PMID: 27324900 DOI: 10.1007/s12035-016-9987-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/14/2016] [Indexed: 12/26/2022]
Abstract
Although the use, and misuse, of methylphenidate is increasing in childhood and adolescence, there is little information about the consequences of this psychostimulant chronic use on brain and behavior during development. The aim of the present study was to investigate hippocampus biochemical, histochemical, and behavioral effects of chronic methylphenidate treatment to juvenile rats. Wistar rats received intraperitoneal injections of methylphenidate (2.0 mg/kg) or an equivalent volume of 0.9 % saline solution (controls), once a day, from the 15th to the 45th day of age. Results showed that chronic methylphenidate administration caused loss of astrocytes and neurons in the hippocampus of juvenile rats. BDNF and pTrkB immunocontents and NGF levels were decreased, while TNF-α and IL-6 levels, Iba-1 and caspase 3 cleaved immunocontents (microglia marker and active apoptosis marker, respectively) were increased. ERK and PKCaMII signaling pathways, but not Akt and GSK-3β, were decreased. SNAP-25 was decreased after methylphenidate treatment, while GAP-43 and synaptophysin were not altered. Both exploratory activity and object recognition memory were impaired by methylphenidate. These findings provide additional evidence that early-life exposure to methylphenidate can have complex effects, as well as provide new basis for understanding of the biochemical and behavioral consequences associated with chronic use of methylphenidate during central nervous system development.
Collapse
|
9
|
Costa GDA, Galvão TC, Bacchi AD, Moreira EG, Salles MJS. Investigation of possible teratogenic effects in the offspring of mice exposed to methylphenidate during pregnancy. Reprod Biomed Online 2016; 32:170-7. [DOI: 10.1016/j.rbmo.2015.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/14/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
|
10
|
Ferguson SA, Delbert Law C, Sahin L, Montenegro SV. Effects of perinatal methylphenidate (MPH) treatment on postweaning behaviors of male and female Sprague–Dawley rats. Neurotoxicol Teratol 2015; 47:125-36. [DOI: 10.1016/j.ntt.2014.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 12/16/2022]
|
11
|
Schneider F, Baldauf K, Wetzel W, Reymann KG. Effects of methylphenidate on the behavior of male 5xFAD mice. Pharmacol Biochem Behav 2014; 128:68-77. [PMID: 25449360 DOI: 10.1016/j.pbb.2014.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/30/2014] [Accepted: 11/01/2014] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by a loss of memory and spatial orientation. It is also reported that the dopamine system is affected. Dopamine plays a prominent role in motor functions, motivation, emotion, arousal and reward, and it is important for learning and memory. One model that represents characteristic hallmarks of Alzheimer's disease is the 5xFAD mouse model, in which parenchymal plaque load starts at 2months of age. Transgenic 5xFAD mice show the first behavioral deficits at 6months, which are evident at 9months of age. In this study, we investigated the pharmacological influence of methylphenidate (MPH) on behavioral deficits of 5xFAD mice. Using a battery of behavioral tests, we observed no influence of MPH on anxiety in the elevated plus maze, whereas the locomotion and explorative activity in the open field was increased in transgenic and non-transgenic 5xFAD mice after the application of MPH. Further MPH inhibits habituation in the open field in healthy 5xFAD littermates after the application of 10mg/kg MPH. On the other hand, 10mg/kg MPH improved spatial memory in 6-month-old transgenic 5xFAD males, i.e., at a time point when deficits start to occur. However, in 9-month-old transgenic mice, MPH did not improve persisting learning and memory deficits. We concluded that MPH might improve the non-cognitive, apathy-like behavior (indicated by a reduced exploration), but it has no influence on sustained Alzheimer typical learning and memory deficits.
Collapse
Affiliation(s)
- F Schneider
- German Centre for Neurodegenerative Diseases (DZNE), Magdeburg D-39120, Germany.
| | - K Baldauf
- German Centre for Neurodegenerative Diseases (DZNE), Magdeburg D-39120, Germany.
| | - W Wetzel
- Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg D-39118, Germany.
| | - K G Reymann
- German Centre for Neurodegenerative Diseases (DZNE), Magdeburg D-39120, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg D-39118, Germany.
| |
Collapse
|
12
|
Lepelletier FX, Tauber C, Nicolas C, Solinas M, Castelnau P, Belzung C, Emond P, Cortese S, Faraone SV, Chalon S, Galineau L. Prenatal exposure to methylphenidate affects the dopamine system and the reactivity to natural reward in adulthood in rats. Int J Neuropsychopharmacol 2014; 18:pyu044. [PMID: 25522388 PMCID: PMC4360227 DOI: 10.1093/ijnp/pyu044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/24/2014] [Accepted: 07/08/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Methylphenidate (MPH) is a commonly-used medication for the treatment of children with Attention-Deficit/Hyperactivity Disorders (ADHD). However, its prescription to adults with ADHD and narcolepsy raises the question of how the brain is impacted by MPH exposure during pregnancy. The goal of this study was to elucidate the long-term neurobiological consequences of prenatal exposure to MPH using a rat model. METHODS We focused on the effects of such treatment on the adult dopamine (DA) system and on the reactivity of animals to natural rewards. RESULTS This study shows that adult male rats prenatally exposed to MPH display elevated expression of presynaptic DA markers in the DA cell bodies and the striatum. Our results also suggest that MPH-treated animals could exhibit increased tonic DA activity in the mesolimbic pathway, altered signal-to-noise ratio after a pharmacological stimulation, and decreased reactivity to the locomotor effects of cocaine. Finally, we demonstrated that MPH rats display a decreased preference and motivation for sucrose. CONCLUSIONS This is the first preclinical study reporting long-lasting neurobiological alterations of DA networks as well as alterations in motivational behaviors for natural rewards after a prenatal exposure to MPH. These results raise concerns about the possible neurobiological consequences of MPH treatment during pregnancy.
Collapse
Affiliation(s)
- François-Xavier Lepelletier
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Clovis Tauber
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Céline Nicolas
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Marcello Solinas
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Pierre Castelnau
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Catherine Belzung
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Patrick Emond
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Samuele Cortese
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Stephen V Faraone
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Sylvie Chalon
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Laurent Galineau
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone).
| |
Collapse
|
13
|
Trenque T, Herlem E, Abou Taam M, Drame M. Methylphenidate off-label use and safety. SPRINGERPLUS 2014; 3:286. [PMID: 25279275 PMCID: PMC4162523 DOI: 10.1186/2193-1801-3-286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/25/2014] [Indexed: 12/17/2022]
Abstract
Introduction Methylphenidate is a piperidine derivative structurally and pharmacologically similar to amphetamine. Methylphenidate is indicated for Attention Deficit Hyperactivity Disorder (ADHD) in children aged 6 years of age and over when remedial measures alone prove insufficient. In adults, its indication, except in narcolepsy, is not defined. Methylphenidate received regulatory approval almost sixty years ago with a first registration in Switzerland in October 1954. Objective To evaluate the off-label use of methylphenidate and its characteristics from a database of spontaneous reports. Methods This study analysed data from the French Pharmacovigilance Database of adverse drug reactions spontaneously reported by health professionals from 1985 to December 2011. Off-label use was evaluated according to age. Results In the French Pharmacovigilance database, 181 cases of adverse drug reactions were reported with methylphenidate. Neuropsychiatric effects were the most frequent adverse event reported (41%) followed by cardiovascular and cutaneous side effects (14%). 143 reports concerned children (113 boys, 30 girls, mean age 10.6 ± 3.3 years) of which 46 (30%) were off-label uses. There were 38 adults (20 men, 18 women), of which 32 (88%) off-label use. In adults, methylphenidate was prescribed for depression, and this practice was associated with serious adverse events of drug dependence, overdose and suicide attempt. Overall, off-label use was detected in 43% (78/181) of all cases reported. Conclusion More than 40% of the patients with drug reactions received methylphenidate for off-label indications. Additional long-term exposures and independent clinical studies are necessary to establish the long-term profile safety of methylphenidate.
Collapse
Affiliation(s)
- Thierry Trenque
- Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Reims University Hospitals, Avenue du General Koenig, 51092, Reims, France ; Faculty of Medicine, University of Reims Champagne-Ardenne, EA 3797, F-51095 Reims, France
| | - Emmanuelle Herlem
- Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Reims University Hospitals, Avenue du General Koenig, 51092, Reims, France
| | - Malak Abou Taam
- Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Reims University Hospitals, Avenue du General Koenig, 51092, Reims, France
| | - Moustapha Drame
- Faculty of Medicine, University of Reims Champagne-Ardenne, EA 3797, F-51095 Reims, France ; Department of Research and Innovations, Reims University Hospitals, Avenue du General Koenig, 51092 Reims, France
| |
Collapse
|
14
|
Panos JJ, Law CD, Ferguson SA. Effects of perinatal methylphenidate (MPH) treatment in male and female Sprague–Dawley offspring. Neurotoxicol Teratol 2014; 42:9-16. [DOI: 10.1016/j.ntt.2014.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
|
15
|
Lloyd SA, Oltean C, Pass H, Phillips B, Staton K, Robertson CL, Shanks RA. Prenatal exposure to psychostimulants increases impulsivity, compulsivity, and motivation for rewards in adult mice. Physiol Behav 2013; 119:43-51. [PMID: 23739493 DOI: 10.1016/j.physbeh.2013.05.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 03/14/2013] [Accepted: 05/24/2013] [Indexed: 12/22/2022]
Abstract
Given the widespread use and misuse of methamphetamine (METH) and methylphenidate (MPD), especially in relation to women of childbearing age, it is important to consider the long-lasting effects of these drugs on the brain of the developing fetus. Male and female C57Bl/6J mice were prenatally exposed to METH (5mg/kg), MPD (10mg/kg), or saline. Following a 3-month washout, behavioral analysis using the 5-Choice Serial Reaction Time Task (5CSRTT) was performed on adult mice. After reaching training criteria, performance on a pseudo-random intertrial interval test session revealed decrements in 5CSRTT behavior. Prenatally-treated METH and MPD mice demonstrated significant increases in impulsivity, compulsivity, and motivation for reward compared to their saline controls. There were sex by drug interactions indicating a possible sexually dimorphic response to these prenatal drug exposures. Of particular clinical interest, we find that mice prenatally exposed to METH or MPD express characteristics of both inhibitory control decrements and heightened motivation for rewards, which represent core symptoms of addiction and other impulse control disorders.
Collapse
Affiliation(s)
- S A Lloyd
- Department of Psychological Science, University of North Georgia, Dahlonega, GA, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Cognitive and emotional behavioural changes associated with methylphenidate treatment: a review of preclinical studies. Int J Neuropsychopharmacol 2012; 15:41-53. [PMID: 21439107 DOI: 10.1017/s1461145711000472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
There is evidence from animal studies that repeated exposure to methylphenidate (MPH), a widely used psychostimulant for the treatment of attention deficit hyperactivity disorder (ADHD), produces behavioural, structural and neurochemical changes that persist long after drug administration has ended. However, the translational utility of much of this work is compromised by the use of drug doses and routes of administration that produce plasma and brain MPH levels that fall outside the clinical range, i.e. experimental parameters more relevant to drug abuse than ADHD. We used PubMed to identify pre-clinical studies that employed repeated MPH administration at low doses in young rodents and examined long-term effects on cognition, emotion, and brain structure and function. A review of this work suggests that repeated MPH treatment during early development can modify a number of cognitive, behavioural and brain processes, but these are reduced when low therapeutic doses are employed. Moreover, MPH sites of action extend beyond those implicated in ADHD. Studies that combined neurobiological and behavioural approaches provide important insights into the mechanisms underlying MPH-produced effects on cognitive and behavioural processes, which may be relevant to MPH therapeutic efficacy. There is an emerging consensus that pharmacological treatment of childhood psychiatric disorders produces persistent neuroadaptations, highlighting the need for studies that assess long-term effects of early developmental pharmacotherapy. In this regard, studies that mimic clinical therapy with rodents are useful experimental approaches for defining the behavioural and neural plasticity associated with stimulant therapy in paediatric populations.
Collapse
|
17
|
Neonatal methylphenidate does not impair adult spatial learning in the Morris water maze in rats. Neurosci Lett 2011; 502:152-6. [PMID: 21798318 DOI: 10.1016/j.neulet.2011.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/15/2011] [Accepted: 07/11/2011] [Indexed: 11/22/2022]
Abstract
Methylphenidate (MPD) is the most prescribed drug for attention deficit hyperactivity disorder. Licit and illicit use also occurs during pregnancy, however the effects from this use on offspring development are unknown. To model late gestational exposure, Sprague-Dawley litters were treated with 0, 5, 10, 20, or 30mg/kg×4/day every 2h with MPD on postnatal days 11-20 (within-litter design; days chosen to be comparable to human third trimester brain development). During treatment, body weights were decreased in MPD-treated groups; weight recovery occurred in all but the MPD-30 group by start of testing. MPD-treated rats showed no changes in anxiety (elevated zero maze), swimming ability (straight channel swimming), or spatial learning/reference memory (Morris water maze). MPD does not appear to pose a risk to these CNS functions after exposure during a stage of rat development analogous to third trimester human brain development.
Collapse
|
18
|
Levin ED, Sledge D, Roach S, Petro A, Donerly S, Linney E. Persistent behavioral impairment caused by embryonic methylphenidate exposure in zebrafish. Neurotoxicol Teratol 2011; 33:668-73. [PMID: 21741476 DOI: 10.1016/j.ntt.2011.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/10/2011] [Accepted: 06/19/2011] [Indexed: 10/18/2022]
Abstract
As more adults take the stimulant medication methylphenidate to treat attention deficit hyperactivity disorder (ADHD) residual type, the risk arises with regard to exposure during early development if people taking the medication become pregnant. We studied the neurobehavioral effects of methylphenidate in zebrafish. Zebrafish offer cellular reporter systems, continuous visual access and molecular interventions such as morpholinos to help determine critical mechanisms underlying neurobehavioral teratogenicity. Previously, we had seen that persisting neurobehavioral impairment in zebrafish with developmental chlorpyrifos exposure was associated with disturbed dopamine systems. Because methylphenidate is an indirect dopamine agonist, it was thought that it might also cause persistent behavioral impairment after developmental exposure. Zebrafish embryos were exposed to the ADHD stimulant medication methylphenidate 0-5 days post fertilization (12.5-50mg/l). They were tested for long-term behavioral effects as adults. Methylphenidate exposure (50mg/l) caused significant increases in dopamine, norepinepherine and serotonin on day 6 but not day 30 after fertilization. In the novel tank diving test of predatory avoidance developmental methylphenidate (50mg/l) caused a significant reduction in the normal diving response. In the three-chamber spatial learning task early developmental methylphenidate (50mg/l) caused a significant impairment in choice accuracy. These data show that early developmental exposure of zebrafish to methylphenidate causes a long-term impairment in neurobehavioral plasticity. The identification of these functional deficits in zebrafish enables further studies with this model to determine how molecular and cellular mechanisms are disturbed to arrive at this compromised state.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Mioranzza S, Costa MS, Botton PHS, Ardais AP, Matte VL, Espinosa J, Souza DO, Porciúncula LO. Blockade of adenosine A(1) receptors prevents methylphenidate-induced impairment of object recognition task in adult mice. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:169-76. [PMID: 21044657 DOI: 10.1016/j.pnpbp.2010.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/25/2010] [Accepted: 10/25/2010] [Indexed: 11/18/2022]
Abstract
Methylphenidate (MPH) is the preferred treatment used for attention-deficit/hyperactivity disorder (ADHD). Recently, misuse for MPH due to its apparent cognitive enhancer properties has been reported. Adenosine is a neuromodulator known to exert influence on the dopaminergic neurotransmission, which is the main pharmacological target of MPH. We have reported that an overdosage of MPH up-regulates adenosine A(1) receptors in the frontal cortex, but this receptor was not involved in its anxiolytic effects. In this study, the role of adenosine A(1) receptor was investigated on MPH-induced effects on aversive and recognition memory in adult mice. Adult mice received acute and chronic (15 days) administration of methylphenidate (5mg/kg, i.p.), or an acute overdosage (50mg/kg, i.p) in order to model misuse. Memory was assessed in the inhibitory avoidance and object recognition task. Acute administration 5mg/kg improved whereas 50mg/kg disrupted recognition memory and decreased performance in the inhibitory avoidance task. Chronic administration did not cause any effect on memory, but decreased adenosine A(1) receptors immunocontent in the frontal cortex. The selective adenosine A(1) receptor antagonist, (DPCPX 1mg/kg, i.p.), prevented methylphenidate-triggered recognition memory impairment. Our findings showed that recognition memory rather than aversive memory was differently affected by acute administration at both doses. Memory recognition was fully impaired by the overdosage, suggesting that misuse can be harmful for cognitive functions. The adenosinergic system via A(1) receptors may play a role in the methylphenidate actions probably by interfering with dopamine-enhancing properties of this drug.
Collapse
Affiliation(s)
- Sabrina Mioranzza
- Department of Biochemistry, Laboratory of Studies on the Purinergic System, Federal University of Rio Grande do Sul, Health and Basic Sciences Institute, Porto Alegre/RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Running wheel activity restores MPTP-induced functional deficits. J Neural Transm (Vienna) 2010; 118:407-20. [DOI: 10.1007/s00702-010-0474-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 08/23/2010] [Indexed: 01/07/2023]
|
21
|
Mioranzza S, Botton PHS, Costa MS, Espinosa J, Kazlauckas V, Ardais AP, Souza DO, Porciúncula LO. Adenosine A1 receptors are modified by acute treatment with methylphenidate in adult mice. Brain Res 2010; 1357:62-9. [PMID: 20699089 DOI: 10.1016/j.brainres.2010.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 07/27/2010] [Accepted: 08/02/2010] [Indexed: 02/05/2023]
Abstract
In recent years misuse of methylphenidate (MPH) has been reported. The main pharmacological target of methylphenidate is the dopaminergic system. Adenosine is a neuromodulator that influences the dopaminergic neurotransmission, but studies on MPH and adenosine are still lacking. In this study, adult mice were acutely treated with MPH (5mg/kg, i.p.) and to model misuse, they received an acute overdosage (50mg/kg, i.p). The involvement of adenosine A(1) receptors in anxiety-related behavior and locomotor and exploratory activity was examined. The administration of methylphenidate (5 and 50mg/kg) 30 min before the exposure to open field arena did not modify locomotor activity. The anxiolytic-like behavior was observed with both doses of MPH as revealed by the increase on the number of entries and the time spent in the open arms in the elevated plus-maze. Pre treatment with selective adenosine A(1) receptor antagonist (DPCPX 1mg/kg, i.p.) did not prevent anxiolytic effect caused by MPH 50mg/kg. Immunoblotting of frontal cortex and hippocampal extracts revealed that MPH 50mg/kg increased 88% adenosine A(1) receptor density in the frontal cortex. Extracts from hippocampus did not reveal any differences in the adenosine A(1) receptor density. Our findings ruled out the participation of adenosine A(1) receptors on the MPH-triggered anxiolytic effects. However, the density of adenosine A(1) receptors increased in a brain area strictly involved in the MPH-mediated effects. Thus, the adenosinergic system may play a role in the methylphenidate actions in the central nervous system.
Collapse
Affiliation(s)
- Sabrina Mioranzza
- Department of Biochemistry, Laboratory of Studies on the Purinergic System, Graduation Program in Biological Sciences-Biochemistry, Federal University of Rio Grande do Sul, Health and Basic Sciences Institute, Bairro Santana, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mabandla MV, Kellaway LA, Daniels WMU, Russell VA. Effect of exercise on dopamine neuron survival in prenatally stressed rats. Metab Brain Dis 2009; 24:525-39. [PMID: 19844780 PMCID: PMC2863025 DOI: 10.1007/s11011-009-9161-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Accepted: 02/02/2009] [Indexed: 01/02/2023]
Abstract
Prenatal stress has been associated with increased vulnerability to psychiatric disturbances including schizophrenia, depression, attention-deficit hyperactivity disorder and autism. Elevated maternal circulating stress hormones alter development of neural circuits in the fetal brain and cause long-term changes in behaviour. The aim of the present study was to investigate whether mild prenatal stress increases the vulnerability of dopamine neurons in adulthood. A low dose of 6-hydroxydopamine (6-OHDA, 5 microg/4 microl saline) was unilaterally infused into the medial forebrain bundle of nerve fibres in the rat brain in order to create a partial lesion of dopamine neurons which was sufficient to cause subtle behavioural deficits associated with early onset of Parkinson's disease without complete destruction of dopamine neurons. Voluntary exercise appeared to have a neuroprotective effect resulting in an improvement in motor control and decreased asymmetry in the use of left and right forelimbs to explore a novel environment as well as decreased asymmetry of tyrosine hydroxylase-positive cells in the substantia nigra pars compacta and decreased dopamine cell loss in 6-OHDA-lesioned rats. Prenatal stress appeared to enhance the toxic effect of 6-OHDA possibly by reducing the compensatory adaptations to exercise.
Collapse
Affiliation(s)
- Musa V. Mabandla
- Department of Human Physiology, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Lauriston A. Kellaway
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925 Cape Town, South Africa
| | - William M. U. Daniels
- Department of Human Physiology, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Vivienne A. Russell
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925 Cape Town, South Africa
| |
Collapse
|
23
|
Abstract
Attention deficit hyperactivity disorder (ADHD) often persists into adulthood. Stimulant drugs, including methylphenidate, have showed efficacy in trials for ADHD in adults. Adult psychiatrists are likely to encounter increasing numbers of adult patients who may benefit from methylphenidate. A systematic review of the literature was made to examine the evidence on the safety of methylphenidate, when used therapeutically in adults. Twenty-six placebo-controlled trials were found, in which 811 adults received methylphenidate for ADHD and other conditions. In the short term, methylphenidate was well tolerated and no serious side effects were observed. There is little information on the long-term safety of methylphenidate in adults, although the number of serious adverse effects reported to regulatory authorities has, so far, been low. Methylphenidate is associated with a modest rise in blood pressure and heart rate. Surveys of stimulant use in US universities show that misuse of prescribed medication, for recreation or to enhance study, is fairly common although the level of harm that arises from this practice is unclear.
Collapse
Affiliation(s)
- J Godfrey
- Westhaven and Portland CMHT, Westhaven, Weymouth, Dorset, UK.
| |
Collapse
|
24
|
Leussis MP, Bond TLY, Hawken CM, Brown RE. Attenuation of maternal behavior in virgin CD-1 mice by methylphenidate hydrochloride. Physiol Behav 2008; 95:395-9. [PMID: 18675288 DOI: 10.1016/j.physbeh.2008.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 07/01/2008] [Accepted: 07/02/2008] [Indexed: 11/29/2022]
Abstract
The administration of methylphenidate hydrochloride (MPH) to girls and women has increased in the last decade and the potential for mothers to receive this medication has also increased. Because substances that alter the dopaminergic systems can also disrupt maternal behavior, and MPH acts on dopaminergic neurons, we evaluated the influence of MPH on maternal behavior. The maternal induction paradigm allowed us to assess changes in spontaneous maternal behavior as a result of repeated exposure to MPH without exposing pups to the drug. Virgin female CD-1 mice received MPH (5 mg/kg) or saline daily, starting 3 days before pup exposure, and for the duration of the 10-day test period. Naïve groups of three pups were placed with the female each day and maternal behavior was assessed during 10-minute observation periods 1 h post-injection. MPH-treated females showed significantly less maternal behavior, including reduced pup licking and crouching over pups, compared to saline treated females. MPH-treated females also exhibited higher activity levels than saline treated females. Given the disruption in spontaneous maternal behavior of MPH-treated mice, further research examining the relationship between maternal behavior and MPH exposure is warranted.
Collapse
Affiliation(s)
- Melanie P Leussis
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1.
| | | | | | | |
Collapse
|
25
|
Mabandla MV, Dobson B, Johnson S, Kellaway LA, Daniels WMU, Russell VA. Development of a mild prenatal stress rat model to study long term effects on neural function and survival. Metab Brain Dis 2008; 23:31-42. [PMID: 17671833 DOI: 10.1007/s11011-007-9049-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 02/23/2007] [Indexed: 11/26/2022]
Abstract
Early development of the brain's neural circuitry has been shown to be vulnerable to high levels of circulating steroid hormones such as corticosterone. These steroid hormones are lipophylic and can cross the placental barrier especially during the last week of gestation leading to disturbances in the formation of neural circuits that contain amongst others dopaminergic and serotonergic neurons. The effects of this disruption of neuronal circuit formation during gestation has been shown to manifest in adult offspring as behavioural abnormalities such as anxiety and an abnormal hypothalamic-pituitary-adrenal (HPA) axis. Models of prenatal stress include food deprivation and a model that involves exposure of the pregnant rats to different stressors, commonly referred to as a mild stress model. The objective of this study was to create a mild stress model that did not manifest as anxiety in adult offspring. In the last week of gestation, the pregnant dams were divided into three groups; (1) non-stressed (2) 50% food-deprived and (3) mildly stressed rats that we will refer to as the mildly stressed rats. Following birth, all pups were cross-fostered onto non-stressed dams and on postnatal day 60 (P60), behaviour in the elevated plus maze and the open field box was tested. On P66 the rats were exposed to an acute restraint stress following which trunk blood was collected for HPA axis analysis. The adrenal glands were also dissected and weighed. Results show that the mildly stressed rat model of prenatal stress is even milder than models described in the literature, since we did not find differences in time spent in the open arms of the elevated plus maze or adrenal gland size. In the open field, our model displayed slightly less locomotor activity and also had a slightly blunted adrenocorticotropic hormone (ACTH) response to restraint stress even though the corticosterone response was similar to controls.
Collapse
Affiliation(s)
- Musa V Mabandla
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
26
|
Gray JD, Punsoni M, Tabori NE, Melton JT, Fanslow V, Ward MJ, Zupan B, Menzer D, Rice J, Drake CT, Romeo RD, Brake WG, Torres-Reveron A, Milner TA. Methylphenidate administration to juvenile rats alters brain areas involved in cognition, motivated behaviors, appetite, and stress. J Neurosci 2007; 27:7196-207. [PMID: 17611273 PMCID: PMC6794586 DOI: 10.1523/jneurosci.0109-07.2007] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thousands of children receive methylphenidate (MPH; Ritalin) for attention deficit/hyperactivity disorder (ADHD), yet the long-term neurochemical consequences of MPH treatment are unknown. To mimic clinical Ritalin treatment in children, male rats were injected with MPH (5 mg/kg) or vehicle twice daily from postnatal day 7 (PND7)-PND35. At the end of administration (PND35) or in adulthood (PND135), brain sections from littermate pairs were immunocytochemically labeled for neurotransmitters and cytological markers in 16 regions implicated in MPH effects and/or ADHD etiology. At PND35, the medial prefrontal cortex (mPFC) of rats given MPH showed 55% greater immunoreactivity (-ir) for the catecholamine marker tyrosine hydroxylase (TH), 60% more Nissl-stained cells, and 40% less norepinephrine transporter (NET)-ir density. In hippocampal dentate gyrus, MPH-receiving rats showed a 51% decrease in NET-ir density and a 61% expanded distribution of the new-cell marker PSA-NCAM (polysialylated form of neural cell adhesion molecule). In medial striatum, TH-ir decreased by 21%, and in hypothalamus neuropeptide Y-ir increased by 10% in MPH-exposed rats. At PND135, MPH-exposed rats exhibited decreased anxiety in the elevated plus-maze and a trend for decreased TH-ir in the mPFC. Neither PND35 nor PND135 rats showed major structural differences with MPH exposure. These findings suggest that developmental exposure to high therapeutic doses of MPH has short-term effects on select neurotransmitters in brain regions involved in motivated behaviors, cognition, appetite, and stress. Although the observed neuroanatomical changes largely resolve with time, chronic modulation of young brains with MPH may exert effects on brain neurochemistry that modify some behaviors even in adulthood.
Collapse
Affiliation(s)
- Jason D. Gray
- Division of Neurobiology, Department of Neurology and Neuroscience and
| | - Michael Punsoni
- Division of Neurobiology, Department of Neurology and Neuroscience and
| | - Nora E. Tabori
- Division of Neurobiology, Department of Neurology and Neuroscience and
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10021, and
| | - Jay T. Melton
- Division of Neurobiology, Department of Neurology and Neuroscience and
| | - Victoria Fanslow
- Division of Neurobiology, Department of Neurology and Neuroscience and
| | - Mary J. Ward
- Department of Pediatrics, Weill-Cornell Medical College, New York, New York 10021
| | - Bojana Zupan
- Division of Neurobiology, Department of Neurology and Neuroscience and
| | - David Menzer
- Division of Neurobiology, Department of Neurology and Neuroscience and
| | - Jackson Rice
- Division of Neurobiology, Department of Neurology and Neuroscience and
| | - Carrie T. Drake
- Division of Neurobiology, Department of Neurology and Neuroscience and
| | - Russell D. Romeo
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10021, and
| | - Wayne G. Brake
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Canada H4B 1R6
| | | | - Teresa A. Milner
- Division of Neurobiology, Department of Neurology and Neuroscience and
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10021, and
| |
Collapse
|
27
|
Ludolph AG, Schaz U, Storch A, Liebau S, Fegert JM, Boeckers TM. Methylphenidate exerts no neurotoxic, but neuroprotective effects in vitro. J Neural Transm (Vienna) 2006; 113:1927-34. [PMID: 16736241 DOI: 10.1007/s00702-006-0487-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 03/13/2006] [Indexed: 11/24/2022]
Abstract
Methylphenidate (MPH) is the most common used drug in child and adolescent psychiatry. Despite of this fact, however, little is known about its exact pharmacological mechanisms. Here we investigated the toxic effects of MPH in vitro in human embryonic kidney (HEK-293) cells stably expressing the human dopamine transporter (HEK-hDAT cells) and in cultured rat embryonic (E14.5) mesencephalic cultures. MPH alone (up to 1 mM) affected neither the growth of HEK-hDAT cells nor the survival of dopaminergic (DA) neurons in primary cultures after treatment up to 72 h. No differences in neuronal arborisation or in the density of synapses were detected. 1-methyl-4-phenylpyridinium (MPP(+)) showed no toxic effect in HEK-293 cells, but had significant toxic effects in HEK-hDAT cells and DA neurons. MPH (1 microM - 1 mM) dose-dependently reduced this cytotoxicity in HEK-hDAT cells and primary mesencephalic DA neurons. The presented results show that application of MPH alone does not have any toxic effect on DA cells in vitro. The neurotoxic effects of MPP(+) could be significantly reduced by co-application of MPH, an effect that is most likely explained by MPH blocking the DAT.
Collapse
Affiliation(s)
- A G Ludolph
- Department of Child and Adolescent Psychiatry, University of Ulm, Ulm, Germany.
| | | | | | | | | | | |
Collapse
|