1
|
Zhao YB, Wang SZ, Guo WT, Wang L, Tang X, Li JN, Xu L, Zhou QX. Hippocampal dipeptidyl peptidase 9 bidirectionally regulates memory associated with synaptic plasticity. J Adv Res 2024:S2090-1232(24)00433-8. [PMID: 39369958 DOI: 10.1016/j.jare.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024] Open
Abstract
INTRODUCTION Subtypes of the dipeptidyl peptidase (DPP) family, such as DPP4, are reportedly associated with memory impairment. DPP9 is widely distributed in cells throughout the body, including the brain. However, whether DPP9 regulates memory has not yet been elucidated. OBJECTIVES This study aimed to elucidate the role of DPP9 in memory, as well as the underlying molecular mechanism. METHODS We performed immunofluorescence on mouse brains to explore the distribution of DPP9 in different brain regions and used AAV vectors to construct knockdown and overexpression models. The effects of changing DPP9 expression on memory were demonstrated through behavioral experiments. Finally, we used electrophysiology, proteomics and affinity purification mass spectrometry (AP-MS) to study the molecular mechanism by which DPP9 affects memory. RESULTS Here, we report that DPP9, which is found almost exclusively in neurons, is expressed and has enzyme activity in many brain regions, especially in the hippocampus. Hippocampal DPP9 expression increases after fear memory formation. Fear memory was impaired by DPP9 knockdown and enhanced by DPP9 protein overexpression in the hippocampus. According to subsequent hippocampal proteomics, multiple pathways, including the peptidase pathway, which can be bidirectionally regulated by DPP9. DPP9 directly interacts with its enzymatic substrate neuropeptide Y (NPY) in neurons. Hippocampal long-term potentiation (LTP) is also bidirectionally regulated by DPP9. Moreover, inhibiting DPP enzyme activity impaired both LTP and memory. In addition, AP-MS revealed that DPP9-interacting proteins are involved in the functions of dendritic spines and axons. By combining AP-MS and proteomics, DPP9 was shown to play a role in regulating actin functions. CONCLUSION Taken together, our findings reveal that DPP9 affects the CNS not only through enzymatic activity but also through protein-protein interactions. This study provides new insights into the molecular mechanisms of memory and DPP family functions.
Collapse
Affiliation(s)
- Ya-Bo Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China
| | - Shi-Zhe Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wen-Ting Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Le Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xun Tang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China
| | - Jin-Nan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China; KIZ-SU Joint Laboratory of Animal Model and Drug Development, China
| | - Qi-Xin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
2
|
Gawryluk A, Cybulska-Klosowicz A, Charzynska A, Zakrzewska R, Sobolewska A, Kossut M, Liguz-Lecznar M. Mitigation of aging-related plasticity decline through taurine supplementation and environmental enrichment. Sci Rep 2024; 14:19546. [PMID: 39174711 PMCID: PMC11341750 DOI: 10.1038/s41598-024-70261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Aging-related biochemical changes in nerve cells lead to dysfunctional synapses and disrupted neuronal circuits, ultimately affecting vital processes such as brain plasticity, learning, and memory. The imbalance between excitation and inhibition in synaptic function during aging contributes to cognitive impairment, emphasizing the importance of compensatory mechanisms. Fear conditioning-related plasticity of the somatosensory barrel cortex, relying on the proper functioning and extensive up regulation of the GABAergic system, in particular interneurons containing somatostatin, is compromised in aging (one-year-old) mice. The present research explores two potential interventions, taurine supplementation, and environmental enrichment, revealing their effectiveness in supporting learning-induced plasticity in the aging mouse brain. They do not act through a mechanism normalizing the Glutamate/GABA balance that is disrupted in aging. Still, they allow for increased somatostatin levels, an effect observed in young animals after learning. These findings highlight the potential of lifestyle interventions and diet supplementation to mitigate age-related cognitive decline by promoting experience-dependent plasticity.
Collapse
Affiliation(s)
- Aleksandra Gawryluk
- Laboratory of Epileptogenesis, Polish Academy of Sciences, Nencki Institute of Experimental Biology, 3 Pasteur Str., 02-093, Warsaw, Poland
| | - Anita Cybulska-Klosowicz
- Laboratory of Emotions Neurobiology, Polish Academy of Sciences, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Agata Charzynska
- Laboratory of Language Neurobiology, Polish Academy of Sciences, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Renata Zakrzewska
- Laboratory of Behavioral Methods, Polish Academy of Sciences, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Alicja Sobolewska
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology , Warsaw, Poland
| | - Malgorzata Kossut
- Science Diplomacy Board, Polish Academy of Sciences, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Liguz-Lecznar
- Laboratory of Epileptogenesis, Polish Academy of Sciences, Nencki Institute of Experimental Biology, 3 Pasteur Str., 02-093, Warsaw, Poland.
| |
Collapse
|
3
|
Kornhuber J, Zoicas I. Valence-dependent effects of neuropeptide Y on the expression of conditioned fear and anxiety-like behavior: Involvement of the bed nucleus of the stria terminalis. Neuropharmacology 2024; 246:109847. [PMID: 38218578 DOI: 10.1016/j.neuropharm.2024.109847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Neuropeptide Y (NPY) has anxiolytic-like effects and facilitates the extinction of cued and contextual fear in rodents. We have previously shown that intracerebroventricular administration of NPY reduces the expression of social fear via simultaneous activation of Y1 and Y2 receptors in a mouse model of social fear conditioning (SFC). In the present study, we investigated whether the anteroventral bed nucleus of the stria terminalis (BNSTav) mediates these effects of NPY, given the important role of BNSTav in regulating anxiety- and fear-related behaviors. We show that while NPY (0.1 nmol/0.2 μl/side) did not reduce the expression of SFC-induced social fear in male CD1 mice, it reduced the expression of both cued and contextual fear by acting on Y2 but not on Y1 receptors within the BNSTav. Prior administration of the Y2 receptor antagonist BIIE0246 (0.2 nmol/0.2 μl/side) but not of the Y1 receptor antagonist BIBO3304 trifluoroacetate (0.2 nmol/0.2 μl/side) blocked the effects of NPY on the expression of cued and contextual fear. Similarly, NPY exerted non-social anxiolytic-like effects in the elevated plus maze test but not social anxiolytic-like effects in the social approach avoidance test by acting on Y2 receptors and not on Y1 receptors within the BNSTav. These results suggest that administration of NPY within the BNSTav exerts robust Y2 receptor-mediated fear-reducing and anxiolytic-like effects specifically in non-social contexts and add a novel piece of evidence regarding the neural underpinnings underlying the effects of NPY on conditioned fear and anxiety-like behavior.
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
4
|
Sabban EL, Serova L, Nahvi RJ, Liu X. Potential benefits of intranasal neuropeptide Y include sustained extinction of fear memory. J Neuroendocrinol 2023; 35:e13279. [PMID: 37157881 DOI: 10.1111/jne.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
Compelling evidence in animals and humans from a variety of approaches demonstrate that neuropeptide Y (NPY) in the brain can provide resilience to development of many stress-elicited symptoms. Preclinical experiments demonstrated that delivery of NPY by intranasal infusion to rats shortly after single exposure to traumatic stress in the single prolonged stress (SPS) rodent model of post-traumatic stress disorder (PTSD) can prevent development of many relevant behavioral alterations weeks later, including heightened anxiety and depressive-like behavior. Here, we examined responses to intranasal NPY in the absence of stress to evaluate the safety profile. Rats were administered intranasal NPY (150 μg/rat) or equal volume of vehicle (distilled water), and 7 days later they were tested on the elevated plus maze (EPM) and forced swim test (FST). There was no significant difference in the number of entries or duration in the open or closed arms, or in their anxiety index. Defecation on the EPM and immobility on the FST, measures of anxiety and depressive-like behavior respectively, were similar in both groups. To further characterize potential benefits of intranasal NPY, its effect on fear memory and extinction, important features of PTSD, were examined. Intranasal administration of NPY at the time of the traumatic stress had a profound effect on fear conditioning a week later. It prevented the SPS-triggered impairment in the retention of extinguished behavior, both contextual and cued. The findings support the translation of non-invasive intranasal NPY delivery to the brain for PTSD-behaviors including impairments in sustained extinction of fear memories.
Collapse
Affiliation(s)
- Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Lidia Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Roxanna J Nahvi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Xiaoping Liu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
5
|
Raut SB, Marathe PA, van Eijk L, Eri R, Ravindran M, Benedek DM, Ursano RJ, Canales JJ, Johnson LR. Diverse therapeutic developments for post-traumatic stress disorder (PTSD) indicate common mechanisms of memory modulation. Pharmacol Ther 2022; 239:108195. [PMID: 35489438 DOI: 10.1016/j.pharmthera.2022.108195] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
Post-traumatic stress disorder (PTSD), characterized by abnormally persistent and distressing memories, is a chronic debilitating condition in need of new treatment options. Current treatment guidelines recommend psychotherapy as first line management with only two drugs, sertraline and paroxetine, approved by U.S. Food and Drug Administration (FDA) for treatment of PTSD. These drugs have limited efficacy as they only reduce symptoms related to depression and anxiety without producing permanent remission. PTSD remains a significant public health problem with high morbidity and mortality requiring major advances in therapeutics. Early evidence has emerged for the beneficial effects of psychedelics particularly in combination with psychotherapy for management of PTSD, including psilocybin, MDMA, LSD, cannabinoids, ayahuasca and ketamine. MDMA and psilocybin reduce barrier to therapy by increasing trust between therapist and patient, thus allowing for modification of trauma related memories. Furthermore, research into the memory reconsolidation mechanisms has allowed for identification of various pharmacological targets to disrupt abnormally persistent memories. A number of pre-clinical and clinical studies have investigated novel and re-purposed pharmacological agents to disrupt fear memory in PTSD. Novel therapeutic approaches like neuropeptide Y, oxytocin, cannabinoids and neuroactive steroids have also shown potential for PTSD treatment. Here, we focus on the role of fear memory in the pathophysiology of PTSD and propose that many of these new therapeutic strategies produce benefits through the effect on fear memory. Evaluation of recent research findings suggests that while a number of drugs have shown promising results in preclinical studies and pilot clinical trials, the evidence from large scale clinical trials would be needed for these drugs to be incorporated in clinical practice.
Collapse
Affiliation(s)
- Sanket B Raut
- Schools of Psychological Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia
| | - Padmaja A Marathe
- Department of Pharmacology and Therapeutics, Seth GS Medical College & KEM Hospital, Parel, Mumbai 400 012, India
| | - Liza van Eijk
- Department of Psychology, College of Healthcare Sciences, James Cook University, QLD 4811, Australia
| | - Rajaraman Eri
- Health Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia
| | - Manoj Ravindran
- Medicine, College of Health and Medicine, University of Tasmania, TAS 7250, Australia; Department of Psychiatry, North-West Private Hospital, Burnie TAS 7320, Australia
| | - David M Benedek
- Centre for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA
| | - Robert J Ursano
- Centre for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA
| | - Juan J Canales
- Schools of Psychological Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia
| | - Luke R Johnson
- Schools of Psychological Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia; Centre for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA.
| |
Collapse
|
6
|
Acid Sphingomyelinase Is a Modulator of Contextual Fear. Int J Mol Sci 2022; 23:ijms23063398. [PMID: 35328819 PMCID: PMC8954852 DOI: 10.3390/ijms23063398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Acid sphingomyelinase (ASM) regulates a variety of physiological processes and plays an important role in emotional behavior. The role of ASM in fear-related behavior has not been investigated so far. Using transgenic mice overexpressing ASM (ASMtg) and ASM deficient mice, we studied whether ASM regulates fear learning and expression of cued and contextual fear in a classical fear conditioning paradigm, a model used to investigate specific attributes of post-traumatic stress disorder (PTSD). We show that ASM does not affect fear learning as both ASMtg and ASM deficient mice display unaltered fear conditioning when compared to wild-type littermates. However, ASM regulates the expression of contextual fear in a sex-specific manner. While ASM overexpression enhances the expression of contextual fear in both male and female mice, ASM deficiency reduces the expression of contextual fear specifically in male mice. The expression of cued fear, however, is not regulated by ASM as ASMtg and ASM deficient mice display similar tone-elicited freezing levels. This study shows that ASM modulates the expression of contextual fear but not of cued fear in a sex-specific manner and adds a novel piece of information regarding the involvement of ASM in hippocampal-dependent aversive memory.
Collapse
|
7
|
Neuropeptide Y Reduces Social Fear in Male Mice: Involvement of Y1 and Y2 Receptors in the Dorsolateral Septum and Central Amygdala. Int J Mol Sci 2021; 22:ijms221810142. [PMID: 34576305 PMCID: PMC8472534 DOI: 10.3390/ijms221810142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022] Open
Abstract
Neuropeptide Y (NPY) has anxiolytic-like effects and facilitates the extinction of cued and contextual fear in rodents. We previously showed that intracerebroventricular administration of NPY reduces the expression of social fear in a mouse model of social fear conditioning (SFC) and localized these effects to the dorsolateral septum (DLS) and central amygdala (CeA). In the present study, we aimed to identify the receptor subtypes that mediate these local effects of NPY. We show that NPY (0.1 nmol/0.2 µL/side) reduced the expression of SFC-induced social fear in a brain region- and receptor-specific manner in male mice. In the DLS, NPY reduced the expression of social fear by acting on Y2 receptors but not on Y1 receptors. As such, prior administration of the Y2 receptor antagonist BIIE0246 (0.2 nmol/0.2 μL/side) but not the Y1 receptor antagonist BIBO3304 trifluoroacetate (0.2 nmol/0.2 μL/side) blocked the effects of NPY in the DLS. In the CeA, however, BIBO3304 trifluoroacetate but not BIIE0246 blocked the effects of NPY, suggesting that NPY reduced the expression of social fear by acting on Y1 receptors but not Y2 receptors within the CeA. This study suggests that at least two distinct receptor subtypes are differentially recruited in the DLS and CeA to mediate the effects of NPY on the expression of social fear.
Collapse
|
8
|
Kornhuber J, Zoicas I. Brain Region-Dependent Effects of Neuropeptide Y on Conditioned Social Fear and Anxiety-Like Behavior in Male Mice. Int J Mol Sci 2021; 22:ijms22073695. [PMID: 33918123 PMCID: PMC8037261 DOI: 10.3390/ijms22073695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Neuropeptide Y (NPY) has anxiolytic-like effects and facilitates the extinction of cued and contextual fear in rodents. We have previously shown that the intracerebroventricular administration of NPY reduces the expression of social fear in a mouse model of social fear conditioning (SFC). In the present study, we aimed to identify the brain regions that mediate these effects of NPY. We show that NPY (0.1 nmol/0.2 µL/side) reduces the expression of SFC-induced social fear in a brain-region-dependent manner. In more detail, NPY reduced the expression of social fear when administered into the dorsolateral septum (DLS) and central amygdala (CeA), but not when administered into the dorsal hippocampus (DH), medial amygdala (MeA) and basolateral amygdala (BLA). We also investigated whether the reduced expression of social fear might partly be due to a reduced anxiety-like behavior, and showed that NPY exerted anxiolytic-like effects when administered into the DH, DLS, CeA and BLA, but not when administered into the MeA. This study identifies the DLS and the CeA as brain regions mediating the effects of NPY on the expression of social fear and suggests that partly distinct neural circuitries mediate the effects of NPY on the expression of social fear and on anxiety-like behavior.
Collapse
|
9
|
Kornhuber J, Zoicas I. Neuropeptide Y as Alternative Pharmacotherapy for Antidepressant-Resistant Social Fear. Int J Mol Sci 2020; 21:ijms21218220. [PMID: 33153050 PMCID: PMC7662288 DOI: 10.3390/ijms21218220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/25/2022] Open
Abstract
In many social anxiety disorder (SAD) patients, the efficacy of antidepressant therapy is unsatisfactory. Here, we investigated whether mice deficient for the lysosomal glycoprotein acid sphingomyelinase (ASM−/−) represent an appropriate tool to study antidepressant-resistant social fear. We also investigated whether neuropeptide Y (NPY) reduces this antidepressant-resistant social fear in ASM−/− mice, given that NPY reduced social fear in a mouse model of SAD, namely social fear conditioning (SFC). We show that neither chronic paroxetine nor chronic amitriptyline administration via drinking water were successful in reducing SFC-induced social fear in ASM−/− mice, while the same treatment reduced social fear in ASM+/− mice and completely reversed social fear in ASM+/+ mice. This indicates that the antidepressants paroxetine and amitriptyline reduce social fear via the ASM-ceramide system and that ASM−/− mice represent an appropriate tool to study antidepressant-resistant social fear. The intracerebroventricular administration of NPY, on the other hand, reduced social fear in ASM−/− mice, suggesting that NPY might represent an alternative pharmacotherapy for antidepressant-resistant social fear. These results suggest that medication strategies aimed at increasing brain NPY concentrations might improve symptoms of social fear in SAD patients who fail to respond to antidepressant treatments.
Collapse
|
10
|
Kornhuber J, Zoicas I. Neuropeptide Y prolongs non-social memory in a brain region- and receptor-specific way in male mice. Neuropharmacology 2020; 175:108199. [PMID: 32535011 DOI: 10.1016/j.neuropharm.2020.108199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022]
Abstract
Neuropeptide Y (NPY) and its receptors are highly expressed in brain regions involved in learning and memory processes. We have previously shown that intracerebroventricular administration of NPY prolongs the retention of non-social memory in the object discrimination test. Here, we aimed to identify the brain regions which mediate these memory-enhancing effects of NPY. We show that NPY (0.1 nmol/0.2 μl/side) prolongs retention of non-social memory when administered into the dorsolateral septum (DLS) and medial amygdala (MeA), but not when administered into the dorsal hippocampus, central amygdala and basolateral amygdala. In the DLS, the effects of NPY were blocked by the Y1 receptor antagonist BIBO3304 trifluoroacetate (0.2 nmol/0.2 μl/side), but not by the Y2 receptor antagonist BIIE0246 (0.2 nmol/0.2 μl/side). In the MeA, on the other hand, BIIE0246, but not BIBO3304 trifluoroacetate blocked the effects of NPY. This study demonstrates that NPY exerts Y1 receptor-mediated memory-enhancing effects in the DLS and Y2 receptor-mediated memory-enhancing effects in the MeA, and suggests that distinct brain regions and receptor subtypes are recruited to mediate the effects of NPY on non-social memory.
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
11
|
Genders SG, Scheller KJ, Djouma E. Neuropeptide modulation of addiction: Focus on galanin. Neurosci Biobehav Rev 2020; 110:133-149. [DOI: 10.1016/j.neubiorev.2018.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
|
12
|
Tillage RP, Sciolino NR, Plummer NW, Lustberg D, Liles LC, Hsiang M, Powell JM, Smith KG, Jensen P, Weinshenker D. Elimination of galanin synthesis in noradrenergic neurons reduces galanin in select brain areas and promotes active coping behaviors. Brain Struct Funct 2020; 225:785-803. [PMID: 32065256 DOI: 10.1007/s00429-020-02035-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023]
Abstract
Accumulating evidence indicates that disruption of galanin signaling is associated with neuropsychiatric disease, but the precise functions of this neuropeptide remain largely unresolved due to lack of tools for experimentally disrupting its transmission in a cell type-specific manner. To examine the function of galanin in the noradrenergic system, we generated and crossed two novel knock-in mouse lines to create animals lacking galanin specifically in noradrenergic neurons (GalcKO-Dbh). We observed reduced levels of galanin peptide in pons, hippocampus, and prefrontal cortex of GalcKO-Dbh mice, indicating that noradrenergic neurons are a significant source of galanin to those brain regions, while midbrain and hypothalamic galanin levels were comparable to littermate controls. In these same brain regions, we observed no change in levels of norepinephrine or its major metabolite at baseline or after an acute stressor, suggesting that loss of galanin does not affect noradrenergic synthesis or turnover. GalcKO-Dbh mice had normal performance in tests of depression, learning, and motor-related behavior, but had an altered response in some anxiety-related tasks. Specifically, GalcKO-Dbh mice showed increased marble and shock probe burying and had a reduced latency to eat in a novel environment, indicative of a more proactive coping strategy. Together, these findings indicate that noradrenergic neurons provide a significant source of galanin to discrete brain areas, and noradrenergic-specific galanin opposes adaptive coping responses.
Collapse
Affiliation(s)
- Rachel P Tillage
- Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St., Atlanta, GA, 30322, USA
| | - Natale R Sciolino
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Nicholas W Plummer
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Daniel Lustberg
- Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St., Atlanta, GA, 30322, USA
| | - L Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St., Atlanta, GA, 30322, USA
| | - Madeline Hsiang
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Jeanne M Powell
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Kathleen G Smith
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Patricia Jensen
- Neurobiology Laboratory, Developmental Neurobiology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St., Atlanta, GA, 30322, USA.
| |
Collapse
|
13
|
Corder KM, Li Q, Cortes MA, Bartley AF, Davis TR, Dobrunz LE. Overexpression of neuropeptide Y decreases responsiveness to neuropeptide Y. Neuropeptides 2020; 79:101979. [PMID: 31708112 PMCID: PMC6960342 DOI: 10.1016/j.npep.2019.101979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous neuropeptide that is abundantly expressed in the central nervous system. NPY is involved in various neurological processes and neuropsychiatric disorders, including fear learning and anxiety disorders. Reduced levels of NPY are reported in Post-Traumatic Stress Disorder (PTSD) patients, and NPY has been proposed as a potential therapeutic target for PTSD. It is therefore important to understand the effects of chronic enhancement of NPY on anxiety and fear learning. Previous studies have shown that acute elevation of NPY reduces anxiety, fear learning and locomotor activity. Models of chronic NPY overexpression have produced mixed results, possibly caused by ectopic NPY expression. NPY is expressed primarily by a subset of GABAergic interneurons, providing specific spatiotemporal release patterns. Administration of exogenous NPY throughout the brain, or overexpression in cells that do not normally release NPY, can have detrimental side effects, including memory impairment. In order to determine the effects of boosting NPY only in the cells that normally release it, we utilized a transgenic mouse line that overexpresses NPY only in NPY+ cells. We tested for effects on anxiety related behaviors in adolescent mice, an age with high incidence of anxiety disorders in humans. Surprisingly, we did not observe the expected reduction in anxiety-like behavior in NPY overexpression mice. There was no change in fear learning behavior, although there was a deficit in nest building. The effect of exogenous NPY on synaptic transmission in acute hippocampal slices was also diminished, indicating that the function of NPY receptors is impaired. Reduced NPY receptor function could contribute to the unexpected behavioral outcomes. We conclude that overexpression of NPY, even in cells that normally express it, can lead to reduced responsiveness of NPY receptors, potentially affecting the ability of NPY to function as a long-term therapeutic.
Collapse
Affiliation(s)
- Katelynn M Corder
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America; University of Alabama at Birmingham, Department of Biology, 1670 University Blvd., VH G133B, Birmingham, AL 35233, United States of America
| | - Qin Li
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Mariana A Cortes
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Aundrea F Bartley
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Taylor R Davis
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Lynn E Dobrunz
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America.
| |
Collapse
|
14
|
Kornhuber J, Zoicas I. Neuropeptide Y reduces expression of social fear via simultaneous activation of Y1 and Y2 receptors. J Psychopharmacol 2019; 33:1533-1539. [PMID: 31328614 PMCID: PMC6854880 DOI: 10.1177/0269881119862529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neuropeptide Y (NPY) has anxiolytic effects and facilitates extinction of cued and contextual fear in rodents, thereby acting as a resilience factor against exaggerated fear responses after adverse events. We investigated whether NPY influences acquisition, expression and extinction of social fear in a mouse model of social fear conditioning (SFC). METHODS NPY was administered intracerebroventricularly before SFC or before social fear extinction with or without prior administration of Y1 and/or Y2 receptor antagonists. RESULTS We show that NPY affects SFC-induced social fear in a time point-dependent manner. When administered before SFC, NPY did not affect acquisition, expression and extinction of social fear. However, when administered before social fear extinction, NPY reduced expression of social fear via simultaneous activation of Y1 and Y2 receptors. As such, neither the Y1 receptor antagonist BIBO3304 trifluoroacetate nor the Y2 receptor antagonist BIIE0246 was able to block the effects of NPY completely. However, when administered in combination, they completely blocked the effects of NPY on social fear expression. CONCLUSIONS These findings have important clinical implications, as they suggest that although medication strategies aimed at increasing brain NPY activity are unlikely to prevent the formation of aversive memories after a traumatic social experience, they might improve the recovery from a traumatic social experience by reducing the expression of social fear.
Collapse
Affiliation(s)
| | - Iulia Zoicas
- Iulia Zoicas, Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.
| |
Collapse
|
15
|
Hooversmith JM, Bhatti DL, Holmes PV. Galanin administration into the prelimbic cortex impairs consolidation and expression of contextual fear conditioning. Behav Brain Res 2019; 375:112160. [DOI: 10.1016/j.bbr.2019.112160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/12/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
|
16
|
Dunn EN, Ferrara-Bowens TM, Chachich ME, Honnold CL, Rothwell CC, Hoard-Fruchey HM, Lesyna CA, Johnson EA, Cerasoli DM, McDonough JH, Cadieux CL. Evaluating mice lacking serum carboxylesterase as a behavioral model for nerve agent intoxication. Toxicol Mech Methods 2018; 28:563-572. [PMID: 29768075 DOI: 10.1080/15376516.2018.1476637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mice and other rodents are typically utilized for chemical warfare nerve agent research. Rodents have large amounts of carboxylesterase in their blood, while humans do not. Carboxylesterase nonspecifically binds to and detoxifies nerve agent. The presence of this natural bioscavenger makes mice and other rodents poor models for studies identifying therapeutics to treat humans exposed to nerve agents. To obviate this problem, a serum carboxylesterase knockout (Es1 KO) mouse was created. In this study, Es1 KO and wild type (WT) mice were assessed for differences in gene expression, nerve agent (soman; GD) median lethal dose (MLD) values, and behavior prior to and following nerve agent exposure. No expression differences were detected between Es1 KO and WT mice in more than 34 000 mouse genes tested. There was a significant difference between Es1 KO and WT mice in MLD values, as the MLD for GD-exposed WT mice was significantly higher than the MLD for GD-exposed Es1 KO mice. Behavioral assessments of Es1 KO and WT mice included an open field test, a zero maze, a Barnes maze, and a sucrose preference test (SPT). While sex differences were observed in various measures of these tests, overall, Es1 KO mice behaved similarly to WT mice. The two genotypes also showed virtually identical neuropathological changes following GD exposure. Es1 KO mice appear to have an enhanced susceptibility to GD toxicity while retaining all other behavioral and physiological responses to this nerve agent, making the Es1 KO mouse a more human-like model for nerve agent research.
Collapse
Affiliation(s)
- Emily N Dunn
- a United States Army Medical Research Institute of Chemical Defense , Aberdeen Proving Ground , MD , USA
| | - Teresa M Ferrara-Bowens
- a United States Army Medical Research Institute of Chemical Defense , Aberdeen Proving Ground , MD , USA
| | - Mark E Chachich
- b Department of Psychology , Towson University , Towson , MD , USA
| | - Cary L Honnold
- a United States Army Medical Research Institute of Chemical Defense , Aberdeen Proving Ground , MD , USA
| | - Cristin C Rothwell
- a United States Army Medical Research Institute of Chemical Defense , Aberdeen Proving Ground , MD , USA
| | - Heidi M Hoard-Fruchey
- a United States Army Medical Research Institute of Chemical Defense , Aberdeen Proving Ground , MD , USA
| | - Catherine A Lesyna
- a United States Army Medical Research Institute of Chemical Defense , Aberdeen Proving Ground , MD , USA
| | - Erik A Johnson
- a United States Army Medical Research Institute of Chemical Defense , Aberdeen Proving Ground , MD , USA
| | - Douglas M Cerasoli
- a United States Army Medical Research Institute of Chemical Defense , Aberdeen Proving Ground , MD , USA
| | - John H McDonough
- a United States Army Medical Research Institute of Chemical Defense , Aberdeen Proving Ground , MD , USA
| | - C Linn Cadieux
- a United States Army Medical Research Institute of Chemical Defense , Aberdeen Proving Ground , MD , USA
| |
Collapse
|
17
|
Narváez M, Borroto-Escuela DO, Santín L, Millón C, Gago B, Flores-Burgess A, Barbancho MA, Pérez de la Mora M, Narváez J, Díaz-Cabiale Z, Fuxe K. A Novel Integrative Mechanism in Anxiolytic Behavior Induced by Galanin 2/Neuropeptide Y Y1 Receptor Interactions on Medial Paracapsular Intercalated Amygdala in Rats. Front Cell Neurosci 2018; 12:119. [PMID: 29765307 PMCID: PMC5938606 DOI: 10.3389/fncel.2018.00119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/13/2018] [Indexed: 12/20/2022] Open
Abstract
Anxiety is evoked by a threatening situation and display adaptive or defensive behaviors, found similarly in animals and humans. Neuropeptide Y (NPY) Y1 receptor (NPYY1R) and Galanin (GAL) receptor 2 (GALR2) interact in several regions of the limbic system, including the amygdala. In a previous study, GALR2 enhanced NPYY1R mediated anxiolytic actions on spatiotemporal parameters in the open field and elevated plus maze, involving the formation of GALR2/NPYY1R heteroreceptor complexes in the amygdala. Moreover, the inclusion of complementary ethological parameters provides a more comprehensive profile on the anxiolytic effects of a treatment. The purpose of the current study is to evaluate the anxiolytic effects and circuit activity modifications caused by coactivation of GALR2 and NPYY1R. Ethological measurements were performed in the open field, the elevated plus-maze and the light-dark box, together with immediate early gene expression analysis within the amygdala-hypothalamus-periaqueductal gray (PAG) axis, as well as in situ proximity ligation assay (PLA) to demonstrate the formation of GALR2/NPYY1R heteroreceptor complexes. GALR2 and NPYY1R coactivation resulted in anxiolytic behaviors such as increased rearing and head-dipping, reduced stretch attend postures and freezing compared to single agonist or aCSF injection. Neuronal activity indicated by cFos expression was decreased in the dorsolateral paracapsular intercalated (ITCp-dl) subregion of the amygdala, ventromedial hypothalamic (VMH) nucleus and ventrolateral part of the periaqueductal gray (vlPAG), while increased in the perifornical nucleus of the hypothalamus (PFX) following coactivation of GALR2 and NPYY1R. Moreover, an increased density of GALR2/NPYY1R heteroreceptor complexes was explicitly observed in ITCp-dl, following GALR2 and NPYY1R coactivation. Besides, knockdown of GALR2 was found to reduce the density of complexes in ITCp-dl. Taken together, these results open up the possibility that the increased anxiolytic activity demonstrated upon coactivation of NPYY1R and GALR2 receptor was related to actions on the ITCp-dl. GALR2-NPYY1R heteroreceptor complexes may inhibit neuronal activity, by also modifying the neuronal networks of the hypothalamus and the PAG. These results indicate that GALR2/NPYY1R interactions in medial paracapsular intercalated amygdala can provide a novel integrative mechanism in anxiolytic behavior and the basis for the development of heterobivalent agonist drugs targeting GALR2/NPYY1R heteromers, especially in the ITCp-dl of the amygdala for the treatment of anxiety.
Collapse
Affiliation(s)
- Manuel Narváez
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Dasiel O Borroto-Escuela
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Biomolecular Science, Section of Physiology, University of Urbino, Urbino, Italy.,Grupo Bohío-Estudio, Observatorio Cubano de Neurociencias, Yaguajay, Cuba
| | - Luis Santín
- Instituto de Investigación Biomédica de Málaga, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Carmelo Millón
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Belén Gago
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Antonio Flores-Burgess
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Miguel A Barbancho
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Miguel Pérez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Narváez
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Zaida Díaz-Cabiale
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
18
|
Ferrara-Bowens TM, Chandler JK, Guignet MA, Irwin JF, Laitipaya K, Palmer DD, Shumway LJ, Tucker LB, McCabe JT, Wegner MD, Johnson EA. Neuropathological and behavioral sequelae in IL-1R1 and IL-1Ra gene knockout mice after soman (GD) exposure. Neurotoxicology 2017; 63:43-56. [DOI: 10.1016/j.neuro.2017.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 01/03/2023]
|
19
|
Nätt D, Barchiesi R, Murad J, Feng J, Nestler EJ, Champagne FA, Thorsell A. Perinatal Malnutrition Leads to Sexually Dimorphic Behavioral Responses with Associated Epigenetic Changes in the Mouse Brain. Sci Rep 2017; 7:11082. [PMID: 28894112 PMCID: PMC5593991 DOI: 10.1038/s41598-017-10803-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/09/2017] [Indexed: 01/21/2023] Open
Abstract
Childhood malnutrition is a risk factor for mental disorders, such as major depression and anxiety. Evidence shows that similar early life adversities induce sex-dependent epigenetic reprogramming. However, little is known about how genes are specifically affected by early malnutrition and the implications for males and females respectively. One relevant target is neuropeptide Y (NPY), which regulates both stress and food-intake. We studied maternal low protein diet (LPD) during pregnancy/lactation in mice. Male, but not female, offspring of LPD mothers consistently displayed anxiety- and depression-like behaviors under acute stress. Transcriptome-wide analysis of the effects of acute stress in the amygdala, revealed a list of transcription factors affected by either sex or perinatal LPD. Among these immediate early genes (IEG), members of the Early growth response family (Egr1/2/4) were consistently upregulated by perinatal LPD in both sexes. EGR1 also bound the NPY receptor Y1 gene (Npy1r), which co-occurred with sex-specific effects of perinatal LPD on both Npy1r DNA-methylation and gene transcription. Our proposed pathway connecting early malnutrition, sex-independent regulatory changes in Egr1, and sex-specific epigenetic reprogramming of its effector gene, Npy1r, represents the first molecular evidence of how early life risk factors may generate sex-specific epigenetic effects relevant for mental disorders.
Collapse
Affiliation(s)
- Daniel Nätt
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
- Department of Psychology, Columbia University, New York, NY, USA.
| | - Riccardo Barchiesi
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Josef Murad
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jian Feng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Annika Thorsell
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
Kornhuber J, Zoicas I. Neuropeptide Y prolongs non-social memory and differentially affects acquisition, consolidation, and retrieval of non-social and social memory in male mice. Sci Rep 2017; 7:6821. [PMID: 28754895 PMCID: PMC5533709 DOI: 10.1038/s41598-017-07273-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/23/2017] [Indexed: 01/08/2023] Open
Abstract
Neuropeptide Y (NPY) and its receptors (especially Y1, Y2, and Y5) are highly expressed in brain regions involved in learning and memory processes. Accordingly, NPY was shown to modulate cognitive functions in rodents. Here, we investigated possible memory-enhancing effects of NPY and determined the role of the NPY system in the acquisition, consolidation, and retrieval of non-social and social memory in mice, using the object and social discrimination tests, respectively. Intracerebroventricular (icv) infusion of NPY (1 nmol/2 µl) prolonged retention of non-social (object) memory, but not of social memory. This effect was blocked by the Y1 receptor antagonist BIBO3304 trifluoroacetate (2 nmol/2 µl), but not by the Y2 receptor antagonist BIIE0246 (2 nmol/2 µl). While icv infusion of NPY did not affect the acquisition, consolidation, and retrieval of non-social and social memory, icv infusion of BIBO3304 trifluoroacetate and BIIE0246 blocked the consolidation of non-social memory and the retrieval of both non-social and social memory. This study suggests that NPY has memory-enhancing effects in a non-social context by specifically acting on Y1 receptors. It further suggests that the central NPY system exerts differential effects on the sequential phases of non-social and social memory.
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany.
| |
Collapse
|
21
|
Chronic stress leads to epigenetic dysregulation in the neuropeptide-Y and cannabinoid CB1 receptor genes in the mouse cingulate cortex. Neuropharmacology 2017; 113:301-313. [DOI: 10.1016/j.neuropharm.2016.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022]
|
22
|
Angelakos CC, Watson AJ, O'Brien WT, Krainock KS, Nickl-Jockschat T, Abel T. Hyperactivity and male-specific sleep deficits in the 16p11.2 deletion mouse model of autism. Autism Res 2016; 10:572-584. [PMID: 27739237 DOI: 10.1002/aur.1707] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/20/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022]
Abstract
Sleep disturbances and hyperactivity are prevalent in several neurodevelopmental disorders, including autism spectrum disorders (ASDs) and attention deficit-hyperactivity disorder (ADHD). Evidence from genome-wide association studies indicates that chromosomal copy number variations (CNVs) are associated with increased prevalence of these neurodevelopmental disorders. In particular, CNVs in chromosomal region 16p11.2 profoundly increase the risk for ASD and ADHD, disorders that are more common in males than females. We hypothesized that mice hemizygous for the 16p11.2 deletion (16p11.2 del/+) would exhibit sex-specific sleep and activity alterations. To test this hypothesis, we recorded activity patterns using infrared beam breaks in the home-cage of adult male and female 16p11.2 del/+ and wildtype (WT) littermates. In comparison to controls, we found that both male and female 16p11.2 del/+ mice exhibited robust home-cage hyperactivity. In additional experiments, sleep was assessed by polysomnography over a 24-hr period. 16p11.2 del/+ male, but not female mice, exhibited significantly more time awake and significantly less time in non-rapid-eye-movement (NREM) sleep during the 24-hr period than wildtype littermates. Analysis of bouts of sleep and wakefulness revealed that 16p11.2 del/+ males, but not females, spent a significantly greater proportion of wake time in long bouts of consolidated wakefulness (greater than 42 min in duration) compared to controls. These changes in hyperactivity, wake time, and wake time distribution in the males resemble sleep disturbances observed in human ASD and ADHD patients, suggesting that the 16p11.2 del/+ mouse model may be a useful genetic model for studying sleep and activity problems in human neurodevelopmental disorders. Autism Res 2016. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 572-584. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christopher C Angelakos
- Department of Neuroscience, Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, 19104
| | - Adam J Watson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - W Timothy O'Brien
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104
| | - Kyle S Krainock
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Thomas Nickl-Jockschat
- Department of Psychiatry Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.,Jülich Aachen Research Alliance - Translational Brain Medicine, Jülich, Germany Germany and Aachen
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
23
|
Michopoulos V, Vester A, Neigh G. Posttraumatic stress disorder: A metabolic disorder in disguise? Exp Neurol 2016; 284:220-229. [PMID: 27246996 PMCID: PMC5056806 DOI: 10.1016/j.expneurol.2016.05.038] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/30/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a heterogeneous psychiatric disorder that affects individuals exposed to trauma and is highly co-morbid with other adverse health outcomes, including cardiovascular disease and obesity. The unique pathophysiological feature of PTSD is the inability to inhibit fear responses, such that individuals suffering from PTSD re-experience traumatic memories and are unable to control psychophysiological responses to trauma-associated stimuli. However, underlying alterations in sympathetic nervous system activity, neuroendocrine systems, and metabolism associated with PTSD are similar to those present in traditional metabolic disorders, such as obesity and diabetes. The current review highlights existing clinical, translational, and preclinical data that support the notion that underneath the primary indication of impaired fear inhibition, PTSD is itself also a metabolic disorder and proposes altered function of inflammatory responses as a common underlying mechanism. The therapeutic implications of treating PTSD as a whole-body condition are significant, as targeting any underlying biological system whose activity is altered in both PTSD and metabolic disorders, (i.e. HPA axis, sympathetic nervous systems, inflammation) may elicit symptomatic relief in individuals suffering from these whole-body adverse outcomes.
Collapse
Affiliation(s)
- Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Aimee Vester
- Department of Environmental Health Sciences, Rollins School of Public Health, Atlanta, GA, United States
| | - Gretchen Neigh
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States; Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
24
|
Lach G, Bicca MA, Hoeller AA, Santos ECDS, Costa APR, de Lima TCM. Short-term enriched environment exposure facilitates fear extinction in adult rats: The NPY-Y1 receptor modulation. Neuropeptides 2016; 55:73-8. [PMID: 26490304 DOI: 10.1016/j.npep.2015.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022]
Abstract
Neuropeptides have an important role in several psychiatric conditions. Among them, neuropeptide Y (NPY) seems to be essential to modulate some features of stress-related disorders. Post-traumatic stress disorder (PTSD), characterized by inappropriate fear generalization to safe situations may be modulated by NPY manipulation since this neuropeptide is involved in the promotion of coping with stress. Experimentally, coping strategies have been obtained after exposure in enriched environment (EE) rather than standard one. Thus, in the present study we aimed to assess whether short-term EE situation and NPY-Y1 receptor (Y1r) modulation may affect the extinction of contextual fear conditioning, an experimental approach to PTSD. Here we show that EE-rats have the contextual fear extinction facilitated, and this facilitation was reverted by central infusion of BIBO3304, a nonpeptide Y1r antagonist. In addition, protein analysis revealed an upregulation of hippocampal Y1r in conditioned EE-rats, but no changes were observed in EE-rats that were not conditioned. Our results demonstrated that protective properties of EE on fear extinction can be regulated, at least in part, by activation of NPY-signaling through Y1r within hippocampus, an area that plays a major role in contextual memories. Overall, the activation of Y1r is important to promote better and faster perception of self-location (context), and to reduce fear generalization in rats exposed to EE.
Collapse
Affiliation(s)
- Gilliard Lach
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil.
| | - Maira Assunção Bicca
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil
| | - Alexandre Ademar Hoeller
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil; Postgraduate Program in Medical Science, Center of Health Sciences, University Hospital, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
| | - Evelyn Cristina da Silva Santos
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil
| | - Ana Paula Ramos Costa
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil
| | | |
Collapse
|
25
|
Tasan RO, Verma D, Wood J, Lach G, Hörmer B, de Lima TCM, Herzog H, Sperk G. The role of Neuropeptide Y in fear conditioning and extinction. Neuropeptides 2016; 55:111-26. [PMID: 26444585 DOI: 10.1016/j.npep.2015.09.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 12/23/2022]
Abstract
While anxiety disorders are the brain disorders with the highest prevalence and constitute a major burden for society, a considerable number of affected people are still treated insufficiently. Thus, in an attempt to identify potential new anxiolytic drug targets, neuropeptides have gained considerable attention in recent years. Compared to classical neurotransmitters they often have a regionally restricted distribution and may bind to several distinct receptor subtypes. Neuropeptide Y (NPY) is a highly conserved neuropeptide that is specifically concentrated in limbic brain areas and signals via at least 5 different G-protein-coupled receptors. It is involved in a variety of physiological processes including the modulation of emotional-affective behaviors. An anxiolytic and stress-reducing property of NPY is supported by many preclinical studies. Whether NPY may also interact with processing of learned fear and fear extinction is comparatively unknown. However, this has considerable relevance since pathological, inappropriate and generalized fear expression and impaired fear extinction are hallmarks of human post-traumatic stress disorder and a major reason for its treatment-resistance. Recent evidence from different laboratories emphasizes a fear-reducing role of NPY, predominantly mediated by exogenous NPY acting on Y1 receptors. Since a reduction of fear expression was also observed in Y1 receptor knockout mice, other Y receptors may be equally important. By acting on Y2 receptors, NPY promotes fear extinction and generates a long-term suppression of fear, two important preconditions that could support cognitive behavioral therapies in human patients. A similar effect has been demonstrated for the closely related pancreatic polypeptide (PP) when acting on Y4 receptors. Preliminary evidence suggests that NPY modulates fear in particular by activation of Y1 and Y2 receptors in the basolateral and central amygdala, respectively. In the basolateral amygdala, NPY signaling activates inhibitory G protein-coupled inwardly-rectifying potassium channels or suppresses hyperpolarization-induced I(h) currents in a Y1 receptor-dependent fashion, favoring a general suppression of neuronal activity. A more complex situation has been described for the central extended amygdala, where NPY reduces the frequency of inhibitory and excitatory postsynaptic currents. In particular the inhibition of long-range central amygdala output neurons may result in a Y2 receptor-dependent suppression of fear. The role of NPY in processes of learned fear and fear extinction is, however, only beginning to emerge, and multiple questions regarding the relevance of endogenous NPY and different receptor subtypes remain elusive. Y2 receptors may be of particular interest for future studies, since they are the most prominent Y receptor subtype in the human brain and thus among the most promising therapeutic drug targets when translating preclinical evidence to potential new therapies for human anxiety disorders.
Collapse
Affiliation(s)
- R O Tasan
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria.
| | - D Verma
- Institute of Physiology I, University of Münster, D-48149 Münster, Germany
| | - J Wood
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - G Lach
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria; Capes Foundation, Ministry of Education of Brazil, 70040-020 Brasília/DF, Brazil
| | - B Hörmer
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - T C M de Lima
- Department of Pharmacology, Federal University of Santa Catarina, 88049-970 Florianópolis, Brazil
| | - H Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - G Sperk
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
26
|
Gøtzsche CR, Woldbye DPD. The role of NPY in learning and memory. Neuropeptides 2016; 55:79-89. [PMID: 26454711 DOI: 10.1016/j.npep.2015.09.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023]
Abstract
High levels of NPY expression in brain regions important for learning and memory together with its neuromodulatory and neurotrophic effects suggest a regulatory role for NPY in memory processes. Therefore it is not surprising that an increasing number of studies have provided evidence for NPY acting as a modulator of neuroplasticity, neurotransmission, and memory. Here these results are presented in relation to the types of memory affected by NPY and its receptors. NPY can exert both inhibitory and stimulatory effects on memory, depending on memory type and phase, dose applied, brain region, and NPY receptor subtypes. Thus NPY act as a resilience factor by impairing associative implicit memory after stressful and aversive events, as evident in models of fear conditioning, presumably via Y1 receptors in the amygdala and prefrontal cortex. In addition, NPY impairs acquisition but enhances consolidation and retention in models depending on spatial and discriminative types of associative explicit memory, presumably involving Y2 receptor-mediated regulations of hippocampal excitatory transmission. Moreover, spatial memory training leads to increased hippocampal NPY gene expression that together with Y1 receptor-mediated neurogenesis could constitute necessary steps in consolidation and long-term retention of spatial memory. Altogether, NPY-induced effects on learning and memory seem to be biphasic, anatomically and temporally differential, and in support of a modulatory role of NPY at keeping the system in balance. Obtaining further insight into memory-related effects of NPY could inspire the engineering of new therapeutics targeting diseases where impaired learning and memory are central elements.
Collapse
Affiliation(s)
- C R Gøtzsche
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark.
| | - D P D Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| |
Collapse
|
27
|
Weinshenker D, Holmes PV. Regulation of neurological and neuropsychiatric phenotypes by locus coeruleus-derived galanin. Brain Res 2015; 1641:320-37. [PMID: 26607256 DOI: 10.1016/j.brainres.2015.11.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/27/2015] [Accepted: 11/12/2015] [Indexed: 12/28/2022]
Abstract
Decades of research confirm that noradrenergic locus coeruleus (LC) neurons are essential for arousal, attention, motivation, and stress responses. While most studies on LC transmission focused unsurprisingly on norepinephrine (NE), adrenergic signaling cannot account for all the consequences of LC activation. Galanin coexists with NE in the vast majority of LC neurons, yet the precise function of this neuropeptide has proved to be surprisingly elusive given our solid understanding of the LC system. To elucidate the contribution of galanin to LC physiology, here we briefly summarize the nature of stimuli that drive LC activity from a neuroanatomical perspective. We go on to describe the LC pathways in which galanin most likely exerts its effects on behavior, with a focus on addiction, depression, epilepsy, stress, and Alzheimer׳s disease. We propose a model in which LC-derived galanin has two distinct functions: as a neuromodulator, primarily acting via the galanin 1 receptor (GAL1), and as a trophic factor, primarily acting via galanin receptor 2 (GAL2). Finally, we discuss how the recent advances in neuropeptide detection, optogenetics and chemical genetics, and galanin receptor pharmacology can be harnessed to identify the roles of LC-derived galanin definitively. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
- David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA 30322, USA.
| | - Philip V Holmes
- Neuroscience Program, Biomedical and Health Sciences Institute and Psychology Department, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
28
|
Sciolino NR, Smith JM, Stranahan AM, Freeman KG, Edwards GL, Weinshenker D, Holmes PV. Galanin mediates features of neural and behavioral stress resilience afforded by exercise. Neuropharmacology 2015; 89:255-64. [PMID: 25301278 PMCID: PMC4250306 DOI: 10.1016/j.neuropharm.2014.09.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/23/2014] [Accepted: 09/28/2014] [Indexed: 12/15/2022]
Abstract
Exercise promotes resilience to stress and increases galanin in the locus coeruleus (LC), but the question of whether changes in galanin signaling mediate the stress-buffering effects of exercise has never been addressed. To test the contributions of galanin to stress resilience, male Sprague Dawley rats received intracerebroventricular (ICV) cannulation for drug delivery and frontocortical cannulation for microdialysis, and were housed with or without a running wheel for 21d. Rats were acutely injected with vehicle or the galanin receptor antagonist M40 and exposed to a single session of either footshock or no stress. Other groups received galanin, the galanin receptor antagonist M40, or vehicle chronically for 21d prior to the stress session. Microdialysis sampling occurred during stress exposure and anxiety-related behavior was measured on the following day in the elevated plus maze. Dendritic spines were visualized by Golgi impregnation in medial prefrontal cortex (mPFC) pyramidal neurons and quantified. Exercise increased galanin levels in the LC. Under non-stressed conditions, anxiety-related behavior and dopamine levels were comparable between exercised and sedentary rats. In contrast, exposure to stress reduced open arm exploration in sedentary rats but not in exercise rats or those treated chronically with ICV galanin, indicating improved resilience. Both exercise and chronic, ICV galanin prevented the increased dopamine overflow and loss of dendritic spines observed after stress in sedentary rats. Chronic, but not acute M40 administration blocked the resilience-promoting effects of exercise. The results indicate that increased galanin levels promote features of resilience at both behavioral and neural levels.
Collapse
Affiliation(s)
- N R Sciolino
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA.
| | - J M Smith
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA.
| | - A M Stranahan
- Physiology Department, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA.
| | - K G Freeman
- Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA.
| | - G L Edwards
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA; Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA.
| | - D Weinshenker
- Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - P V Holmes
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA; Psychology Department, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
29
|
Pharmacological blockage and P2X7 deletion hinder aversive memories: Reversion in an enriched environment. Neuroscience 2014; 280:220-30. [DOI: 10.1016/j.neuroscience.2014.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 11/20/2022]
|
30
|
Patel TP, Gullotti DM, Hernandez P, O'Brien WT, Capehart BP, Morrison B, Bass C, Eberwine JE, Abel T, Meaney DF. An open-source toolbox for automated phenotyping of mice in behavioral tasks. Front Behav Neurosci 2014; 8:349. [PMID: 25339878 PMCID: PMC4189437 DOI: 10.3389/fnbeh.2014.00349] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/18/2014] [Indexed: 12/04/2022] Open
Abstract
Classifying behavior patterns in mouse models of neurological, psychiatric and neurodevelopmental disorders is critical for understanding disease causality and treatment. However, complete characterization of behavior is time-intensive, prone to subjective scoring, and often requires specialized equipment. Although several reports describe automated home-cage monitoring and individual task scoring methods, we report the first open source, comprehensive toolbox for automating the scoring of several common behavior tasks used by the neuroscience community. We show this new toolbox is robust and achieves equal or better consistency when compared to manual scoring methods. We use this toolbox to study the alterations in behavior that occur following blast-induced traumatic brain injury (bTBI), and study if these behavior patterns are altered following genetic deletion of the transcription factor Ets-like kinase 1 (Elk-1). Due to the role of Elk-1 in neuronal survival and proposed role in synaptic plasticity, we hypothesized that Elk-1 deletion would improve some neurobehavioral deficits, while impairing others, following blast exposure. In Elk-1 knockout (KO) animals, deficits in open field, spatial object recognition (SOR) and elevated zero maze performance after blast exposure disappeared, while new significant deficits appeared in spatial and associative memory. These are the first data suggesting a molecular mediator of anxiety deficits following bTBI, and represent the utility of the broad screening tool we developed. More broadly, we envision this open-source toolbox will provide a more consistent and rapid analysis of behavior across many neurological diseases, promoting the rapid discovery of novel pathways mediating disease progression and treatment.
Collapse
Affiliation(s)
- Tapan P Patel
- Department of Bioengineering, University of Pennsylvania Philadelphia, PA, USA
| | - David M Gullotti
- Department of Bioengineering, University of Pennsylvania Philadelphia, PA, USA
| | - Pepe Hernandez
- Department of Biology, University of Pennsylvania Philadelphia, PA, USA
| | - W Timothy O'Brien
- Department of Neuroscience, University of Pennsylvania Philadelphia, PA, USA
| | - Bruce P Capehart
- Department of Psychiatry and Behavioral Sciences, Duke University Durham, NC, USA
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University New York, NY, USA
| | - Cameron Bass
- Department of Biomedical Engineering, Duke University Durham, NC, USA
| | - James E Eberwine
- Department of Pharmacology, University of Pennsylvania Philadelphia, PA, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania Philadelphia, PA, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania Philadelphia, PA, USA ; Department of Neurosurgery, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
31
|
Laukova M, Alaluf LG, Serova LI, Arango V, Sabban EL. Early intervention with intranasal NPY prevents single prolonged stress-triggered impairments in hypothalamus and ventral hippocampus in male rats. Endocrinology 2014; 155:3920-33. [PMID: 25057792 DOI: 10.1210/en.2014-1192] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intranasal administration of neuropeptide Y (NPY) is a promising treatment strategy to reduce traumatic stress-induced neuropsychiatric symptoms of posttraumatic stress disorder (PTSD). We evaluated the potential of intranasal NPY to prevent dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, a core neuroendocrine feature of PTSD. Rats were exposed to single prolonged stress (SPS), a PTSD animal model, and infused intranasally with vehicle or NPY immediately after SPS stressors. After 7 days undisturbed, hypothalamus and hippocampus, 2 structures regulating the HPA axis activity, were examined for changes in glucocorticoid receptor (GR) and CRH expression. Plasma ACTH and corticosterone, and hypothalamic CRH mRNA, were significantly higher in the vehicle but not NPY-treated group, compared with unstressed controls. Although total GR levels were not altered in hypothalamus, a significant decrease of GR phosphorylated on Ser232 and increased FK506-binding protein 5 mRNA were observed with the vehicle but not in animals infused with intranasal NPY. In contrast, in the ventral hippocampus, only vehicle-treated animals demonstrated elevated GR protein expression and increased GR phosphorylation on Ser232, specifically in the nuclear fraction. Additionally, SPS-induced increase of CRH mRNA in the ventral hippocampus was accompanied by apparent decrease of CRH peptide particularly in the CA3 subfield, both prevented by NPY. The results show that early intervention with intranasal NPY can prevent traumatic stress-triggered dysregulation of the HPA axis likely by restoring HPA axis proper negative feedback inhibition via GR. Thus, intranasal NPY has a potential as a noninvasive therapy to prevent negative effects of traumatic stress.
Collapse
Affiliation(s)
- Marcela Laukova
- Department of Biochemistry and Molecular Biology (M.L., L.G.A., L.I.S., E.L.S.), New York Medical College, Valhalla, New York 10595; and Molecular Imaging and Neuropathology Division (V.A.), New York State Psychiatric Institute, New York, New York 10032
| | | | | | | | | |
Collapse
|
32
|
Galanin receptor 2-neuropeptide Y Y1 receptor interactions in the amygdala lead to increased anxiolytic actions. Brain Struct Funct 2014; 220:2289-301. [DOI: 10.1007/s00429-014-0788-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/25/2014] [Indexed: 02/06/2023]
|
33
|
Abstract
The neuropeptide galanin (GAL) is widely distributed in the central and peripheral nervous systems. It is a modulator of various physiological and pathological processes, and it mediates its effects via three G protein-coupled receptors (GAL1-3 receptors). A role for GAL as a modulator of mood and anxiety was suggested, because GAL and its receptors are highly expressed in limbic brain structures of rodents. In recent years, numerous studies of animal models have suggested an involvement of GAL and GAL1 and GAL2 receptors in anxiety- and depression-related behavior. However, to date, there is sparse literature implicating GAL3 receptors in behavioral functions. Therefore, we studied the behavior of GAL3 receptor-deficient (GAL3-KO) mice to elucidate whether GAL3 receptors are involved in mediating behavior-associated actions of GAL. The GAL3-KO mouse line exhibited normal breeding and physical development. In addition to behavioral tests, phenotypic characterization included analysis of hematology, amino acid profiles, metabolism, and sudomotor function. In contrast to WT littermates, male GAL3-KO mice exhibited an anxiety-like phenotype in the elevated plus maze, open field, and light/dark box tests, and they were less socially affiliated than WT animals to a stranger mouse in a social interaction test. In conclusion, our data suggest involvement of GAL3 receptors in GAL-mediated effects on mood, anxiety, and behavior, making it a possible target for alternative treatment strategies for mood disorders.
Collapse
|
34
|
Nishi D, Hashimoto K, Noguchi H, Matsuoka Y. Serum neuropeptide Y in accident survivors with depression or posttraumatic stress disorder. Neurosci Res 2014; 83:8-12. [PMID: 24709369 DOI: 10.1016/j.neures.2014.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 11/27/2022]
Abstract
Although neuropeptide Y (NPY) has received attention for its potential anti-depressive and anti-anxiety effect, evidence in humans has been limited. This study aimed to clarify the relationships between serum NPY and depressive disorders, and posttraumatic stress disorder (PTSD) in accident survivors. Depressive disorders and PTSD were diagnosed by structural interviews at 1-month follow-up, and serum NPY was measured at the first assessment and 1-month follow-up. Analysis of variance was used to investigate significance of the differences identified. Furthermore, resilience was measured by self-report questionnaires. Multiple linear regression analyses were used to examine the relationship between resilience and serum NPY. Three hundred accident survivors participated in the assessment at the first assessment, and 138 completed the assessment at 1-month follow-up. Twenty-six participants had major depressive disorder and 6 had minor depressive disorder. Nine participants had PTSD and 16 had partial PTSD. No relationship existed between serum NPY and depressive disorders, PTSD, and resilience. The results of cannot be compared with those of NPY in the central nervous system (CNS), but these findings might be due to the nature of depression and PTSD in accident survivors. Further studies are needed to examine the relationships between NPY in CNS and depression and PTSD.
Collapse
Affiliation(s)
- Daisuke Nishi
- Department of Psychiatry, National Disaster Medical Center, 3256 Midoricho, Tachikawa 190-0014, Japan; CREST, Japan Science and Technology Agency, 3256 Midoricho, Tachikawa 190-0014, Japan; Department of Mental Health Policy and Evaluation, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira 187-8551, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba 260-8670, Japan
| | - Hiroko Noguchi
- CREST, Japan Science and Technology Agency, 3256 Midoricho, Tachikawa 190-0014, Japan; Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira 187-8551, Japan
| | - Yutaka Matsuoka
- Department of Psychiatry, National Disaster Medical Center, 3256 Midoricho, Tachikawa 190-0014, Japan; CREST, Japan Science and Technology Agency, 3256 Midoricho, Tachikawa 190-0014, Japan; Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira 187-8551, Japan.
| |
Collapse
|
35
|
Gaier ED, Eipper BA, Mains RE. Pam heterozygous mice reveal essential role for Cu in amygdalar behavioral and synaptic function. Ann N Y Acad Sci 2014; 1314:15-23. [PMID: 24593825 DOI: 10.1111/nyas.12378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper (Cu) is an essential element with many biological roles, but its roles in the mammalian nervous system are poorly understood. Mice deficient in the cuproenzyme peptidylglycine α-amidating monooxygenase (Pam(+/-) mice) were initially generated to study neuropeptide amidation. Pam(+/-) mice exhibit profound deficits in a few behavioral tasks, including enhancements in innate fear along with deficits in acquired fear. Interestingly, several Pam(+/-) phenotypes were recapitulated in Cu-restricted wild-type mice and rescued in Cu-supplemented Pam(+/-) mice. These behaviors correspond to enhanced excitability and deficient synaptic plasticity in the amygdala of Pam(+/-) mice, which are also rescued by Cu supplementation. Cu and ATP7A are present at synapses, in key positions to respond to and influence synaptic activity. Further study demonstrated that extracellular Cu is necessary for wild-type synaptic plasticity and sufficient to induce long-term potentiation. These experiments support roles for PAM in Cu homeostasis and for synaptic Cu in amygdalar function.
Collapse
Affiliation(s)
- Eric D Gaier
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | | | | |
Collapse
|
36
|
Merali Z, Graitson S, Mackay JC, Kent P. Stress and eating: a dual role for bombesin-like peptides. Front Neurosci 2013; 7:193. [PMID: 24298233 PMCID: PMC3829480 DOI: 10.3389/fnins.2013.00193] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/07/2013] [Indexed: 12/28/2022] Open
Abstract
The current obesity “epidemic” in the developed world is a major health concern; over half of adult Canadians are now classified as overweight or obese. Although the reasons for high obesity rates remain unknown, an important factor appears to be the role stressors play in overconsumption of food and weight gain. In this context, increased stressor exposure and/or perceived stress may influence eating behavior and food choices. Stress-induced anorexia is often noted in rats exposed to chronic stress (e.g., repeated restraint) and access to standard Chow diet; associated reduced consumption and weight loss. However, if a similar stressor exposure takes place in the presence of palatable, calorie dense food, rats often consume an increase proportion of palatable food relative to Chow, leading to weight gain and obesity. In humans, a similar desire to eat palatable or “comfort” foods has been noted under stressful situations; it is thought that this response may potentially be attributable to stress-buffering properties and/or through activation of reward pathways. The complex interplay between stress-induced anorexia and stress-induced obesity is discussed in terms of the overlapping circuitry and neurochemicals that mediate feeding, stress and reward pathways. In particular, this paper draws attention to the bombesin family of peptides (BBs) initially shown to regulate food intake and subsequently shown to mediate stress response as well. Evidence is presented to support the hypothesis that BBs may be involved in stress-induced anorexia under certain conditions, but that the same peptides could also be involved in stress-induced obesity. This hypothesis is based on the unique distribution of BBs in key cortico-limbic brain regions involved in food regulation, reward, incentive salience and motivationally driven behavior.
Collapse
Affiliation(s)
- Z Merali
- Department of Psychology, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada ; University of Ottawa Institute of Mental Health Research Ottawa, ON, Canada
| | | | | | | |
Collapse
|
37
|
The role of galanin system in modulating depression, anxiety, and addiction-like behaviors after chronic restraint stress. Neuroscience 2013; 246:82-93. [DOI: 10.1016/j.neuroscience.2013.04.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 11/21/2022]
|
38
|
Jung JM, Park SJ, Lee YW, Lee HE, Hong SI, Lew JH, Hong E, Shim JS, Cheong JH, Ryu JH. The effects of a standardized Acanthopanax koreanum extract on stress-induced behavioral alterations in mice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:826-834. [PMID: 23721913 DOI: 10.1016/j.jep.2013.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/25/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The roots and stem bark of Acanthopanax koreanum Nakai (Araliaceae), a well-known herbal medicine in Jeju Island, Korea, has been used as a tonic agent in treating stress-related states. Despite its popular application, the anti-anxiety or anti-depressive action of Acanthopanax koreanum is not yet known. AIM OF THE STUDY This study aimed to determine the effects of Acanthopanax koreanum on stress-induced behavioral alterations such as anxiety and depression. MATERIALS AND METHODS Mice in the acute stress group were exposed to immobilization stress for 2h followed by electric foot shocks (0.5 mA in 1 s duration with a 10 s inter-shock interval) for 2 min, while sub-chronically stressed mice were exposed to these stresses for 2 weeks, once per day. 70% ethanolic extract of Acanthopanax koreanum (EEAK) (25, 50, 100, or 200 mg/kg) was administered once or sub-chronically (for 2 weeks) 1h prior to stress induction. Anxiety- or depression-like behavioral changes were evaluated using the elevated plus-maze (EPM) test and the forced swimming test (FST) a day after the final stress induction. Corticosterone levels and spleen weight were measured after conducting all the behavioral assays. The numbers of BrdU- or DCX-immunopositive cells in the hippocampal region of sub-chronically stressed mice were measured 2 days after EEAK treatment. RESULTS The percentage of time spent in the open arms was decreased in both the acutely and chronically stressed mice. In the FST, the immobility time was increased by only chronic stress, but not by acute stress. Acute or sub-chronic administration of EEAK significantly prevented the anxiety- or depression-like behavioral changes caused by stress. EEAK also attenuated stress-induced decrease and increase of spleen weight and corticosterone levels, respectively. Furthermore, the sub-chronic administration of EEAK (100 or 200 mg/kg, for 2 weeks) increased the number of BrdU-, doublecortin-, and neuropeptide Y-positive cells in the hippocampal region of the sub-chronically stressed mice. CONCLUSION EEAK attenuated the behavioral and biochemical changes in acute or sub-chronic stressed mice. These results suggest the therapeutic potential of Acanthopanax koreanum for the treatment of stress-related neuropsychiatric disorders including anxiety disorders or major depressive disorder.
Collapse
Affiliation(s)
- Jun Man Jung
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Resiliency to the adverse effects of extraordinary emotional trauma on the brain varies within the human population. Accordingly, some people cope better than others with traumatic stress. Neuropeptide Y (NPY) is a 36-amino-acid peptide transmitter abundantly expressed in forebrain limbic and brain stem areas that regulate stress and emotional behaviors. Studies largely in rodents demonstrate a role for NPY in promoting coping with stress. Moreover, accruing data from the genetic to the physiological implicate NPY as a potential 'resilience-to-stress' factor in humans. Here, we consolidate findings from preclinical and clinical studies of NPY that are of relevance to stress-associated syndromes, most prototypically posttraumatic stress disorder (PTSD). Collectively, these data suggest that reduced central nervous system (CNS) NPY concentrations or function may be associated with PTSD. We also link specific symptoms of human PTSD with extant findings in the NPY field to reveal potential physiological contributions of the neuropeptide to the disorder. In pursuit of understanding the physiological basis and treatment of PTSD, the NPY system is an attractive target.
Collapse
Affiliation(s)
- R Sah
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, USA.
| | - TD Geracioti
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA,Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| |
Collapse
|
40
|
Wong RY, Oxendine SE, Godwin J. Behavioral and neurogenomic transcriptome changes in wild-derived zebrafish with fluoxetine treatment. BMC Genomics 2013; 14:348. [PMID: 23706039 PMCID: PMC3667115 DOI: 10.1186/1471-2164-14-348] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/16/2013] [Indexed: 11/10/2022] Open
Abstract
Background Stress and anxiety-related behaviors are seen in many organisms. Studies have shown that in humans and other animals, treatment with selective serotonin reuptake inhibitors (e.g. fluoxetine) can reduce anxiety and anxiety-related behaviors. The efficacies and side effects, however, can vary between individuals. Fluoxetine can modulate anxiety in a stereospecific manner or with equal efficacy regardless of stereoisomer depending on the mechanism of action (e.g. serotonergic or GABAergic effects). Zebrafish are an emerging and valuable translational model for understanding human health related issues such as anxiety. In this study we present data showing the behavioral and whole brain transcriptome changes with fluoxetine treatment in wild-derived zebrafish and suggest additional molecular mechanisms of this widely-prescribed drug. Results We used automated behavioral analyses to assess the effects of racemic and stereoisomeric fluoxetine on male wild-derived zebrafish. Both racemic and the individual isomers of fluoxetine reduced anxiety-related behaviors relative to controls and we did not observe stereospecific fluoxetine effects. Using RNA-sequencing of the whole brain, we identified 411 genes showing differential expression with racemic fluoxetine treatment. Several neuropeptides (neuropeptide Y, isotocin, urocortin 3, prolactin) showed consistent expression patterns with the alleviation of stress and anxiety when anxiety-related behavior was reduced with fluoxetine treatment. With gene ontology and KEGG pathway analyses, we identified lipid and amino acid metabolic processes, and steroid biosynthesis among other terms to be over-enriched. Conclusion Our results demonstrate that fluoxetine reduces anxiety-related behaviors in wild-derived zebrafish and alters their neurogenomic state. We identify two biological processes, lipid and amino acid metabolic synthesis that characterize differences in the fluoxetine treated fish. Fluoxetine may be acting on several different molecular pathways to reduce anxiety-related behaviors in wild-derived zebrafish. This study provides data that could help identify common molecular mechanisms of fluoxetine action across animal taxa.
Collapse
Affiliation(s)
- Ryan Y Wong
- Department of Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617, USA.
| | | | | |
Collapse
|
41
|
Lach G, de Lima TCM. Role of NPY Y1 receptor on acquisition, consolidation and extinction on contextual fear conditioning: dissociation between anxiety, locomotion and non-emotional memory behavior. Neurobiol Learn Mem 2013; 103:26-33. [PMID: 23603424 DOI: 10.1016/j.nlm.2013.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/27/2013] [Accepted: 04/11/2013] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) is the most abundant peptide in the central nervous system (CNS) and is densely localized in the brain regions involved in stress, memory, fear and anxiety. Although previous research supports a role for NPY in the mediation of rodent and human emotional behavior, there is currently a lack of information on the effects of low doses of NPY that could have a potential therapeutic advantage, minimizing side-effects such as cognition impairment or sedation. Herein, we assessed the effects of intracerebroventricular (i.c.v.) administration of low doses of NPY, and of the Y1-agonist Leu31Pro34-NPY (LP-NPY) on contextual fear conditioning (CFC), as they have no effect on unconditioned anxiety-like, locomotor activity and non-emotional memory. NPY (3 pmol) and LP-NPY (1 pmol) inhibited freezing behavior when administered in the acquisition or consolidation stages, indicating a reduction of fear. When injected in the extinction phase, only NPY inhibited freezing behavior on CFC. Pre-treatment with the Y1-antagonist BIBO3304 before NPY and LP-NPY was able to prevent the inhibition of fear responses induced by both NPY agonists. Taken together, our results demonstrate robust fear-inhibiting effects of i.c.v. injection of NPY on contextual fear conditioning in rats, a response that is mediated, at least in part, by the Y1 receptor. Moreover, these treatments were unable to change locomotor activity or to show an anxiolytic-like effect, as evaluated in an open-field and an elevated plus-maze. This specific fear reduction effect may underlie resilience systems in the CNS and has potential therapeutic relevance in PTSD.
Collapse
Affiliation(s)
- Gilliard Lach
- Laboratory of Neuropharmacology, Department of Pharmacology, CCB, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88049-970, Brazil
| | | |
Collapse
|
42
|
Serova L, Tillinger A, Alaluf L, Laukova M, Keegan K, Sabban E. Single intranasal neuropeptide Y infusion attenuates development of PTSD-like symptoms to traumatic stress in rats. Neuroscience 2013; 236:298-312. [DOI: 10.1016/j.neuroscience.2013.01.040] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/19/2012] [Accepted: 01/21/2013] [Indexed: 11/29/2022]
|
43
|
Trent NL, Menard JL. Lateral septal infusions of the neuropeptide Y Y2 receptor agonist, NPY(13-36) differentially affect different defensive behaviors in male, Long Evans rats. Physiol Behav 2012; 110-111:20-9. [PMID: 23274501 DOI: 10.1016/j.physbeh.2012.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/25/2012] [Accepted: 12/20/2012] [Indexed: 11/18/2022]
Abstract
The lateral septum has been extensively implicated in regulating anxiety-related defensive behaviors in the rat. Neuropeptide Y (NPY) contributes to anxiety, likely through activity at the NPY Y1 and/or Y2 receptor binding sites. Although the lateral septum contains the highest density of Y2 receptors in brain, the involvement of this receptor in anxiety-related defensive behaviors is not clear. Thus, the purpose of the current study was to characterize lateral septal Y2 receptor contributions to rats' defensive responses to threat and/or potentially threatening environments. We investigated this by infusing the NPY Y2 agonist NPY13-36 into the lateral septum and testing rats across a battery of animal models of anxiety (Experiment 1). To verify the role of Y2 in mediating the observed effects, rats were pre-infused with the potent and highly selective Y2 antagonist BIIE 0246 prior to infusion with NPY13-36 (Experiment 2). Infusions of NPY13-36 into the lateral septum increased rats' open-arm exploration in the elevated plus-maze test (p<0.01) and decreased the proportion of rats' that buried (p<0.05) as well as their latency to initiate burying in the shock-probe burying test (p<0.01). By contrast, NPY13-36 did not affect either anxiety- or appetite-related responses in the novelty-induced suppression of feeding test (all ps>0.3; Experiment 1). Pre-treatment with the Y2 antagonist BIIE 0246 prevented the anxiolytic-like actions of NPY13-36 in the plus-maze but not in the shock-probe test (Experiment 2). Thus, it appears that the anxiolytic-like actions of lateral septal NPY13-36 are mediated by the Y2 receptor in a test-specific manner.
Collapse
Affiliation(s)
- Natalie L Trent
- Centre for Neuroscience Studies, Queen's University, 62 Arch Street, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
44
|
Yeung M, Dickson CT, Treit D. Intrahippocampal infusion of the Ih blocker ZD7288 slows evoked theta rhythm and produces anxiolytic-like effects in the elevated plus maze. Hippocampus 2012; 23:278-86. [PMID: 23280856 DOI: 10.1002/hipo.22086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2012] [Indexed: 12/15/2022]
Abstract
Hippocampal theta rhythm has been associated with a number of behavioral processes, including learning and memory, spatial behavior, sensorimotor integration and affective responses. Suppression of hippocampal theta frequency has been shown to be a reliable neurophysiological signature of anxiolytic drug action in tests using known anxiolytic drugs (i.e., correlational evidence), but only one study to date (Yeung et al. (2012) Neuropharmacology 62:155-160) has shown that a drug with no known effect on either hippocampal theta or anxiety can in fact separately suppress hippocampal theta and anxiety in behavioral tests (i.e., prima facie evidence). Here, we attempt a further critical test of the hippocampal theta model by performing intrahippocampal administrations of the Ih blocker ZD7288, which is known to disrupt theta frequency subthreshold oscillations and resonance at the membrane level but is not known to have anxiolytic action. Intrahippocampal microinfusions of ZD7288 at high (15 µg), but not low (1 µg) doses slowed brainstem-evoked hippocampal theta responses in the urethane anesthetized rat, and more importantly, promoted anxiolytic action in freely behaving rats in the elevated plus maze. Taken together with our previous demonstration, these data provide converging, prima facie evidence of the validity of the theta suppression model.
Collapse
Affiliation(s)
- Michelle Yeung
- Department of Psychology, University of Alberta, P-217 Biological, Sciences Building, Edmonton, Alberta, Canada T6G 2E9
| | | | | |
Collapse
|
45
|
Bowers ME, Choi DC, Ressler KJ. Neuropeptide regulation of fear and anxiety: Implications of cholecystokinin, endogenous opioids, and neuropeptide Y. Physiol Behav 2012; 107:699-710. [PMID: 22429904 PMCID: PMC3532931 DOI: 10.1016/j.physbeh.2012.03.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/24/2012] [Accepted: 03/05/2012] [Indexed: 11/23/2022]
Abstract
The neural circuitry of fear likely underlies anxiety and fear-related disorders such as specific and social phobia, panic disorder, and posttraumatic stress disorder. The primary pharmacological treatments currently utilized for these disorders include benzodiazepines, which act on the GABAergic receptor system, and antidepressants, which modulate the monamine systems. However, recent work on the regulation of fear neural circuitry suggests that specific neuropeptide modulation of this system is of critical importance. Recent reviews have examined the roles of the hypothalamic-pituitary-adrenal axis neuropeptides as well as the roles of neurotrophic factors in regulating fear. The present review, instead, will focus on three neuropeptide systems which have received less attention in recent years but which are clearly involved in regulating fear and its extinction. The endogenous opioid system, particularly activating the μ opioid receptors, has been demonstrated to regulate fear expression and extinction, possibly through functioning as an error signal within the ventrolateral periaqueductal gray to mark unreinforced conditioned stimuli. The cholecystokinin (CCK) system initially led to much excitement through its potential role in panic disorder. More recent work in the CCK neuropeptide pathway suggests that it may act in concordance with the endogenous cannabinoid system in the modulation of fear inhibition and extinction. Finally, older as well as very recent data suggests that neuropeptide Y (NPY) may play a very interesting role in counteracting stress effects, enhancing extinction, and enhancing resilience in fear and stress preclinical models. Future work in understanding the mechanisms of neuropeptide functioning, particularly within well-known behavioral circuits, are likely to provide fascinating new clues into the understanding of fear behavior as well as suggesting novel therapeutics for treating disorders of anxiety and fear dysregulation.
Collapse
Affiliation(s)
- Mallory E Bowers
- Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | | | | |
Collapse
|
46
|
Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 2012; 46:261-74. [PMID: 22979996 PMCID: PMC3516703 DOI: 10.1016/j.npep.2012.08.005] [Citation(s) in RCA: 330] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/04/2012] [Accepted: 08/09/2012] [Indexed: 02/06/2023]
Abstract
The gut-brain axis refers to the bidirectional communication between the gut and the brain. Four information carriers (vagal and spinal afferent neurons, immune mediators such as cytokines, gut hormones and gut microbiota-derived signalling molecules) transmit information from the gut to the brain, while autonomic neurons and neuroendocrine factors carry outputs from the brain to the gut. The members of the neuropeptide Y (NPY) family of biologically active peptides, NPY, peptide YY (PYY) and pancreatic polypeptide (PP), are expressed by cell systems at distinct levels of the gut-brain axis. PYY and PP are exclusively expressed by endocrine cells of the digestive system, whereas NPY is found at all levels of the gut-brain and brain-gut axis. The major systems expressing NPY comprise enteric neurons, primary afferent neurons, several neuronal pathways throughout the brain and sympathetic neurons. In the digestive tract, NPY and PYY inhibit gastrointestinal motility and electrolyte secretion and in this way modify the input to the brain. PYY is also influenced by the intestinal microbiota, and NPY exerts, via stimulation of Y1 receptors, a proinflammatory action. Furthermore, the NPY system protects against distinct behavioural disturbances caused by peripheral immune challenge, ameliorating the acute sickness response and preventing long-term depression. At the level of the afferent system, NPY inhibits nociceptive input from the periphery to the spinal cord and brainstem. In the brain, NPY and its receptors (Y1, Y2, Y4, Y5) play important roles in regulating food intake, energy homeostasis, anxiety, mood and stress resilience. In addition, PP and PYY signal to the brain to attenuate food intake, anxiety and depression-related behaviour. These findings underscore the important role of the NPY-Y receptor system at several levels of the gut-brain axis in which NPY, PYY and PP operate both as neural and endocrine messengers.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| | | | | |
Collapse
|
47
|
Sciolino NR, Holmes PV. Exercise offers anxiolytic potential: a role for stress and brain noradrenergic-galaninergic mechanisms. Neurosci Biobehav Rev 2012; 36:1965-84. [PMID: 22771334 PMCID: PMC4815919 DOI: 10.1016/j.neubiorev.2012.06.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/01/2012] [Accepted: 06/10/2012] [Indexed: 12/15/2022]
Abstract
Although physical activity reduces anxiety in humans, the neural basis for this response is unclear. Rodent models are essential to understand the mechanisms that underlie the benefits of exercise. However, it is controversial whether exercise exerts anxiolytic-like potential in rodents. Evidence is reviewed to evaluate the effects of wheel running, an experimental mode of exercise in rodents, on behavior in tests of anxiety and on norepinephrine and galanin systems in neural circuits that regulate stress. Stress is proposed to account for mixed behavioral findings in this literature. Indeed, running promotes an adaptive response to stress and alters anxiety-like behaviors in a manner dependent on stress. Running amplifies galanin expression in noradrenergic locus coeruleus (LC) and suppresses stress-induced activity of the LC and norepinephrine output in LC-target regions. Thus, enhanced galanin-mediated suppression of brain norepinephrine in runners is supported by current literature as a mechanism that may contribute to the stress-protective effects of exercise. These data support the use of rodents to study the emotional and neurobiological consequences of exercise.
Collapse
Affiliation(s)
- Natale R. Sciolino
- Neuroscience Program, Biomedical and Health Sciences Institute, Department of Psychology, University of Georgia, Athens, GA 30602, United States
| | - Philip V. Holmes
- Neuroscience Program, Biomedical and Health Sciences Institute, Department of Psychology, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
48
|
Olesen MV, Christiansen SH, Gøtzsche CR, Holst B, Kokaia M, Woldbye DPD. Y5 neuropeptide Y receptor overexpression in mice neither affects anxiety- and depression-like behaviours nor seizures but confers moderate hyperactivity. Neuropeptides 2012; 46:71-9. [PMID: 22342800 DOI: 10.1016/j.npep.2012.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 01/11/2012] [Accepted: 01/27/2012] [Indexed: 02/07/2023]
Abstract
Neuropeptide Y (NPY) has been implicated in anxiolytic- and antidepressant-like behaviour as well as seizure-suppressant effects in rodents. Although these effects appear to be predominantly mediated via other NPY receptors (Y1 and/or Y2), several studies have also indicated a role for Y5 receptors. Gene therapy using recombinant viral vectors to induce overexpression of NPY, Y1 or Y2 receptors in the hippocampus or amygdala has previously been shown to modulate emotional behaviour and seizures in rodents. The present study explored the potential effects of gene therapy with the Y5 receptor, by testing effects of recombinant adeno-associated viral vector (rAAV) encoding Y5 (rAAV-Y5) in anxiety- and depression-like behaviour as well as in kainate-induced seizures in adult mice. The rAAV-Y5 vector injected into the hippocampus and amygdala induced a pronounced and sustained increase in Y5 receptor mRNA expression and functional Y5 receptor binding, but no significant effects were found with regard to anxiety- and depression-like behaviours or seizure susceptibility. Instead, rAAV-mediated Y5 receptor transgene overexpression resulted in moderate hyperactivity in the open field test. These results do not support a potential role for single transgene overexpression of Y5 receptors for modulating anxiety-/depression-like behaviours or seizures in adult mice. Whether the induction of hyperactivity by rAAV-Y5 could be relevant for other conditions remains to be studied.
Collapse
Affiliation(s)
- M V Olesen
- Protein Laboratory & Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
49
|
Karlsson RM, Adermark L, Molander A, Perreau-Lenz S, Singley E, Solomon M, Holmes A, Tanaka K, Lovinger DM, Spanagel R, Heilig M. Reduced alcohol intake and reward associated with impaired endocannabinoid signaling in mice with a deletion of the glutamate transporter GLAST. Neuropharmacology 2012; 63:181-9. [PMID: 22342743 DOI: 10.1016/j.neuropharm.2012.01.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/23/2012] [Accepted: 01/28/2012] [Indexed: 12/01/2022]
Abstract
A hyperglutamatergic state has been hypothesized to drive escalation of alcohol intake. This hypothesis predicts that an impairment of glutamate clearance through inactivation of the astrocytic glutamate transporter, GLAST (EAAT1), will result in escalation of alcohol consumption. Here, we used mice with a deletion of GLAST to test this prediction. WT and GLAST KO mice were tested for alcohol consumption using two-bottle free-choice drinking. Alcohol reward was evaluated using conditioned place preference (CPP). Sensitivity to depressant alcohol effects was tested using the accelerating rotarod, alcohol-induced hypothermia, and loss of righting reflex. Extracellular glutamate was measured using microdialysis, and striatal slice electrophysiology was carried out to examine plasticity of the cortico-striatal pathway as a model system in which adaptations to the constitutive GLAST deletion can be studied. Contrary to our hypothesis, GLAST KO mice showed markedly decreased alcohol consumption, and lacked CPP for alcohol, despite a higher locomotor response to this drug. Alcohol-induced ataxia, hypothermia, and sedation were unaffected. In striatal slices from GLAST KO mice, long-term depression (LTD) induced by high frequency stimulation, or by post-synaptic depolarization combined with the l-type calcium channel activator FPL 64176 was absent. In contrast, normal synaptic depression was observed after application of the cannabinoid 1 (CB1) receptor agonist WIN55,212-2. Constitutive deletion of GLAST unexpectedly results in markedly reduced alcohol consumption and preference, associated with markedly reduced alcohol reward. Endocannabinoid signaling appears to be down-regulated upstream of the CB1 receptor as a result of the GLAST deletion, and is a candidate mechanism behind the reduction of alcohol reward observed.
Collapse
Affiliation(s)
- Rose-Marie Karlsson
- Laboratory of Clinical and Translational Studies, National Institute on Alcoholism and Alcohol Abuse, NIH, 10 Center Drive, 1-5330, Bethesda, MD 20892-1108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dubois CJ, Ramamoorthy P, Whim MD, Liu SJ. Activation of NPY type 5 receptors induces a long-lasting increase in spontaneous GABA release from cerebellar inhibitory interneurons. J Neurophysiol 2011; 107:1655-65. [PMID: 22190627 DOI: 10.1152/jn.00755.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neuropeptide Y (NPY), a widely distributed neuropeptide in the central nervous system, can transiently suppress inhibitory synaptic transmission and alter membrane excitability via Y2 and Y1 receptors (Y2rs and Y1rs), respectively. Although many GABAergic neurons express Y5rs, the functional role of these receptors in inhibitory neurons is not known. Here, we investigated whether activation of Y5rs can modulate inhibitory transmission in cerebellar slices. Unexpectedly, application of NPY triggered a long-lasting increase in the frequency of miniature inhibitory postsynaptic currents in stellate cells. NPY also induced a sustained increase in spontaneous GABA release in cultured cerebellar neurons. When cerebellar cultures were examined for Y5r immunoreactivity, the staining colocalized with that of VGAT, a presynaptic marker for GABAergic cells, suggesting that Y5rs are located in the presynaptic terminals of inhibitory neurons. RT-PCR experiments confirmed the presence of Y5r mRNA in the cerebellum. The NPY-induced potentiation of GABA release was blocked by Y5r antagonists and mimicked by application of a selective peptide agonist for Y5r. Thus Y5r activation is necessary and sufficient to trigger an increase in GABA release. Finally, the potentiation of inhibitory transmission could not be reversed by a Y5r antagonist once it was initiated, consistent with the development of a long-term potentiation. These results indicate that activation of presynaptic Y5rs induces a sustained increase in spontaneous GABA release from inhibitory neurons in contrast to the transient suppression of inhibitory transmission that is characteristic of Y1r and Y2r activation. Our findings thus reveal a novel role of presynaptic Y5rs in inhibitory interneurons in regulating GABA release and suggest that these receptors could play a role in shaping neuronal network activity in the cerebellum.
Collapse
Affiliation(s)
- C J Dubois
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|