1
|
Bruijnzeel AW. Deciphering the Multidimensional Effects of Tobacco Smoke and E-cigarette Aerosol in Humans and Rodents: From Behavior to Inflammation and Beyond. Nicotine Tob Res 2024; 26:653-654. [PMID: 38381596 PMCID: PMC11109491 DOI: 10.1093/ntr/ntae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 02/23/2024]
Affiliation(s)
- Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Roeder NM, Mihalkovic A, Richardson BJ, Penman SL, Novalen M, Hammond N, Eiden R, Khokhar JY, Tyndale RF, Thanos PK. Behavioral and Pharmacokinetic Assessment of Nicotine e-Cigarette Inhalation in Female Rats. Nicotine Tob Res 2024; 26:724-732. [PMID: 38092656 PMCID: PMC11109488 DOI: 10.1093/ntr/ntad240] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 05/23/2024]
Abstract
INTRODUCTION Nicotine and tobacco use remain high both globally and in the United States, contributing to large health care expenditures. With a rise in e-cigarette use, it is important to have clinically relevant models of inhaled nicotine exposure. AIMS AND METHODS This study aims to extend prior preclinical nicotine inhalation animal data to females and provide both behavior and serum pharmacokinetics. We tested two inhalation doses of nicotine (24 mg/mL and 59 mg/ mL) and compared these to injected doses (0.4 mg/kg and 1 mg/kg). In addition, we assessed locomotor behavior after the same doses. Blood was collected at 10- and 120-minutes post-administration. We assessed nicotine and cotinine serum concentrations by LC-MS/MS. RESULTS Showed that while nicotine serum concentrations for the respective high and low-dose administrations were similar between both routes of administration, the route had differential effects on locomotor behavior. Inhaled nicotine showed a dose-dependent decrease in locomotor activity while injected doses showed the opposite trend. CONCLUSIONS Our results indicate that the route of administration is an important factor when establishing preclinical models of nicotine exposures. Given that the overall use of e-cigarettes in vulnerable populations is on the rise, our study provides important behavioral and pharmacokinetic information to advance our currently limited understanding of the effects of nicotine vapor exposure. IMPLICATIONS This study highlights behavioral differences between different routes of administration of similar doses of nicotine. Using a low and high dose of nicotine, we found that nicotine serum concentrations were similar between the different routes of administration. Our results indicate that different routes of administration have opposing effects on locomotor activity. These findings provide important implications for future behavioral models.
Collapse
Affiliation(s)
- Nicole M Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Abrianna Mihalkovic
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Brittany J Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Samantha L Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Maria Novalen
- Center for Addiction and Mental Health and Departments of Pharmacology and Toxicology, and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Nikki Hammond
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Rina Eiden
- Department of Psychology, Social Science Research Institute, Pennsylvania State University, University Park, PA, USA
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rachel F Tyndale
- Center for Addiction and Mental Health and Departments of Pharmacology and Toxicology, and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
3
|
Murdaugh LB, Miliano C, Chen I, Faunce CL, Natividad LA, Gregus AM, Buczynski MW. Effect of chronic vapor nicotine exposure on affective and cognitive behavior in male mice. Sci Rep 2024; 14:6646. [PMID: 38503831 PMCID: PMC10951409 DOI: 10.1038/s41598-024-56766-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
Nicotine use is a leading cause of preventable deaths worldwide, and most of those who attempt to quit will relapse. While electronic cigarettes and other electronic nicotine delivery systems (ENDS) were presented as a safer alternative to traditional cigarettes and promoted as devices to help traditional tobacco smokers reduce or quit smoking, they have instead contributed to increasing nicotine use among youths. Despite this, ENDS also represent a useful tool to create novel preclinical animal models of nicotine exposure that more accurately represent human nicotine use. In this study, we validated a chronic, intermittent, ENDS-based passive vapor exposure model in mice, and then measured changes in multiple behaviors related to nicotine abstinence. First, we performed a behavioral dose curve to investigate the effects of different nicotine inter-vape intervals on various measures including body weight, locomotor activity, and pain hypersensitivity. Next, we performed a pharmacokinetic study to measure plasma levels of nicotine and cotinine following chronic exposure for each inter-vape interval. Finally, we utilized a behavior test battery at a single dosing regimen that produces blood levels equivalent to human smokers in order to characterize the effects of chronic nicotine, vehicle, or passive airflow and identified nicotine-induced impairments in cognitive behavior.
Collapse
Affiliation(s)
- Laura B Murdaugh
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA
| | - Irene Chen
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA
| | - Christine L Faunce
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA
| | - Luis A Natividad
- College of Pharmacy, Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - Ann M Gregus
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA.
| | - Matthew W Buczynski
- School of Neuroscience, Virginia Polytechnic Institute and State University, 970 Washington St SW, Life Sciences I, Blacksburg, VA, 24061, USA.
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
4
|
Murdaugh LB, Miliano C, Chen I, Faunce CL, Natividad LA, Gregus AM, Buczynski MW. Effect of chronic vapor nicotine exposure on affective and cognitive behavior in male mice. RESEARCH SQUARE 2024:rs.3.rs-3892315. [PMID: 38352503 PMCID: PMC10862982 DOI: 10.21203/rs.3.rs-3892315/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Nicotine use is a leading cause of preventable deaths worldwide, and most of those who attempt to quit will relapse. While electronic cigarettes and other electronic nicotine delivery systems (ENDS) were presented as a safer alternative to traditional cigarettes and promoted as devices to help traditional tobacco smokers reduce or quit smoking, they have instead contributed to increasing nicotine use among youths. Despite this, ENDS also represent a useful tool to create novel preclinical animal models of nicotine exposure that more accurately represent human nicotine use. In this study, we validated a chronic, intermittent, ENDS-based passive vapor exposure model in mice, and then measured changes in multiple behaviors related to nicotine abstinence. First, we performed a behavioral dose curve to investigate the effects of different nicotine inter-vape intervals on various measures including body weight, locomotor activity, and pain hypersensitivity. Next, we performed a pharmacokinetic study to measure plasma levels of nicotine and cotinine following chronic exposure for each inter-vape interval. Finally, we utilized a behavior test battery at a single dosing regimen that produces blood levels equivalent to human smokers in order to characterize the effects of chronic nicotine, vehicle, or passive airflow and identified nicotine-induced impairments in cognitive behavior.
Collapse
|
5
|
Kulbe JR, Nguyen L, Le AA, Laird AE, Taffe MA, Nguyen JD, Fields JA. Nicotine, THC, and Dolutegravir Modulate E-Cigarette-Induced Changes in Addiction- and Inflammation-Associated Genes in Rat Brains and Astrocytes. Brain Sci 2023; 13:1556. [PMID: 38002516 PMCID: PMC10670019 DOI: 10.3390/brainsci13111556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
E-cigarette use has been marketed as a safer alternative to traditional cigarettes, as a means of smoking cessation, and are used at a higher rate than the general population in people with HIV (PWH). Early growth receptor 2 (EGR2) and Activity-Regulated Cytoskeleton-Associated Protein (ARC) have a role in addiction, synaptic plasticity, inflammation, and neurodegeneration. This study showed that 10 days of exposure to e-cigarette vapor altered gene expression in the brains of 6-month-old, male, Sprague Dawley rats. Specifically, the e-cigarette solvent vapor propylene glycol (PG) downregulated EGR2 and ARC mRNA expression in frontal cortex, an effect which was reversed by nicotine (NIC) and THC, suggesting that PG could have a protective role against NIC and cannabis dependence. However, in vitro, PG upregulated EGR2 and ARC mRNA expression at 18 h in cultured C6 rat astrocytes suggesting that PG may have neuroinflammatory effects. PG-induced upregulation of EGR2 and ARC mRNA was reversed by NIC but not THC. The HIV antiretroviral DTG reversed the effect NIC had on decreasing PG-induced upregulation of EGR2, which is concerning because EGR2 has been implicated in HIV latency reversal, T-cell apoptosis, and neuroinflammation, a process that underlies the development of HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Jacqueline Renee Kulbe
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (J.R.K.); (L.N.); (A.A.L.); (A.E.L.); (M.A.T.)
| | - Lauren Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (J.R.K.); (L.N.); (A.A.L.); (A.E.L.); (M.A.T.)
| | - Alexandra Anh Le
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (J.R.K.); (L.N.); (A.A.L.); (A.E.L.); (M.A.T.)
| | - Anna Elizabeth Laird
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (J.R.K.); (L.N.); (A.A.L.); (A.E.L.); (M.A.T.)
| | - Michael A. Taffe
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (J.R.K.); (L.N.); (A.A.L.); (A.E.L.); (M.A.T.)
| | - Jacques D. Nguyen
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA;
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (J.R.K.); (L.N.); (A.A.L.); (A.E.L.); (M.A.T.)
| |
Collapse
|
6
|
Chellian R, Behnood-Rod A, Bruijnzeel AW. Development of Dependence in Smokers and Rodents With Voluntary Nicotine Intake: Similarities and Differences. Nicotine Tob Res 2023; 25:1229-1240. [PMID: 36482774 PMCID: PMC10256892 DOI: 10.1093/ntr/ntac280] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Smoking and vaping throughout adolescence and early adulthood lead to nicotine dependence. Nicotine withdrawal is associated with somatic and affective withdrawal symptoms that contribute to smoking and relapse. Affective nicotine withdrawal symptoms in humans include craving for cigarettes, depression, anxiety, trouble sleeping, and cognitive deficits. METHODS Herein, we review clinical studies that investigated nicotine dependence in people who smoke or vape. We also discuss studies that investigated the development of dependence in animals with oral nicotine intake, nicotine aerosol self-administration, and intravenous nicotine self-administration. RESULTS Clinical studies report that adolescents who smoke daily develop nicotine dependence before those who smoke infrequently, but ultimately all smokers become dependent in adulthood. Preclinical studies indicate that rats that self-administer nicotine also become dependent. Rats that self-administer nicotine display somatic withdrawal signs and affective withdrawal signs, including increased anxiety and depressive-like behavior, cognitive deficits, and allodynia. Most nicotine withdrawal signs were observed in rodents with daily (7 days/week) or intermittent long access (23-hour) to nicotine. Clinical smoking studies report symptoms of nicotine dependence in adolescents of both sexes, but virtually all preclinical nicotine self-administration studies have been done with adult male rats. CONCLUSIONS The role of sex and age in the development of dependence in nicotine self-administration studies remains under-investigated. However, the role of sex and age in nicotine withdrawal has been thoroughly evaluated in studies in which nicotine was administered noncontingently. We discuss the need for volitional nicotine self-administration studies that explore the gradual development of dependence during adolescence and adulthood in rodents of both sexes. IMPLICATIONS The reviewed clinical studies investigated the development of nicotine dependence in male and female adolescent and young adult smokers and vapers. These studies indicate that most adolescent smokers and vapers gradually become nicotine dependent. Preclinical studies with rodents show that nicotine intake in widely used self-administration models also leads to dependence. However, almost all animal studies that investigated the development of nicotine dependence have been conducted with adult male rats. To better model smoking and vaping, it is important that nicotine intake in rats or mice starts during adolescence and that both sexes are included.
Collapse
Affiliation(s)
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Adriaan W Bruijnzeel
- Corresponding Author: Adriaan Bruijnzeel, PhD, University of Florida, Department of Psychiatry, 1149 Newell Dr., Gainesville, Florida 32611, USA. Telephone: 352-294-4931; Fax: 352-392-9887; E-mail:
| |
Collapse
|
7
|
Alkhlaif Y, Shelton KL. Assessment of Abuse-Related Discriminative Stimulus Effects of Nicotine Aerosol in Rodents. J Pharmacol Exp Ther 2023; 385:171-179. [PMID: 36918277 PMCID: PMC10201579 DOI: 10.1124/jpet.122.001520] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
The rapid increase in e-cigarette use highlights the importance of developing relevant, predictive animal models exploring their potential health implications. The goal of the present study was to examine the abuse-related effects of brief, repeated e-cigarette aerosol exposures in rodents modeling human e-cigarette user behavior. We evaluated the discriminative stimulus effects of brief, repeated puffs of inhaled nicotine in rats that had been trained to discriminate injected nicotine from saline. Locomotor activity measurement following exposure to injected and aerosolized nicotine was also assessed as an additional behavioral outcome. We hypothesized that the stimulus effects of nicotine aerosol were central nervous system (CNS)-mediated and comparable to that produced by an injected nicotine training stimulus. We further hypothesized that number of aerosol puffs and the e-liquid nicotine concentration which was aerosolized would impact the substitution of nicotine aerosol for injected nicotine. Both nicotine injections and exposures to nicotine aerosol produced a dose-dependent effect on locomotor activity. Nicotine aerosol under our puffing conditions produced e-liquid nicotine concentration-dependent and puff-number-dependent complete substitution for the injected nicotine training condition. The nicotinic antagonist, mecamylamine, completely blocked nicotine-appropriate responding produce by the training dose of 0.3 mg/kg injected nicotine as well as that resulting from exposure to aerosol puffs generated by e-liquid containing 3 mg/ml nicotine, demonstrating that the stimulus of inhaled nicotine was most likely CNS-mediated and not due to olfactory stimulus properties. Overall, the results support the hypothesis that an aerosol exposure drug discrimination model in rodents has applicability to studying the abuse-related effects of e-cigarettes. SIGNIFICANCE STATEMENT: Animal models of nicotine aerosol exposure using testing conditions resembling human e-cigarette use are lacking. In this study, we test a novel preclinical model of nicotine vaping in rodents which allows for the exploration of the abuse-related effects of e-cigarettes. This model has the potential to contribute both to our understanding of the abuse-related pharmacological effects of e-cigarettes as well as aid in the development of rationale, evidence-based e-cigarette regulatory policies.
Collapse
Affiliation(s)
- Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Keith L Shelton
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
8
|
Espinoza VE, Giner P, Liano I, Mendez IA, O'Dell LE. Sex and age differences in approach behavior toward a port that delivers nicotine vapor. J Exp Anal Behav 2022; 117:532-542. [PMID: 35338651 DOI: 10.1002/jeab.756] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/14/2023]
Abstract
The goal of our laboratory is to study the mechanisms that promote nicotine use, particularly in vulnerable populations. To more closely mimic human use patterns, the present study employed nicotine vapor methods involving passive exposure for 14 days in adolescent and adult female and male rats. Age and sex differences in approach behavior (nosepokes) were assessed in a port that delivered nicotine plumes on Day 1 and 14 of our exposure regimen. Controls received ambient air in exposure chambers. After the final session, rats received a nicotinic receptor antagonist to precipitate withdrawal. Then, physical signs, anxiety-like behavior, and plasma levels of cotinine (a nicotine metabolite) were assessed. Over time, females displayed a larger increase in approach behavior to the nicotine port than males, an effect that was larger in adolescents. Nosepoke responses in adolescent females were correlated with anxiety-like behavior, but not physical signs of withdrawal. Adolescents gained more weight than adults regardless of treatment, and the weight gain was larger in male adolescents. Female adolescents also displayed the highest levels of cotinine than all other groups. These findings suggest that nicotine vapor produces greater motivational effects in adolescent females as compared to their adult and male counterparts.
Collapse
Affiliation(s)
| | - Priscilla Giner
- Department of Psychology, The University of Texas at El Paso
| | - Isabella Liano
- Department of Psychology, The University of Texas at El Paso
| | - Ian A Mendez
- Department of Pharmaceutical Sciences, The University of Texas at El Paso
| | - Laura E O'Dell
- Department of Psychology, The University of Texas at El Paso
| |
Collapse
|
9
|
Moore CF, Stiltner JW, Davis CM, Weerts EM. Translational models of cannabinoid vapor exposure in laboratory animals. Behav Pharmacol 2022; 33:63-89. [PMID: 33136615 PMCID: PMC8079522 DOI: 10.1097/fbp.0000000000000592] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cannabis is one of the most frequently used psychoactive substances in the world. The most common route of administration for cannabis and cannabinoid constituents such as Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) is via smoking or vapor inhalation. Preclinical vapor models have been developed, although the vaporization devices and delivery methods vary widely across laboratories. This review examines the emerging field of preclinical vapor models with a focus on cannabinoid exposure in order to (1) summarize vapor exposure parameters and other methodological details across studies; (2) discuss the pharmacological and behavioral effects produced by exposure to vaporized cannabinoids; and (3) compare behavioral effects of cannabinoid vapor administration with those of other routes of administration. This review will serve as a guide for past and current vapor delivery methods in animals, synergize findings across studies, and propose future directions for this area of research.
Collapse
Affiliation(s)
- Catherine F. Moore
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jeffrey W. Stiltner
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Catherine M. Davis
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elise M. Weerts
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
10
|
Bagdas D, Kebede N, Zepei AM, Harris L, Minanov K, Picciotto MR, Addy NA. Animal Models to Investigate the Impact of Flavors on Nicotine Addiction and Dependence. Curr Neuropharmacol 2022; 20:2175-2201. [PMID: 35611777 PMCID: PMC9886843 DOI: 10.2174/1570159x20666220524120231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/17/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Tobacco use in humans is a long-standing public health concern. Flavors are common additives in tobacco and alternative tobacco products, added to mask nicotine's harsh orosensory effects and increase the appeal of these products. Animal models are integral for investigating nicotine use and addiction and are helpful for understanding the effects of flavor additives on the use of nicotine delivery products. OBJECTIVE This review focuses on preclinical models to evaluate the contribution of flavor additives to nicotine addiction. MATERIALS AND METHODS An electronic literature search was conducted by authors up to May 2022. Original articles were selected. RESULTS The behavioral models of rodents described here capture multiple dimensions of human flavored nicotine use behaviors, including advantages and disadvantages. CONCLUSION The consensus of the literature search was that human research on nicotine use behavior has not caught up with fast-changing product innovations, marketing practices, and federal regulations. Animal models are therefore needed to investigate mechanisms underlying nicotine use and addiction. This review provides a comprehensive overvie.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine, New Haven, CT, USA
| | - Nardos Kebede
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Andy Ma Zepei
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Lilley Harris
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Karina Minanov
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine, New Haven, CT, USA
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Lallai V, Chen YC, Roybal MM, Kotha ER, Fowler JP, Staben A, Cortez A, Fowler CD. Nicotine e-cigarette vapor inhalation and self-administration in a rodent model: Sex- and nicotine delivery-specific effects on metabolism and behavior. Addict Biol 2021; 26:e13024. [PMID: 33624410 PMCID: PMC8380743 DOI: 10.1111/adb.13024] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 01/01/2023]
Abstract
E-cigarettes, which deliver vaporized nicotine, have dramatically risen in popularity in recent years, despite many unanswered questions about safety, efficacy in reducing dependence, and overall impact on public health. Other factors, such as sex, also play an important role in determining behavioral and neurochemical responses to drugs of abuse. In these studies, we sought to develop a protocol for vaporized e-cigarette nicotine self-administration in rats, as a foundation to better understand the differing effects of nicotine exposure routes on behavior and physiological function. We report a novel method that elicits robust nicotine vapor self-administration in male and female rats. Our findings indicate that 5-mg/ml nicotine vape solution provides a high level of consistency in lever-pressing behavior for both males and females. Moreover, in male rats, we find that such e-cigarette nicotine vapor induces similar blood levels of nicotine's main metabolite, cotinine, as that found with intravenous nicotine self-administration. Therefore, the breathing pattern during vapor exposure in males leads to similar levels of titrated nicotine intake as with intravenous nicotine self-administration. Interestingly, a differential effect was found in the females, in which the same conditions of vapor exposure led to decreased cotinine levels with vapor compared to intravenous self-administration. Finally, differences in nicotine-mediated locomotion provide further support of the physiological effects of e-cigarette vapor inhalation. Taken together, our findings reveal important sex differences in nicotine intake based on the route of exposure, and we further establish a protocol for nicotine vapor self-administration in rats.
Collapse
Affiliation(s)
- Valeria Lallai
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
| | - Yen-Chu Chen
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
| | - Mikayla M Roybal
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
| | - Eashan R Kotha
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
| | - James P Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
| | - Andres Staben
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
| | - Angelique Cortez
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
| |
Collapse
|
12
|
Garrett PI, Honeycutt SC, Marston C, Allen N, Barraza AG, Dewey M, Turner B, Peterson AM, Hillhouse TM. Nicotine-free vapor inhalation produces behavioral disruptions and anxiety-like behaviors in mice: Effects of puff duration, session length, sex, and flavor. Pharmacol Biochem Behav 2021; 206:173207. [PMID: 34019915 DOI: 10.1016/j.pbb.2021.173207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Electronic-cigarette's (ECIGs) popularity has grown over the last decade and changed the way individuals administer nicotine. Preclinical research is imperative for understanding the addictive properties and health-risks associated with ECIG use; however, there is not a standard dosing regimen used across research laboratories. The main objective was to determine how vapor puff durations, administration session length, and flavored e-liquid alter general and mood-disorder related behaviors while providing a foundation of vapor administration parameters. Adult male and female C57BL/6 mice were exposed to several nicotine-free unflavored vapor puff durations (1, 3, 6, or 10 s) and vapor administration session lengths (10 and 30 min) then measured on the following assays: locomotor activity (LMA), tail suspension test (TST), and light-dark test. The effects of mecamylamine and the time-course of vapor-induced depression of LMA also were assessed. Additionally, mice were exposed to flavored (strawberry and adventurers tobacco blend) vapor inhalation and measured on locomotor activity, tail suspension test, and light-dark test. Following both 10 and 30 min vapor administration session, there was a puff duration-dependent decrease in distance traveled, time in center, and rearing. The vapor-induced depression of LMA was not mediated by nicotine or nicotinic acetylcholine receptor (nAChR) activation and lasted 60-90 min. The 10 s puff duration produced an anxiogenic-like effect in the light-dark test by decreasing the time spent in the light side. Vapor inhalation did not significantly alter TST behavior. No significant effects of sex or flavor were found. The anxiogenic-like effects of nicotine-free vapor inhalation are concerning as many adolescents vape nicotine-free flavored e-liquid, and there is an association between ECIGs and mood disorders. Additionally, these studies demonstrate that vapor puff duration, but not vapor administration session length, is an important variable to consider during research design as it can become a confounding variable and alter baseline behaviors.
Collapse
Affiliation(s)
- Patrick I Garrett
- Neuroscience Graduate Program, University of Wyoming, Laramie, WY, USA; Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Sarah C Honeycutt
- Department of Psychology, University at Buffalo, Buffalo, NY, USA; Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Clarissa Marston
- Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Nicole Allen
- Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Allyson G Barraza
- Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Megan Dewey
- Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Breeann Turner
- Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Ashley M Peterson
- Department of Psychological Science, Weber State University, Ogden, UT, USA
| | - Todd M Hillhouse
- Department of Psychological Science, Weber State University, Ogden, UT, USA; Department of Psychology, University of Wisconsin Green Bay, Green Bay, WI, USA.
| |
Collapse
|
13
|
Smith LC, Kallupi M, Tieu L, Shankar K, Jaquish A, Barr J, Su Y, Velarde N, Sedighim S, Carrette LLG, Klodnicki M, Sun X, de Guglielmo G, George O. Validation of a nicotine vapor self-administration model in rats with relevance to electronic cigarette use. Neuropsychopharmacology 2020; 45:1909-1919. [PMID: 32544927 PMCID: PMC7608444 DOI: 10.1038/s41386-020-0734-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
The debate about electronic cigarettes is dividing healthcare professionals, policymakers, manufacturers, and communities. A key limitation in our understanding of the cause and consequences of vaping is the lack of animal models of nicotine vapor self-administration. Here, we developed a novel model of voluntary electronic cigarette use in rats using operant behavior. We found that rats voluntarily exposed themselves to nicotine vapor to the point of reaching blood nicotine levels that are similar to humans. The level of responding on the active (nicotine) lever was similar to the inactive (air) lever and lower than the active lever that was associated with vehicle (polypropylene glycol/glycerol) vapor, suggesting low positive reinforcing effects and low nicotine vapor discrimination. Lever pressing behavior with nicotine vapor was pharmacologically prevented by the α4β2 nicotinic acetylcholine receptor partial agonist and α7 receptor full agonist varenicline in rats that self-administered nicotine but not vehicle vapor. Moreover, 3 weeks of daily (1 h) nicotine vapor self-administration produced addiction-like behaviors, including somatic signs of withdrawal, allodynia, anxiety-like behavior, and relapse-like behavior after 3 weeks of abstinence. Finally, 3 weeks of daily (1 h) nicotine vapor self-administration produced cardiopulmonary abnormalities and changes in α4, α3, and β2 nicotinic acetylcholine receptor subunit mRNA levels in the nucleus accumbens and medial prefrontal cortex. These findings validate a novel animal model of nicotine vapor self-administration in rodents with relevance to electronic cigarette use in humans and highlight the potential addictive properties and harmful effects of chronic nicotine vapor self-administration.
Collapse
Affiliation(s)
- Lauren C. Smith
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, 10550N. Torrey Pines Road, La Jolla, CA USA ,Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA USA
| | - Marsida Kallupi
- Department of Neuroscience, The Scripps Research Institute, 10550N. Torrey Pines Road, La Jolla, CA, USA. .,Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA, USA.
| | - Lani Tieu
- Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA USA
| | - Kokila Shankar
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, 10550N. Torrey Pines Road, La Jolla, CA USA ,Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA USA
| | - Abigail Jaquish
- grid.266102.10000 0001 2297 6811Department of Pediatrics, University of California, La Jolla, CA USA
| | - Jamie Barr
- grid.266102.10000 0001 2297 6811Department of Pediatrics, University of California, La Jolla, CA USA
| | - Yujuan Su
- grid.266102.10000 0001 2297 6811Department of Pediatrics, University of California, La Jolla, CA USA
| | - Nathan Velarde
- Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA USA
| | - Sharona Sedighim
- Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA USA
| | - Lieselot L. G. Carrette
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, 10550N. Torrey Pines Road, La Jolla, CA USA ,Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA USA
| | | | - Xin Sun
- grid.266102.10000 0001 2297 6811Department of Pediatrics, University of California, La Jolla, CA USA
| | - Giordano de Guglielmo
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, 10550N. Torrey Pines Road, La Jolla, CA USA ,Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA USA
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, 10550N. Torrey Pines Road, La Jolla, CA, USA. .,Department of Psychiatry, School of Medicine, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
14
|
Braunscheidel KM, Wayman WN, Okas MP, Woodward JJ. Self-Administration of Toluene Vapor in Rats. Front Neurosci 2020; 14:880. [PMID: 32973434 PMCID: PMC7461949 DOI: 10.3389/fnins.2020.00880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023] Open
Abstract
Inhalants, including volatile organic solvents such as toluene, continue to be one of the most prevalent, and often first substances abused by adolescents. Like other drugs of abuse, toluene affects the function of neurons within key brain reward circuits including the prefrontal cortex, ventral tegmental area, and nucleus accumbens. However, preclinical models used to study these toluene-induced adaptations generally employ passive exposure paradigms that do not mirror voluntary patterns of solvent exposure observed in humans. To address this shortcoming, we developed an inhalation chamber containing active and inactive nose pokes, cue lights, flow-through vaporizers, and software-controlled valves to test the hypothesis that rats will voluntarily self-administer toluene vapor. Following habituation and self-administration (SA) training rats achieve vapor concentrations associated with rewarding effects of toluene, and maintain responding for toluene vapor, but not for air. During extinction trials, rats showed an initial burst of drug-seeking behavior similar to that of other addictive drugs and then reduced responding to Air SA levels. Responding on the active nose poke recovered during cue-induced reinstatement but not following a single passive exposure to toluene vapor. The results from these studies establish a viable toluene SA protocol that will be useful in assessing toluene-induced changes in addiction neurocircuitry.
Collapse
Affiliation(s)
| | | | | | - John J. Woodward
- Department of Neuroscience, The Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
15
|
Moerke MJ, McMahon LR, Wilkerson JL. More than Smoke and Patches: The Quest for Pharmacotherapies to Treat Tobacco Use Disorder. Pharmacol Rev 2020; 72:527-557. [PMID: 32205338 DOI: 10.1124/pr.119.018028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tobacco use is a persistent public health issue. It kills up to half its users and is the cause of nearly 90% of all lung cancers. The main psychoactive component of tobacco is nicotine, primarily responsible for its abuse-related effects. Accordingly, most pharmacotherapies for smoking cessation target nicotinic acetylcholine receptors (nAChRs), nicotine's major site of action in the brain. The goal of the current review is twofold: first, to provide a brief overview of the most commonly used behavioral procedures for evaluating smoking cessation pharmacotherapies and an introduction to pharmacokinetic and pharmacodynamic properties of nicotine important for consideration in the development of new pharmacotherapies; and second, to discuss current and potential future pharmacological interventions aimed at decreasing tobacco use. Attention will focus on the potential for allosteric modulators of nAChRs to offer an improvement over currently approved pharmacotherapies. Additionally, given increasing public concern for the potential health consequences of using electronic nicotine delivery systems, which allow users to inhale aerosolized solutions as an alternative to smoking tobacco, an effort will be made throughout this review to address the implications of this relatively new form of nicotine delivery, specifically as it relates to smoking cessation. SIGNIFICANCE STATEMENT: Despite decades of research that have vastly improved our understanding of nicotine and its effects on the body, only a handful of pharmacotherapies have been successfully developed for use in smoking cessation. Thus, investigation of alternative pharmacological strategies for treating tobacco use disorder remains active; allosteric modulators of nicotinic acetylcholine receptors represent one class of compounds currently under development for this purpose.
Collapse
Affiliation(s)
- M J Moerke
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| | - L R McMahon
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| | - J L Wilkerson
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| |
Collapse
|
16
|
Smith LC, George O. Advances in smoking cessation pharmacotherapy: Non-nicotinic approaches in animal models. Neuropharmacology 2020; 178:108225. [PMID: 32758566 DOI: 10.1016/j.neuropharm.2020.108225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/22/2022]
Abstract
The landscape of worldwide tobacco use is changing, with a decrease in traditional smoking and an exponential rise in electronic cigarette use. No new nicotine cessation pharmacotherapies have come to market in the last 10 years. The current therapies that have been approved by the United States Food and Drug Administration for nicotine cessation include nicotine replacement therapy, varenicline, a nicotinic acetylcholine receptor partial agonist, and the atypical antidepressant bupropion. Nicotine replacement therapy and varenicline both act on nicotinic acetylcholine receptors. Bupropion inhibits the dopamine transporter, the norepinephrine transporter, and the nicotinic acetylcholine receptors to inhibit smoking behavior. Notwithstanding these treatments, rates of successful nicotine cessation in clinical trials remain low. Recent pharmacological approaches to improve nicotine cessation rates in animal models have turned their focus away from activating nicotinic acetylcholine receptors. The present review focuses on such pharmacological approaches, including nicotine vaccines, anti-nicotine antibodies, nicotine-degrading enzymes, cannabinoids, and metformin. Both immunopharmacological and enzymatic approaches rely on restricting and degrading nicotine within the periphery, thus preventing psychoactive effects of nicotine on the central nervous system. In contrast, pharmacologic inhibition of the enzymes which degrade nicotine could affect smoking behavior. Cannabinoid receptor agonists and antagonists interact with the dopamine reward pathway and show efficacy in reducing nicotine addiction-like behaviors in preclinical studies. Metformin is currently approved by the Food and Drug Administration for the treatment of diabetes. It activates specific intracellular kinases that may protect against the lower metabolism, higher oxidation, and inflammation that are associated with nicotine withdrawal. Further studies are needed to investigate non-nicotinic targets to improve the treatment of tobacco use disorder. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Lauren C Smith
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
17
|
Chellian R, Behnood-Rod A, Wilson R, Kamble SH, Sharma A, McCurdy CR, Bruijnzeel AW. Adolescent nicotine and tobacco smoke exposure enhances nicotine self-administration in female rats. Neuropharmacology 2020; 176:108243. [PMID: 32702403 DOI: 10.1016/j.neuropharm.2020.108243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/30/2022]
Abstract
Most people start experimenting with tobacco products or e-cigarettes in early adolescence and become habitual smokers in late adolescence or adulthood. These studies investigated if exposure to tobacco smoke or nicotine during early and mid-adolescence affects nicotine intake in late adolescence and early adulthood. Male and female rats were exposed to tobacco smoke from low- and high-nicotine SPECTRUM cigarettes or nicotine (0.3 mg/kg, twice a day) from postnatal day (P) 24-42. The self-administration sessions started at P55. The rats self-administered nicotine for 14-15 days under a fixed-ratio 1 schedule, and on the first day, the maximum number of infusions was twenty. Exposure to smoke from high, but not low, nicotine cigarettes during adolescence increased nicotine self-administration in female but not male rats. Adolescent treatment with nicotine facilitated nicotine self-administration. On the first day of nicotine self-administration, nicotine-treated rats reached the maximum number of infusions before the saline-treated control rats. Nicotine intake was also higher in the nicotine-treated female rats than in the saline-treated females. There was no sex difference in nicotine intake in controls when the data from the studies were combined. Smoke exposure led to a dose-dependent increase in plasma nicotine and cotinine levels in adolescent rats. Exposure to smoke from high-nicotine cigarettes and 0.3 mg/kg of nicotine led to plasma nicotine and cotinine levels that are similar to those in tobacco users. These findings indicate that in females, but not males, exposure to nicotine during adolescence may facilitate smoking and e-cigarette use later in life.
Collapse
Affiliation(s)
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Shyam H Kamble
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA
| | - Christopher R McCurdy
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA; Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
18
|
Repeated nicotine vapor inhalation induces behavioral sensitization in male and female C57BL/6 mice. Behav Pharmacol 2020; 31:583-590. [DOI: 10.1097/fbp.0000000000000562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Montanari C, Kelley LK, Kerr TM, Cole M, Gilpin NW. Nicotine e-cigarette vapor inhalation effects on nicotine & cotinine plasma levels and somatic withdrawal signs in adult male Wistar rats. Psychopharmacology (Berl) 2020; 237:613-625. [PMID: 31760460 PMCID: PMC7039759 DOI: 10.1007/s00213-019-05400-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022]
Abstract
RATIONALE Non-contingent chronic nicotine exposure procedures have evolved rapidly in recent years, culminating in electronic nicotine delivery systems (ENDS or e-cigarettes) to deliver vaporized drugs to rodents in standard housing chambers. OBJECTIVES The aim of the current work was to use ENDS to test concentration-dependent effects of nicotine e-cigarette vapor inhalation on blood-nicotine concentrations, blood-cotinine concentrations, and somatic withdrawal signs over time in rats. METHODS Male Wistar rats were exposed to vapor containing various concentrations of nicotine (20, 40, 80 mg/mL) for 11 days through ENDS, and blood concentrations of nicotine and cotinine, the major proximate metabolite of nicotine, as well as spontaneous and precipitated somatic withdrawal signs, were measured over time (across days of exposure and over hours after termination of vapor exposure). RESULTS Exposing male Wistar rats to non-contingent nicotine vapor inhalation through ENDS produces somatic withdrawal symptoms and measurable blood-nicotine and blood-cotinine levels that change according to (1) concentration of nicotine in vape solution, (2) number of days of nicotine vapor exposure, (3) time since termination of nicotine vapor exposure, and (4) relative to the withdrawal signs, whether withdrawal was spontaneous or precipitated (by mecamylamine). CONCLUSIONS The data presented here provide parameters that can be used as a reasonable starting point for future work that employs ENDS to deliver non-contingent nicotine vapor in rats, although many parameters can and should be altered to match the specific goals of future work.
Collapse
Affiliation(s)
- Christian Montanari
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Leslie K Kelley
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Tony M Kerr
- La Jolla Alcohol Research Inc., La Jolla, CA, USA
| | - Maury Cole
- La Jolla Alcohol Research Inc., La Jolla, CA, USA
| | - Nicholas W. Gilpin
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.,Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.,Alcohol & Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.,Southeast Louisiana VA Healthcare System (SLVHCS), New Orleans, LA, 70119, USA
| |
Collapse
|
20
|
Kallupi M, de Guglielmo G, Larrosa E, George O. Exposure to passive nicotine vapor in male adolescent rats produces a withdrawal-like state and facilitates nicotine self-administration during adulthood. Eur Neuropsychopharmacol 2019; 29:1227-1234. [PMID: 31462388 PMCID: PMC7899081 DOI: 10.1016/j.euroneuro.2019.08.299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/01/2019] [Accepted: 08/13/2019] [Indexed: 01/16/2023]
Abstract
Electronic cigarette use is particularly prevalent in adolescents, but the effects of secondhand exposure to nicotine vapor in adolescents on the propensity to develop nicotine dependence and increase nicotine self-administration in adulthood are poorly known. The present study explored the effects of nicotine vapor exposure on withdrawal-like states (hyperalgesia, spontaneous withdrawal signs, and locomotor activity) in adolescent rats and the vulnerability to acquire intravenous nicotine self-administration in adulthood. Adolescent (postnatal day 38) rats were exposed to intermittent nicotine vapor (14 h/day) for 7 consecutive days in a range of doses (0, 0.4, and 7 mg/m3). The rats were tested for somatic, emotional, and motivational withdrawal symptoms. When the animals reached adulthood, they were allowed to self-administer nicotine (0.03 mg/kg/0.1 ml) intravenously in operant chambers for 1 h/day for 12 consecutive days. Rats that were exposed to nicotine vapor presented moderate to severe signs of spontaneous withdrawal after the cessation of nicotine vapor. No effect on anxiety-like behavior was observed. Rats that were exposed to high levels of nicotine vapor in adolescence had lower pain thresholds and exhibited faster and higher acquisition of nicotine self-administration in adulthood. Chronic exposure to nicotine vapor in adolescent rats produced a withdrawal-like state and facilitated the acquisition of intravenous nicotine self-administration in adulthood. These results suggest that exposure of adolescents to nicotine vapor may confer higher risk of developing nicotine dependence when they become adults.
Collapse
Affiliation(s)
- Marsida Kallupi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, United States.
| | - Giordano de Guglielmo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, United States
| | - Estefania Larrosa
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, United States
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, United States.
| |
Collapse
|
21
|
Lefever TW, Thomas BF, Kovach AL, Snyder RW, Wiley JL. Route of administration effects on nicotine discrimination in female and male mice. Drug Alcohol Depend 2019; 204:107504. [PMID: 31476643 PMCID: PMC6878166 DOI: 10.1016/j.drugalcdep.2019.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Use of electronic cigarettes (e-cigarettes) has increased exponentially since their appearance on the U.S. market around 2007. To provide preclinical models of vaping that incorporate olfactory cues and chemosensory effects (including flavors) that play a role in human vaping behavior, the feasibility of using a modified e-cigarette device for delivery of aerosolized nicotine was examined in a nicotine discrimination procedure in mice. METHODS Adult female and male C57BL/6 mice were trained to discriminate 0.75 mg/kg subcutaneous (s.c.) nicotine from saline. After determination of a s.c. nicotine dose-effect curve, aerosolized freebase nicotine and nicotine-containing tobacco products (i.e., non-flavored and Arctic Blast e-liquids) were evaluated. RESULTS Nicotine (s.c.) dose-dependently substituted in mice of both sexes, although females showed less sensitivity and greater variability. By contrast, aerosolized nicotine, regardless of formulation, produced concentration-dependent increases up to maximum of 46-62% nicotine-associated responding. Brain nicotine concentrations for each sex were similar for s.c. 0.75 mg/kg nicotine and 30 mg/ml freebase nicotine. CONCLUSIONS Mice of both sexes readily acquired s.c. nicotine discrimination, but females showed less sensitivity. Further, all three formulations of aerosolized nicotine produced increases in nicotine-like responding in mice of each sex. However, the maximum magnitude of these increases did not engender a similar degree of substitution as s.c. 0.75 mg/kg nicotine, despite similar brain concentrations of nicotine at 30 mg/ml aerosolized nicotine. Additional research is needed for determination of the reason(s); however, results here demonstrate initial feasibility for examination of the discriminative stimulus effects of vaped drugs such as nicotine.
Collapse
Affiliation(s)
- Timothy W Lefever
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709-2194, United States
| | - Brian F Thomas
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709-2194, United States
| | - Alexander L Kovach
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709-2194, United States
| | - Rodney W Snyder
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709-2194, United States
| | - Jenny L Wiley
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709-2194, United States.
| |
Collapse
|
22
|
A mouse model for chronic intermittent electronic cigarette exposure exhibits nicotine pharmacokinetics resembling human vapers. J Neurosci Methods 2019; 326:108376. [PMID: 31361999 DOI: 10.1016/j.jneumeth.2019.108376] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/04/2023]
Abstract
Electronic cigarettes (E-cig) use is increasing rapidly, particularly among youths. Animal models for E-cig exposure with pharmacokinetics resembling human E-cig users are lacking. We developed an E-cig aerosol exposure system for rodents and a chronic intermittent delivery method that simulates E-cig users who vape episodically during wakefulness and abstain during sleep. Mice were exposed to E-cig in a programmed schedule at very low, low, medium, or high doses defined by duration of each puff, number of puffs per delivery episode and frequency of episodes in the dark phase of a 12/12-h circadian cycle for 9 consecutive days. The plasma nicotine/cotinine levels and their time courses were determined using LC/MS-MS. We assessed the body weight, food intake and locomotor activity of Apolipoprotein E null (ApoE-/-) mice exposed to chronic intermittent E-cig aerosol. Plasma nicotine and cotinine levels were positively correlated with exposure doses. Nicotine and cotinine levels showed a circadian variation as they increased with time up to the maximum nicotine level of 21.8 ± 7.1 ng/mL during the daily intermittent E-cig exposure in the 12-h dark phase and then declined during the light phase when there was no E-cig delivery. Chronic E-cig exposure to ApoE-/- mice decreased body weight, food intake and increased locomotion. Our rodent E-cig exposure system and chronic intermittent exposure method yield clinically relevant nicotine pharmacokinetics associated with behavioral and metabolic changes. The methodologies are essential tools for in vivo studies of the health impacts of E-cig exposure on CNS, cardiovascular, pulmonary, hepatic systems, metabolism and carcinogenesis.
Collapse
|
23
|
Wiley JL, Lefever TW, Glass M, Thomas BF. Do you feel it now? Route of administration and Δ 9-tetrahydrocannabinol-like discriminative stimulus effects of synthetic cannabinoids in mice. Neurotoxicology 2019; 73:161-167. [PMID: 30953678 DOI: 10.1016/j.neuro.2019.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
A recent push to provide more translationally relevant preclinical models for examination of pharmacological mechanisms underlying inhaled substances of abuse has resulted in the development of equipment and methods that allows exposure of freely moving rodents to aerosolized psychoactive drugs. In the present study, synthetic cannabinoids (CP55,940, AB-CHMINACA, and AMB-FUBINACA) were administered intraperitoneally (i.p.) or aerosolized via a modified electronic cigarette device. Subsequently, the compounds were evaluated in adult male and female C57/Bl6 mice trained to discriminate i.p. 5.6 mg/kg Δ9-tetrahydrocannabinol (THC) for food reinforcement. When administered i.p., THC and AB-CHMINACA were equally potent at producing THC-like effects in both sexes, but CP55,940 and AMB-FUBINACA were more potent in males. Upon aerosol exposure, all compounds continued to produce THC-like effects in both sexes, with AMB-FUBINACA remaining the most potent. In contrast, aerosolized CP55,940 showed substantial decreases in potency in both sexes. Aerosolized nicotine did not substitute for THC in either sex. In females, aerosolized cumyl-4CN-BINACA produced concentration-dependent increases in responding on the THC-associated nosepoke. In addition, the effects of an active concentration of AMB-FUBINACA were reversed by rimonabant, suggesting CB1 receptor mediation. These results show that synthetic cannabinoids produce THC-like effects when injected i.p. or after aerosolization. This study adds to a growing literature suggesting that evaluation of abuse liability of substances via aerosol exposure is feasible and may provide a translationally relevant method that allows for investigation of factors important to the abuse of drugs which humans typically smoke or vape.
Collapse
Affiliation(s)
- Jenny L Wiley
- RTI International, 3040 E. Cornwallis Road, Research Triangle Park, 27709, NC, USA.
| | - Timothy W Lefever
- RTI International, 3040 E. Cornwallis Road, Research Triangle Park, 27709, NC, USA
| | - Michelle Glass
- University of Otago, Department of Pharmacology and Toxicology, Dunedin, New Zealand
| | - Brian F Thomas
- RTI International, 3040 E. Cornwallis Road, Research Triangle Park, 27709, NC, USA
| |
Collapse
|
24
|
Shao XM, Liu S, Lee ES, Fung D, Pei H, Liang J, Mudgway R, Zhang J, Feldman JL, Zhu Y, Louie S, Xie XS. Chronic intermittent nicotine delivery via lung alveolar region-targeted aerosol technology produces circadian pharmacokinetics in rats resembling human smokers. J Appl Physiol (1985) 2018; 125:1555-1562. [PMID: 30236046 PMCID: PMC6295479 DOI: 10.1152/japplphysiol.00357.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/22/2022] Open
Abstract
Cigarette smoke is an aerosol containing microparticles that carry nicotine into the lung alveolar region where nicotine is rapidly absorbed into circulation. Nicotine exposure in smokers is a chronic intermittent process, with episodic intake during wakefulness and abstinence during sleep resulting in circadian fluctuation of blood nicotine levels. We developed an integrated platform where freely moving rodents can be exposed to episodic nicotine aerosol on an investigator-designed schedule. Plasma nicotine and its metabolite cotinine levels were determined with a LC-MS/MS method. We characterized the aerosol in the breathing zone of the rodent exposure chamber. The droplet-size distribution was within the respirable diameter range. The system can generate a wide range of nicotine concentrations in air that meet a variety of experimental needs. Rats were exposed to nicotine aerosol once every half hour in the dark phase of 12:12-h light-dark cycles for 10 days. We optimized the parameters of aerosol generation and exposure: plasma nicotine and cotinine concentrations reached 30-35 and 190-240 ng/ml, respectively. The nicotine levels and circadian patterns resembled the pharmacokinetic pattern of human smokers. In summary, we developed an aerosol system that can produce clinically relevant chronic intermittent nicotine exposure in unanesthetized, unrestrained rodents with route of administration and circadian blood pharmacokinetics resembling human smokers. This methodology is a novel tool for understanding the health effects of chronic intermittent nicotine exposure such as with tobacco cigarettes and electronic cigarettes for studies of behavior, pharmacology and toxicology, nicotine addiction, tobacco-related diseases, and teratogenicity, and for the discovery of therapeutics. NEW & NOTEWORTHY We developed a lung alveolar region-targeted aerosol method and a system that provides chronic intermittent nicotine exposure in freely moving rodents. The method produces in rodents clinically relevant nicotine exposure with the route and circadian pharmacokinetics resembling human smokers. This method is a novel tool for understanding the health impacts of chronic nicotine exposures such as with tobacco cigarettes and electronic cigarettes, for studying nicotine pharmacology, toxicology, addiction, and tobacco-related diseases, and for the discovery of therapeutics.
Collapse
Affiliation(s)
- Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Siyu Liu
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy , Los Angeles, California
| | - Eon S Lee
- Department of Environmental Health Sciences, UCLA Fielding School of Public Health , Los Angeles, California
| | - David Fung
- Department of Environmental Health Sciences, UCLA Fielding School of Public Health , Los Angeles, California
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy , Los Angeles, California
| | - Jing Liang
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy , Los Angeles, California
| | - Ross Mudgway
- Department of Neurobiology, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Jingxi Zhang
- AfaSci Research Laboratories, AfaSci, Incorporated, Redwood City, California
| | - Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Yifang Zhu
- Department of Environmental Health Sciences, UCLA Fielding School of Public Health , Los Angeles, California
| | - Stan Louie
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy , Los Angeles, California
| | - Xinmin S Xie
- AfaSci Research Laboratories, AfaSci, Incorporated, Redwood City, California
| |
Collapse
|
25
|
Kallupi M, George O. Nicotine Vapor Method to Induce Nicotine Dependence in Rodents. ACTA ACUST UNITED AC 2017; 80:8.41.1-8.41.10. [PMID: 28678400 DOI: 10.1002/cpns.34] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nicotine, the main addictive component of tobacco, induces potentiation of brain stimulation reward, increases locomotor activity, and induces conditioned place preference. Nicotine cessation produces a withdrawal syndrome that can be relieved by nicotine replacement therapy. In the last decade, the market for electronic cigarettes has flourished, especially among adolescents. The nicotine vaporizer or electronic nicotine delivery system is a battery-operated device that allows the user to simulate the experience of tobacco smoking without inhaling smoke. The device is designed to be an alternative to conventional cigarettes that emits vaporized nicotine inhaled by the user. This report describes a procedure to vaporize nicotine in the air to produce blood nicotine levels in rodents that are clinically relevant to those that are observed in humans and produce dependence. We also describe how to construct the apparatus to deliver nicotine vapor in a stable, reliable, and consistent manner, as well as how to analyze air for nicotine content. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marsida Kallupi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
26
|
Lefever TW, Lee YO, Kovach AL, Silinski MA, Marusich JA, Thomas BF, Wiley JL. Delivery of nicotine aerosol to mice via a modified electronic cigarette device. Drug Alcohol Depend 2017; 172:80-87. [PMID: 28157590 PMCID: PMC5327853 DOI: 10.1016/j.drugalcdep.2016.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/21/2016] [Accepted: 12/04/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Although both men and women use e-cigarettes, most preclinical nicotine research has focused on its effects in male rodents following injection. The goals of the present study were to develop an effective e-cigarette nicotine delivery system, to compare results to those obtained after subcutaneous (s.c.) injection, and to examine sex differences in the model. METHODS Hypothermia and locomotor suppression were assessed following aerosol exposure or s.c. injection with nicotine in female and male mice. Subsequently, plasma and brain concentrations of nicotine and cotinine were measured. RESULTS Passive exposure to nicotine aerosol produced concentration-dependent and mecamylamine reversible hypothermic and locomotor suppressant effects in female and male mice, as did s.c. nicotine injection. In plasma and brain, nicotine and cotinine concentrations showed dose/concentration-dependent increases in both sexes following each route of administration. Sex differences in nicotine-induced hypothermia were dependent upon route of administration, with females showing greater hypothermia following aerosol exposure and males showing greater hypothermia following injection. In contrast, when they occurred, sex differences in nicotine and cotinine levels in brain and plasma consistently showed greater concentrations in females than males, regardless of route of administration. DISCUSSION In summary, the e-cigarette exposure device described herein was used successfully to deliver pharmacologically active doses of nicotine to female and male mice. Further, plasma nicotine concentrations following exposure were similar to those after s.c. injection with nicotine and within the range observed in human smokers. Future research on vaped products can be strengthened by inclusion of translationally relevant routes of administration.
Collapse
Affiliation(s)
- Timothy W. Lefever
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709
| | - Youn O.K. Lee
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709
| | | | | | - Julie A. Marusich
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709
| | - Brian F. Thomas
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709
| | - Jenny L. Wiley
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709
| |
Collapse
|
27
|
McGinn MA, Paulsen RI, Itoga CA, Farooq MA, Reppel JE, Edwards KN, Whitaker AM, Gilpin NW, Edwards S. Withdrawal from Chronic Nicotine Exposure Produces Region-Specific Tolerance to Alcohol-Stimulated GluA1 Phosphorylation. Alcohol Clin Exp Res 2016; 40:2537-2547. [PMID: 27796078 DOI: 10.1111/acer.13258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/26/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Nicotine use increases alcohol drinking, suggesting that the combination of these drugs may produce synergistic effects in activating reward circuitry. Alternatively, use of either of these drugs may facilitate the development of cross-tolerance to the other to promote intake escalation. METHODS In this study, adult male Wistar rats were chronically exposed to room air or chronic, intermittent nicotine vapor, which has been shown to produce symptoms of nicotine dependence as evidenced by elevated nicotine self-administration and a host of somatic and motivational withdrawal symptoms. We examined regional neuroadaptations in nicotine-experienced versus nonexperienced animals, focusing on changes in phosphorylation of the AMPA glutamate channel subunit GluA1 in reward-related brain regions as excitatory neuroadaptations are heavily implicated in both alcohol and nicotine addiction. RESULTS During withdrawal, nicotine exposure and alcohol challenge (1 g/kg) interactively produced neuroadaptations in GluA1 phosphorylation in a brain region-dependent manner. Alcohol robustly increased protein kinase A-mediated phosphorylation of GluA1 at serine 845 in multiple regions. However, this neuroadaptation was largely absent in 3 areas (dorsomedial prefrontal cortex, dorsal striatum, and central amygdala) in nicotine-experienced animals. This interactive effect suggests a molecular tolerance to alcohol-stimulated phosphorylation of GluA1 in the context of nicotine dependence. CONCLUSIONS Nicotine may modify the rewarding or reinforcing effects of alcohol by altering glutamate signaling in a region-specific manner, thereby leading to increased drinking in heavy smokers.
Collapse
Affiliation(s)
- M Adrienne McGinn
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Rod I Paulsen
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Christy A Itoga
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Muhammad A Farooq
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jonathan E Reppel
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Kimberly N Edwards
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Annie M Whitaker
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nicholas W Gilpin
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Scott Edwards
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
28
|
Advances in Behavioral Laboratory Methods that Inform Tobacco Regulatory Science: A TCORS Working Group Special Issue. TOB REGUL SCI 2016; 2:294-300. [PMID: 29152546 DOI: 10.18001/trs.2.4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective The 2009 Family Smoking Prevention and Tobacco Control Act (TCA) created unprecented enabling conditions for establishing national regulatory policy that reduces the burden of public health and societal problems associated with tobacco product use. The Center for Tobacco Products (CTP), created by the FDA to implement the TCA, developed a first-of-its-kind FDA/National Institutes of Health (NIH) collaborative program to fund Tobacco Centers of Regulatory Science (TCORS). Methods To assist the TCORS with addressing research priorites, working groups (WGs) comprised of FDA-CTP liasions and TCORS investigators were formed. Under the direction of the Center for Evaluation and Coordination of Trainin and Research (CECTR), the TCORS WGs seek to develop tangible work products in their respective areas of focus. Results The focus of the behavioral pharmacology WG evolved from publishing a narrow paper on behavioral methods in electronic cigarette research to a collection of papers on advances in behavioral laboratory methods that may inform tobacco regulatory science. Conclusion This Special Issue contains articles that address all of the CTP research priorities and demonstrates how advances in behavioral laboratory methods made by TCORS investigators can inform FDA efforst to regulate tobacco products.
Collapse
|
29
|
Locomotor Stimulant and Rewarding Effects of Inhaling Methamphetamine, MDPV, and Mephedrone via Electronic Cigarette-Type Technology. Neuropsychopharmacology 2016; 41:2759-71. [PMID: 27277119 PMCID: PMC5026745 DOI: 10.1038/npp.2016.88] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 01/15/2023]
Abstract
Although inhaled exposure to drugs is a prevalent route of administration for human substance abusers, preclinical models that incorporate inhaled exposure to psychomotor stimulants are not commonly available. Using a novel method that incorporates electronic cigarette-type technology to facilitate inhalation, male Wistar rats were exposed to vaporized methamphetamine (MA), 3,4-methylenedioxypyrovalerone (MDPV), and mephedrone (4-methylmethcathinone) in propylene glycol vehicle using concentrations ranging from 12.5 to 200 mg/ml. Rats exhibited increases in spontaneous locomotor activity, measured by implanted radiotelemetry, following exposure to methamphetamine (12.5 and 100 mg/ml), MDPV (25, 50, and 100 mg/ml), and mephedrone (200 mg/ml). Locomotor effects were blocked by pretreatment with the dopamine D1-like receptor antagonist SCH23390 (10 μg/kg, intraperitoneal (i.p.)). MA and MDPV vapor inhalation also altered activity on a running wheel in a biphasic manner. An additional group of rats was trained on a discrete trial intracranial self-stimulation (ICSS) procedure interpreted to assess brain reward status. ICSS-trained rats that received vaporized MA, MDPV, or mephedrone exhibited a significant reduction in threshold of ICSS reward compared with vehicle. The effect of vapor inhalation of the stimulants was found comparable to the locomotor and ICSS threshold-reducing effects of i.p. injection of mephedrone (5.0 mg/kg), MA (0.5-1.0 mg/kg), or MDPV (0.5-1.0 mg/kg). These data provide robust validation of e-cigarette-type technology as a model for inhaled delivery of vaporized psychostimulants. Finally, these studies demonstrate the potential for human use of e-cigarettes to facilitate covert use of a range of psychoactive stimulants. Thus, these devices pose health risks beyond their intended application for the delivery of nicotine.
Collapse
|
30
|
Progatzky F, Cook HT, Lamb JR, Bugeon L, Dallman MJ. Mucosal inflammation at the respiratory interface: a zebrafish model. Am J Physiol Lung Cell Mol Physiol 2016; 310:L551-61. [PMID: 26719149 PMCID: PMC4796261 DOI: 10.1152/ajplung.00323.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/23/2015] [Indexed: 12/19/2022] Open
Abstract
Inflammatory diseases of the respiratory system such as asthma and chronic obstructive pulmonary disease are increasing globally and remain poorly understood conditions. Although attention has long focused on the activation of type 1 and type 2 helper T cells of the adaptive immune system in these diseases, it is becoming increasingly apparent that there is also a need to understand the contributions and interactions between innate immune cells and the epithelial lining of the respiratory system. Cigarette smoke predisposes the respiratory tissue to a higher incidence of inflammatory disease, and here we have used zebrafish gills as a model to study the effect of cigarette smoke on the respiratory epithelium. Zebrafish gills fulfill the same gas-exchange function as the mammalian airways and have a similar structure. Exposure to cigarette smoke extracts resulted in an increase in transcripts of the proinflammatory cytokines TNF-α, IL-1β, and MMP9 in the gill tissue, which was at least in part mediated via NF-κB activation. Longer term exposure of fish for 6 wk to cigarette smoke extract resulted in marked structural changes to the gills with lamellar fusion and mucus cell formation, while signs of inflammation or fibrosis were absent. This shows, for the first time, that zebrafish gills are a relevant model for studying the effect of inflammatory stimuli on a respiratory epithelium, since they mimic the immunopathology involved in respiratory inflammatory diseases of humans.
Collapse
Affiliation(s)
- Fränze Progatzky
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom; and
| | - H Terence Cook
- Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jonathan R Lamb
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom; and
| | - Laurence Bugeon
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom; and
| | - Margaret J Dallman
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom; and
| |
Collapse
|
31
|
Brynildsen JK, Najar J, Hsu LM, Vaupel DB, Lu H, Ross TJ, Yang Y, Stein EA. A novel method to induce nicotine dependence by intermittent drug delivery using osmotic minipumps. Pharmacol Biochem Behav 2016; 142:79-84. [PMID: 26751248 DOI: 10.1016/j.pbb.2015.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 11/30/2022]
Abstract
Although osmotic minipumps are a reliable method for inducing nicotine dependence in rodents, continuous nicotine administration does not accurately model the intermittent pattern of nicotine intake in cigarette smokers. Our objectives, therefore, were to investigate whether intermittent nicotine delivery via osmotic minipumps could induce dependence in rats, and to compare the magnitude and duration of withdrawal following forced abstinence from intermittent nicotine to that induced by continuous nicotine administration. In order to administer nicotine intermittently, rats were surgically implanted with saline-filled osmotic minipumps attached to polyethylene tubing that contained hourly unit doses of nicotine alternating with mineral oil to mimic "injections". Three doses of nicotine (1.2, 2.4, and 4.8mg/kg/day) and saline were administered for 14days using this method. In order to compare our intermittent delivery method with the more traditional continuous nicotine delivery, a second group of rats was implanted with minipumps attached to tubing that delivered continuous nicotine for 14days. Rats were administered a 1.5mg/kg subcutaneous (SC) mecamylamine challenge and observed for somatic signs of withdrawal on days 7, 14, 21, and 28 following minipump implantation. Fifteen somatic withdrawal signs were summed within a 50-minute observation period to obtain a composite Dependence Score. A generalized linear mixed-effects model revealed a significant Day×Dose×Method interaction. Amongst continuously-treated rats, only 4.8mg/kg/d nicotine resulted in dependence scores significantly greater than those of controls at 14days of exposure. In contrast, all intermittent nicotine groups showed significantly higher scores beginning at 7days of exposure and persisting beyond 7days of abstinence. In general, intermittent delivery produced a more robust withdrawal syndrome than continuous delivery, and did so at a lower dose threshold and with greater persistence after forced abstinence.
Collapse
Affiliation(s)
- Julia K Brynildsen
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd., Suite 200, Baltimore, MD, USA
| | - Julie Najar
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd., Suite 200, Baltimore, MD, USA
| | - Li-Ming Hsu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd., Suite 200, Baltimore, MD, USA
| | - D Bruce Vaupel
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd., Suite 200, Baltimore, MD, USA
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd., Suite 200, Baltimore, MD, USA
| | - Thomas J Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd., Suite 200, Baltimore, MD, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd., Suite 200, Baltimore, MD, USA
| | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd., Suite 200, Baltimore, MD, USA.
| |
Collapse
|
32
|
Ponzoni L, Moretti M, Sala M, Fasoli F, Mucchietto V, Lucini V, Cannazza G, Gallesi G, Castellana CN, Clementi F, Zoli M, Gotti C, Braida D. Different physiological and behavioural effects of e-cigarette vapour and cigarette smoke in mice. Eur Neuropsychopharmacol 2015; 25:1775-86. [PMID: 26141510 DOI: 10.1016/j.euroneuro.2015.06.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/25/2015] [Accepted: 06/12/2015] [Indexed: 01/12/2023]
Abstract
Nicotine is the primary addictive substance in tobacco smoke and electronic cigarette (e-cig) vapour. Methodological limitations have made it difficult to compare the role of the nicotine and non-nicotine constituents of tobacco smoke. The aim of this study was to compare the effects of traditional cigarette smoke and e-cig vapour containing the same amount of nicotine in male BALB/c mice exposed to the smoke of 21 cigarettes or e-cig vapour containing 16.8 mg of nicotine delivered by means of a mechanical ventilator for three 30-min sessions/day for seven weeks. One hour after the last session, half of the animals were sacrificed for neurochemical analysis, and the others underwent mecamylamine-precipitated or spontaneous withdrawal for the purposes of behavioural analysis. Chronic intermittent non-contingent, second-hand exposure to cigarette smoke or e-cig vapour led to similar brain cotinine and nicotine levels, similar urine cotinine levels and the similar up-regulation of α4β2 nicotinic acetylcholine receptors in different brain areas, but had different effects on body weight, food intake, and the signs of mecamylamine-precipitated and spontaneous withdrawal episodic memory and emotional responses. The findings of this study demonstrate for the first time that e-cig vapour induces addiction-related neurochemical, physiological and behavioural alterations. The fact that inhaled cigarette smoke and e-cig vapour have partially different dependence-related effects indicates that compounds other than nicotine contribute to tobacco dependence.
Collapse
Affiliation(s)
- L Ponzoni
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - M Moretti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy; Consiglio Nazionale delle Ricerche (CNR), Istituto di Neuroscienze, Milan, Italy
| | - M Sala
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy; Consiglio Nazionale delle Ricerche (CNR), Istituto di Neuroscienze, Milan, Italy
| | - F Fasoli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy; Consiglio Nazionale delle Ricerche (CNR), Istituto di Neuroscienze, Milan, Italy
| | - V Mucchietto
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy; Consiglio Nazionale delle Ricerche (CNR), Istituto di Neuroscienze, Milan, Italy
| | - V Lucini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - G Cannazza
- Dipartimenti di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | - G Gallesi
- Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - C N Castellana
- Dipartimento di Medicina di Laboratorio e Anatomia Patologica, A.O.U. Policlinico, Modena, Italy
| | - F Clementi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy; Consiglio Nazionale delle Ricerche (CNR), Istituto di Neuroscienze, Milan, Italy
| | - M Zoli
- Medicina Diagnostica, Clinica e Sanità Pubblica, Università di Modena e Reggio Emilia, Modena, Italy
| | - C Gotti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy; Consiglio Nazionale delle Ricerche (CNR), Istituto di Neuroscienze, Milan, Italy.
| | - D Braida
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
33
|
Okoli C, Kodet J, Robertson H. Behavioral and Physiological Responses to Nicotine Patch Administration Among Nonsmokers Based on Acute and Chronic Secondhand Tobacco Smoke Exposure. Biol Res Nurs 2015; 18:60-7. [PMID: 25882603 DOI: 10.1177/1099800415579261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Despite the large amount that is known about the physical health effects of secondhand tobacco smoke (SHS) exposure, little is known about the behavioral health effects. Nicotine, the principle psychoactive substance in SHS, elicits subjective mood and physiological responses in nonsmokers. However, no studies have examined the subjective mood or physiological responses to nicotine in nonsmokers while accounting for prior chronic or acute SHS exposure. METHODS A 7-mg nicotine patch was administered to 17 adult nonsmokers for 2 hr. Main outcome measures obtained at ½ hr, 1 hr, and 2 hr were subjective behavioral drug effects (based on eleven 10-cm Visual Analog Scales [VASs]) and the physiological measures of heart rate, blood pressure, and serum nicotine levels. Analysis of outcome data was based on participants' chronic (using hair nicotine) or acute (using saliva cotinine) SHS exposure. RESULTS Greater chronic SHS exposure was negatively associated with pleasurable responses to nicotine administration ("drug feels good" score at 2-hr time point, Spearman's ρ = -.65, p < .004), whereas greater acute SHS exposure was associated with positive responses ("like feeling of drug" score at 2-hr time point, Spearman's ρ = .63, p < .01). There were no associations between chronic or acute exposure and physiological changes in response to nicotine administration. DISCUSSION The findings of this study may be useful in providing preliminary empirical data for future explorations of the mechanism whereby SHS exposure can influence behavioral outcomes in nonsmokers. Such studies can inform future interventions to reduce the physical and behavioral health risks associated with SHS exposure.
Collapse
Affiliation(s)
- Chizimuzo Okoli
- University of Kentucky College of Nursing, Lexington, KY, USA
| | - Jonathan Kodet
- University of Kentucky College of Nursing, Lexington, KY, USA
| | | |
Collapse
|
34
|
Tan ASL, Bigman CA, Mello S, Sanders-Jackson A. Is exposure to e-cigarette communication associated with perceived harms of e-cigarette secondhand vapour? Results from a national survey of US adults. BMJ Open 2015; 5:e007134. [PMID: 25814497 PMCID: PMC4386241 DOI: 10.1136/bmjopen-2014-007134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES E-cigarettes are frequently advertised and portrayed in the media as less harmful compared with regular cigarettes. Earlier surveys reported public perceptions of harms to people using e-cigarettes; however, public perceptions of harms from exposure to secondhand vapour (SHV) have not been studied. We examined associations between self-reported exposure to e-cigarette advertising, media coverage, and interpersonal discussion and perceived harms of SHV. DESIGN Observational study. SETTING National online sample of US adults aged ≥18 years. PARTICIPANTS 1449 US adults (mean age 49.5 years), 51.3% female, 76.6% non-Hispanic Caucasian, 7.5% African-American, 10.0% Hispanic and 5.9% other races. OUTCOMES Perceived harm measures included (1) harmfulness of SHV to one's health, (2) concern about health impact of breathing SHV and (3) comparative harm of SHV versus secondhand smoke (SHS). Predictors were (1) self-reported frequency of exposure to e-cigarette advertising, media coverage and interpersonal discussion (close friends or family) and (2) perceived valence of exposure from each source. Covariates were demographic characteristics, cigarette smoking status and e-cigarette use, and were weighted to the general US adult population. RESULTS More frequent interpersonal discussion was associated with lower perceived harmfulness of SHV to one's health and lower perceived comparative harm of SHV versus SHS. Frequency of e-cigarette ad and other media exposure were not significant predictors. Perceived negative valence of ad exposure and interpersonal discussion (vs no exposure) was associated with higher perceived harm across all three outcomes, while negative valence of media coverage was associated with higher concern about health impact of breathing SHV. Perceived positive valence (vs no exposure) of interpersonal discussion was associated with lower perceived harm across all three outcomes about health impact of breathing SHV. CONCLUSIONS Exposure to information about e-cigarettes through advertising, media coverage and interpersonal discussion could play a role in shaping public perceptions of the harmfulness of SHV.
Collapse
Affiliation(s)
- Andy S L Tan
- Population Sciences Division, Dana-Farber Cancer Institute, Center for Community Based Research, Boston, USA Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Boston, USA
| | - Cabral A Bigman
- Department of Communication, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Susan Mello
- Department of Communication Studies, Northeastern University, Boston, USA
| | | |
Collapse
|
35
|
Jackson KJ, Muldoon PP, De Biasi M, Damaj MI. New mechanisms and perspectives in nicotine withdrawal. Neuropharmacology 2014; 96:223-34. [PMID: 25433149 DOI: 10.1016/j.neuropharm.2014.11.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/21/2014] [Accepted: 11/17/2014] [Indexed: 02/08/2023]
Abstract
Diseases associated with tobacco use constitute a major health problem worldwide. Upon cessation of tobacco use, an unpleasant withdrawal syndrome occurs in dependent individuals. Avoidance of the negative state produced by nicotine withdrawal represents a motivational component that promotes continued tobacco use and relapse after smoking cessation. With the modest success rate of currently available smoking cessation therapies, understanding mechanisms involved in the nicotine withdrawal syndrome are crucial for developing successful treatments. Animal models provide a useful tool for examining neuroadaptative mechanisms and factors influencing nicotine withdrawal, including sex, age, and genetic factors. Such research has also identified an important role for nicotinic receptor subtypes in different aspects of the nicotine withdrawal syndrome (e.g., physical vs. affective signs). In addition to nicotinic receptors, the opioid and endocannabinoid systems, various signal transduction pathways, neurotransmitters, and neuropeptides have been implicated in the nicotine withdrawal syndrome. Animal studies have informed human studies of genetic variants and potential targets for smoking cessation therapies. Overall, the available literature indicates that the nicotine withdrawal syndrome is complex, and involves a range of neurobiological mechanisms. As research in nicotine withdrawal progresses, new pharmacological options for smokers attempting to quit can be identified, and treatments with fewer side effects that are better tailored to the unique characteristics of patients may become available. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- K J Jackson
- Department of Psychiatry, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23219, USA
| | - P P Muldoon
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Marshall St., Richmond, VA 23219, USA
| | - M De Biasi
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M I Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Marshall St., Richmond, VA 23219, USA.
| |
Collapse
|
36
|
Gilpin NW, Whitaker AM, Baynes B, Abdel AY, Weil MT, George O. Nicotine vapor inhalation escalates nicotine self-administration. Addict Biol 2014; 19:587-92. [PMID: 23240929 DOI: 10.1111/adb.12021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Humans escalate their cigarette smoking over time, and a major obstacle in the field of pre-clinical nicotine addiction research has been the inability to produce escalated nicotine self-administration in rats. In experiment 1, male Wistar rats were trained to respond for nicotine in 2-hour operant sessions, then exposed to chronic intermittent (12 hours/day) nicotine vapor and repeatedly tested for nicotine self-administration at 8-12 hours of withdrawal. Rats were tested intermittently on days 1, 3 and 5 of the vapor exposure procedure, then tested with nicotine vapor exposure on 6-15 consecutive days. Rats exhibited transient increases in operant nicotine responding during intermittent testing, regardless of vapor condition, and this responding returned to baseline levels upon resumption of consecutive-days testing (i.e. nicotine deprivation effect). Nicotine vapor-exposed rats then escalated nicotine self-administration relative to both their own baseline (∼200% increase) and non-dependent controls (∼3× higher). In experiment 2, rats were exposed or not exposed to chronic intermittent nicotine vapor, then tested for spontaneous and precipitated somatic signs of nicotine withdrawal. Eight hours following removal from nicotine vapor, rats exhibited robust mecamylamine-precipitated somatic signs of withdrawal. There was a strong correlation between nicotine flow rate and air-nicotine concentration, and the air-nicotine concentrations used in experiments 1 and 2 resemble concentrations experienced by human smokers. Collectively, these results suggest that chronic intermittent nicotine vapor inhalation produces somatic and motivational signs of nicotine dependence, the latter of which is evidenced by escalation of nicotine self-administration.
Collapse
Affiliation(s)
- Nicholas W. Gilpin
- Department of Physiology; Louisiana State University Health Sciences Center; New Orleans LA USA
| | - Annie M. Whitaker
- Department of Physiology; Louisiana State University Health Sciences Center; New Orleans LA USA
| | - Brittni Baynes
- Department of Physiology; Louisiana State University Health Sciences Center; New Orleans LA USA
| | - Abdelrahim Y. Abdel
- School of Medicine; Louisiana State University Health Sciences Center; New Orleans LA USA
| | - Madelyn T. Weil
- School of Medicine; Louisiana State University Health Sciences Center; New Orleans LA USA
| | - Olivier George
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
| |
Collapse
|
37
|
Shao XM, Xu B, Liang J, Xie XS, Zhu Y, Feldman JL. Nicotine delivery to rats via lung alveolar region-targeted aerosol technology produces blood pharmacokinetics resembling human smoking. Nicotine Tob Res 2013; 15:1248-58. [PMID: 23239844 PMCID: PMC3682843 DOI: 10.1093/ntr/nts261] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/01/2012] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Nicotine is a heavily used addictive drug acquired through smoking tobacco. Nicotine in cigarette smoke is deposited and absorbed in the lungs, which results in a rapidly peaked slowly declining arterial concentration. This pattern plays an important role in initiation of nicotine addiction. METHODS A method and device were developed for delivering nicotine to rodents with lung alveolar region-targeted aerosol technology. The dose of delivery can be controlled by the nicotine aerosol concentration and duration of exposure. RESULTS Our data showed that, in the breathing zone of the nose-only exposure chamber, the aerosol droplet size distribution was within the respirable diameter range. Rats were exposed to nicotine aerosol for 2 min. The arterial blood nicotine concentration reached 43.2 ± 15.7 ng/ml (mean ± SD) within 1-4 min and declined over the next 20 min, closely resembling the magnitude and early pharmacokinetics of a human smoking a cigarette. The acute inhalation toxicity of nicotine: LC50 = 2.3mg/L was determined; it was affected by pH, suggesting that acidification decreases nicotine absorption and/or bioavailability. CONCLUSIONS A noninvasive method and toolkit were developed for delivering nicotine to rodents that enable rapid delivery of a controllable amount of nicotine into the systemic circulation and brain-inducing dose-dependent pharmacological effects, even a lethal dose. Aerosol inhalation can produce nicotine kinetics in both arterial and venous blood resembling human smoking. This method can be applied to studies of the effects of chronic intermittent nicotine exposure, nicotine addiction, toxicology, tobacco-related diseases, teratogenicity, and for discovery of pharmacological therapeutics.
Collapse
Affiliation(s)
- Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Cohen A, George O. Animal models of nicotine exposure: relevance to second-hand smoking, electronic cigarette use, and compulsive smoking. Front Psychiatry 2013; 4:41. [PMID: 23761766 PMCID: PMC3671664 DOI: 10.3389/fpsyt.2013.00041] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/13/2013] [Indexed: 12/23/2022] Open
Abstract
Much evidence indicates that individuals use tobacco primarily to experience the psychopharmacological properties of nicotine and that a large proportion of smokers eventually become dependent on nicotine. In humans, nicotine acutely produces positive reinforcing effects, including mild euphoria, whereas a nicotine abstinence syndrome with both somatic and affective components is observed after chronic nicotine exposure. Animal models of nicotine self-administration and chronic exposure to nicotine have been critical in unveiling the neurobiological substrates that mediate the acute reinforcing effects of nicotine and emergence of a withdrawal syndrome during abstinence. However, important aspects of the transition from nicotine abuse to nicotine dependence, such as the emergence of increased motivation and compulsive nicotine intake following repeated exposure to the drug, have only recently begun to be modeled in animals. Thus, the neurobiological mechanisms that are involved in these important aspects of nicotine addiction remain largely unknown. In this review, we describe the different animal models available to date and discuss recent advances in animal models of nicotine exposure and nicotine dependence. This review demonstrates that novel animal models of nicotine vapor exposure and escalation of nicotine intake provide a unique opportunity to investigate the neurobiological effects of second-hand nicotine exposure, electronic cigarette use, and the mechanisms that underlie the transition from nicotine use to compulsive nicotine intake.
Collapse
Affiliation(s)
- Ami Cohen
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Olivier George
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
39
|
Phasic D1 and tonic D2 dopamine receptor signaling double dissociate the motivational effects of acute nicotine and chronic nicotine withdrawal. Proc Natl Acad Sci U S A 2012; 109:3101-6. [PMID: 22308372 DOI: 10.1073/pnas.1114422109] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nicotine, the main psychoactive ingredient of tobacco smoke, induces negative motivational symptoms during withdrawal that contribute to relapse in dependent individuals. The neurobiological mechanisms underlying how the brain signals nicotine withdrawal remain poorly understood. Using electrophysiological, genetic, pharmacological, and behavioral methods, we demonstrate that tonic but not phasic activity is reduced during nicotine withdrawal in ventral tegmental area dopamine (DA) neurons, and that this pattern of signaling acts through DA D2 and adenosine A2A, but not DA D1, receptors. Selective blockade of phasic DA activity prevents the expression of conditioned place aversions to a single injection of nicotine in nondependent mice, but not to withdrawal from chronic nicotine in dependent mice, suggesting a shift from phasic to tonic dopaminergic mediation of the conditioned motivational response in nicotine dependent and withdrawn animals. Either increasing or decreasing activity at D2 or A2A receptors prevents the aversive motivational response to withdrawal from chronic nicotine, but not to acute nicotine. Modification of D1 receptor activity prevents the aversive response to acute nicotine, but not to nicotine withdrawal. This double dissociation demonstrates that the specific pattern of tonic DA activity at D2 receptors is a key mechanism in signaling the motivational effects experienced during nicotine withdrawal, and may represent a unique target for therapeutic treatments for nicotine addiction.
Collapse
|
40
|
Abstract
Among the human population, 15% of drug users develop a pathological drug addiction. This figure increases substantially with nicotine, whereby more than 30% of those who try smoking develop a nicotine addiction. Drug addiction is characterized by compulsive drug-seeking and drug-taking behaviors (craving), and loss of control over intake despite impairment in health, social, and occupational functions. This behavior can be accurately modeled in the rat using an intravenous self-administration (IVSA) paradigm. Initial attempts at establishing nicotine self-administration had been problematic, yet in recent times increasingly reliable models of nicotine self-administration have been developed. The present article reviews different characteristics of the nicotine IVSA model that has been developed to examine nicotine reinforcing and motivational properties in rats.
Collapse
|