1
|
Zhang Y, Liu C, Zhu Q, Wu H, Liu Z, Zeng L. Relationship Between Depression and Epigallocatechin Gallate from the Perspective of Gut Microbiota: A Systematic Review. Nutrients 2025; 17:259. [PMID: 39861389 PMCID: PMC11767295 DOI: 10.3390/nu17020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Depression, a serious mental illness, is characterized by high risk, high incidence, persistence, and tendency to relapse, posing a significant burden on global health. The connection between depression and gut microbiota is an emerging field of study in psychiatry and neuroscience. Understanding the gut-brain axis is pivotal for understanding the pathogenesis and treatment of depression. Gut microbes influence depression-like behaviors by impacting the hypothalamic-pituitary-adrenal axis (HPA), monoamine neurotransmitters, immune responses, cell signaling, and metabolic pathways. Tea, widely used in clinical practice to improve neuropsychiatric disorders, contains Epigallocatechin gallate (EGCG), a major ingredient of green tea, which effectively regulates intestinal flora. This review examined the risks and causes of depression, the complications associated with intestinal flora, their role in the development and treatment of depression, and how EGCG may alleviate depression through interactions with gut microbiota and other mechanisms.
Collapse
Affiliation(s)
- Yangbo Zhang
- School of Pharmacy, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (Q.Z.); (H.W.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Qi Zhu
- School of Pharmacy, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (Q.Z.); (H.W.)
| | - Hui Wu
- School of Pharmacy, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (Q.Z.); (H.W.)
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Li Zeng
- School of Pharmacy, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (Q.Z.); (H.W.)
| |
Collapse
|
2
|
Han Z, Wang L, Zhu H, Tu Y, He P, Li B. Uncovering the effects and mechanisms of tea and its components on depression, anxiety, and sleep disorders: A comprehensive review. Food Res Int 2024; 197:115191. [PMID: 39593401 DOI: 10.1016/j.foodres.2024.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 11/28/2024]
Abstract
Depression, anxiety and sleep disorders are prevalent psychiatric conditions worldwide, significantly impacting the physical and mental well-being of individuals. The treatment of these conditions poses various challenges, including limited efficacy and potential side effects. Tea, a globally recognized healthful beverage, contains a variety of active compounds. Studies have shown that consuming tea or ingesting its certain active ingredients have a beneficial impact on the mental health issues mentioned above. While the effects of tea on physical health are well-documented, there remains a gap in our systematic understanding of its impact on mental health. This article offers a thorough overview of animal, clinical, and epidemiological studies examining tea and its components in the treatment of depression, anxiety, and sleep disorders, and summarizes the associated molecular mechanisms. The active ingredients in tea, including L-theanine, γ-aminobutyric acid (GABA), arginine, catechins, theaflavins, caffeine, theacrine, and several volatile compounds, may help improve depression, anxiety, and sleep disorders. The underlying molecular mechanisms involve the regulation of neurotransmitters, including monoamines, GABA, and brain-derived neurotrophic factor (BDNF), as well as the suppression of oxidative stress and inflammation. Additionally, these ingredients may influence the microbiota-gut-brain (MGB) axis and the hypothalamic-pituitary-adrenal (HPA) axis. This review provides valuable insights into the effects and mechanisms by which tea and its components regulate depression, anxiety, and sleep disorders, laying the groundwork for further research into relevant mechanisms and the development of tea-based mental health products.
Collapse
Affiliation(s)
- Ziyi Han
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Leyu Wang
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Huanqing Zhu
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Youying Tu
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Puming He
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Bo Li
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
3
|
Nisha, Paramanik V. Neuroprotective Roles of Daidzein Through Extracellular Signal-Regulated Kinases Dependent Pathway In Chronic Unpredictable Mild Stress Mouse Model. Mol Neurobiol 2024:10.1007/s12035-024-04567-w. [PMID: 39495229 DOI: 10.1007/s12035-024-04567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Depression is a stress-related neuropsychiatric disorder causing behavioural, biochemical, molecular dysfunctions and cognitive impairments. Previous studies suggested connection between neuropsychiatric diseases like depression with estrogen and estrogen receptors (ER). Daidzein is a phytoestrogen that functions as mammalian estrogen and regulates gene expressions through extracellular signal-regulated kinases (ERKs) dependent pathway by activating ERβ. ERβ modulates stress responses, physiological processes by activating protein kinases and plays a significant role in various neurological diseases like depression. However, significant roles of daidzein in depression involving ERK1/2, pERK1/2, and mTOR still unknown. Herein, we examined neuroprotective role of daidzein in chronic unpredictable mild stress (CUMS) mouse model. CUMS model was prepared, and placed in six groups namely, control, CUMS, CUMS vehicle, CUMS DZ (Daidzein 1 mg/kgbw, orally), CUMS PHTPP (ERβ blocker, 0.3 mg/kgbw, i..p.) and CUMS Untreated. Supplementation of daidzein to CUMS mice exhibits decrease depressive and anxiety-like behaviour, improved motor coordination and memory. Further, immunofluorescence results showed daidzein improved ERK1/2, pERK1/2 and mTOR expressions in the cortex, hippocampus and medulla of stressed mice. SOD, catalase and acetylcholinesterase levels were also improved. Blocking of ERβ with PHTPP stressed mice showed deficits in behaviour, low expression of ERK1/2, pERK1/2 and mTOR, and no significant changes in SOD, catalase and acetylcholinesterase level. Collectively, this study suggests that daidzein may ameliorate depressive and anxiety-like behaviour through ERK downregulating pathway by activating ERβ through ERK1/2, pERK1/2 and mTOR. Such study may be useful to understand daidzein dependent neuroprotection through ERβ in depression.
Collapse
Affiliation(s)
- Nisha
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484887, MP, India
| | - Vijay Paramanik
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484887, MP, India.
| |
Collapse
|
4
|
Xia N, Wang J, Guo Q, Duan J, Wang X, Zhou P, Li J, Tang T, Li T, Li H, Wu Z, Yang M, Sun J, Guo D, Chang X, Zhang X. Deciphering the antidepressant effects of Rosa damascena essential oil mediated through the serotonergic synapse signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118007. [PMID: 38492791 DOI: 10.1016/j.jep.2024.118007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rosa damascena is an ancient plant with significance in both medicine and perfumery that have a variety of therapeutic properties, including antidepressant, anti-anxiety, and anti-stress effects. Rose damascena essential oil (REO) has been used to treat depression, anxiety and other neurological related disorders in Iranian traditional medicine. However, its precise mechanism of action remains elusive. AIM OF THE STUDY The aim of this study was to investigate the impact and mechanism underlying the influence of REO on chronic unpredictable mild stress (CUMS) rats. MATERIALS AND METHODS Gas chromatography-mass spectrometry (GC-MS) technique coupling was used to analyze of the components of REO. A CUMS rat model was replicated to assess the antidepressant effects of varying doses of REO. This assessment encompassed behavioral evaluations, biochemical index measurements, and hematoxylin-eosin staining. For a comprehensive analysis of hippocampal tissues, we employed transcriptomics and incorporated weighting coefficients by means of network pharmacology. These measures allowed us to explore differentially expressed genes and biofunctional pathways affected by REO in the context of depression treatment. Furthermore, GC-MS metabolomics was employed to assess metabolic profiles, while a joint analysis in Metscape facilitated the construction of a network elucidating the links between differentially expressed genes and metabolites, thereby elucidating potential relationships and clarifying key pathways regulated by REO. Finally, the expression of relevant proteins in the key pathways was determined through immunohistochemistry and Western blot analysis. Molecular docking was utilized to investigate the interactions between active components and key targets, thereby validating the experimental results. RESULTS REO alleviated depressive-like behavior, significantly elevated levels of the neurotransmitter 5-hydroxytryptamine (5-HT), and reduced hippocampal neuronal damage in CUMS rats. This therapeutic effect may be associated with the modulation of the serotonergic synapse signaling pathway. Furthermore, REO rectified metabolic disturbances, primarily through the regulation of amino acid metabolic pathways. Joint analysis revealed five differentially expressed genes (EEF1A1, LOC729197, ATP8A2, NDST4, and GAD2), suggesting their potential in alleviating depressive symptoms by modulating the serotonergic synapse signaling pathway and tryptophan metabolism. REO also modulated the 5-HT2A-mediated extracellular regulated protein kinases-cAMP-response element binding protein-brain-derived neurotrophic factor (ERK-CREB-BDNF) pathway. In addition, molecular docking results indicated that citronellol, geraniol and (E,E)-farnesol in REO may serve as key active ingredients responsible for its antidepressant effects. CONCLUSIONS This study is the first to report that REO can effectively alleviate CUMS-induced depression-like effects in rats. Additionally, the study offers a comprehensive understanding of its intricate antidepressant mechanism from a multi-omics and multi-level perspective. Our findings hold promise for the clinical application and further development of this essential oil.
Collapse
Affiliation(s)
- Ning Xia
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Jie Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Qiuting Guo
- Xianyang Polytechnic Institute, Xianyang, 712000, Shaanxi, China
| | - Jiawei Duan
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Xuan Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Peijie Zhou
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Jinkai Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Tiantian Tang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Taotao Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Xing Chang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China.
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China.
| |
Collapse
|
5
|
Song JG, Lee B, Kim DE, Seo BK, Oh NS, Kim SH, Kim HW. Fermented mixed grain ameliorates chronic stress-induced depression-like behavior and memory deficit. Food Sci Biotechnol 2024; 33:969-979. [PMID: 38371678 PMCID: PMC10866851 DOI: 10.1007/s10068-023-01387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 02/20/2024] Open
Abstract
Fermented mixed grain (FG) has beneficial anti-cancer, antioxidant, and anti-inflammatory effects. In this study, we investigated the effects of FG on gut inflammation, brain dysfunction, and anxiety/depression-like behavior induced by unpredictable chronic mild stress (UCMS) in mice. Mice were administered mixed grain or FG for 3 weeks and were then exposed to UCMS for 4 weeks. FG administration ameliorated stress-induced anxiety/despair-like behavior. FG administration also prevented UCMS-induced memory impairment. Additionally, the mRNA levels of 5-HTR1A and IL-6 were restored to normal levels in the brains of FG-administered mice. FG administration also inhibited intestinal damage in stressed mice compared with that in the UCMS (without FG) group. These results suggest that FG can alleviate stress-induced intestinal damage, brain dysfunction, and cognitive impairment.
Collapse
Affiliation(s)
- Jae Gwang Song
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006 Republic of Korea
| | - Bomi Lee
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006 Republic of Korea
| | - Do Eon Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006 Republic of Korea
| | - Bong Kyeong Seo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong, 30019 Republic of Korea
| | - Sae Hun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Hyung Wook Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006 Republic of Korea
| |
Collapse
|
6
|
Su Y, Qiu P, Cheng L, Zhang L, Peng W, Meng X. Catechin Protects against Lipopolysaccharide-induced Depressive-like Behaviour in Mice by Regulating Neuronal and Inflammatory Genes. Curr Gene Ther 2024; 24:292-306. [PMID: 38783529 DOI: 10.2174/0115665232261045231215054305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Many studies have suggested that tea has antidepressant effects; however, the underlying mechanism is not fully studied. As the main anti-inflammatory polyphenol in tea, catechin may contribute to the protective role of tea against depression. OBJECTIVE The objective of this study is to prove that catechin can protect against lipopolysaccharide (LPS)-induced depressive-like behaviours in mice, and then explore the underlying molecular mechanisms. METHODS Thirty-one C57BL/6J mice were categorized into the normal saline (NS) group, LPS group, catechin group, and amitriptyline group according to their treatments. Elevated Plus Maze (EPM), Tail Suspension Test (TST), and Open Field Test (OFT) were employed to assess depressive- like behaviours in mice. RNA sequencing (RNA-seq) and subsequent Bioinformatics analyses, such as differential gene analysis and functional enrichment, were performed on the four mouse groups. RESULTS In TST, the mice in the LPS group exhibited significantly longer immobility time than those in the other three groups, while the immobility times for the other three groups were not significantly different. Similarly in EPM, LPS-treated mice exhibited a significantly lower percentage in the time/path of entering open arms than the mice in the other three groups, while the percentages of the mice in the other three groups were not significantly different. In OFT, LPS-treated mice exhibited significantly lower percentages in the time/path of entering the centre area than those in the other three groups. The results suggested that the LPS-induced depression models were established successfully and catechin can reverse (LPS)-induced depressive-like behaviours in mice. Finally, RNA-seq analyses revealed 57 differential expressed genes (DEGs) between LPS and NS with 19 up-regulated and 38 down-regulated. Among them, 13 genes were overlapped with the DEGs between LPS and cetechin (in opposite directions), with an overlapping p-value < 0.001. The 13 genes included Rnu7, Lcn2, C4b, Saa3, Pglyrp1, Gpx3, Lyz2, S100a8, S100a9, Tmem254b, Gm14288, Hbb-bt, and Tmem254c, which might play key roles in the protection of catechin against LPS-induced depressive-like behaviours in mice. The 13 genes were significantly enriched in defense response and inflammatory response, indicating that catechin might work through counteracting changes in the immune system induced by LPS. CONCLUSION Catechin can protect mice from LPS-induced depressive-like behaviours through affecting inflammatory pathways and neuron-associated gene ontologies.
Collapse
Affiliation(s)
- Yanfang Su
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Qiu
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Cheng
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijing Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenpeng Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianfang Meng
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
7
|
Yao C, Zhang Y, Sun X, Pei H, Wei S, Wang M, Chang Q, Liu X, Jiang N. Areca catechu L. ameliorates chronic unpredictable mild stress-induced depression behavior in rats by the promotion of the BDNF signaling pathway. Biomed Pharmacother 2023; 164:114459. [PMID: 37245336 DOI: 10.1016/j.biopha.2023.114459] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 05/30/2023] Open
Abstract
OBJECTIVES In this study, we have investigated the anti-depressant effects of the fruit Areca catechu L. (ACL) and elucidated its potential underlying mechanism using a rat model of chronic unpredictable mild stress (CUMS). METHODS CUMS was induced in rats to establish a depression animal model for 28 days. According to the baseline sucrose preference, the male rats were divided into 6 different groups. They were treated with paroxetine hydrochloride, ACL, and water once a day until the behavioral tests were performed. The levels of corticosterone (CORT), malondialdehyde (MDA), catalase (CAT), and total superoxide dismutase (T-SOD) in serum were detected using a commercial kit, and the concentrations of 5-hydroxytryptamine (5-HT) and dopamine (DA) monoamine neurotransmitters in the brain tissues were detected by liquid chromatography-tandem mass spectrometry. doublecortin (DCX) expression in the hippocampal dentate gyrus (DG) was determined by immunofluorescence, and the relative abundance of brain-derived neurotrophic factor (BDNF), TrkB, PI3K, p-AKT/AKT, PSD-95, and p-GSK-3β/GSK-3β of brain tissues were assayed by western blot. RESULTS ACL markedly increased sucrose preference, decreased the immobility time, and shortened the feeding latency of CUMS-induced rats. CUMS induction resulted in marked changes in the contents of the monoamine neurotransmitters (5-HT and DA) in the hippocampus and cortex of brain tissues and the levels of CORT, MDA, CAT, and T-SOD in serum, whereas ACL administration alleviated these considerable changes. ACL promoted DCX expression in DG and increased the protein levels of BDNF, TrkB, PI3K, p-AKT/AKT, PSD-95, and p-GSK-3β/GSK-3β in the brains of CUMS-induced rats. CONCLUSIONS Our results indicated that ACL may improve depression-like behaviors in CUMS-induced rats by decreasing the hyperfunction and oxidative stress of the hypothalamic-pituitary-adrenal axis, stimulating hippocampal neurogenesis, and activating the BDNF signaling pathway.
Collapse
Affiliation(s)
- Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinran Sun
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyue Pei
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Wei
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengdi Wang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Chang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinmin Liu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China.
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Winiarska-Mieczan A, Kwiecień M, Jachimowicz-Rogowska K, Donaldson J, Tomaszewska E, Baranowska-Wójcik E. Anti-Inflammatory, Antioxidant, and Neuroprotective Effects of Polyphenols-Polyphenols as an Element of Diet Therapy in Depressive Disorders. Int J Mol Sci 2023; 24:ijms24032258. [PMID: 36768580 PMCID: PMC9916817 DOI: 10.3390/ijms24032258] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Depressive disorders can affect up to 350 million people worldwide, and in developed countries, the percentage of patients with depressive disorders may be as high as 10%. During depression, activation of pro-inflammatory pathways, mitochondrial dysfunction, increased markers of oxidative stress, and a reduction in the antioxidant effectiveness of the body are observed. It is estimated that approximately 30% of depressed patients do not respond to traditional pharmacological treatments. However, more and more attention is being paid to the influence of active ingredients in food on the course and risk of neurological disorders, including depression. The possibility of using foods containing polyphenols as an element of diet therapy in depression was analyzed in the review. The possibility of whether the consumption of products such as polyphenols could alleviate the course of depression or prevent the progression of it was also considered. Results from preclinical studies demonstrate the potential of phenolic compounds have the potential to reduce depressive behaviors by regulating factors related to oxidative stress, neuroinflammation, and modulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
- Correspondence: ; Tel.: +48-81-445-67-44
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland
| |
Collapse
|
9
|
Manosso LM, Arent CO, Borba LA, Abelaira HM, Réus GZ. Natural Phytochemicals for the Treatment of Major Depressive Disorder: A Mini-Review of Pre- and Clinical Studies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:237-254. [PMID: 35352639 DOI: 10.2174/1570159x20666220329143804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022]
Abstract
Major Depressive Disorder (MDD) is a common mental illness that causes significant disability and declining quality of life. An overlap of multiple factors can be involved in the pathophysiology of this mood disorder, including increased inflammation and oxidative stress, change in neurotransmitters, decreased brain-derived neurotrophic factor (BDNF), activation of the hypothalamicpituitary- adrenal (HPA) axis, and changes in the microbiota-gut-brain axis. Although the classic treatment for MDD is safe, it is far from ideal, with delay to start the best clinic, side effects, and a large number of non-responses or partial-responses. Therefore, other alternatives are being studied to improve depressive symptoms, and, among them, the role of phytochemicals in food stands out. This mini-review will discuss the main phytochemicals present in foods with clinical and preclinical studies showing benefits for MDD treatment. In addition, the main mechanisms of action that are being proposed for each of these compounds will be addressed.
Collapse
Affiliation(s)
- Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Camila O Arent
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Laura A Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Helena M Abelaira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
10
|
Schneider Cezarotto V, Mota Ferreira L, Pizzi Dal'Pupo R, Dos Santos A, Freitas Santos K, Blanco Linares CE, Stein AC, Marcondes Sari MH, Cruz L. Hydroalcoholic Extract of Rabbiteye Blueberry (Vaccinium ashei) Leaves Mitigates Unpredictable Chronic Mild Stress Model Inducing Depressive-Like Behavior in Rats. Chem Biodivers 2023; 20:e202200514. [PMID: 36512710 DOI: 10.1002/cbdv.202200514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Several studies reported that rabbiteye blueberry (Vaccinium ashei Reade) leaves present promising biological properties. To the best of our knowledge, no study investigated the possible application of their hydroalcoholic extract for treating mood disorders. Herein, we evaluated if the hydroalcoholic extract of rabbiteye blueberry (Vaccinium ashei Reade) leaves (HEV) promotes an antidepressant-like effect in rodents using chronic experimental approaches. The effect of repeated administration of HEV (50 mg/kg, p.o.) on the immobility time was assessed in the forced swimming test (FST) in an unpredictable chronic mild stress (UCMS) model. Repeated treatment with HEV reversed the depressive-like behavior induced by UCMS by reducing the immobility time. Besides, the exposure to HEV caused no changes in relative organ weights in rats submitted to UCMS. The results indicated that HEV administration presented antidepressant-like action devoid of toxic effects. Thus, it is possible to suggest its potential as a safe and accessible therapeutic tool in the management of depression and other related mood disorders.
Collapse
Affiliation(s)
- Verciane Schneider Cezarotto
- Departamento de Farmácia Industrial, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil.,Departamento de Ciências da Saúde, Curso de Farmácia, Universidade Regional Integrada do Alto Uruguai e das Missões, Frederico Westphalen, RS 98400-000, Brazil
| | - Luana Mota Ferreira
- Departamento de Farmácia Industrial, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil.,Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR 80210-170, Brazil
| | - Rafaela Pizzi Dal'Pupo
- Departamento de Ciências da Saúde, Curso de Farmácia, Universidade Regional Integrada do Alto Uruguai e das Missões, Frederico Westphalen, RS 98400-000, Brazil
| | - Adriel Dos Santos
- Departamento de Ciências da Saúde, Curso de Farmácia, Universidade Regional Integrada do Alto Uruguai e das Missões, Frederico Westphalen, RS 98400-000, Brazil
| | - Karen Freitas Santos
- Departamento de Ciências da Saúde, Curso de Farmácia, Universidade Regional Integrada do Alto Uruguai e das Missões, Frederico Westphalen, RS 98400-000, Brazil
| | - Carlos Eduardo Blanco Linares
- Departamento de Ciências da Saúde, Curso de Farmácia, Universidade Regional Integrada do Alto Uruguai e das Missões, Frederico Westphalen, RS 98400-000, Brazil
| | - Ana Cristina Stein
- Departamento de Ciências da Saúde, Curso de Farmácia, Universidade Regional Integrada do Alto Uruguai e das Missões, Frederico Westphalen, RS 98400-000, Brazil
| | - Marcel Henrique Marcondes Sari
- Departamento de Farmácia Industrial, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Letícia Cruz
- Departamento de Farmácia Industrial, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
11
|
Georgieva A, Todorova M, Eftimov M, Kuzmanov K, Valcheva-Kuzmanova S. Behavioral effects of Aronia melanocarpa fruit juice in a rat model of ovariectomy-induced estrogen deficit. Folia Med (Plovdiv) 2022; 64:975-981. [PMID: 36876552 DOI: 10.3897/folmed.64.e68824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/22/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION The ovariectomized rat is a model used to mimic the changes in female organism during menopause. Aroniamelanocarpa fruit juice (AMFJ) is extremely rich in phenolic substances (procyanidins, flavonoids and phenolic acids).
Collapse
Affiliation(s)
| | - Milena Todorova
- Medical University Prof. Dr. Paraskev Stoyanov, Varna, Bulgaria
| | | | | | | |
Collapse
|
12
|
A comprehensive review on bioavailability, safety and antidepressant potential of natural bioactive components from tea. Food Res Int 2022; 158:111540. [DOI: 10.1016/j.foodres.2022.111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
|
13
|
Gawande D, Barewar S, Taksande J, Umekar M, Ghule B, Taksande B, Kotagale N. Achyranthes aspera ameliorates stress induced depression in mice by regulating neuroinflammatory cytokines. J Tradit Complement Med 2022; 12:545-555. [PMID: 36325246 PMCID: PMC9618396 DOI: 10.1016/j.jtcme.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Background and aim Achyranthes aspera Linn. (A. aspera) (family: Amaranthaceae) is highly recognized in ethnomedicine and traditional systems of Indian medicine as a nervine restorative for several psychiatric disorders. Study presented here was designed to appraise the antidepressant-like effects of A. aspera in murine model of chronic unpredictable mild stress (CUMS) induced depression. Experimental procedures- Rodents were exposed to different stressor in unpredictive manner during CUMS protocol once a day for 4 weeks. Mice were intraperitoneally injected with A. aspera extract (2.5, 5 and 10 mg/kg) or fluoxetine (10 mg/kg) or betaine (20 mg/kg) once daily during day 15–28 of the CUMS protocol. Sucrose preference, motivation and self-care, immobility latency and plasma corticosterone were evaluated after 24 h of last stressor. After behavioral assessments TNF-α, Il-6 and BDNF immunocontent was determined in hippocampus and prefrontal cortex. Results and conclusion A. aspera extract as well as betaine improved sucrose preference, increased grooming frequency and latency in splash test and ameliorated depression-like condition in CUMS mice in Porsolt test. A. aspera treatment decreased the elevated plasma corticosterone and reversed the effect of CUMS on TNF-α, Il-6 and BDNF immunocontent in mice. The results of the present study suggest A. aspera as a promising indigenous medicine for stress associated neurobehavioral and comorbid complications. Achyranthes aspera is a recognized medicine for psychiatric disorders. A. aspera improved sucrose preference, increased grooming frequency and latency in splash test in CUMS mice. A. aspera ameliorated depression-like condition in CUMS mice. A. aspera treatment decreased the elevated plasma corticosterone and reversed the effect of CUMS on TNF-α, Il-6 and BDNF immunocontent in mice. Results suggest A. aspera as a medicine for stress associated neurobehavioral and comorbid complications.
Collapse
|
14
|
Xu L, Ho CT, Liu Y, Wu Z, Zhang X. Potential Application of Tea Polyphenols to the Prevention of COVID-19 Infection: Based on the Gut-Lung Axis. Front Nutr 2022; 9:899842. [PMID: 35495940 PMCID: PMC9046984 DOI: 10.3389/fnut.2022.899842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) disrupts the intestinal micro-ecological balance, and patients often develop the intestinal disease. The gut is the largest immune organ in the human body; intestinal microbes can affect the immune function of the lungs through the gut-lung axis. It has been reported that tea polyphenols (TPs) have antiviral and prebiotic activity. In this review, we discussed TPs reduced lung-related diseases through gut-lung axis by inhibiting dysbiosis. In addition, we also highlighted the preventive and therapeutic effects of TPs on COVID-19 complications, further demonstrating the importance of research on TPs for the prevention and treatment of COVID-19 in humans. Based on this understanding, we recommend using TPs to regulate the gut microbiota to prevent or alleviate COVID-19 through the gut-lung axis.
Collapse
Affiliation(s)
- Lei Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States
- *Correspondence: Chi-Tang Ho
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- Xin Zhang
| |
Collapse
|
15
|
Hong M, Cheng L, Liu Y, Wu Z, Zhang P, Zhang X. Mechanisms Underlying the Interaction Between Chronic Neurological Disorders and Microbial Metabolites via Tea Polyphenols Therapeutics. Front Microbiol 2022; 13:823902. [PMID: 35401435 PMCID: PMC8991060 DOI: 10.3389/fmicb.2022.823902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
The number of hydroxyl groups and existence of characteristic structural groups in tea polyphenols (TP) make them have antioxidant activity, which gives TP anti-inflammatory effects, toward protecting the intestinal flora and brain neurons. Host-associated microbial metabolites are emerging as dominant modifiers of the central nervous system. As yet, the investigations on host-microbiota crosstalking remain challenging, studies focusing on metabolites such as serotonin, short-chain fatty acids, and others have pinpointed multiple actionable signaling pathways relevant to host health. However, there are still complexities and apparent limitations inherent in transforming complex human diseases to corresponding animal models. Here, we choose to discuss several intestinal metabolites with research value, as crucial areas for assessing TP-mediated chronic brain diseases interactions with microbial.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Álvarez SA, Rocha-Guzmán NE, González-Laredo RF, Gallegos-Infante JA, Moreno-Jiménez MR, Bravo-Muñoz M. Ancestral Food Sources Rich in Polyphenols, Their Metabolism, and the Potential Influence of Gut Microbiota in the Management of Depression and Anxiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:944-956. [PMID: 35041424 DOI: 10.1021/acs.jafc.1c06151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The relationship between a population's diet and the risk of suffering from mental disorders has gained importance in recent years, becoming exacerbated due to the COVID-19 lockdown. This review concentrates relevant literature from Scopus, PubMed, and Google Scholar analyzed with the aim of rescuing knowledge that promotes mental health. In this context, it is important to highlight those flowers, seeds, herbaceous plants, fungi, leaves, and tree barks, among other ancestral matrices, that have been historically part of the eating habits of human beings and have also been a consequence of the adaptation of collectors, consuming the ethnoflora present in different ecosystems. Likewise, it is important to note that this knowledge has been progressively lost in the new generations. Therefore, this review concentrates an important number of matrices used particularly for food and medicinal purposes, recognized for their anxiolytic and antidepressant effects, establishing the importance of metabolism and biotransformation mainly of bioactive compounds such as polyphenols by the action of the gut microbiota.
Collapse
Affiliation(s)
- Saúl Alberto Álvarez
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Durango, México
| | - Nuria Elizabeth Rocha-Guzmán
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Durango, México
| | - Rubén Francisco González-Laredo
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Durango, México
| | - José Alberto Gallegos-Infante
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Durango, México
| | - Martha Rocío Moreno-Jiménez
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Durango, México
| | - Marely Bravo-Muñoz
- Instituo Nacional de Neurociencias y Salud Mental, INNSAM, 21831 Chiapas, México
| |
Collapse
|
17
|
Zhao S, Rong C, Gao Y, Wu L, Luo X, Song S, Liu Y, Wong JH, Wang H, Yi L, Ng T. Antidepressant-like effect of Ganoderma lucidum spore polysaccharide-peptide mediated by upregulation of prefrontal cortex brain-derived neurotrophic factor. Appl Microbiol Biotechnol 2021; 105:8675-8688. [PMID: 34716786 DOI: 10.1007/s00253-021-11634-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
A 28-kDa polysaccharide-peptide (PGL) with antidepressant-like activities was isolated from spores of the mushroom Ganoderma lucidum. It was unadsorbed on DEAE-cellulose. Its internal amino acid sequences manifested pronounced similarity with proteins from the mushrooms Lentinula edodes and Agaricus bisporus. The monosaccharides present in 28-kDa PGL comprised predominantly of glucose (over 90%) and much fewer galactose, mannose residues, and other residues. PGL manifested antidepressant-like activities as follows. It enhanced viability and DNA content in corticosterone-injured PC12 cells(a cell line derived from a pheochromocytoma of the rat adrenal medulla with an embryonic origin from the neural crest containing a mixture of neuroblastic cells and eosinophilic cells) and reduced LDH release. A single acute PGL treatment shortened the duration of immobility of mice in both tail suspension and forced swimming tests. PGL treatment enhanced sucrose preference and shortened the duration of immobility in mice exposed to chronic unpredictable mild stress (CUMS). Chronic PGL treatment reversed the decline in mouse brain serotonin and norepinephrine levels but did not affect dopamine levels. PGL decreased serum corticosterone levels and increased BDNF mRNA and protein levels and increased synapsin I and PSD95 levels in the prefrontal cortex. This effect was completely blocked by pretreatment with the BDNF antagonist K252a, indicating that PGL increased synaptic proteins in a BDNF-dependent manner.Key points• An antidepressive polysaccharide-peptide PGL was isolated from G. lucidum spores.• PGL protected PC12 nerve cells from the toxicity of corticosterone.• PGL upregulated BDNF expression and influenced key factors in the prefrontal cortex.
Collapse
Affiliation(s)
- Shuang Zhao
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chengbo Rong
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yi Gao
- Beijing Xicheng District Health Care Center for Mothers and Children, Beijing, 100053, China
| | - Linfeng Wu
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoheng Luo
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuang Song
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yu Liu
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, New Territories, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, 100193, China.
| | - Litao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Fujian Province, 361021, Xiamen, China.
| | - Tzibun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, New Territories, China.
| |
Collapse
|
18
|
Moragrega I, Ríos JL. Medicinal Plants in the Treatment of Depression: Evidence from Preclinical Studies. PLANTA MEDICA 2021; 87:656-685. [PMID: 33434941 DOI: 10.1055/a-1338-1011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Medicinal plants and their extracts are natural remedies with enormous potential for treating various diseases, including depression and anxiety. In the case of depression, hundreds of plants have traditionally been used in folk medicine for generations. Different plant extracts and natural products have been analyzed as potential antidepressant agents with validated models to test for antidepressant-like effects in animals, although other complementary studies have also been employed. Most of these studies focus on the possible mediators implicated in these potential effects, with dopamine, serotonin, and noradrenaline being the principal neurotransmitters implicated, both through interference with receptors and with their metabolism by monoamino oxidases, as well as through neuro-endocrine and neuroprotective effects. There are approximately 650 reports of antidepressant-like medicinal plants in PubMed; 155 of them have been compiled in this review, with a relevant group yielding positive results. Saffron and turmeric are the most relevant species studied in both preclinical and clinical studies; St. John's wort or kava have also been tested extensively. To the best of our knowledge, no review to date has provided a comprehensive understanding of the biomolecular mechanisms of action of these herbs or of whether their potential effects could have real benefits. The purpose of this narrative review is to provide an update regarding medicinal plants from the year 2000 to the present to examine the therapeutic potential of these antidepressant-like plants in order to contribute to the development of new therapeutic methods to alleviate the tremendous burden that depression causes worldwide.
Collapse
Affiliation(s)
- Inés Moragrega
- Departament de Psicobiologia, Facultat de Psicologia, Universitat de València
| | - José Luis Ríos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València
| |
Collapse
|
19
|
Sun Q, Cheng L, Zhang X, Wu Z, Weng P. The interaction between tea polyphenols and host intestinal microorganisms: an effective way to prevent psychiatric disorders. Food Funct 2021; 12:952-962. [PMID: 33439201 DOI: 10.1039/d0fo02791j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tea polyphenols (TP) are the most bioactive components in tea extracts. It has been reported that TP can regulate the composition and the function of the intestinal flora. Meanwhile, intestinal microorganisms improve the bioavailability of TP, and the corresponding metabolites of TP can regulate intestinal micro-ecology and promote human health more effectively. The dysfunction of the microbiota-gut-brain axis is the main pathological basis of depression, and its abnormality may be the direct cause and potential influencing factor of psychiatric disorders. The interrelationship between TP and intestinal microorganisms is discussed in this review, which will enable us to better evaluate the potential preventive effects of TP on psychiatric disorders by modulating host intestinal microorganisms.
Collapse
Affiliation(s)
- Qiaoyu Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| |
Collapse
|
20
|
Methiwala HN, Vaidya B, Addanki VK, Bishnoi M, Sharma SS, Kondepudi KK. Gut microbiota in mental health and depression: role of pre/pro/synbiotics in their modulation. Food Funct 2021; 12:4284-4314. [PMID: 33955443 DOI: 10.1039/d0fo02855j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microbiome residing in the human gut performs a wide range of biological functions. Recently, it has been elucidated that a change in dietary habits is associated with alteration in the gut microflora which results in increased health risks and vulnerability towards various diseases. Falling in line with the same concept, depression has also been shown to increase its prevalence around the globe, especially in the western world. Various research studies have suggested that changes in the gut microbiome profile further result in decreased tolerance of stress. Although currently available medications help in relieving the symptoms of depressive disorders briefly, these drugs are not able to completely reverse the multifactorial pathology of depression. The discovery of the communication pathway between gut microbes and the brain, i.e. the Gut-Brain Axis, has led to new areas of research to find more effective and safer alternatives to current antidepressants. The use of probiotics and prebiotics has been suggested as being effective in various preclinical studies and clinical trials for depression. Therefore, in the present review, we address the new antidepressant mechanisms via gut microbe alterations and provide insight into how these can provide an alternative to antidepressant therapy without the side effects and risk of adverse drug reactions.
Collapse
Affiliation(s)
- Hasnain N Methiwala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India.
| | | | | | | | | | | |
Collapse
|
21
|
Bakhtiari-Dovvombaygi H, Izadi S, Zare Moghaddam M, Hashemzehi M, Hosseini M, Azhdari-Zarmehri H, Dinpanah H, Beheshti F. Beneficial effects of vitamin D on anxiety and depression-like behaviors induced by unpredictable chronic mild stress by suppression of brain oxidative stress and neuroinflammation in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:655-667. [PMID: 33106919 DOI: 10.1007/s00210-020-02002-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
The objective of this study was to investigate the protective effects of vitamin D (Vit D) on anxiety and depression-like behaviors induced by unpredictable chronic mild stress and brain tissue oxidative damage criteria and neuroinflammation in rats. The rats were treated as follows: (1) control, (2) UCMS, (3-5) Vit D 100, 1000, and 10,000 iu + UCMS. Rats were subjected to UCMS for a total of 4 weeks. During week 4, they received seven training trials. The brains were then collected to examine inflammation and oxidative stress criteria. Pretreatment with Vit D enhanced performances of the rats in the elevated plus maze (EPM) and open field (OF) and forced swimming test (FST). UCMS also increased MDA and interleukin-6 (IL-6) levels while decreased CAT, SOD, and thiol. Vit D reversed the effects of UCMS. The results of the current research revealed that Vit D improved UCMS-induced anxiety and depression via decreasing brain oxidative stress and inhibiting neuroinflammation.
Collapse
Affiliation(s)
| | - Saeed Izadi
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mostafa Zare Moghaddam
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Azhdari-Zarmehri
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hossein Dinpanah
- Department of Emergency Medicine, 9-Day Hospital, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
- Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
22
|
Xiao S, Huang J, Huang Y, Lai H, Zheng Y, Liang D, Xiao H, Zhang X. Flavor Characteristics of Ganpu Tea Formed During the Sun-Drying Processing and Its Antidepressant-Like Effects. Front Nutr 2021; 8:647537. [PMID: 33869264 PMCID: PMC8044837 DOI: 10.3389/fnut.2021.647537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/01/2021] [Indexed: 01/02/2023] Open
Abstract
Ganpu tea is a novel type of tea beverage with unique and pleasant flavor that encases Pu-erh tea leaves within an intact mandarin peel. However, to date, no holistic and detail studies on its chemical composition and biological activities have been reported yet. In the present study, by applying UPLC-Q-TOF and UPLC-MS technology, we systematically identified and analyzed 104 water-soluble compounds of Ganpu tea and their variation trend during the sun-drying processing. The results showed that the generation of pigments and gallic acid coincided with a dramatic decrease in catechin content, and a significant increase in alkaloid and flavonoid contents. The conversion of these compounds can contribute to the improvement of sensory attributes of Ganpu tea and maybe indispensable to its unique flavor. Moreover, the mice given orally with high dose of Ganpu tea (0.4 g/kg) showed a significantly reduced immobility duration as compared to that of the negative control group (p < 0.01) both in the forced swimming test and tail suspension test. Together, these results indicate that the sun-drying processing was indispensable to the formation of the unique flavor for Ganpu tea. Multiple types of compounds of Ganpu tea may collectively provide the synergistic attributes to its antidepressant-like properties.
Collapse
Affiliation(s)
- Sui Xiao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jingyuan Huang
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yahui Huang
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Huiqing Lai
- Yunding Ganpu Tea Industry Co., LTD, Guangzhou, China
| | - Yi Zheng
- Yunding Ganpu Tea Industry Co., LTD, Guangzhou, China
| | - Dahua Liang
- Yunding Ganpu Tea Industry Co., LTD, Guangzhou, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Xu Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Manshadi Seyed Ali D, Seyed Alireza M, Mohammad Reza S, Jayran Z, SeyedAhmad S, Shams Ali R, Seyed Saeid M, Ali AA. Effect of green tea consumption in treatment of mild to moderate depression in Iranian patients living with HIV: A double-blind randomized clinical trial. CHINESE HERBAL MEDICINES 2021; 13:136-141. [PMID: 36117757 PMCID: PMC9476475 DOI: 10.1016/j.chmed.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Dehghan Manshadi Seyed Ali
- Department of Infectious Diseases and Tropical Medicine, Imam-Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Tehran 11519, Iran
| | - Mousavi Seyed Alireza
- Department of Infectious Diseases and Tropical Medicine, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd 11519, Iran
| | - Salehi Mohammad Reza
- Department of Infectious Diseases and Tropical Medicine, Imam-Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Tehran 11519, Iran
| | - Zebardast Jayran
- Cognitive Neuroscience Linguistics, Institute for Cognitive Science Studies (ICSS), Tehran 11519, Iran
| | - SeyedAlinaghi SeyedAhmad
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran 11519, Iran
| | - Rezazade Shams Ali
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 11519, Iran
| | - Mirhoseinian Seyed Saeid
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 11519, Iran
| | - Asadollahi-Amin Ali
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran 11519, Iran
- Corresponding author.
| |
Collapse
|
24
|
Abstract
Polyphenols constitute a diverse array of naturally occurring secondary metabolites found in plants which, when consumed, have been shown to promote human health. Greater consumption may therefore aid in the fight against diseases such as obesity, diabetes, heart disease, cancer, etc. Tree bark is polyphenol-rich and has potential to be used in food supplements. However, it is important to gain insight into the polyphenol profile of different barks to select the material with greatest concentration and diversity. Ultra-performance liquid chromatography (UPLC) was coupled with an ion mobility time-of-flight high-definition/high-resolution mass spectrometer (UPLC-HDMSE) to profile ethanol extracts of three common tree barks (Pinus contorta, Pinus sylvestris, Quercus robur) alongside a commercial reference (Pycnogenol® extracted from Pinus pinaster). Through the use of Progenesis QI informatics software, 35 high scoring components with reported significance to health were tentatively identified across the three bark extracts following broadly the profile of Pycnogenol®. Scots Pine had generally higher compound abundances than in the other two extracts. Oak bark extract showed the lowest abundances but exhibited higher amounts of naringenin and 3-O-methylrosmarinic acid. We conclude that forestry bark waste provides a rich source of extractable polyphenols suitable for use in food supplements and so can valorise this forestry waste stream.
Collapse
|
25
|
Lu Z, Zhang T, Yang J, Wang J, Shen J, Wang X, Xiao Z, Niu Y, Liu G, Zhang X. Effect of mesoporous silica nanoparticles-based nano-fragrance on the central nervous system. Eng Life Sci 2020; 20:535-540. [PMID: 33204240 PMCID: PMC7645641 DOI: 10.1002/elsc.202000015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/03/2020] [Accepted: 04/15/2020] [Indexed: 12/04/2022] Open
Abstract
Fragrances are widely used in our daily lives and can make us feel happy. However, traditional aromatic products release fragrance quickly and have a strong aroma. This not only worsens our scenting experience, but also severely shortens the useful life of fragrance products. In this study, nano-fragrances based on mesoporous silica nanoparticles with great encapsulation efficiency and slow-release function were designed and prepared. In addition, this nano-fragrances are applied to wallpapers. Open field tests showed that this nano-fragrance had significant stress relief and anti-depressant effects.
Collapse
Affiliation(s)
- Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Tianlu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Jianze Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Xiangyu Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Zuobing Xiao
- Shanghai Research Institute of Fragrance and Flavor IndustryShanghaiP. R. China
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Yunwei Niu
- Shanghai Research Institute of Fragrance and Flavor IndustryShanghaiP. R. China
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Guiying Liu
- Department of PediatricsCapital Medical University Affiliated Beijing Anzhen HospitalBeijingP. R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
26
|
Jiao-Tai-Wan Ameliorates Depressive-Like Behavior through the A 1R Pathway in Ovariectomized Mice after Unpredictable Chronic Stress. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1507561. [PMID: 33015153 PMCID: PMC7519999 DOI: 10.1155/2020/1507561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 11/17/2022]
Abstract
Objective This study was aimed at observing the effect Jiao-Tai-Wan in menopausal depression. Methods In this paper, we used ovariectomized mice subjected to chronic unpredictable stress as a menopausal depression model. After the chronic stress, mice were administrated with JTW (3.3 and 6.6mg/kg) and imipramine (10 mg/kg) for 14 days. On the 14th day, mice were subjected to the behavior test like the forced swim test, tail suspension test, and locomotor activity or were sacrificed to assess the protein changes in different brain regions. Results The administration of JTW at doses of 3.3 and 6.6mg/kg (p.o.) significantly shortened the duration of immobility in forced swim and tail suspension tests. There was no obvious difference in locomotor activity among all the groups. The western blot analysis data indicated that treatment with JTW (3.3 and 6.6 mg/kg, p.o.) prominently increased the A1R protein and the downstream protein ERK1/2 levels in the prefrontal cortex and hippocampus. However, the administration of JTW did not influence c-Fos protein in either the prefrontal cortex or hippocampus. Conclusion Our findings suggest that JTW plays a vital role in ameliorating menopausal depression symptoms in the A1R-ERK1/2 pathway in the prefrontal cortex and hippocampus.
Collapse
|
27
|
Kaur A, Chopra K, Kaur IP, Rishi P. Salmonella Strain Specificity Determines Post-typhoid Central Nervous System Complications: Intervention by Lactiplantibacillus plantarum at Gut-Brain Axis. Front Microbiol 2020; 11:1568. [PMID: 32793135 PMCID: PMC7393228 DOI: 10.3389/fmicb.2020.01568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Neurological complications occurring due to Salmonella infection in some typhoid patients remain a relatively unexplored serious complication. This study firstly aimed to explore whether disseminative ability of Salmonella from gut to brain is strain specific or not and on the basis of bacterial load, histopathology, and behavioral changes, it was observed that Salmonella enterica serovar Typhimurium NCTC 74 did not cause brain infection in murine model in contrast to Salmonella Typhimurium SL1344. Simultaneously, alarming escalation in antimicrobial resistance, making the existing antibiotics treatment inefficacious, prompted us to evaluate other bio-compatible strategies as a potential treatment option. In this context, the role of gut microbiota in influencing behavior, brain neurochemistry, and physiology by modulating key molecules associated with gut-brain axis has captured the interest of the scientific community. Followed by in vitro screening of potential probiotic strains for beneficial attributes, efficacy of the selected strain was systematically evaluated at various levels of gut-brain axis against Salmonella induced brain infection. Analysis of behavioral (depression, anxiety, and locomotor), neurochemical [gamma amino butyric acid and acetylcholinesterase (AChE)], neuropathological (brain and intestinal histology; bacterial burden), and immunohistochemical studies (tight junction proteins expression) revealed its role in preventing serious manifestations and proving its potential as "psychobiotic." To the best of our knowledge, this is the first report elaborating strain specificity of Salmonella in causing post-typhoidal neurological manifestations and simultaneous use of probiotic in managing the same by influencing the pathophysiology at gut-brain axis.
Collapse
Affiliation(s)
- Amrita Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
28
|
Sartori DP, Oliveira NF, Valentim JT, Silva DMA, Mallman ASV, Oliveira ICM, Chaves RC, Capibaribe VC, Carvalho AMR, Rebouças MO, Macedo DS, Chaves Filho AJM, Fonteles MMF, Gutierrez SJC, Barbosa-Filho JM, Mottin M, Andrade CH, Sousa FCF. Involvement of monoaminergic targets in the antidepressant- and anxiolytic-like effects of the synthetic alkamide riparin IV: Elucidation of further mechanisms through pharmacological, neurochemistry and computational approaches. Behav Brain Res 2020; 383:112487. [PMID: 31987932 DOI: 10.1016/j.bbr.2020.112487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 01/16/2023]
Abstract
Despite recent advances, current antidepressants have considerable limitations: late onset of action and the high profile of refractoriness. Biomedical research with natural products has gained growing interest in the last years, and had provide useful candidates for new antidepressants. Riparins are a group of natural alkamides obtained from Aniba riparia, which had marked neuroactive effects, mainly as antidepressant and antinociceptive agents. We made modifications of the basic structure of riparins, originating a synthetic alkamide, also known as riparin IV (RipIV). RipIV demonstrated a superior analgesic effect than its congeners and a marked antidepressant-like effect. However, the basic mechanism for the central effects of RipIV remains unknown. Here, we aimed to investigate the participation of monoaminergic neurotransmission targets in the antidepressant-like effects of RipIV. To do this, we applied a combined approach of experimental (classical pharmacology and neurochemistry) and computer-aided techniques. Our results demonstrated that RipIV presented antidepressant- and anxiolytic-like effects without modifying locomotion and motor coordination of mice. Also, RipIV increased brain monoamines and their metabolite levels. At the higher dose (100 mg/kg), RipIV increased serotonin concentrations in all studied brain areas, while at the lower one (50 mg/kg), it increased mainly dopamine and noradrenaline levels. When tested with selective receptor antagonists, RipIV antidepressant effect showed dependence of the activation of multiple targets, including D1 and D2 dopamine receptors, 5-HT2A/2, 5-HT3 receptors and α2 adrenergic receptors. Molecular docking demonstrated favorable binding conformation and affinity of RipIV to monoamine oxidase B (MAO-B), serotonin transporter (SERT), α1 receptor, D2 receptor, dopamine transporter (DAT) and at some extent GABA-A receptor. RipIV also presented a computationally predicted favorable pharmacokinetic profile. Therefore, this study demonstrated the involvement of monoaminergic targets in the mechanism of RipIV antidepressant-like action, and provide evidence of it as a promising new antidepressant.
Collapse
Affiliation(s)
- Danusio Pinheiro Sartori
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - N F Oliveira
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Tiago Valentim
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - D M A Silva
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - A S V Mallman
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - I C M Oliveira
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - R C Chaves
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - V C Capibaribe
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - A M R Carvalho
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - M O Rebouças
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Danielle Silveira Macedo
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Adriano José Maia Chaves Filho
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; LabMol - Laboratory of Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiais, Brazil
| | - M M F Fonteles
- Department of Pharmacy, Faculty of Pharmacy, Odontology and Nursing, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - S J C Gutierrez
- Laboratory Chemistry of Bioactive Natural and Synthetic Products, Federal University of Piauí, Teresina, Piauí, Brazil
| | - José Maria Barbosa-Filho
- Pharmaceutical Technology Laboratory, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Melina Mottin
- LabMol - Laboratory of Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiais, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory of Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiais, Brazil
| | - F C F Sousa
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
29
|
Sun Y, Geng W, Pan Y, Wang J, Xiao P, Wang Y. Supplementation with Lactobacillus kefiranofaciens ZW3 from Tibetan Kefir improves depression-like behavior in stressed mice by modulating the gut microbiota. Food Funct 2019; 10:925-937. [PMID: 30698577 DOI: 10.1039/c8fo02096e] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increasing evidence indicates that probiotics can effectively improve depression-like behavior. However, the underlying mechanism is still unclear. In this study, the antidepressant effect of Lactobacillus kefiranofaciens CGMCC2809 (ZW3) isolated from Tibetan Kefir grains was investigated using a mouse model of chronic unpredictable mild stress (CUMS). ZW3 improved depression-like behavior and independent exploration ability in the CUMS group. Moreover, ZW3 regulated biochemical disorders in the hypothalamic-pituitary-adrenal axis, immune system and tryptophan metabolism caused by stress. Furthermore, ZW3 could modulate the composition of the gut microbiota, and alleviate constipation by improving the fecal water content in stressed mice. We found that the probiotic strain was present in the whole intestine, even 7 days after its administration was stopped. These results suggest that L. kefiranofaciens ZW3 might improve depression by regulating the gut microbiota as a probiotic food.
Collapse
Affiliation(s)
- Ye Sun
- State Key Laboratory of Food Nutrition and Safety, Faculty of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | | | | | | | | | | |
Collapse
|
30
|
Rothenberg DO, Zhang L. Mechanisms Underlying the Anti-Depressive Effects of Regular Tea Consumption. Nutrients 2019; 11:E1361. [PMID: 31212946 PMCID: PMC6627400 DOI: 10.3390/nu11061361] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
This article is a comprehensive review of the literature pertaining to the antidepressant effects and mechanisms of regular tea consumption. Meta-data supplemented with recent observational studies were first analyzed to assess the association between tea consumption and depression risk. The literature reported risk ratios (RR) were 0.69 with 95% confidence intervals of 0.62-0.77. Next, we thoroughly reviewed human trials, mouse models, and in vitro experiments to determine the predominant mechanisms underlying the observed linear relationship between tea consumption and reduced risk of depression. Current theories on the neurobiology of depression were utilized to map tea-mediated mechanisms of antidepressant activity onto an integrated framework of depression pathology. The major nodes within the network framework of depression included hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, inflammation, weakened monoaminergic systems, reduced neurogenesis/neuroplasticity, and poor microbiome diversity affecting the gut-brain axis. We detailed how each node has subsystems within them, including signaling pathways, specific target proteins, or transporters that interface with compounds in tea, mediating their antidepressant effects. A major pathway was found to be the ERK/CREB/BDNF signaling pathway, up-regulated by a number of compounds in tea including teasaponin, L-theanine, EGCG and combinations of tea catechins and their metabolites. Black tea theaflavins and EGCG are potent anti-inflammatory agents via down-regulation of NF-κB signaling. Multiple compounds in tea are effective modulators of dopaminergic activity and the gut-brain axis. Taken together, our findings show that constituents found in all major tea types, predominantly L-theanine, polyphenols and polyphenol metabolites, are capable of functioning through multiple pathways simultaneously to collectively reduce the risk of depression.
Collapse
Affiliation(s)
- Dylan O'Neill Rothenberg
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| | - Lingyun Zhang
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
31
|
Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J. Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci Biobehav Rev 2019; 99:101-116. [DOI: 10.1016/j.neubiorev.2018.12.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
|
32
|
Geng CA, Yang TH, Huang XY, Ma YB, Zhang XM, Chen JJ. Antidepressant potential of Uncaria rhynchophylla and its active flavanol, catechin, targeting melatonin receptors. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:39-46. [PMID: 30543912 DOI: 10.1016/j.jep.2018.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/02/2018] [Accepted: 12/08/2018] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicines (TCMs) are fascinating sources for natural drug candidates. Uncaria rhynchophylla (Gouteng) is a famous TCM used for alleviating central nervous system (CNS) disorders, while its antidepressant constituents are still disputed. AIM OF THE STUDY The present study was designed to assess the antidepressant property of U. rhynchophylla and characterize the active constituents targeting melatonin receptors which are closely related to CNS diseases. MATERIALS AND METHODS The total extract and each fraction of U. rhynchophylla were extensively assessed for their agonistic activity on melatonin receptors in vitro. The following bioassay-guided fractionation yielded the active constituents, whose activity was confirmed by dose-dependent bioassay and antagonistic experiment on HEK293 cells. Their antidepressant effects were evaluated on forced swimming test (FST), tail suspension test (TST) and open-field test (OFT) mice models in vivo. Their metabolic profiles in mice plasma were analyzed by LCMS-IT-TOF. RESULTS The stems and hooks of U. rhynchophylla were revealed with agonistic activity on melatonin receptors (MT1 and MT2). Under the guidance of bioassay, two flavanols, catechin and epicatechin were obtained and showed obviously activity agitating MT1 (EC50 = 25.8 and 156.1 μM) and MT2 (EC50 = 47.3 and 208.8 μM) receptors. The agonistic activity of catechin on melatonin receptors can be antagonized by luzindole at the concentrations of 1.57-100 μM. Catechin could significantly reduce the immobility time in both FST and TST mice models at doses of 80 and 40 mg/kg, without obvious effect on locomotor activity in OFT mice model. Five phase II (M1-M5) and one phase I (M6) metabolites of catechin were detected in mice plasma after intragastric (i.g.) administration. CONCLUSION Catechin is a potent antidepressant candidate from U. rhynchophylla by targeting melatonin receptors. The main metabolic pathways of catechin in mice plasma are glucuronidation (M3) and methylated glucuronidation (M4 and M5). This study provides valuable information for understanding the antidepressant potency of Gouteng and its active constituents.
Collapse
Affiliation(s)
- Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, PR China
| | - Tong-Hua Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, PR China
| | - Xiao-Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, PR China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, PR China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, PR China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
33
|
Assessment of Chaenomeles Maulei Fruit Juice Effects in Tests for Depression and Anxiety. ACTA MEDICA BULGARICA 2019. [DOI: 10.2478/amb-2019-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Depression and anxiety are prevalent chronic psychiatric disorders affecting many people worldwide. Over the past decades, much attention has been drawn to herbal psychopharmacology, offering fewer adverse reactions. The main bioactive compounds in Chaenomeles maulei fruits are polyphenols known for their behavioral effects. The objective of the present study was to assess Chaenomeles maulei fruit juice (CMFJ) effects in tests for anxiety and depression. The animals used were 32 male healthy Wistar rats treated orally with CMFJ for 16 days. They were divided in four groups of 8 animals. The control group received distilled water and the rest of the groups were treated with CMFJ at 2.5, 5 and 10 ml/kg doses. We assessed the social interaction time as a measure of anxiety and the immobility time in the forced swim test as a measure of behavioral despair. In the social interaction test, the 14 days administration of CMFJ did not produce any significant changes in the time spent in social interaction. After 16 days of administration all doses of CMFJ significantly decreased the immobility time of the rats (p < 0.05) in comparison to the control group. These results allow making the conclusion that CMFJ lacked anxiolytic activity, but showed an antidepressant-like effect.
Collapse
|
34
|
Østergaard L, Jørgensen MB, Knudsen GM. Low on energy? An energy supply-demand perspective on stress and depression. Neurosci Biobehav Rev 2018; 94:248-270. [DOI: 10.1016/j.neubiorev.2018.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/09/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
|
35
|
Burstein O, Doron R. The Unpredictable Chronic Mild Stress Protocol for Inducing Anhedonia in Mice. J Vis Exp 2018. [PMID: 30417885 DOI: 10.3791/58184] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Depression is a highly prevalent and debilitating condition, only partially addressed by current pharmacotherapies. The lack of response to treatment by many patients prompts the need to develop new therapeutic alternatives and to better understand the etiology of the disorder. Pre-clinical models with translational merits are rudimentary for this task. Here we present a protocol for the unpredictable chronic mild stress (UCMS) method in mice. In this protocol, adolescent mice are chronically exposed to interchanging unpredictable mild stressors. Resembling the pathogenesis of depression in humans, stress exposure during the sensitive period of mice adolescence instigates a depressive-like phenotype evident in adulthood. UCMS can be used for screenings of antidepressants on the variety of depressive-like behaviors and neuromolecular indices. Among the more prominent tests to assess depressive-like behavior in rodents is the sucrose preference test (SPT), which reflects anhedonia (core symptom of depression). The SPT will also be presented in this protocol. The ability of UCMS to induce anhedonia, instigate long-term behavioral deficits and enable reversal of these deficits via chronic (but not acute) treatment with antidepressants strengthens the protocol's validity compared to other animal protocols for inducing depressive-like behaviors.
Collapse
Affiliation(s)
- Or Burstein
- School of Behavioral Science, The Academic College Tel-Aviv-Yaffo
| | - Ravid Doron
- School of Behavioral Science, The Academic College Tel-Aviv-Yaffo; Department of Education and Psychology, Open University;
| |
Collapse
|
36
|
Xia F, Li C, Li M, Liao Y, Liu X, Si J, Chang Q, Pan R. Antidepressant activity of an aqueous extract from okra seeds. RSC Adv 2018; 8:32814-32822. [PMID: 35547711 PMCID: PMC9086372 DOI: 10.1039/c8ra03201g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/20/2018] [Indexed: 11/26/2022] Open
Abstract
Faced with the increasing incidence of major depression disorder (MDD) and the unsatisfactory effect of current drugs, there has been growing attention on the relation between dietary supplements and MDD prevention. In this research, the antidepressant activity of okra seed extract (OSE) was evaluated with behavioral tests including an open field test, tail suspension test (TST), forced-swimming test (FST) and novelty suppressed feeding test (NSFT) for sub-chronic treatment and chronic sleep-interruption (CSI) animal models. The chemical constituents of OSE were identified by using UPLC-DAD/Q-TOF MS. To investigate the mechanism, the prefrontal cortex and hippocampus were collected to determine neurotransmitters, total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and malondialdehyde (MDA). Blood serum was prepared for the determination of corticosterone (CORT) and adrenocorticotropic hormone (ACTH). Results demonstrated that OSE possessed an antidepressant effect in both sub-chronic treatment and CSI animal models through suppressing the hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis, alleviating oxidative stress and regulating neurotransmitter levels in the hippocampus and frontal cortex. Besides, chemical analysis based on the UPLC-DAD/ESI-Q-TOF MS approach showed that OSE mainly contained catechin and quercetin derivatives. The present study provided a scientific basis for developing okra seeds to be a dietary supplement for MDD prevention.
Collapse
Affiliation(s)
- Fangbo Xia
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences No. 151, North Road Malianwa, Haidian District Beijing 100193 PR China
| | - Chenchen Li
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences No. 151, North Road Malianwa, Haidian District Beijing 100193 PR China
| | - Mengqiu Li
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences No. 151, North Road Malianwa, Haidian District Beijing 100193 PR China
| | - Yonghong Liao
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences No. 151, North Road Malianwa, Haidian District Beijing 100193 PR China
| | - Xinmin Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences No. 151, North Road Malianwa, Haidian District Beijing 100193 PR China
| | - Jianyong Si
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences No. 151, North Road Malianwa, Haidian District Beijing 100193 PR China
| | - Qi Chang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences No. 151, North Road Malianwa, Haidian District Beijing 100193 PR China
| | - Ruile Pan
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences No. 151, North Road Malianwa, Haidian District Beijing 100193 PR China
| |
Collapse
|
37
|
Song W, Guo Y, Jiang S, Wei L, Liu Z, Wang X, Su Y. Antidepressant Effects of the Ginsenoside Metabolite Compound K, Assessed by Behavioral Despair Test and Chronic Unpredictable Mild Stress Model. Neurochem Res 2018; 43:1371-1382. [DOI: 10.1007/s11064-018-2552-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022]
|
38
|
Feng S, Liu J, Cheng B, Deng A, Zhang H. (-)-Epigallocatechin-3-gallate protects PC12 cells against corticosterone-induced neurotoxicity via the hedgehog signaling pathway. Exp Ther Med 2018; 15:4284-4290. [PMID: 29731823 PMCID: PMC5920970 DOI: 10.3892/etm.2018.5936] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 06/08/2017] [Indexed: 12/21/2022] Open
Abstract
It has been acknowledged that environmental stress is a risk factor for developing mental disorders. Chronic stress may contribute to the hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis and a sustained rise in the levels of glucocorticoids (GCs). A high concentration of corticosterone (CORT) damages neuronal PC12 cells. It has been reported that (−)-Epigallocatechin-3-gallate (EGCG), a major component of green tea, exhibits neuroprotective activity. However, the protective effect of EGCG on neuronal cells injured by CORT remains to be elucidated. The present study aimed to identify the effects of EGCG on CORT-injured neuronal PC12 cells and its associated mechanisms of action. CORT-injured PC12 cells were pretreated with EGCG with or without cyclopamine. Cell viability was assessed using an MTT assay, changes in cell morphology were observed using phase-contrast microscopy, cellular apoptosis was assessed by Hoechst 33342 staining, cell proliferation was measured using a cell counting kit-8 assay, mRNA levels were measured by reverse transcription-quantitative polymerase chain reaction and protein expression was assessed using western blot analysis. The current study demonstrated that exposure to high concentrations of CORT induced cytotoxicity and downregulated the Sonic hedgehog pathway (Shh) in PC12 cells. These effects were attenuated by EGCG. However, the EGCG-mediated neuroprotective effects, as well as upregulation of the Shh pathway were all attenuated by the Shh signaling inhibitor cyclopamine. These results indicate that EGCG protects PC12 cells from CORT-induced neurotoxicity via activation of the Shh signaling pathway.
Collapse
Affiliation(s)
- Sha Feng
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Biao Cheng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Aiping Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Hong Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
39
|
Extract of sesame cake and sesamol alleviate chronic unpredictable mild stress-induced depressive-like behaviors and memory deficits. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
40
|
Bilobalide alleviates depression-like behavior and cognitive deficit induced by chronic unpredictable mild stress in mice. Behav Pharmacol 2018; 27:596-605. [PMID: 27509313 DOI: 10.1097/fbp.0000000000000252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bilobalide (BB), a unique constituent of Ginkgo biloba, has powerful neuroprotection and stress-alleviating properties. However, whether BB exerts a positive effect on depression and cognitive deficit induced by chronic stress is not known. The present study was designed to investigate the influence of BB on depression and cognitive impairments induced by chronic unpredictable mild stress (CUMS) in mice. During daily exposure to stressors for 5 consecutive weeks, mice were administered BB at the doses of 0, 3, or 6 mg/kg/day intraperitoneally. We replicated the finding that CUMS induced depression-like behavior and cognitive deficits as the CUMS+vehicle (VEH) group showed a significant increase in immobility in the tail suspension test, a decrease in the discrimination index of the novel object recognition task, and increased latency to platform and decreased number of platform crossings in the Morris water maze compared with the control+VEH group. Chronic administration of BB effectively reversed these alterations. In addition, the CUMS+VEH group showed significantly higher levels of baseline serum corticosterone than those of the control+VEH group and BB dose-dependently inhibited this effect. Our results suggest that BB may be useful for inhibition of depression-like behavior and cognitive deficits, and this protective effect was possibly exerted partly through an action on the hypothalamic-pituitary-adrenal axis.
Collapse
|
41
|
Ramos-Hryb AB, Cunha MP, Kaster MP, Rodrigues ALS. Natural Polyphenols and Terpenoids for Depression Treatment: Current Status. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-444-64068-0.00006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
42
|
Zhe Q, Sulei W, Weiwei T, Hongyan L, Jianwei W. Effects of Jiaotaiwan on depressive-like behavior in mice after lipopolysaccharide administration. Metab Brain Dis 2017; 32:415-426. [PMID: 27796565 DOI: 10.1007/s11011-016-9925-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/19/2016] [Indexed: 12/27/2022]
Abstract
Jiao-Tai-Wan (JTW), has been usually used for insomnia in traditional Chinese medicine (TCM). The previous study shown that JTW was benefit for depression-like behavior, but the possible mechanism is not clear. This study is to determine whether JTW was benefit for the treatment of lipopolysaccharide (LPS)-induced depression-like behavior in mice and explore its possible mechanism. All drugs were intragastrically administered once daily for 7 consecutive days. On the 7th day, LPS was injected into mice 30 min after drug administration. Behavioral tests were performed 24 h after LPS administration. Serum levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were measured by enzyme-linked immunosorbent assay (ELISA). The 5-hydroxytryptamine (5-HT) and nor-epinephrine (NE) levels in prefrontal cortex were determined by UPLC-MS. The protein expressions of NF-κB signaling in prefrontal cortex were determined by western blot. Behavioral tests were measured via tail suspension test (TST), forced swimming test (FST), sucrose preference test (SPT) and open field test (OFT). In addition, effects of JTW on the TNF-α induced depressive-like behavior were also examined. Pretreatment with JTW (4.2 and 8.4 g/kg) or fluoxetine (20 mg/kg) effectively attenuated LPS-induced upregulations of the serum TNF-α and IL-6 contents and JTW (4.2 and 8.4 g/kg) or fluoxetine (20 mg/kg) effectively increased the contents of 5-HT and NE compared with LPS-treated group. Meanwhile, the western blot analysis results indicated the correlation between the antidepressant activity of JTW and the regulation of NF-κB signaling in brain. Besides, JTW (4.2 and 8.4 g/kg) or fluoxetine (20 mg/kg) significantly shortened LPS-induced increases in immobility time of TST, FST and weakened the reduction of the sucrose preference in SPT without significant alterations of locomotor activity in OFT. Additionally, JTW effectively reversed the depressive-like behavior induced by TNF-α (0.1 fg/site, i.c.v.). Our findings indicated that Jiao-Tai-Wan (JTW) played an important role in monoaminergic response and anti-inflammation in lipopolysaccharide (LPS)-induced mouse model, which may be therapeutically exploited to alleviate depression-like behavior.
Collapse
Affiliation(s)
- Qian Zhe
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wang Sulei
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Weiwei
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Long Hongyan
- Central Laboratory, Nanjing Municipal Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China.
| | - Wang Jianwei
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
43
|
Li Q, Qu FL, Gao Y, Jiang YP, Rahman K, Lee KH, Han T, Qin LP. Piper sarmentosum Roxb. produces antidepressant-like effects in rodents, associated with activation of the CREB-BDNF-ERK signaling pathway and reversal of HPA axis hyperactivity. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:9-19. [PMID: 28126450 DOI: 10.1016/j.jep.2017.01.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE There are many plants of genus Piper which have been reported to induce antidepressant-like effects, Piper sarmentosum (PS) is one of them. PS is a Chinese herbal medicine and a traditional edible vegetable. MATERIALS AND METHODS In the present study, the antidepressant-like effects of PS extracts and the ethyl acetate fraction of PS extracts (PSY) were assessed using the open field test (OFT), forced swimming test (FST), and tail suspension test (TST) in mice. Furthermore, we applied a 4 consecutive weeks of chronic unpredictable mild stress (CUMS) as a model of depression in rats, followed by a sucrose preference test. Then we examined the possible mechanisms of this action. The activity of the hypothalamic-pituitary-adrenal (HPA) axis was evaluated by detecting the serum corticosterone (CORT) concentrations, and the protein expression levels of brain-derived neurotrophic factor (BDNF), the phosphorylated form CREB and ERK1/2 were detected by qRT-PCR or Western blot. RESULTS The results showed that PS extracts (100, 200mg/kg) and PSY (12.5, 25, 50mg/kg) treatment produced antidepressant-like effects in mice similar to fluoxetine (20mg/kg), indicated by the reduced immobility time in the FST and TST, while both had no influence on the locomotor activity in the OFT. PSY treatment significantly increased sucrose preference and reduced serum CORT levels in CUMS rats. Moreover, PSY up-regulated BDNF protein levels, and increased CREB and ERK phosphorylation levels in the hippocampus on CUMS rats. CONCLUSIONS These findings suggest that the antidepressant-like effects of PS extracts and PSY are mediated, at least in part, by modulating HPA axis, BDNF, CREB and ERK phosphorylation and expression in the hippocampus.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China; The 102nd Hospital of PLA, 55 Heping North Road, Changzhou 213003, PR China
| | - Fa-Lin Qu
- The 102nd Hospital of PLA, 55 Heping North Road, Changzhou 213003, PR China
| | - Yue Gao
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China
| | - Yi-Ping Jiang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7568, United States
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China; Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7568, United States.
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China.
| |
Collapse
|
44
|
Teng J, Zhou W, Zeng Z, Zhao W, Huang Y, Zhang X. Quality components and antidepressant-like effects of GABA green tea. Food Funct 2017; 8:3311-3318. [DOI: 10.1039/c7fo01045a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
After vacuum anaerobic and aerobic treatment, the GABA content in green tea is significantly increased, reaching the standard of GABA tea. And daily oral GABA green tea extract can prevent depression or improve the depressive state of animals.
Collapse
Affiliation(s)
- Jie Teng
- Department of Tea Sciences
- College of Horticulture
- South China Agricultural University
- Guangzhou
- People's Republic of China
| | - Wen Zhou
- School of Chinese Meterla Medica
- Guangzhou University of Chinese Medicine
- Guangzhou
- People's Republic of China
| | - Zhen Zeng
- Department of Tea Sciences
- College of Horticulture
- South China Agricultural University
- Guangzhou
- People's Republic of China
| | - Wenfang Zhao
- Department of Tea Sciences
- College of Horticulture
- South China Agricultural University
- Guangzhou
- People's Republic of China
| | - Yahui Huang
- Department of Tea Sciences
- College of Horticulture
- South China Agricultural University
- Guangzhou
- People's Republic of China
| | - Xu Zhang
- Guangdong Key laboratory for innovative Development and Utilization of Forest Plant Germplasm
- College of Forestry and Landscape Architecture
- South China Agricultural University
- Guangzhou
- People's Republic of China
| |
Collapse
|
45
|
Natural products against Alzheimer's disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2016; 35:178-216. [PMID: 28043897 DOI: 10.1016/j.biotechadv.2016.12.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a severe, chronic and progressive neurodegenerative disease associated with memory and cognition impairment ultimately leading to death. It is the commonest reason of dementia in elderly populations mostly affecting beyond the age of 65. The pathogenesis is indicated by accumulation of the amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) in brain tissues and hyperphosphorylation of tau protein in neurons. The main cause is considered to be the formation of reactive oxygen species (ROS) due to oxidative stress. The current treatment provides only symptomatic relief by offering temporary palliative therapy which declines the rate of cognitive impairment associated with AD. Inhibition of the enzyme acetylcholinesterase (AChE) is considered as one of the major therapeutic strategies offering only symptomatic relief and moderate disease-modifying effect. Other non-cholinergic therapeutic approaches include antioxidant and vitamin therapy, stem cell therapy, hormonal therapy, use of antihypertensive or lipid-lowering medications and selective phosphodiesterase (PDE) inhibitors, inhibition of β-secretase and γ-secretase and Aβ aggregation, inhibition of tau hyperphosphorylation and intracellular NFT, use of nonsteroidal anti-inflammatory drugs (NSAIDs), transition metal chelators, insulin resistance drugs, etanercept, brain-derived neurotrophic factor (BDNF) etc. Medicinal plants have been reported for possible anti-AD activity in a number of preclinical and clinical trials. Ethnobotany, being popular in China and in the Far East and possibly less emphasized in Europe, plays a substantial role in the discovery of anti-AD agents from botanicals. Chinese Material Medica (CMM) involving Chinese medicinal plants has been used traditionally in China in the treatment of AD. Ayurveda has already provided numerous lead compounds in drug discovery and many of these are also undergoing clinical investigations. A number of medicinal plants either in their crude forms or as isolated compounds have exhibited to reduce the pathological features associated with AD. In this present review, an attempt has been made to elucidate the molecular mode of action of various plant extracts, phytochemicals and traditional herbal formulations investigated against AD as reported in various preclinical and clinical tests. Herbal synergism often found in polyherbal formulations were found effective to combat disease heterogeneity as found in complex pathogenesis of AD. Finally a note has been added to describe biotechnological improvement, genetic and genomic resources and mathematical and statistical techniques for empirical model building associated with anti-AD plant secondary metabolites and their source botanicals.
Collapse
|
46
|
Abuelezz SA, Hendawy N, Magdy Y. Targeting Oxidative Stress, Cytokines and Serotonin Interactions Via Indoleamine 2, 3 Dioxygenase by Coenzyme Q10: Role in Suppressing Depressive Like Behavior in Rats. J Neuroimmune Pharmacol 2016; 12:277-291. [DOI: 10.1007/s11481-016-9712-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
|
47
|
Antidepressant, antioxidant and neurotrophic properties of the standardized extract of Cocos nucifera husk fiber in mice. J Nat Med 2016; 70:510-21. [DOI: 10.1007/s11418-016-0970-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/18/2016] [Indexed: 12/28/2022]
|
48
|
Di Lorenzo A, Nabavi SF, Sureda A, Moghaddam AH, Khanjani S, Arcidiaco P, Nabavi SM, Daglia M. Antidepressive-like effects and antioxidant activity of green tea and GABA green tea in a mouse model of post-stroke depression. Mol Nutr Food Res 2015; 60:566-79. [PMID: 26626862 DOI: 10.1002/mnfr.201500567] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/19/2015] [Accepted: 11/23/2015] [Indexed: 11/08/2022]
Abstract
SCOPE Growing evidence suggests that oxidative stress plays a role in the development of chronic diseases such as cardiovascular disease and some psychiatric disorders. Tea consumption exerts beneficial effects against damage induced by cerebral ischemia-reperfusion in ischemic stroke and depressive symptoms in depression. The aim of this study was to evaluate, in vivo, the protective activity of green tea (GT) and GABA green tea (GGT) against post-stroke depression (PSD), a common consequence of stroke. METHODS AND RESULTS The antidepressive-like effects of GT and GGT were determined by behavioral tests in a mouse model of post-stroke depression. The antioxidant activity was evaluated by GSH, SOD, and TBARS measurements on mouse brain. The chemical composition of tea extracts was characterized through chromatographic methods. GGT and GT resulted active in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior, and at least in part, antioxidant endogenous defenses. The higher polyphenol, theanine, glutamine, and caffeine content may justify the higher activity found in GGT. CONCLUSIONS This work represents the first attempt to demonstrate the positive effect of tea, and especially GGT, on post-stroke depression and to correlate this effect with the antioxidant activity and phytochemical composition of tea.
Collapse
Affiliation(s)
- Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, Pavia University, Viale Taramelli 12, Pavia, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Grup de Nutrició Comunitària i Estrès Oxidatiu (IUNICS) and CIBEROBN (Physiopathology of Obesity and Nutrition) Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | - Sedigheh Khanjani
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Iran
| | | | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, Pavia University, Viale Taramelli 12, Pavia, Italy
| |
Collapse
|
49
|
Ding L, Zhang X, Guo H, Yuan J, Li S, Hu W, Golden T, Wu N. The Functional Study of a Chinese Herbal Compounded Antidepressant Medicine--Jie Yu Chu Fan Capsule on Chronic Unpredictable Mild Stress Mouse Model. PLoS One 2015; 10:e0133405. [PMID: 26186537 PMCID: PMC4506077 DOI: 10.1371/journal.pone.0133405] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/26/2015] [Indexed: 12/26/2022] Open
Abstract
Jie Yu Chu Fan capsule (JYCF) is a new compounded Chinese herbal medicine for the treatment of depression. The present study was designed to explore the antidepressant effects and the possible mechanisms of JYCF by using chronic unpredictable mild stress (CUMS) mouse model and comparing results to that of fluoxetine. Behavioral tests including an open field test, sucrose preference test and forced swim test were performed to evaluate the antidepressant effects of JYCF. The concentrations of monoamine neurotransmitters and metabolic products including norepinephrine (NE), 5-hydroxytryptamine (5-HT), dopamine (DA), 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the cerebral cortex and hippocampus of mice were determined by means of high performance liquid chromatography with electrochemical detection (HPLC-EC). The results show that a successful mouse CUMS model was established through 5 weeks of continuous unpredictable stimulation, as indicated by the significant decrease in sucrose preference and locomotor activity and increase in immobility time in the forced swim test. Chronic treatment of JYCF (1.25, 2.5 and 5 g/kg) and fluoxetine (20mg/kg) significantly reversed the CUMS-induced behavioral abnormalities. JYCF (1.25, 2.5 and 5 g/kg) significantly increased NE in CUMS mouse prefrontal cortex (P < 0.01, P < 0.01, P < 0.05 respectively) and 5-HT in hippocampus (P < 0.05). In summary, our findings suggest that JYCF exerts comparable antidepressant-like effects to that of fluoxetine in CUMS mice. Besides, the antidepressant-like effect of JYCF is mediated by the increase of monoaminergic transmitters including 5-HT and NE.
Collapse
Affiliation(s)
- Lingling Ding
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Zhang
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hongliang Guo
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Junliang Yuan
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shujuan Li
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wenli Hu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- * E-mail:
| | - Teresa Golden
- Department of Biological Sciences, Southeastern Oklahoma State University, Durant, Oklahoma, United States of America
| | - Ning Wu
- Department of Biological Sciences, Southeastern Oklahoma State University, Durant, Oklahoma, United States of America
| |
Collapse
|
50
|
Liu Y, Lan N, Ren J, Wu Y, Wang ST, Huang XF, Yu Y. Orientin improves depression-like behavior and BDNF in chronic stressed mice. Mol Nutr Food Res 2015; 59:1130-42. [PMID: 25788013 DOI: 10.1002/mnfr.201400753] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/12/2015] [Accepted: 03/05/2015] [Indexed: 01/11/2023]
Abstract
SCOPE Oxidative stress is involved in chronic stress-induced depression and the disruption of neurotransmission and neuroplasticity. Recently, orientin, a phenolic compound abundant in some fruits, millet, and herbs, has been shown to have antioxidant properties. This study investigated the potential antidepressant effects of orientin against chronic stress and its underlying mechanisms. METHODS AND RESULTS The chronic unpredictable mild stress (CUMS) model was used to investigate the effects of orientin on behavior and biochemical alterations in mice. After 2 weeks of the CUMS protocol, the mice were treated with orientin (20 mg/kg and 40 mg/kg, oral gavage) for 3 weeks. Administration of orientin significantly alleviated the CUMS-induced depression-like behavior, including sucrose preference reduction, locomotor activity decline, and hypomotility. Orientin treatment attenuated the oxidative stress markers and increased the concentrations of serotonin and norepinephrine in the hippocampus and prefrontal cortex of CUMS mice. Orientin treatment also increased the brain-derived neurotrophic factor and synapse-associated proteins (synaptophysin and postsynaptic density protein 95) of CUMS mice. CONCLUSION Orientin exerts antidepressant-like effects on CUMS mice, specifically by improving central oxidative stress, neurotransmission, and neuroplasticity. Therefore, supplementation with orientin-enriched food or fruit could be beneficial as a preventive strategy for chronic stress-induced depression.
Collapse
Affiliation(s)
- Yi Liu
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, P. R. China.,Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Nuo Lan
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, P. R. China
| | - Jing Ren
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, P. R. China
| | - Yizhen Wu
- Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Shu-ting Wang
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, P. R. China
| | - Xu-Feng Huang
- Schizophrenia Research Institute (SRI), Sydney, NSW, Australia.,Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Yinghua Yu
- Schizophrenia Research Institute (SRI), Sydney, NSW, Australia.,Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| |
Collapse
|