1
|
Zhu F, Wang K, Li D, Liu Z, Li M, Wang Z, Li X, Lan X, Guan Q. OsSAP6 Positively Regulates Soda Saline-Alkaline Stress Tolerance in Rice. RICE (NEW YORK, N.Y.) 2022; 15:69. [PMID: 36574073 PMCID: PMC9794665 DOI: 10.1186/s12284-022-00616-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Soil salinization is a worldwide environmental problem, especially in the arid and semiarid regions of northeastern China, which are heavily affected by soda saline-alkaline stress. At present, there is an urgent need to improve the soda saline-alkaline stress tolerance of rice. RESULTS Stress-associated proteins are involved in regulating the abiotic stresses in plants. There are 18 members of the rice stress-associated protein (OsSAP) gene family. In this study, the expression levels of OsSAP6 in leaves and roots were upregulated with increasing NaHCO3 stress duration. OsSAP6 was located in nucleus and cytoplasm. The bud length and total root length of OsSAP6 overexpression rice were significantly longer than those of Lj11 (Oryza sativa longjing11) during germination stage, and the survival rates, plant height and malondialdehyde content at the seedling stage showed tolerance growth of saline-alkaline stress. The expression of OsCu/Zn-SOD, OsAPX2, and OsCAT1 in transgenic lines was increased significantly under SAE (soda saline-alkali soil eluent) stress. OsSAP6 interacts with OsPK5 according to yeast two-hybrid screening and luciferase complementation experiments. The expression of OsPK5 increased under NaHCO3 and H2O2 stress, and the overexpression of OsPK5 in rice improved soda saline-alkaline tolerance. CONCLUSION Overexpression of OsSAP6 in rice significantly enhanced saline-alkaline tolerance compared with the wild type. It is speculated that OsSAP6 responds to soda salinity stress and interacts with OsPK5 to positively regulate soda saline-alkaline tolerance through ROS homeostasis. This study revealed the features of OsSAP6 involved in response to soda saline-alkaline stress and the interaction with OsPK5, which provided resources for breeding aimed at improving the soda saline-alkaline stress tolerance of rice.
Collapse
Affiliation(s)
- Fengjin Zhu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Kai Wang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Danni Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Ziang Liu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Minghui Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhenyu Wang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
| | - Xiufeng Li
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
| | - Xingguo Lan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Qingjie Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Xia H, Hong Y, Li X, Fan R, Li Q, Ouyang Z, Yao X, Lu S, Guo L, Tang S. BnaNTT2 regulates ATP homeostasis in plastid to sustain lipid metabolism and plant growth in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:54. [PMID: 37313423 PMCID: PMC10248631 DOI: 10.1007/s11032-022-01322-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The plastid inner envelope membrane-bond nucleotide triphosphate transporter (NTT) transports cytosolic adenosine triphosphate (ATP) into plastid, which is necessary for the biochemical activities in plastid. We identified a chloroplast-localized BnaC08.NTT2 and obtained the overexpressed lines of BnaC08.NTT2 and CRISPR/Cas9 edited double mutant lines of BnaC08.NTT2 and BnaA08.NTT2 in B. napus. Further studies certified that overexpression (OE) of BnaC08.NTT2 could help transport ATP into chloroplast and exchange adenosine diphosphate (ADP) and this process was inhibited in BnaNTT2 mutants. Additional results showed that the thylakoid was abnormal in a8 c8 double mutants, which also had lower photosynthetic efficiency, leading to retarded plant growth. The BnaC08.NTT2 OE plants had higher photosynthetic efficiency and better growth compared to WT. OE of BnaC08.NTT2 could improve carbon flowing into protein and oil synthesis from glycolysis both in leaves and seeds. Lipid profile analysis showed that the contents of main chloroplast membrane lipids, including monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylglycerol (PG), were significantly reduced in mutants, while there were no differences in OE lines compared to WT. These results suggest that BnaNTT2 is involved in the regulation of ATP/ADP homeostasis in plastid to impact plant growth and seed oil accumulation in B. napus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01322-8.
Collapse
Affiliation(s)
- Hui Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Yue Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Xiao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Ruyi Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Zhewen Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
3
|
Yu J, Xu S, Liu X, Li T, Zhang D, Teng N, Wu Z. Starch Degradation and Sucrose Accumulation of Lily Bulbs after Cold Storage. Int J Mol Sci 2022; 23:4366. [PMID: 35457184 PMCID: PMC9029042 DOI: 10.3390/ijms23084366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Functional lilies are a group of edible lily cultivars with great potential for landscape application. Low-temperature storage can significantly improve their taste, but the knowledge of this process is largely unknown. In this study, we used the functional lilies 'Fly Shaohua' and 'Fly Tiancheng' as materials. Through physiological observation and transcriptome analysis during the bulbs' cold storage, it was found that the starch degradation and sucrose accumulation in bulbs contributed to taste improvement. After 60 d of cold storage, the sucrose accumulation was highest and the starch content was lower in the bulbs, suggesting this time-point was optimal for consumption. Accompanying the fluctuation of sucrose content during cold storage, the enzyme activities of sucrose phosphate synthase and sucrose synthase for sucrose synthesis were increased. Transcriptome analysis showed that many differentially expressed genes (DEGs) were involved in the starch and sucrose metabolism pathway, which might promote the conversion of starch to sucrose in bulbs. In addition, the DEGs involved in dormancy and stress response were also determined during cold storage, which might explain the decreased sucrose accumulation with extended storage time over 60 d due to the energy consumption for dormancy release. Taken together, our results indicated sucrose accumulation was a main factor in the taste improvement of lily bulbs after cold storage, which is attributable to the different gene expression of starch and sucrose metabolism pathways in this process.
Collapse
Affiliation(s)
- Junpeng Yu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (S.X.); (X.L.); (T.L.); (D.Z.); (N.T.)
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sujuan Xu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (S.X.); (X.L.); (T.L.); (D.Z.); (N.T.)
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyue Liu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (S.X.); (X.L.); (T.L.); (D.Z.); (N.T.)
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Li
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (S.X.); (X.L.); (T.L.); (D.Z.); (N.T.)
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dehua Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (S.X.); (X.L.); (T.L.); (D.Z.); (N.T.)
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (S.X.); (X.L.); (T.L.); (D.Z.); (N.T.)
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (S.X.); (X.L.); (T.L.); (D.Z.); (N.T.)
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Cutolo E, Tosoni M, Barera S, Herrera-Estrella L, Dall’Osto L, Bassi R. A Phosphite Dehydrogenase Variant with Promiscuous Access to Nicotinamide Cofactor Pools Sustains Fast Phosphite-Dependent Growth of Transplastomic Chlamydomonas reinhardtii. PLANTS 2020; 9:plants9040473. [PMID: 32276527 PMCID: PMC7238262 DOI: 10.3390/plants9040473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 01/23/2023]
Abstract
Heterologous expression of the NAD+-dependent phosphite dehydrogenase (PTXD) bacterial enzyme from Pseudomonas stutzerii enables selective growth of transgenic organisms by using phosphite as sole phosphorous source. Combining phosphite fertilization with nuclear expression of the ptxD transgene was shown to be an alternative to herbicides in controlling weeds and contamination of algal cultures. Chloroplast expression of ptxD in Chlamydomonas reinhardtii was proposed as an environmentally friendly alternative to antibiotic resistance genes for plastid transformation. However, PTXD activity in the chloroplast is low, possibly due to the low NAD+/NADP+ ratio, limiting the efficiency of phosphite assimilation. We addressed the intrinsic constraints of the PTXD activity in the chloroplast and improved its catalytic efficiency in vivo via rational mutagenesis of key residues involved in cofactor binding. Transplastomic lines carrying a mutagenized PTXD version promiscuously used NADP+ and NAD+ for converting phosphite into phosphate and grew faster compared to those expressing the wild type protein. The modified PTXD enzyme also enabled faster and reproducible selection of transplastomic colonies by directly plating on phosphite-containing medium. These results allow using phosphite as selective agent for chloroplast transformation and for controlling biological contaminants when expressing heterologous proteins in algal chloroplasts, without compromising on culture performance.
Collapse
Affiliation(s)
- Edoardo Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.C.); (M.T.); (S.B.); (L.D.)
| | - Matteo Tosoni
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.C.); (M.T.); (S.B.); (L.D.)
| | - Simone Barera
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.C.); (M.T.); (S.B.); (L.D.)
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA) Cinvestav, 36821 Irapuato, Guanajuato, Mexico;
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Sciences, Texas Tech University, Box 42122, Lubbock, TX 79409, USA
| | - Luca Dall’Osto
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.C.); (M.T.); (S.B.); (L.D.)
| | - Roberto Bassi
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.C.); (M.T.); (S.B.); (L.D.)
- Correspondence: ; Tel.: +39-045-802-7916
| |
Collapse
|
5
|
Wulfert S, Schilasky S, Krueger S. Transcriptional and Biochemical Characterization of Cytosolic Pyruvate Kinases in Arabidopsis thaliana. PLANTS 2020; 9:plants9030353. [PMID: 32168758 PMCID: PMC7154858 DOI: 10.3390/plants9030353] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Glycolysis is a central catabolic pathway in every living organism with an essential role in carbohydrate breakdown and ATP synthesis, thereby providing pyruvate to the tricarboxylic acid cycle (TCA cycle). The cytosolic pyruvate kinase (cPK) represents a key glycolytic enzyme by catalyzing phosphate transfer from phosphoenolpyruvate (PEP) to ADP for the synthesis of ATP. Besides its important functions in cellular energy homeostasis, the activity of cytosolic pyruvate kinase underlies tight regulation, for instance by allosteric effectors, that impact stability of its quaternary structure. We determined five cytosol-localized pyruvate kinases, out of the fourteen putative pyruvate kinase genes encoded by the Arabidopsis thaliana genome, by investigation of phylogeny and localization of yellow fluorescent protein (YFP) fusion proteins. Analysis of promoter β-glucuronidase (GUS) reporter lines revealed an isoform-specific expression pattern for the five enzymes, subject to plant tissue and developmental stage. Investigation of the heterologously expressed and purified cytosolic pyruvate kinases revealed that these enzymes are differentially regulated by metabolites, such as citrate, fructose-1,6-bisphosphate (FBP) and ATP. In addition, measured in vitro enzyme activities suggest that pyruvate kinase subunit complexes consisting of cPK2/3 and cPK4/5 isoforms, respectively, bear regulatory properties. In summary, our study indicates that the five identified cytosolic pyruvate kinase isoforms adjust the carbohydrate flux through the glycolytic pathway in Arabidopsis thaliana, by distinct regulatory qualities, such as individual expression pattern as well as dissimilar responsiveness to allosteric effectors and enzyme subgroup association.
Collapse
|
6
|
Qari HA, Oves M. Fatty acid synthesis by Chlamydomonas reinhardtii in phosphorus limitation. J Bioenerg Biomembr 2020; 52:27-38. [DOI: 10.1007/s10863-019-09813-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
|
7
|
Lin D, Zhang L, Mei J, Chen J, Piao Z, Lee G, Dong Y. Mutation of the rice TCM12 gene encoding 2,3-bisphosphoglycerate-independent phosphoglycerate mutase affects chlorophyll synthesis, photosynthesis and chloroplast development at seedling stage at low temperatures. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:585-594. [PMID: 30803106 DOI: 10.1111/plb.12978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Glycolysis is a central metabolic pathway that provides energy and products of primary metabolites. 2,3-Biphosphoglycerate-independent phosphoglycerate mutase (iPGAM) is a key enzyme that catalyses the reversible interconversion of 3-phosphoglycerate (3-PGA) to 2-phosphoglycerate (2-PGA) in glycolysis. Low temperature is a common abiotic stress in rice production. However, the mechanism for rice iPGAM genes is not fully understood at low temperature. In this study, the rice mutant tcm12, with chlorosis, malformed chloroplasts and impaired photosynthesis, was grown at a low temperature (<20 °C) to the three-leaf stage, while the normal phenotype at 32 °C was used. Chlorophyll fluorescence analysis and transmission electron microscopy were used to examine features of the tcm12 mutant. The inheritance behaviour and function of TCM12 were then analysed thorough map-based cloning, transgenic complementation and subcellular localisation. The thermo-sensitive chlorosis phenotype was caused by a single nucleotide mutation (T→C) on the fifth exon of TCM12 (LOC_Os12g35040) encoding iPGAM, localised to both nucleus and membranes. In addition, TCM12 was constitutively expressed, and its disruption resulted in down-regulation of some genes associated with chlorophyll biosynthesis and photosynthesis at low temperatures (20 °C). This is the first report of the involvement of rice iPGAM gene in chlorophyll synthesis, photosynthesis and chloroplast development, providing new insights into the mechanisms underlying early growth of rice at low temperatures.
Collapse
Affiliation(s)
- D Lin
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - L Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - J Mei
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - J Chen
- College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Z Piao
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Fengxian District, Shanghai 3, China
| | - G Lee
- National Institute of Agricultural Science, Jeon Ju, Korea
| | - Y Dong
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
8
|
Li-Beisson Y, Thelen JJ, Fedosejevs E, Harwood JL. The lipid biochemistry of eukaryotic algae. Prog Lipid Res 2019; 74:31-68. [PMID: 30703388 DOI: 10.1016/j.plipres.2019.01.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Algal lipid metabolism fascinates both scientists and entrepreneurs due to the large diversity of fatty acyl structures that algae produce. Algae have therefore long been studied as sources of genes for novel fatty acids; and, due to their superior biomass productivity, algae are also considered a potential feedstock for biofuels. However, a major issue in a commercially viable "algal oil-to-biofuel" industry is the high production cost, because most algal species only produce large amounts of oils after being exposed to stress conditions. Recent studies have therefore focused on the identification of factors involved in TAG metabolism, on the subcellular organization of lipid pathways, and on interactions between organelles. This has been accompanied by the development of genetic/genomic and synthetic biological tools not only for the reference green alga Chlamydomonas reinhardtii but also for Nannochloropsis spp. and Phaeodactylum tricornutum. Advances in our understanding of enzymes and regulatory proteins of acyl lipid biosynthesis and turnover are described herein with a focus on carbon and energetic aspects. We also summarize how changes in environmental factors can impact lipid metabolism and describe present and potential industrial uses of algal lipids.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance F-13108, France.
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - Eric Fedosejevs
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
9
|
Inorganic carbon and nitrogen assimilation in cellular compartments of a benthic kleptoplastic foraminifer. Sci Rep 2018; 8:10140. [PMID: 29973634 PMCID: PMC6031614 DOI: 10.1038/s41598-018-28455-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/20/2018] [Indexed: 11/08/2022] Open
Abstract
Haynesina germanica, an ubiquitous benthic foraminifer in intertidal mudflats, has the remarkable ability to isolate, sequester, and use chloroplasts from microalgae. The photosynthetic functionality of these kleptoplasts has been demonstrated by measuring photosystem II quantum efficiency and O2 production rates, but the precise role of the kleptoplasts in foraminiferal metabolism is poorly understood. Thus, the mechanism and dynamics of C and N assimilation and translocation from the kleptoplasts to the foraminiferal host requires study. The objective of this study was to investigate, using correlated TEM and NanoSIMS imaging, the assimilation of inorganic C and N (here ammonium, NH4+) in individuals of a kleptoplastic benthic foraminiferal species. H. germanica specimens were incubated for 20 h in artificial seawater enriched with H13CO3- and 15NH4+ during a light/dark cycle. All specimens (n = 12) incorporated 13C into their endoplasm stored primarily in the form of lipid droplets. A control incubation in darkness resulted in no 13C-uptake, strongly suggesting that photosynthesis is the process dominating inorganic C assimilation. Ammonium assimilation was observed both with and without light, with diffuse 15N-enrichment throughout the cytoplasm and distinct 15N-hotspots in fibrillar vesicles, electron-opaque bodies, tubulin paracrystals, bacterial associates, and, rarely and at moderate levels, in kleptoplasts. The latter observation might indicate that the kleptoplasts are involved in N assimilation. However, the higher N assimilation observed in the foraminiferal endoplasm incubated without light suggests that another cytoplasmic pathway is dominant, at least in darkness. This study clearly shows the advantage provided by the kleptoplasts as an additional source of carbon and provides observations of ammonium uptake by the foraminiferal cell.
Collapse
|
10
|
Findinier J, Tunçay H, Schulz-Raffelt M, Deschamps P, Spriet C, Lacroix JM, Duchêne T, Szydlowski N, Li-Beisson Y, Peltier G, D'Hulst C, Wattebled F, Dauvillée D. The Chlamydomonas mex1 mutant shows impaired starch mobilization without maltose accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5177-5189. [PMID: 29040651 DOI: 10.1093/jxb/erx343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The MEX1 locus of Chlamydomonas reinhardtii was identified in a genetic screen as a factor that affects starch metabolism. Mutation of MEX1 causes a slow-down in the mobilization of storage polysaccharide. Cosegregation and functional complementation analyses were used to assess the involvement of the Mex1 protein in starch degradation. Heterologous expression experiments performed in Escherichia coli and Arabidopsis thaliana allowed us to test the capacity of the algal protein in maltose export. In contrast to the A. thaliana mex1 mutant, the mutation in C. reinhardtii does not lead to maltose accumulation and growth impairment. Although localized in the plastid envelope, the algal protein does not transport maltose efficiently across the envelope, but partly complements the higher plant mutant. Both Mex orthologs restore the growth of the E. coli ptsG mutant strain on glucose-containing medium, revealing the capacity of these proteins to transport this hexose. These findings suggest that Mex1 is essential for starch mobilization in both Chlamydomonas and Arabidopsis, and that this protein family may support several functions and not only be restricted to maltose export across the plastidial envelope.
Collapse
Affiliation(s)
- Justin Findinier
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Hande Tunçay
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Miriam Schulz-Raffelt
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Commissariat à l'Energie Atomique Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Philippe Deschamps
- Université Paris-Sud 11, CNRS UMR 8079 Unité d'Ecologie, Systématique et Evolution, 91400 Orsay, France
| | - Corentin Spriet
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Jean-Marie Lacroix
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Thierry Duchêne
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Nicolas Szydlowski
- Université de Lille, CNRS, USR 3290-MSAP-Miniaturisation pour la Synthèse l'Analyse et la Protéomique, 59000 Lille, France
| | - Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Commissariat à l'Energie Atomique Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Gilles Peltier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Commissariat à l'Energie Atomique Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Christophe D'Hulst
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Fabrice Wattebled
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - David Dauvillée
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| |
Collapse
|
11
|
Wyatt LE, Strickler SR, Mueller LA, Mazourek M. Comparative analysis of Cucurbita pepo metabolism throughout fruit development in acorn squash and oilseed pumpkin. HORTICULTURE RESEARCH 2016; 3:16045. [PMID: 27688889 PMCID: PMC5030761 DOI: 10.1038/hortres.2016.45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 05/23/2023]
Abstract
Both the fruit mesocarp and the seeds of winter squash can be used for consumption, although the focus of breeding efforts varies by cultivar. Cultivars bred for fruit consumption are selected for fruit mesocarp quality traits such as carotenoid content, percent dry matter, and percent soluble solids, while these traits are essentially ignored in oilseed pumpkins. To compare fruit development in these two types of squash, we sequenced the fruit transcriptome of two cultivars bred for different purposes: an acorn squash, 'Sweet REBA', and an oilseed pumpkin, 'Lady Godiva'. Putative metabolic pathways were developed for carotenoid, starch, and sucrose synthesis in winter squash fruit and squash homologs were identified for each of the structural genes in the pathways. Gene expression, especially of known rate-limiting and branch point genes, corresponded with metabolite accumulation both across development and between the two cultivars. Thus, developmental regulation of metabolite genes is an important factor in winter squash fruit quality.
Collapse
Affiliation(s)
- Lindsay E Wyatt
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850, USA
| | | | - Lukas A Mueller
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Michael Mazourek
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
12
|
Młodzińska E, Zboińska M. Phosphate Uptake and Allocation - A Closer Look at Arabidopsis thaliana L. and Oryza sativa L. FRONTIERS IN PLANT SCIENCE 2016; 7:1198. [PMID: 27574525 PMCID: PMC4983557 DOI: 10.3389/fpls.2016.01198] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/27/2016] [Indexed: 05/17/2023]
Abstract
This year marks the 20th anniversary of the discovery and characterization of the two Arabidopsis PHT1 genes encoding the phosphate transporter in Arabidopsis thaliana. So far, multiple inorganic phosphate (Pi) transporters have been described, and the molecular basis of Pi acquisition by plants has been well-characterized. These genes are involved in Pi acquisition, allocation, and/or signal transduction. This review summarizes how Pi is taken up by the roots and further distributed within two plants: A. thaliana and Oryza sativa L. by plasma membrane phosphate transporters PHT1 and PHO1 as well as by intracellular transporters: PHO1, PHT2, PHT3, PHT4, PHT5 (VPT1), SPX-MFS and phosphate translocators family. We also describe the role of the PHT1 transporters in mycorrhizal roots of rice as an adaptive strategy to cope with limited phosphate availability in soil.
Collapse
Affiliation(s)
- Ewa Młodzińska
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of WrocławWrocław, Poland
| | | |
Collapse
|
13
|
Mernberger M, Moog D, Stork S, Zauner S, Maier UG, Hüllermeier E. Protein sub-cellular localization prediction for special compartments via optimized time series distances. J Bioinform Comput Biol 2014; 12:1350016. [PMID: 24467755 DOI: 10.1142/s0219720013500169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Predicting the sub-cellular localization of proteins is an important task in bioinformatics, for which many standard prediction tools are available. While these tools are powerful in general and capable of predicting protein localization for the most common compartments, their performance strongly depends on the organism of interest. More importantly, there are special compartments, such as the apicoplast of apicomplexan parasites, for which these tools cannot provide a prediction at all. In the absence of a highly conserved targeting signal, even motif searches may not be able to provide a lead for the accurate prediction of protein localization for a compartment of interest. In order to approach difficult cases of that kind, we propose an alternative method that complements existing approaches by using a more targeted protein sequence model. Moreover, our method makes use of (weighted) measures for time series comparison. To demonstrate its performance, we use this method for predicting localization in special compartments of three different species, for which existing methods yield only sub-optimal results. As shown experimentally, our method is indeed capable of producing reliable predictions of sub-cellular localization for difficult cases, i.e. if training data is scarce and a potential protein targeting signal may not be well conserved.
Collapse
Affiliation(s)
- Marco Mernberger
- Department of Mathematics and Computer Science, University of Marburg, Hans-Meerwein Straße, Marburg 35032, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
A genome-scale model (GSM) is an in silico metabolic model comprising hundreds or thousands of chemical reactions that constitute the metabolic inventory of a cell, tissue, or organism. A complete, accurate GSM, in conjunction with a simulation technique such as flux balance analysis (FBA), can be used to comprehensively predict cellular metabolic flux distributions for a given genotype and given environmental conditions. Apart from enabling a user to quantitatively visualize carbon flow through metabolic pathways, these flux predictions also facilitate the hypothesis of new network properties. By simulating the impacts of environmental stresses or genetic interventions on metabolism, GSMs can aid the formulation of nontrivial metabolic engineering strategies. GSMs for plants and other eukaryotes are significantly more complicated than those for prokaryotes due to their extensive compartmentalization and size. The reconstruction of a GSM involves creating an initial model, curating the model, and then rendering the model ready for FBA. Model reconstruction involves obtaining organism-specific reactions from the annotated genome sequence or organism-specific databases. Model curation involves determining metabolite protonation status or charge, ensuring that reactions are stoichiometrically balanced, assigning reactions to appropriate subcellular compartments, deleting generic reactions or creating specific versions of them, linking dead-end metabolites, and filling of pathway gaps to complete the model. Subsequently, the model requires the addition of transport, exchange, and biomass synthesis reactions to make it FBA-ready. This cycle of editing, refining, and curation has to be performed iteratively to obtain an accurate model. This chapter outlines the reconstruction and curation of GSMs with a focus on models of plant metabolism.
Collapse
|
15
|
Manandhar-Shrestha K, Tamot B, Pratt EPS, Saitie S, Bräutigam A, Weber APM, Hoffmann-Benning S. Comparative proteomics of chloroplasts envelopes from bundle sheath and mesophyll chloroplasts reveals novel membrane proteins with a possible role in c4-related metabolite fluxes and development. FRONTIERS IN PLANT SCIENCE 2013; 4:65. [PMID: 23543921 PMCID: PMC3610082 DOI: 10.3389/fpls.2013.00065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/08/2013] [Indexed: 05/08/2023]
Abstract
As the world population grows, our need for food increases drastically. Limited amounts of arable land lead to a competition between food and fuel crops, while changes in the global climate may impact future crop yields. Thus, a second "green revolution" will need a better understanding of the processes essential for plant growth and development. One approach toward the solution of this problem is to better understand regulatory and transport processes in C4 plants. C4 plants display an up to 10-fold higher apparent CO2 assimilation and higher yields while maintaining high water use efficiency. This requires differential regulation of mesophyll (M) and bundle sheath (BS) chloroplast development as well as higher metabolic fluxes of photosynthetic intermediates between cells and particularly across chloroplast envelopes. While previous analyses of overall chloroplast membranes have yielded significant insight, our comparative proteomics approach using enriched BS and M chloroplast envelopes of Zea mays allowed us to identify 37 proteins of unknown function that have not been seen in these earlier studies. We identified 280 proteins, 84% of which are known/predicted to be present in chloroplasts. Seventy-four percent have a known or predicted membrane association. Twenty-one membrane proteins were 2-15 times more abundant in BS cells, while 36 of the proteins were more abundant in M chloroplast envelopes. These proteins could represent additional candidates of proteins essential for development or metabolite transport processes in C4 plants. RT-PCR confirmed differential expression of 13 candidate genes. Chloroplast association for seven proteins was confirmed using YFP/GFP labeling. Gene expression of four putative transporters was examined throughout the leaf and during the greening of leaves. Genes for a PIC-like protein and an ER-AP-like protein show an early transient increase in gene expression during the transition to light. In addition, PIC gene expression is increased in the immature part of the leaf and was lower in the fully developed parts of the leaf, suggesting a need for/incorporation of the protein during chloroplast development.
Collapse
Affiliation(s)
- K. Manandhar-Shrestha
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - B. Tamot
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - E. P. S. Pratt
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - S. Saitie
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - A. Bräutigam
- Plant Biochemistry, Heinrich-Heine University DüsseldorfDüsseldorf, Germany
| | - A. P. M. Weber
- Plant Biochemistry, Heinrich-Heine University DüsseldorfDüsseldorf, Germany
| | - Susanne Hoffmann-Benning
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| |
Collapse
|
16
|
Albrecht U, Bowman KD. Transcriptional response of susceptible and tolerant citrus to infection with Candidatus Liberibacter asiaticus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:118-30. [PMID: 22325873 DOI: 10.1016/j.plantsci.2011.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 05/06/2023]
Abstract
Candidatus Liberibacter asiaticus (Las), a non-culturable phloem-limited bacterium, is the suspected causal agent of huanglongbing (HLB) in Florida. HLB is one of the most devastating diseases of citrus and no resistant cultivars have been identified to date, though tolerance has been observed in the genus Poncirus and some of its hybrids. This study compares transcriptional changes in tolerant US-897 (Citrus reticulata Blanco×Poncirus trifoliata L. Raf.) and susceptible 'Cleopatra' mandarin (C. reticulata) seedlings in response to infection with Las using the Affymetrix GeneChip citrus array, with the main objective of identifying genes associated with tolerance to HLB. Microarray analysis identified 326 genes which were significantly upregulated by at least 4-fold in the susceptible genotype, compared with only 17 genes in US-897. Exclusively upregulated in US-897 was a gene for a 2-oxoglutarate (2OG) and Fe(II)-dependant oxygenase, an important enzyme involved in the biosynthesis of plant secondary metabolites. More than eight hundred genes were expressed at much higher levels in US-897 independent of infection with Las. Among these, genes for a constitutive disease resistance protein (CDR1) were notable. The possible involvement of these and other detected genes in tolerance to HLB and their possible use for biotechnology are discussed.
Collapse
Affiliation(s)
- Ute Albrecht
- US Horticultural Research Laboratory, US Department of Agriculture, Agricultural Research Service, Fort Pierce, FL 34945, USA.
| | | |
Collapse
|
17
|
Angaman DM, Petrizzo R, Hernández-Gras F, Romero-Segura C, Pateraki I, Busquets M, Boronat A. Precursor uptake assays and metabolic analyses in isolated tomato fruit chromoplasts. PLANT METHODS 2012; 8:1. [PMID: 22243738 PMCID: PMC3269359 DOI: 10.1186/1746-4811-8-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/13/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Carotenoids are the most widespread group of pigments found in nature. In addition to their role in the physiology of the plant, carotenoids also have nutritional relevance as their incorporation in the human diet provides health benefits. In non-photosynthetic tissues, carotenoids are synthesized and stored in specialized plastids called chromoplasts. At present very little is known about the origin of the metabolic precursors and cofactors required to sustain the high rate of carotenoid biosynthesis in these plastids. Recent proteomic data have revealed a number of biochemical and metabolic processes potentially operating in fruit chromoplasts. However, considering that chloroplast to chromoplast differentiation is a very rapid process during fruit ripening, there is the possibility that some of the proteins identified in the proteomic analysis could represent remnants no longer having a functional role in chromoplasts. Therefore, experimental validation is necessary to prove whether these predicted processes are actually operative in chromoplasts. RESULTS A method has been established for high-yield purification of tomato fruit chromoplasts suitable for metabolic studies. Radiolabeled precursors were efficiently incorporated and further metabolized in isolated chromoplast. Analysis of labeled lipophilic compounds has revealed that lipid biosynthesis is a very efficient process in chromoplasts, while the relatively low incorporation levels found in carotenoids suggest that lipid production may represent a competing pathway for carotenoid biosynthesis. Malate and pyruvate are efficiently converted into acetyl-CoA, in agreement with the active operation of the malic enzyme and the pyruvate dehydrogenase complex in the chromoplast. Our results have also shown that isolated chromoplasts can actively sustain anabolic processes without the exogenous supply of ATP, thus suggesting that these organelles may generate this energetic cofactor in an autonomous way. CONCLUSIONS We have set up a method for high yield purification of intact tomato fruit chromoplasts suitable for precursor uptake assays and metabolic analyses. Using targeted radiolabeled precursors we have been able to unravel novel biochemical and metabolic aspects related with carotenoid and lipid biosynthesis in tomato fruit chromoplasts. The reported chromoplast system could represent a valuable platform to address the validation and characterization of functional processes predicted from recent transcriptomic and proteomic data.
Collapse
Affiliation(s)
- Djédoux Maxime Angaman
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028-Barcelona, Spain
- Unité Pédagogique et de Recherche (UPR) en Biochimie et Microbiologie, Unité Régionale de l'Enseignement Supérieur (URES) de Daloa, Université d'Abobo-Adjamé, 02 BP 150 Daloa, Côte d'Ivoire
| | - Rocco Petrizzo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028-Barcelona, Spain
| | - Francesc Hernández-Gras
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028-Barcelona, Spain
- Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus Universitat Auntònoma de Barcelona, Bellaterra-Cerdanyola del Vallès, 08193-Barcelona, Spain
| | - Carmen Romero-Segura
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028-Barcelona, Spain
- Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus Universitat Auntònoma de Barcelona, Bellaterra-Cerdanyola del Vallès, 08193-Barcelona, Spain
| | - Irene Pateraki
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028-Barcelona, Spain
- Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus Universitat Auntònoma de Barcelona, Bellaterra-Cerdanyola del Vallès, 08193-Barcelona, Spain
| | - Montserrat Busquets
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028-Barcelona, Spain
| | - Albert Boronat
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028-Barcelona, Spain
- Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus Universitat Auntònoma de Barcelona, Bellaterra-Cerdanyola del Vallès, 08193-Barcelona, Spain
| |
Collapse
|
18
|
Yang Y, Jin H, Chen Y, Lin W, Wang C, Chen Z, Han N, Bian H, Zhu M, Wang J. A chloroplast envelope membrane protein containing a putative LrgB domain related to the control of bacterial death and lysis is required for chloroplast development in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2012; 193:81-95. [PMID: 21916894 DOI: 10.1111/j.1469-8137.2011.03867.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
• A protein encoded by At1g32080 was consistently identified in proteomic studies of Arabidopsis chloroplast envelope membranes, but its function remained unclear. The protein, designated AtLrgB, may have evolved from a gene fusion of lrgA and lrgB. In bacteria, two homologous operons, lrgAB and cidAB, participate in an emerging mechanism to control cell death and lysis. • We aim to characterize AtLrgB using reverse genetics and cell biological and biochemical analysis. • AtLrgB is expressed in leaves, but not in roots. T-DNA insertion mutation of AtLrgB produced plants with interveinal chlorotic and premature necrotic leaves. Overexpression of full-length AtLrgB (or its LrgA and LrgB domains, separately), under the control of CaMV 35S promoter, produced plants exhibiting veinal chlorosis and delayed greening. At the end of light period, the T-DNA mutant had high starch and low sucrose contents in leaves, while the 35S:AtLrgB plants had low starch and high sucrose contents. Metabolite profiling revealed that AtLrgB appeared not to directly transport triose phosphate or hexose phosphates. In yeast cells, AtLrgB could augment nystatin-induced membrane permeability. • Our work indicates that AtLrgB is a new player in chloroplast development, carbon partitioning and leaf senescence, although its molecular mechanism remains to be established.
Collapse
Affiliation(s)
- Yanjun Yang
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Haiyan Jin
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yong Chen
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Weiqiang Lin
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chaoqun Wang
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zhehao Chen
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Ning Han
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Hongwu Bian
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Muyuan Zhu
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Junhui Wang
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
19
|
Linka M, Weber APM. Evolutionary Integration of Chloroplast Metabolism with the Metabolic Networks of the Cells. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Dodonova SO, Bulychev AA. Cyclosis-related asymmetry of chloroplast-plasma membrane interactions at the margins of illuminated area in Chara corallina cells. PROTOPLASMA 2011; 248:737-749. [PMID: 21103897 DOI: 10.1007/s00709-010-0241-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/03/2010] [Indexed: 05/30/2023]
Abstract
Cytoplasmic streaming in plant cells is an effective means of intracellular transport. The cycling of ions and metabolites between the cytosol and chloroplasts in illuminated cell regions may alter the cytoplasm composition, while directional flow of this modified cytoplasm may affect the plasma membrane and chloroplast activities in cell regions residing downstream of the illumination area. The impact of local illumination is predicted to be asymmetric because the cell regions located downstream and upstream in the cytoplasmic flow with respect to illumination area would be exposed to flowing cytoplasm whose solute composition was influenced by photosynthetic or dark metabolism. This hypothesis was checked by measuring H(+)-transporting activity of plasmalemma and chlorophyll fluorescence of chloroplasts in shaded regions of Chara corallina internodal cells near opposite borders of illuminated region (white light, beam width 2 mm). Both the apoplastic pH and chlorophyll fluorescence, recorded in shade regions at equal distances from illuminated area, exhibited asymmetric light-on responses depending on orientation of cytoplasmic streaming at the light-shade boundary. In the region where the cytoplasm flowed from illuminated area to the measurement area, the alkaline zone (a zone with high plasma membrane conductance) was formed within 4-min illumination, whereas no alkaline zone was observed in the area where cytoplasm approached the boundary from darkened regions. The results emphasize significance of cyclosis in lateral distribution of a functionally active intermediate capable of affecting the membrane transport across the plasmalemma, the functional activity of chloroplasts, and pattern formation in the plant cell.
Collapse
Affiliation(s)
- Svetlana O Dodonova
- Department of Biophysics, Faculty of Biology, Moscow State University, Moscow, 119991, Russia
| | | |
Collapse
|
21
|
Fettke J, Nunes-Nesi A, Fernie AR, Steup M. Identification of a novel heteroglycan-interacting protein, HIP 1.3, from Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1415-25. [PMID: 21087810 DOI: 10.1016/j.jplph.2010.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 05/04/2023]
Abstract
Plastidial degradation of transitory starch yields mainly maltose and glucose. Following the export into the cytosol, maltose acts as donor for a glucosyl transfer to cytosolic heteroglycans as mediated by a cytosolic transglucosidase (DPE2; EC 2.4.1.25) and the second glucosyl residue is liberated as glucose. The cytosolic phosphorylase (Pho2/PHS2; EC 2.4.1.1) also interacts with heteroglycans using the same intramolecular sites as DPE2. Thus, the two glucosyl transferases interconnect the cytosolic pools of glucose and glucose 1-phosphate. Due to the complex monosaccharide pattern, other heteroglycan-interacting proteins (HIPs) are expected to exist. Identification of those proteins was approached by using two types of affinity chromatography. Heteroglycans from leaves of Arabidopsis thaliana (Col-0) covalently bound to Sepharose served as ligands that were reacted with a complex mixture of buffer-soluble proteins from Arabidopsis leaves. Binding proteins were eluted by sodium chloride. For identification, SDS-PAGE, tryptic digestion and MALDI-TOF analyses were applied. A strongly interacting polypeptide (approximately 40kDa; designated as HIP1.3) was observed as product of locus At1g09340. Arabidopsis mutants deficient in HIP1.3 were reduced in growth and contained heteroglycans displaying an altered monosaccharide pattern. Wild type plants express HIP1.3 most strongly in leaves. As revealed by immuno fluorescence, HIP1.3 is located in the cytosol of mesophyll cells but mostly associated with the cytosolic surface of the chloroplast envelope membranes. In an HIP1.3-deficient mutant the immunosignal was undetectable. Metabolic profiles from leaves of this mutant and wild type plants as well were determined by GC-MS. As compared to the wild type control, more than ten metabolites, such as ascorbic acid, fructose, fructose bisphosphate, glucose, glycine, were elevated in darkness but decreased in the light. Although the biochemical function of HIP1.3 has not yet been elucidated, it is likely to possess an important function in the central carbon metabolism of higher plants.
Collapse
Affiliation(s)
- Joerg Fettke
- Mass Spectrometry of Biopolymers, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam-Golm, Germany
| | | | | | | |
Collapse
|
22
|
Malinova I, Steup M, Fettke J. Starch-related cytosolic heteroglycans in roots from Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1406-1414. [PMID: 21269731 DOI: 10.1016/j.jplph.2010.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/17/2010] [Accepted: 12/18/2010] [Indexed: 05/30/2023]
Abstract
Both photoautotrophic and heterotrophic plant cells are capable of accumulating starch inside the plastid. However, depending on the metabolic state of the respective cell the starch-related carbon fluxes are different. The vast majority of the transitory starch biosynthesis relies on the hexose phosphate pools derived from the reductive pentose phosphate cycle and, therefore, is restricted to ongoing photosynthesis. Transitory starch is usually degraded in the subsequent dark period and mainly results in the formation of neutral sugars, such as glucose and maltose, that both are exported into the cytosol. The cytosolic metabolism of the two carbohydrates includes reversible glucosyl transfer reactions to a heteroglycan that are mediated by two glucosyl transferases, DPE2 and PHS2 (or, in all other species, Pho2). In heterotrophic cells, accumulation of starch mostly depends on the long distance transport of reduced carbon compounds from source to sink organs and, therefore, includes as an essential step the import of carbohydrates from the cytosol into the starch forming plastids. In this communication, we focus on starch metabolism in heterotrophic tissues from Arabidopsis thaliana wild type plants (and in various starch-related mutants as well). By using hydroponically grown A. thaliana plants, we were able to analyse starch-related biochemical processes in leaves and roots from the same plants. Within the roots we determined starch levels and the morphology of native starch granules. Cytosolic and apoplastic heteroglycans were analysed in roots and compared with those from leaves of the same plants. A. thaliana mutants lacking functional enzymes either inside the plastid (such as phosphoglucomutase) or in the cytosol (disproportionating isoenzyme 2 or the phosphorylase isozyme, PHS2) were included in this study. In roots and leaves from the three mutants (and from the respective wild type organ as well), starch and heteroglycans as well as enzyme patterns were analysed.
Collapse
Affiliation(s)
- Irina Malinova
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam-Golm, Germany
| | | | | |
Collapse
|
23
|
Cho MH, Lim H, Shin DH, Jeon JS, Bhoo SH, Park YI, Hahn TR. Role of the plastidic glucose translocator in the export of starch degradation products from the chloroplasts in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2011; 190:101-112. [PMID: 21175634 DOI: 10.1111/j.1469-8137.2010.03580.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In higher plants, the plastidic glucose translocator (pGlcT) is assumed to play a role in the export of starch degradation products, but this has not yet been studied in detail. To elucidate the role of pGlcT in the leaves of Arabidopsis thaliana, we generated single and double mutants lacking three plastidic sugar transporters, pGlcT, the triose-phosphate/phosphate translocator (TPT), and the maltose transporter (MEX1), and analyzed their growth phenotypes, photosynthetic properties and metabolite contents. In contrast to the pglct-1 and pglct-2 single mutants lacking a visible growth phenotype, the double mutants pglct-1/mex1 and tpt-2/mex1 displayed markedly inhibited plant growth. Notably, pglct-1/mex1 exhibited more severe growth retardation than that seen for the other mutants. In parallel, the most severe reductions in sucrose content and starch turnover were observed in the pglct-1/mex1 mutant. The concurrent loss of pGlcT and MEX1 also resulted in severely reduced photosynthetic activities and extreme chloroplast abnormalities. These findings suggest that pGlcT, together with MEX1, contributes significantly to the export of starch degradation products from chloroplasts in A. thaliana leaves, and that this starch-mediated pathway for photoassimilate export via pGlcT and MEX1 is essential for the growth and development of A. thaliana.
Collapse
Affiliation(s)
- Man-Ho Cho
- Plant Metabolism Research Center & Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Hyemin Lim
- Plant Metabolism Research Center & Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Dong Ho Shin
- Plant Metabolism Research Center & Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Jong-Seong Jeon
- Plant Metabolism Research Center & Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Seong Hee Bhoo
- Plant Metabolism Research Center & Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Youn-Il Park
- Department of Biological Science and Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
| | - Tae-Ryong Hahn
- Plant Metabolism Research Center & Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
24
|
Fettke J, Malinova I, Albrecht T, Hejazi M, Steup M. Glucose-1-phosphate transport into protoplasts and chloroplasts from leaves of Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1723-34. [PMID: 21115809 PMCID: PMC3091119 DOI: 10.1104/pp.110.168716] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 11/25/2010] [Indexed: 05/18/2023]
Abstract
Almost all glucosyl transfer reactions rely on glucose-1-phosphate (Glc-1-P) that either immediately acts as glucosyl donor or as substrate for the synthesis of the more widely used Glc dinucleotides, ADPglucose or UDPglucose. In this communication, we have analyzed two Glc-1-P-related processes: the carbon flux from externally supplied Glc-1-P to starch by either mesophyll protoplasts or intact chloroplasts from Arabidopsis (Arabidopsis thaliana). When intact protoplasts or chloroplasts are incubated with [U-(14)C]Glc-1-P, starch is rapidly labeled. Incorporation into starch is unaffected by the addition of unlabeled Glc-6-P or Glc, indicating a selective flux from Glc-1-P to starch. However, illuminated protoplasts incorporate less (14)C into starch when unlabeled bicarbonate is supplied in addition to the (14)C-labeled Glc-1-P. Mesophyll protoplasts incubated with [U-(14)C]Glc-1-P incorporate (14)C into the plastidial pool of adenosine diphosphoglucose. Protoplasts prepared from leaves of mutants of Arabidopsis that lack either the plastidial phosphorylase or the phosphoglucomutase isozyme incorporate (14)C derived from external Glc-1-P into starch, but incorporation into starch is insignificant when protoplasts from a mutant possessing a highly reduced ADPglucose pyrophosphorylase activity are studied. Thus, the path of assimilatory starch biosynthesis initiated by extraplastidial Glc-1-P leads to the plastidial pool of adenosine diphosphoglucose, and at this intermediate it is fused with the Calvin cycle-driven route. Mutants lacking the plastidial phosphoglucomutase contain a small yet significant amount of transitory starch.
Collapse
Affiliation(s)
- Joerg Fettke
- Mass Spectrometry of Biopolymers, University of Potsdam, 14476 Potsdam-Golm, Germany.
| | | | | | | | | |
Collapse
|
25
|
Breuers FKH, Bräutigam A, Weber APM. The Plastid Outer Envelope - A Highly Dynamic Interface between Plastid and Cytoplasm. FRONTIERS IN PLANT SCIENCE 2011; 2:97. [PMID: 22629266 PMCID: PMC3355566 DOI: 10.3389/fpls.2011.00097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/29/2011] [Indexed: 05/09/2023]
Abstract
Plastids are the defining organelles of all photosynthetic eukaryotes. They are the site of photosynthesis and of a large number of other essential metabolic pathways, such as fatty acid and amino acid biosyntheses, sulfur and nitrogen assimilation, and aromatic and terpenoid compound production, to mention only a few examples. The metabolism of plastids is heavily intertwined and connected with that of the surrounding cytosol, thus causing massive traffic of metabolic precursors, intermediates, and products. Two layers of biological membranes that are called the inner (IE) and the outer (OE) plastid envelope membranes bound the plastids of Archaeplastida. While the IE is generally accepted as the osmo-regulatory barrier between cytosol and stroma, the OE was considered to represent an unspecific molecular sieve, permeable for molecules of up to 10 kDa. However, after the discovery of small substrate specific pores in the OE, this view has come under scrutiny. In addition to controlling metabolic fluxes between plastid and cytosol, the OE is also crucial for protein import into the chloroplast. It contains the receptors and translocation channel of the TOC complex that is required for the canonical post-translational import of nuclear-encoded, plastid-targeted proteins. Further, the OE is a metabolically active compartment of the chloroplast, being involved in, e.g., fatty acid metabolism and membrane lipid production. Also, recent findings hint on the OE as a defense platform against several biotic and abiotic stress conditions, such as cold acclimation, freezing tolerance, and phosphate deprivation. Moreover, dynamic non-covalent interactions between the OE and the endomembrane system are thought to play important roles in lipid and non-canonical protein trafficking between plastid and endoplasmic reticulum. While proteomics and bioinformatics has provided us with comprehensive but still incomplete information on proteins localized in the plastid IE, the stroma, and the thylakoids, our knowledge of the protein composition of the plastid OE is far from complete. In this article, we report on the recent progress in discovering novel OE proteins to draw a conclusive picture of the OE. A "parts list" of the plastid OE will be presented, using data generated by proteomics of plastids isolated from various plant sources.
Collapse
Affiliation(s)
| | - Andrea Bräutigam
- Institut für Biochemie der Pflanzen, Heinrich-Heine Universität DüsseldorfDüsseldorf, Germany
| | - Andreas P. M. Weber
- Institut für Biochemie der Pflanzen, Heinrich-Heine Universität DüsseldorfDüsseldorf, Germany
- *Correspondence: Andreas P. M. Weber, Institut für Biochemie der Pflanzen, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, D-40225 Düsseldorf, Germany. e-mail:
| |
Collapse
|
26
|
Sánchez-Calderón L, Chacón-López A, Alatorre-Cobos F, Leyva-González MA, Herrera-Estrella L. Sensing and Signaling of PO 4 3−. SIGNALING AND COMMUNICATION IN PLANTS 2011. [DOI: 10.1007/978-3-642-14369-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
|
28
|
Bar-Even A, Noor E, Lewis NE, Milo R. Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci U S A 2010; 107:8889-94. [PMID: 20410460 PMCID: PMC2889323 DOI: 10.1073/pnas.0907176107] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbon fixation is the process by which CO(2) is incorporated into organic compounds. In modern agriculture in which water, light, and nutrients can be abundant, carbon fixation could become a significant growth-limiting factor. Hence, increasing the fixation rate is of major importance in the road toward sustainability in food and energy production. There have been recent attempts to improve the rate and specificity of Rubisco, the carboxylating enzyme operating in the Calvin-Benson cycle; however, they have achieved only limited success. Nature employs several alternative carbon fixation pathways, which prompted us to ask whether more efficient novel synthetic cycles could be devised. Using the entire repertoire of approximately 5,000 metabolic enzymes known to occur in nature, we computationally identified alternative carbon fixation pathways that combine existing metabolic building blocks from various organisms. We compared the natural and synthetic pathways based on physicochemical criteria that include kinetics, energetics, and topology. Our study suggests that some of the proposed synthetic pathways could have significant quantitative advantages over their natural counterparts, such as the overall kinetic rate. One such cycle, which is predicted to be two to three times faster than the Calvin-Benson cycle, employs the most effective carboxylating enzyme, phosphoenolpyruvate carboxylase, using the core of the naturally evolved C4 cycle. Although implementing such alternative cycles presents daunting challenges related to expression levels, activity, stability, localization, and regulation, we believe our findings suggest exciting avenues of exploration in the grand challenge of enhancing food and renewable fuel production via metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
| | | | - Nathan E. Lewis
- Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel; and
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0412
| | - Ron Milo
- Departments of Plant Sciences and
| |
Collapse
|
29
|
Abstract
Due to the presence of plastids, eukaryotic photosynthetic cells represent the most highly compartmentalized eukaryotic cells. This high degree of compartmentation requires the transport of solutes across intracellular membrane systems by specific membrane transporters. In this review, we summarize the recent progress on functionally characterized intracellular plant membrane transporters and we link transporter functions to Arabidopsis gene identifiers and to the transporter classification system. In addition, we outline challenges in further elucidating the plant membrane permeome and we provide an outline of novel approaches for the functional characterization of membrane transporters.
Collapse
Affiliation(s)
- Nicole Linka
- Institute of Plant Biochemistry, Heinrich-Heine Universität Düsseldorf, Geb. 26.03.01, Universitätsstrasse 1, Düsseldorf, Germany
| | | |
Collapse
|
30
|
Attwood TK, Kell DB, McDermott P, Marsh J, Pettifer SR, Thorne D. Calling International Rescue: knowledge lost in literature and data landslide! Biochem J 2009; 424:317-33. [PMID: 19929850 PMCID: PMC2805925 DOI: 10.1042/bj20091474] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 09/29/2009] [Indexed: 11/17/2022]
Abstract
We live in interesting times. Portents of impending catastrophe pervade the literature, calling us to action in the face of unmanageable volumes of scientific data. But it isn't so much data generation per se, but the systematic burial of the knowledge embodied in those data that poses the problem: there is so much information available that we simply no longer know what we know, and finding what we want is hard - too hard. The knowledge we seek is often fragmentary and disconnected, spread thinly across thousands of databases and millions of articles in thousands of journals. The intellectual energy required to search this array of data-archives, and the time and money this wastes, has led several researchers to challenge the methods by which we traditionally commit newly acquired facts and knowledge to the scientific record. We present some of these initiatives here - a whirlwind tour of recent projects to transform scholarly publishing paradigms, culminating in Utopia and the Semantic Biochemical Journal experiment. With their promises to provide new ways of interacting with the literature, and new and more powerful tools to access and extract the knowledge sequestered within it, we ask what advances they make and what obstacles to progress still exist? We explore these questions, and, as you read on, we invite you to engage in an experiment with us, a real-time test of a new technology to rescue data from the dormant pages of published documents. We ask you, please, to read the instructions carefully. The time has come: you may turn over your papers...
Collapse
Key Words
- dynamic document content
- interactive pdf
- linking documents with research data
- manuscript mark-up
- mark-up standards
- semantic publishing
- bj, biochemical journal
- cohse, conceptual open hypermedia services environment
- doi, digital object identifier
- go, gene ontology
- gpcr, g protein-coupled receptor
- html, hypertext mark-up language
- iupac, international union of pure and applied chemistry
- ntd, neglected tropical diseases
- obo, open biomedical ontologies
- pdb, protein data bank
- pdf, portable document format
- plos, public library of science
- pmc, pubmed central
- ptm, post-translational modification
- rsc, royal society of chemistry
- sda, structured digital abstract
- stm, scientific, technical and medical
- ud, utopia documents
- xml, extensible mark-up language
- xmp, extensible metadata platform
Collapse
Affiliation(s)
- Teresa K Attwood
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Bodył A, Mackiewicz P, Stiller JW. Early steps in plastid evolution: current ideas and controversies. Bioessays 2009; 31:1219-32. [DOI: 10.1002/bies.200900073] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Allen DK, Libourel IGL, Shachar-Hill Y. Metabolic flux analysis in plants: coping with complexity. PLANT, CELL & ENVIRONMENT 2009; 32:1241-57. [PMID: 19422611 DOI: 10.1111/j.1365-3040.2009.01992.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Theory and experience in metabolic engineering both show that metabolism operates at the network level. In plants, this complexity is compounded by a high degree of compartmentation and the synthesis of a very wide array of secondary metabolic products. A further challenge to understanding and predicting plant metabolic function is posed by our ignorance about the structure of metabolic networks even in well-studied systems. Metabolic flux analysis (MFA) provides tools to measure and model the functioning of metabolism, and is making significant contributions to coping with their complexity. This review gives an overview of different MFA approaches, the measurements required to implement them and the information they yield. The application of MFA methods to plant systems is then illustrated by several examples from the recent literature. Next, the challenges that plant metabolism poses for MFA are discussed together with ways that these can be addressed. Lastly, new developments in MFA are described that can be expected to improve the range and reliability of plant MFA in the coming years.
Collapse
Affiliation(s)
- Doug K Allen
- Michigan State University, Plant Biology Department, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
33
|
Jamai A, Salomé PA, Schilling SH, Weber APM, McClung CR. Arabidopsis photorespiratory serine hydroxymethyltransferase activity requires the mitochondrial accumulation of ferredoxin-dependent glutamate synthase. THE PLANT CELL 2009; 21:595-606. [PMID: 19223513 PMCID: PMC2660619 DOI: 10.1105/tpc.108.063289] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The dual affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase for O(2) and CO(2) results in the net loss of fixed carbon and energy in a process termed photorespiration. The photorespiratory cycle is complex and occurs in three organelles, chloroplasts, peroxisomes, and mitochondria, which necessitates multiple steps to transport metabolic intermediates. Genetic analysis has identified a number of mutants exhibiting photorespiratory chlorosis at ambient CO(2), including several with defects in mitochondrial serine hydroxymethyltransferase (SHMT) activity. One class of mutants deficient in SHMT1 activity affects SHM1, which encodes the mitochondrial SHMT required for photorespiration. In this work, we describe a second class of SHMT1-deficient mutants defective in a distinct gene, GLU1, which encodes Ferredoxin-dependent Glutamate Synthase (Fd-GOGAT). Fd-GOGAT is a chloroplastic enzyme responsible for the reassimilation of photorespiratory ammonia as well as for primary nitrogen assimilation. We show that Fd-GOGAT is dual targeted to the mitochondria and the chloroplasts. In the mitochondria, Fd-GOGAT interacts physically with SHMT1, and this interaction is necessary for photorespiratory SHMT activity. The requirement of protein-protein interactions and complex formation for photorespiratory SHMT activity demonstrates more complicated regulation of this crucial high flux pathway than anticipated.
Collapse
Affiliation(s)
- Aziz Jamai
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|
34
|
Fettke J, Hejazi M, Smirnova J, Höchel E, Stage M, Steup M. Eukaryotic starch degradation: integration of plastidial and cytosolic pathways. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2907-22. [PMID: 19325165 DOI: 10.1093/jxb/erp054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Starch is an important plant product widely used as a nutrient, as a source of renewable energy, and for many technological applications. In plants, starch is the almost ubiquitous storage carbohydrate whereas most heterotrophic prokaryotes and eukaryotes rely on glycogen. Despite close similarities in basic chemical features, starch and glycogen differ in both structural and physicochemical properties. Glycogen is a hydrosoluble macromolecule with evenly distributed branching points. Starch exists as a water-insoluble particle having a defined (and evolutionary conserved) internal structure. The biochemistry of starch requires the co-operation of up to 40 distinct (iso)enzymes whilst approximately 10 (iso)enzymes permit glycogen metabolism. The biosynthesis and degradation of native starch include the transition of carbohydrates from the soluble to the solid phase and vice versa. In this review, two novel aspects of the eukaryotic plastidial starch degradation are discussed: Firstly, biochemical reactions that take place at the surface of particulate glucans and mediate the phase transition of carbohydrates. Secondly, processes that occur downstream of the export of starch-derived sugars into the cytosol. Degradation of transitory starch mainly results in the formation of neutral sugars, such as glucose and maltose, that are transported into the cytosol via the respective translocators. The cytosolic metabolism of the neutral sugars includes the action of a hexokinase, a phosphoglucomutase, and a transglucosidase that utilizes high molecular weight glycans as a transient glucosyl acceptor or donor. Data are included on the transglucosidase (disproportionating isozyme 2) in Cyanophora paradoxa that accumulates storage carbohydrates in the cytosol rather than in the plastid.
Collapse
Affiliation(s)
- Joerg Fettke
- Institute of Biochemistry and Biology, Mass Spectrometry of Biopolymers, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Reidel EJ, Turgeon R, Cheng L. A maltose transporter from apple is expressed in source and sink tissues and complements the Arabidopsis maltose export-defective mutant. PLANT & CELL PHYSIOLOGY 2008; 49:1607-1613. [PMID: 18776201 DOI: 10.1093/pcp/pcn134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Prior to the cytosolic synthesis of transport sugars during transitory starch utilization, intermediate products of starch breakdown, such as maltose, must be exported from chloroplasts. Recent work in Arabidopsis indicates that a novel transporter mediates maltose transfer across the chloroplast inner envelope membrane. We cloned a gene from an apple cDNA library that is highly homologous with the Arabidopsis maltose transporter, MEX1. Expression levels of MdMEX determined by real-time PCR were low in the tips of growing shoots, higher in expanding leaves and maximal in mature leaves. Expression was also detected in fruits and roots, indicating a role for MdMEX in starch mobilization in sink tissues. The cDNA from apple was subcloned into an expression cassette between the cauliflower mosaic virus 35S promoter and the sGFP (green fluorescent protein) coding sequence. Plants of the Arabidopsis maltose excess1-1 mutant, which is homozygous for a defective MEX1 allele, were transformed with the 35S:MdMEX:GFP construct. Fluorescence of GFP was localized to chloroplasts, indicating that Arabidopsis recognized the predicted 55 amino acid chloroplast transit peptide in the apple protein. The phenotypes of several independently transformed lines were analyzed. The complemented plants were relieved of the severe stunting and chlorosis characteristic of mex1-1 plants. Furthermore, starch levels and concentrations of soluble sugars, leaf chlorophyll content and maximum quantum efficiency of PSII were restored to wild-type levels. MdMEX (Malus domestica maltose transporter) is the second member of the unique maltose transporter gene family.
Collapse
Affiliation(s)
- Edwin J Reidel
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
36
|
Bräutigam A, Hoffmann-Benning S, Hofmann-Benning S, Weber APM. Comparative proteomics of chloroplast envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelope to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes. PLANT PHYSIOLOGY 2008; 148:568-79. [PMID: 18599648 PMCID: PMC2528119 DOI: 10.1104/pp.108.121012] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 06/23/2008] [Indexed: 05/19/2023]
Abstract
C(4) plants have up to 10-fold higher apparent CO(2) assimilation rates than the most productive C(3) plants. This requires higher fluxes of metabolic intermediates across the chloroplast envelope membranes of C(4) plants in comparison with those of C(3) plants. In particular, the fluxes of metabolites involved in the biochemical inorganic carbon pump of C(4) plants, such as malate, pyruvate, oxaloacetate, and phosphoenolpyruvate, must be considerably higher in C(4) plants because they exceed the apparent rate of photosynthetic CO(2) assimilation, whereas they represent relatively minor fluxes in C(3) plants. While the enzymatic steps involved in the C(4) biochemical inorganic carbon pump have been studied in much detail, little is known about the metabolite transporters in the envelope membranes of C(4) chloroplasts. In this study, we used comparative proteomics of chloroplast envelope membranes from the C(3) plant pea (Pisum sativum) and mesophyll cell chloroplast envelopes from the C(4) plant maize (Zea mays) to analyze the adaptation of the mesophyll cell chloroplast envelope proteome to the requirements of C(4) photosynthesis. We show that C(3)- and C(4)-type chloroplasts have qualitatively similar but quantitatively very different chloroplast envelope membrane proteomes. In particular, translocators involved in the transport of triosephosphate and phosphoenolpyruvate as well as two outer envelope porins are much more abundant in C(4) plants. Several putative transport proteins have been identified that are highly abundant in C(4) plants but relatively minor in C(3) envelopes. These represent prime candidates for the transport of C(4) photosynthetic intermediates, such as pyruvate, oxaloacetate, and malate.
Collapse
Affiliation(s)
- Andrea Bräutigam
- Institute for Plant Biochemistry, Heinrich-Heine-University, D-40225 Duesseldorf, Germany
| | | | | | | |
Collapse
|
37
|
Bräutigam A, Shrestha RP, Whitten D, Wilkerson CG, Carr KM, Froehlich JE, Weber APM. Low-coverage massively parallel pyrosequencing of cDNAs enables proteomics in non-model species: comparison of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes. J Biotechnol 2008; 136:44-53. [PMID: 18394738 DOI: 10.1016/j.jbiotec.2008.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/22/2008] [Accepted: 02/07/2008] [Indexed: 11/17/2022]
Abstract
Proteomics is a valuable tool for establishing and comparing the protein content of defined tissues, cell types, or subcellular structures. Its use in non-model species is currently limited because the identification of peptides critically depends on sequence databases. In this study, we explored the potential of a preliminary cDNA database for the non-model species Pisum sativum created by a small number of massively parallel pyrosequencing (MPSS) runs for its use in proteomics and compared it to comprehensive cDNA databases from Medicago truncatula and Arabidopsis thaliana created by Sanger sequencing. Each database was used to identify proteins from a pea leaf chloroplast envelope preparation. It is shown that the pea database identified more proteins with higher accuracy, although the sequence quality was low and the sequence contigs were short compared to databases from model species. Although the number of identified proteins in non-species-specific databases could potentially be increased by lowering the threshold for successful protein identifications, this strategy markedly increases the number of wrongly identified proteins. The identification rate with non-species-specific databases correlated with spectral abundance but not with the predicted membrane helix content, and strong conservation is necessary but not sufficient for protein identification with a non-species-specific database. It is concluded that massively parallel sequencing of cDNAs substantially increases the power of proteomics in non-model species.
Collapse
Affiliation(s)
- Andrea Bräutigam
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Tyra HM, Linka M, Weber APM, Bhattacharya D. Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol 2008; 8:R212. [PMID: 17919328 PMCID: PMC2246286 DOI: 10.1186/gb-2007-8-10-r212] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/23/2007] [Accepted: 10/05/2007] [Indexed: 11/10/2022] Open
Abstract
Analysis of plastid transporter proteins in Arabidopsis suggests a host origin and provides new insights into plastid evolution. Background It is generally accepted that a single primary endosymbiosis in the Plantae (red, green (including land plants), and glaucophyte algae) common ancestor gave rise to the ancestral photosynthetic organelle (plastid). Plastid establishment necessitated many steps, including the transfer and activation of endosymbiont genes that were relocated to the nuclear genome of the 'host' followed by import of the encoded proteins into the organelle. These innovations are, however, highly complex and could not have driven the initial formation of the endosymbiosis. We postulate that the re-targeting of existing host solute transporters to the plastid fore-runner was critical for the early success of the primary endosymbiosis, allowing the host to harvest endosymbiont primary production. Results We tested this model of transporter evolution by conducting a comprehensive analysis of the plastid permeome in Arabidopsis thaliana. Of 137 well-annotated transporter proteins that were initially considered, 83 that are broadly distributed in Plantae were submitted to phylogenetic analysis. Consistent with our hypothesis, we find that 58% of Arabidopsis transporters, including all carbohydrate transporters, are of host origin, whereas only 12% arose from the cyanobacterial endosymbiont. Four transporter genes are derived from a Chlamydia-like source, suggesting that establishment of the primary plastid likely involved contributions from at least two prokaryotic sources. Conclusion Our results indicate that the existing plastid solute transport system shared by Plantae is derived primarily from host genes. Important contributions also came from the cyanobacterial endosymbiont and Chlamydia-like bacteria likely co-resident in the first algae.
Collapse
Affiliation(s)
- Heather M Tyra
- Department of Biological Sciences and Roy J Carver Center for Comparative Genomics, 446 Biology Building, University of Iowa, Iowa City, IA 52242-1324, USA.
| | | | | | | |
Collapse
|
39
|
Hanson MR, Sattarzadeh A. Dynamic morphology of plastids and stromules in angiosperm plants. PLANT, CELL & ENVIRONMENT 2008; 31:646-57. [PMID: 18088332 DOI: 10.1111/j.1365-3040.2007.01768.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Labelling of plastids with fluorescent proteins has revealed the diversity of their sizes and shapes in different tissues of vascular plants. Stromules, stroma-filled tubules comprising thin extensions of the stroma surrounded by the double envelope membrane, have been observed to emanate from all major types of plastid, though less common on chloroplasts. In some tissue types, stromules are highly dynamic, forming, shrinking, attaching, releasing and fragmenting. Stromule formation is negatively affected by treatment of tissue with cytoskeletal inhibitors. Plastids can be connected by stromules, through which green fluorescent protein (GFP) and fluorescently tagged chloroplast protein complexes have been observed to flow. Within the highly viscous stroma, proteins traffic by diffusion as well as by an active process of directional travel, whose mechanism is unknown. In addition to exchanging materials between plastids, stromules may also serve to increase the surface area of the envelope for import and export, reduce diffusion distance between plastids and other organelles for exchange of materials, and anchor the plastid onto attachment points for proper positioning with the plant cell. Future studies should reveal how these functions may affect plants in adapting to the challenges of a changing environment.
Collapse
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853, USA.
| | | |
Collapse
|
40
|
Irihimovitch V, Yehudai-Resheff S. Phosphate and sulfur limitation responses in the chloroplast of Chlamydomonas reinhardtii. FEMS Microbiol Lett 2008; 283:1-8. [PMID: 18410347 DOI: 10.1111/j.1574-6968.2008.01154.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Phosphorus (P) and sulfur (S) are two macronutrients that photosynthetic organisms require in relatively large amounts despite their levels in the environment often being limited. Accordingly, to adapt to random changes in macronutrient concentrations, plants and algae must sense and respond in a coordinated fashion. The unicellular green alga Chlamydomonas reinhardti is a widely used model organism for the study of P and S stress responses. Herein, we review the current knowledge of P and S nutrient stress responses, highlighting the roles of P and S key global-regulator proteins in mediating signals that link P and S detection to different chloroplast nutrient stress responses.
Collapse
Affiliation(s)
- Vered Irihimovitch
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan, Israel.
| | | |
Collapse
|
41
|
Soitamo AJ, Piippo M, Allahverdiyeva Y, Battchikova N, Aro EM. Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC PLANT BIOLOGY 2008; 8:13. [PMID: 18230142 PMCID: PMC2253524 DOI: 10.1186/1471-2229-8-13] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 01/29/2008] [Indexed: 05/19/2023]
Abstract
BACKGROUND Light and temperature are the key abiotic modulators of plant gene expression. In the present work the effect of light under low temperature treatment was analyzed by using microarrays. Specific attention was paid to the up and down regulated genes by using promoter analysis. This approach revealed putative regulatory networks of transcription factors behind the induction or repression of the genes. RESULTS Induction of a few oxidative stress related genes occurred only under the Cold/Light treatment including genes encoding iron superoxide dismutase (FeSOD) and glutathione-dependent hydrogen peroxide peroxidases (GPX). The ascorbate dependent water-water cycle genes showed no response to Cold/Light or Cold/Dark treatments. Cold/Light specifically induced genes encoding protective molecules like phenylpropanoids and photosynthesis-related carotenoids also involved in the biosynthesis of hormone abscisic acid (ABA) crucial for cold acclimation. The enhanced/repressed transcript levels were not always reflected on the respective protein levels as demonstrated by dehydrin proteins. CONCLUSION Cold/Light up regulated twice as many genes as the Cold/Dark treatment and only the combination of light and low temperature enhanced the expression of several genes earlier described as cold-responsive genes. Cold/Light-induced genes included both cold-responsive transcription factors and several novel ones containing zinc-finger, MYB, NAC and AP2 domains. These are likely to function in concert in enhancing gene expression. Similar response elements were found in the promoter regions of both the transcription factors and their target genes implying a possible parallel regulation or amplification of the environmental signals according to the metabolic/redox state in the cells.
Collapse
Affiliation(s)
- Arto J Soitamo
- University of Turku, Department of Biology, Plant Physiology and Molecular Biology, Tykistokatu 6, BioCity A, 6floor, FIN-20520 Turku, Finland
| | - Mirva Piippo
- University of Turku, Department of Biology, Plant Physiology and Molecular Biology, Tykistokatu 6, BioCity A, 6floor, FIN-20520 Turku, Finland
| | - Yagut Allahverdiyeva
- University of Turku, Department of Biology, Plant Physiology and Molecular Biology, Tykistokatu 6, BioCity A, 6floor, FIN-20520 Turku, Finland
| | - Natalia Battchikova
- University of Turku, Department of Biology, Plant Physiology and Molecular Biology, Tykistokatu 6, BioCity A, 6floor, FIN-20520 Turku, Finland
| | - Eva-Mari Aro
- University of Turku, Department of Biology, Plant Physiology and Molecular Biology, Tykistokatu 6, BioCity A, 6floor, FIN-20520 Turku, Finland
| |
Collapse
|
42
|
Chen S, Hajirezaei MR, Zanor MI, Hornyik C, Debast S, Lacomme C, Fernie AR, Sonnewald U, Börnke F. RNA interference-mediated repression of sucrose-phosphatase in transgenic potato tubers (Solanum tuberosum) strongly affects the hexose-to-sucrose ratio upon cold storage with only minor effects on total soluble carbohydrate accumulation. PLANT, CELL & ENVIRONMENT 2008; 31:165-176. [PMID: 17999659 DOI: 10.1111/j.1365-3040.2007.01747.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Storage of potato tubers at low temperatures leads to the accumulation of glucose and fructose in a process called 'cold sweetening'. The aim of this work was to investigate the role of sucrose-phosphatase (SPP) in potato tuber carbohydrate metabolism at low temperature (4 degrees C). To this end, RNA interference (RNAi) was used to reduce SPP expression in transgenic potato tubers. Analysis of SPP specific small interfering RNAs (siRNAs), SPP protein accumulation and enzyme activity indicated that SPP silencing in transgenic tubers was stable during the cold treatment. Analysis of soluble carbohydrates showed that in transgenic tubers, cold-induced hexogenesis was inhibited while, despite strongly reduced SPP activity, sucrose levels exceeded wild-type (WT) values four- to fivefold after 34 d of cold treatment. This led to a drastic change in the hexose-to-sucrose ratio from 1.9 in WT tubers to 0.15 to 0.11 in transgenic tubers, while the total amount of soluble sugars was largely unchanged in both genotypes. Sucrose-6(F)-phosphate (Suc6P), the substrate of SPP, accumulated in transgenic tubers in the cold which most likely enables the residual enzyme to operate with maximal catalytic activity in vivo and thus, in the long term, counterbalances reduced SPP activity in the transformants. Northern analysis revealed that cold-induced expression of vacuolar invertase (VI) was blocked in SPP-silenced tubers explaining a reduced sucrose-to-hexose conversion. Suc6P levels were found to negatively correlate with VI expression. A possible role of Suc6P in regulating VI expression is discussed.
Collapse
Affiliation(s)
- Shuai Chen
- Friedrich-Alexander-Universität, Lehrstuhl für Biochemie, Staudtstr. 5, 91058 Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Andre C, Froehlich JE, Moll MR, Benning C. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. THE PLANT CELL 2007; 19:2006-22. [PMID: 17557808 PMCID: PMC1955724 DOI: 10.1105/tpc.106.048629] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Glycolysis is a ubiquitous pathway thought to be essential for the production of oil in developing seeds of Arabidopsis thaliana and oil crops. Compartmentation of primary metabolism in developing embryos poses a significant challenge for testing this hypothesis and for the engineering of seed biomass production. It also raises the question whether there is a preferred route of carbon from imported photosynthate to seed oil in the embryo. Plastidic pyruvate kinase catalyzes a highly regulated, ATP-producing reaction of glycolysis. The Arabidopsis genome encodes 14 putative isoforms of pyruvate kinases. Three genes encode subunits alpha, beta(1), and beta(2) of plastidic pyruvate kinase. The plastid enzyme prevalent in developing seeds likely has a subunit composition of 4alpha4beta(1), is most active at pH 8.0, and is inhibited by Glu. Disruption of the gene encoding the beta(1) subunit causes a reduction in plastidic pyruvate kinase activity and 60% reduction in seed oil content. The seed oil phenotype is fully restored by expression of the beta(1) subunit-encoding cDNA and partially by the beta(2) subunit-encoding cDNA. Therefore, the identified pyruvate kinase catalyzes a crucial step in the conversion of photosynthate into oil, suggesting a preferred plastid route from its substrate phosphoenolpyruvate to fatty acids.
Collapse
Affiliation(s)
- Carl Andre
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
44
|
Kempa S, Rozhon W, Šamaj J, Erban A, Baluška F, Becker T, Haselmayer J, Schleiff E, Kopka J, Hirt H, Jonak C. A plastid-localized glycogen synthase kinase 3 modulates stress tolerance and carbohydrate metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:1076-90. [PMID: 17319843 PMCID: PMC1865003 DOI: 10.1111/j.1365-313x.2006.03025.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Revised: 11/03/2006] [Accepted: 11/11/2006] [Indexed: 05/14/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) was originally identified as a regulator of glycogen synthesis in mammals. Like starch in plants, glycogen is a polymer of glucose, and serves as an energy and carbon store. Starch is the main carbohydrate store in plants. Regulation of starch metabolism, in particular in response to environmental cues, is of primary importance for carbon and energy flow in plants but is still obscure. Here, we provide evidence that MsK4, a novel Medicago sativa GSK-3-like kinase, connects stress signalling with carbon metabolism. MsK4 was found to be a plastid-localized protein kinase that is associated with starch granules. High-salt stress rapidly induced the in vivo kinase activity of MsK4. Metabolic profiling of MsK4 over-expressor lines revealed changes in sugar metabolism, including increased amounts of maltose, the main degradation product of starch in leaves. Plants over-expressing MsK4 showed improved tolerance to salt stress. Moreover, under high-salinity conditions, MsK4-over-expressing plants accumulated significantly more starch and showed modified carbohydrate content compared with wild-type plants. Overall, these data indicate that MsK4 is an important regulator that adjusts carbohydrate metabolism to environmental stress.
Collapse
Affiliation(s)
- Stefan Kempa
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BiocenterDr Bohrgasse 3, A-1030 Vienna, Austria
| | - Wilfried Rozhon
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BiocenterDr Bohrgasse 3, A-1030 Vienna, Austria
| | - Jozef Šamaj
- Institute of Plant Genetics and Biotechnology, Slovak Academy of SciencesAkademická 2, PO Box 39A, SK-950 07 Nitra, Slovak Republic
- Institute of Cellular and Molecular Botany, University of BonnKirschallee 1, D-53115 Bonn, Germany
| | - Alexander Erban
- Max Plank Institute of Molecular Plant BiologyAm Mühlenberg 1, D-14467 Golm, Germany
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of BonnKirschallee 1, D-53115 Bonn, Germany
| | - Thomas Becker
- Department of Biology I, Ludwig-Maximilians-University MunichMenzinger Straße 67, D-80638 Munich, Germany
| | - Joachim Haselmayer
- Max F. Perutz Laboratories, University of Vienna, Vienna BiocenterDr Bohrgasse 9, A-1030 Vienna, Austria
| | - Enrico Schleiff
- Department of Biology I, Ludwig-Maximilians-University MunichMenzinger Straße 67, D-80638 Munich, Germany
| | - Joachim Kopka
- Max Plank Institute of Molecular Plant BiologyAm Mühlenberg 1, D-14467 Golm, Germany
| | - Heribert Hirt
- Max F. Perutz Laboratories, University of Vienna, Vienna BiocenterDr Bohrgasse 9, A-1030 Vienna, Austria
| | - Claudia Jonak
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BiocenterDr Bohrgasse 3, A-1030 Vienna, Austria
| |
Collapse
|
45
|
Weber APM, Fischer K. Making the connections--the crucial role of metabolite transporters at the interface between chloroplast and cytosol. FEBS Lett 2007; 581:2215-22. [PMID: 17316618 DOI: 10.1016/j.febslet.2007.02.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 02/06/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Eukaryotic cells are most fascinating because of their high degree of compartmentation. This is particularly true for plant cells, due to the presence of chloroplasts, photosynthetic organelles of endosymbiotic origin that can be traced back to a single cyanobacterial ancestor. Plastids are major hubs in the metabolic network of plant cells, their metabolism being heavily intertwined with that of the cytosol and of other organelles. Solute transport across the plastid envelope by metabolite transporters is key to integrating plastid metabolism with that of other cellular compartments. Here, we review the advances in understanding metabolite transport across the plastid envelope membrane.
Collapse
Affiliation(s)
- Andreas P M Weber
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
46
|
Duy D, Soll J, Philippar K. Solute channels of the outer membrane: from bacteria to chloroplasts. Biol Chem 2007; 388:879-89. [PMID: 17696771 DOI: 10.1515/bc.2007.120] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chloroplasts, unique organelles of plants, originated from endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. It is assumed that the outer envelope membrane, which delimits the chloroplast from the surrounding cytosol, was thus inherited from its Gram-negative bacterial ancestor. This plastid-specific membrane is thus equipped with elements of prokaryotic and eukaryotic origin. In particular, the membrane-intrinsic outer envelope proteins (OEPs) form solute channels with properties reminiscent of porins and channels in the bacterial outer membrane. OEP channels are characterised by distinct specificities for metabolites and a quite peculiar expression pattern in specialised plant organs and plastids, thus disproving the assumption that the outer envelope is a non-specific molecular sieve. The same is true for the outer membrane of Gram-negative bacteria, which functions as a permeability barrier in addition to the cytoplasmic membrane, and embeds different classes of channel pores. The channels of these prokaryotic prototype proteins, ranging from unspecific porins to specific channels to ligand-gated receptors, are exclusively built of beta-barrels. Although most of the OEP channels are formed by beta-strands as well, phylogeny based on sequence homology alone is not feasible. Thus, the comparison of structural and functional properties of chloroplast outer envelope and bacterial outer membrane channels is required to pinpoint the ancestral OEP 'portrait gallery'.
Collapse
Affiliation(s)
- Daniela Duy
- Department Biologie 1, Botanik, Biochemie und Physiologie der Pflanzen, Ludwig-Maximilians-Universität München, Menzingerstrasse 67, D-80638 Munich, Germany
| | | | | |
Collapse
|
47
|
|
48
|
Weber APM, Horst RJ, Barbier GG, Oesterhelt C. Metabolism and metabolomics of eukaryotes living under extreme conditions. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 256:1-34. [PMID: 17241903 DOI: 10.1016/s0074-7696(07)56001-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Treatises on extremophiles are frequently focused on organisms belonging to the Archaea and Eubacteria kingdoms. However, a significant number of eukaryotes, both unicellular and multicellular, have evolved to live and thrive in extreme environments. Although less is known about eukaryotic life in extreme environments in comparison to prokaryotic extremophiles, advances in genomics and in comprehensive, high-throughput metabolic profiling techniques have provided new insight into the metabolic adaptations of eukaryotes living under extreme conditions. In this review, we will provide an overview of extremophilic life forms with emphasis on eukaryotes and we will compare metabolic adaptations in different eukaryotic extremophiles to identify generalities and specializations in adaptation to life under extreme conditions. Special emphasis will be devoted to the thermoacidophilic unicellular red alga Galdieria sulphuraria (Cyanidiaceae) as one example of a eukaryotic extremophile.
Collapse
Affiliation(s)
- Andreas P M Weber
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | | | | | | |
Collapse
|
49
|
Reumann S, Weber APM. Plant peroxisomes respire in the light: some gaps of the photorespiratory C2 cycle have become filled--others remain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1496-510. [PMID: 17046077 DOI: 10.1016/j.bbamcr.2006.09.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 09/01/2006] [Accepted: 09/06/2006] [Indexed: 11/20/2022]
Abstract
The most prominent role of peroxisomes in photosynthetic plant tissues is their participation in photorespiration, a process also known as the oxidative C2 cycle or the oxidative photosynthetic carbon cycle. Photorespiration is an essential process in land plants, as evident from the conditionally lethal phenotype of mutants deficient in enzymes or transport proteins involved in this pathway. The oxidative C2 cycle is a salvage pathway for phosphoglycolate, the product of the oxygenase activity of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), to the Calvin cycle intermediate phosphoglycerate. The pathway is highly compartmentalized and involves reactions in chloroplasts, peroxisomes, and mitochondria. The H2O2-producing enzyme glycolate oxidase, catalase, and several aminotransferases of the photorespiratory cycle are located in peroxisomes, with catalase representing the major constituent of the peroxisomal matrix in photosynthetic tissues. Although photorespiration is of major importance for photosynthesis, the identification of the enzymes involved in this process has only recently been completed. Only little is known about the metabolite transporters for the exchange of photorespiratory intermediates between peroxisomes and the other organelles involved, and about the regulation of the photorespiratory pathway. This review highlights recent developments in understanding photorespiration and identifies remaining gaps in our knowledge of this important metabolic pathway.
Collapse
Affiliation(s)
- Sigrun Reumann
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Georg-August-University of Goettingen, Justus-von-Liebig-Weg 11, D-37077 Goettingen, Germany.
| | | |
Collapse
|
50
|
Malone JG, Mittova V, Ratcliffe RG, Kruger NJ. The Response of Carbohydrate Metabolism in Potato Tubers to Low Temperature. ACTA ACUST UNITED AC 2006; 47:1309-22. [PMID: 16936336 DOI: 10.1093/pcp/pcj101] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work investigates the possible causes of cold-induced sweetening in potato by examining the impact of low temperature on carbohydrate metabolism in mature tubers. Metabolism in tuber discs was monitored by determining the redistribution of radiolabel following incubation in [U-(14)C]glucose. Estimates of flux based on the specific activity of hexose phosphates established that while incubation at 4 degrees C resulted in an immediate restriction in pathways of carbohydrate oxidation relative to activity at 25 degrees C, there was no corresponding increase in flux to soluble sugars. In contrast, prior storage at low temperature stimulated flux to sugars at both 4 and 25 degrees C. Comparison of (14)CO(2) release from specifically labeled glucose and gluconate fed to tuber discs at 4 and 25 degrees C indicated that flux through glycolysis was preferentially restricted relative to the oxidative pentose phosphate pathway at low temperature, irrespective of prior storage temperature. However, the degree of randomization of label between positions C1 and C6 in the fructosyl moiety of sucrose following metabolism of [1-(13)C]glucose established that there was no preferential inhibition of the recycling of triose phosphates to hexose phosphates at low temperature. These results indicate that sugar accumulation in tubers during storage in the cold is not a direct consequence of a constraint in carbohydrate oxidation, despite preferential restriction of glycolysis at low temperature. It is concluded that the cold lability of enzymes catalyzing the conversion of fructose 6-phosphate to fructose 1,6-bisphosphate is not a major factor in cold-induced sweetening in plants and that this widely held hypothesis should be abandoned.
Collapse
Affiliation(s)
- Jacob G Malone
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | |
Collapse
|