1
|
Wang H, Chen Y. Protecting plants from pathogens through arbuscular mycorrhiza: Role of fungal diversity. Microbiol Res 2024; 289:127919. [PMID: 39342745 DOI: 10.1016/j.micres.2024.127919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi play a crucial role in protecting host plants from pathogens. AM fungal taxa show varying abilities to hinder the development of plant pathogens with various underlying mechanisms of action, and plant defense through mycorrhization should be viewed to have a continuum of several possible mechanisms. However, an additive or synergistic effect is not always achieved. This review examines the potential mechanisms by which AM fungi enhance plant tolerance and defense against pathogens, as well as the possible interactive mechanisms among AM fungal traits that may lead to facilitative and antagonistic effect on plant defense outcomes. It also provides evidence demonstrating the benefits of AM fungal consortia used so far to protect crop plants from various pathogens. It concludes by proposing some biotechnological applications aimed at unraveling the connections between AM fungal diversity and their function to enhance efficacy of plant pathogen protection.
Collapse
Affiliation(s)
- Hao Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Yinglong Chen
- UWA School of Agriculture and Environment, and UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia.
| |
Collapse
|
2
|
Radić T, Vuković R, Gaši E, Kujundžić D, Čarija M, Balestrini R, Sillo F, Gambino G, Hančević K. Tripartite interactions between grapevine, viruses, and arbuscular mycorrhizal fungi provide insights into modulation of oxidative stress responses. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154372. [PMID: 39423687 DOI: 10.1016/j.jplph.2024.154372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) can be beneficial for plants exposed to abiotic and biotic stressors. Although widely present in agroecosystems, AMF influence on crop responses to virus infection is underexplored, particularly in woody plant species such as grapevine. Here, a two-year greenhouse experiment was set up to test the hypothesis that AMF alleviate virus-induced oxidative stress in grapevine. The 'Merlot' cultivar was infected with three grapevine-associated viruses and subsequently colonized with two AMF inocula, containing one or three species, respectively. Five and fifteen months after AMF inoculation, lipid peroxidation - LPO as an indicator of oxidative stress and indicators of antioxidative response (proline, ascorbate - AsA, superoxide dismutase - SOD, ascorbate- APX and guaiacol peroxidases - GPOD, polyphenol oxidase - PPO, glutathione reductase - GR) were analysed. Expression of genes coding for a stilbene synthase (STS1), an enhanced disease susceptibility (EDS1) and a lipoxygenase (LOX) were determined in the second harvesting. AMF induced reduction of AsA and SOD over both years, which, combined with not AMF-triggered APX and GR, suggests decreased activation of the ascorbate-glutathione cycle. In the mature phase of the AM symbiosis establishment GPOD emerged as an important mechanism for scavenging H2O2 accumulation. These results, together with reduction in STS1 and increase in EDS1 gene expression, suggest more efficient reactive oxygen species scavenging in plants inoculated with AMF. Composition of AMF inocula was important for proline accumulation. Overall, our study improves the knowledge on ubiquitous grapevine-virus-AMF systems in the field, highlighting that established functional AM symbiosis could reduce virus-induced stress.
Collapse
Affiliation(s)
- Tomislav Radić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21 000, Split, Croatia.
| | - Rosemary Vuković
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, 31000, Osijek, Croatia.
| | - Emanuel Gaši
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21 000, Split, Croatia.
| | - Daniel Kujundžić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, 31000, Osijek, Croatia.
| | - Mate Čarija
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21 000, Split, Croatia.
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, National research Council (IBBR-CNR), via Amendola 165/A, 70126, Bari, Italy.
| | - Fabiano Sillo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy.
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy.
| | - Katarina Hančević
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21 000, Split, Croatia.
| |
Collapse
|
3
|
Davidson-Lowe E, Zainuddin N, Trase O, McCarthy N, Ali JG. Arbuscular mycorrhizal fungi influence belowground interactions between a specialist root-feeder and its natural enemy. J Invertebr Pathol 2024; 207:108200. [PMID: 39374864 DOI: 10.1016/j.jip.2024.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/24/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
As primary producers, plants play a central role in mediating interactions across trophic levels. Although plants are the primary food source for herbivorous insects, they can protect themselves from herbivore damage. Many plants produce toxic compounds that directly reduce herbivore feeding, but plants also protect themselves indirectly by attracting natural enemies of the attacking herbivore through volatile signaling. These so-called tri-trophic interactions have historically been documented aboveground in aerial plant parts but are also known to occur belowground in root systems. In addition to herbivores, plants directly interact with other organisms, which can influence the outcomes of tri-trophic interactions. Arbuscular mycorrhizal fungi (AMF) are symbiotic soil microbes that colonize the roots of plants and facilitate nutrient uptake. These microbes can alter plant chemistry and subsequent resistance to herbivores. Few studies, however, have shown how AMF affect tri-trophic interactions above- or belowground. This study examines how AMF colonization affects the emission of root volatiles when plants are under attack by western corn rootworm, a problematic pest of corn, and subsequent attraction of entomopathogenic nematodes, a natural enemy of western corn rootworm. Mycorrhizal fungi increased rootworm survival but decreased larval weight. Differences were detected across root volatile profiles, but there was not a clear link between volatile signaling and nematode behavior. Nematodes were more attracted to non-mycorrhizal plants without rootworms and AMF alone in soil, suggesting that AMF may interfere with cues that are used in combination with volatiles which nematodes use to locate prey.
Collapse
Affiliation(s)
- Elizabeth Davidson-Lowe
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nursyafiqi Zainuddin
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Plant Protection, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Olivia Trase
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nathaniel McCarthy
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jared Gregory Ali
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Fiorilli V, Martínez-Medina A, Pozo MJ, Lanfranco L. Plant Immunity Modulation in Arbuscular Mycorrhizal Symbiosis and Its Impact on Pathogens and Pests. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:127-156. [PMID: 39251211 DOI: 10.1146/annurev-phyto-121423-042014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is the oldest and most widespread mutualistic association on Earth and involves plants and soil fungi belonging to Glomeromycotina. A complex molecular, cellular, and genetic developmental program enables partner recognition, fungal accommodation in plant tissues, and activation of symbiotic functions such as transfer of phosphorus in exchange for carbohydrates and lipids. AM fungi, as ancient obligate biotrophs, have evolved strategies to circumvent plant defense responses to guarantee an intimate and long-lasting mutualism. They are among those root-associated microorganisms able to boost plants' ability to cope with biotic stresses leading to mycorrhiza-induced resistance (MIR), which can be effective across diverse hosts and against different attackers. Here, we examine the molecular mechanisms underlying the modulation of plant immunity during colonization by AM fungi and at the onset and display of MIR against belowground and aboveground pests and pathogens. Understanding the MIR efficiency spectrum and its regulation is of great importance to optimizing the biotechnological application of these beneficial microbes for sustainable crop protection.
Collapse
Affiliation(s)
- V Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| | - A Martínez-Medina
- Department of Plant-Microbe Interactions, Institute of Natural Resources and Agrobiology of Salamanca, CSIC, Salamanca, Spain
| | - Maria J Pozo
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain;
| | - L Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| |
Collapse
|
5
|
Chen L, Zhang X, Li Q, Yang X, Huang Y, Zhang B, Ye L, Li X. Phosphatases: Decoding the Role of Mycorrhizal Fungi in Plant Disease Resistance. Int J Mol Sci 2024; 25:9491. [PMID: 39273439 PMCID: PMC11395649 DOI: 10.3390/ijms25179491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Mycorrhizal fungi, a category of fungi that form symbiotic relationships with plant roots, can participate in the induction of plant disease resistance by secreting phosphatase enzymes. While extensive research exists on the mechanisms by which mycorrhizal fungi induce resistance, the specific contributions of phosphatases to these processes require further elucidation. This article reviews the spectrum of mycorrhizal fungi-induced resistance mechanisms and synthesizes a current understanding of how phosphatases mediate these effects, such as the induction of defense structures in plants, the negative regulation of plant immune responses, and the limitation of pathogen invasion and spread. It explores the role of phosphatases in the resistance induced by mycorrhizal fungi and provides prospective future research directions in this field.
Collapse
Affiliation(s)
- Li Chen
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaoping Zhang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Qiang Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuezhen Yang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yu Huang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Bo Zhang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Lei Ye
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| |
Collapse
|
6
|
Moreira X, Martín-Cacheda L, Quiroga G, Lago-Núñez B, Röder G, Abdala-Roberts L. Testing the joint effects of arbuscular mycorrhizal fungi and ants on insect herbivory on potato plants. PLANTA 2024; 260:66. [PMID: 39080142 PMCID: PMC11289011 DOI: 10.1007/s00425-024-04492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
MAIN CONCLUSION Ants, but not mycorrhizae, significantly affected insect leaf-chewing herbivory on potato plants. However, there was no evidence of mutualistic interactive effects on herbivory. Plants associate with both aboveground and belowground mutualists, two prominent examples being ants and arbuscular mycorrhizal fungi (AMF), respectively. While both of these mutualisms have been extensively studied, joint manipulations testing their independent and interactive (non-additive) effects on plants are rare. To address this gap, we conducted a joint test of ant and AMF effects on herbivory by leaf-chewing insects attacking potato (Solanum tuberosum) plants, and further measured plant traits likely mediating mutualist effects on herbivory. In a field experiment, we factorially manipulated the presence of AMF (two levels: control and mycorrhization) and ants (two levels: exclusion and presence) and quantified the concentration of leaf phenolic compounds acting as direct defenses, as well as plant volatile organic compound (VOC) emissions potentially mediating direct (e.g., herbivore repellents) or indirect (e.g., ant attractants) defense. Moreover, we measured ant abundance and performed a dual-choice greenhouse experiment testing for effects of VOC blends (mimicking those emitted by control vs. AMF-inoculated plants) on ant attraction as a mechanism for indirect defense. Ant presence significantly reduced herbivory whereas mycorrhization had no detectable influence on herbivory and mutualist effects operated independently. Plant trait measurements indicated that mycorrhization had no effect on leaf phenolics but significantly increased VOC emissions. However, mycorrhization did not affect ant abundance and there was no evidence of AMF effects on herbivory operating via ant-mediated defense. Consistently, the dual-choice assay showed no effect of AMF-induced volatile blends on ant attraction. Together, these results suggest that herbivory on potato plants responds mainly to top-down (ant-mediated) rather than bottom-up (AMF-mediated) control, an asymmetry in effects which could have precluded mutualist non-additive effects on herbivory. Further research on this, as well as other plant systems, is needed to examine the ecological contexts under which mutualist interactive effects are more or less likely to emerge and their impacts on plant fitness and associated communities.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain.
| | - Lucía Martín-Cacheda
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Gabriela Quiroga
- Centro de Investigaciones Agrarias de Mabegondo (CIAM), Apartado de Correos 10, 15080 A, Coruña, Spain
| | - Beatriz Lago-Núñez
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Gregory Röder
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, México
| |
Collapse
|
7
|
Yoshida R, Taguchi S, Wakita C, Serikawa S, Miyaji H. Companion basil plants prime the tomato wound response through volatile signaling in a mixed planting system. PLANT CELL REPORTS 2024; 43:200. [PMID: 39039312 PMCID: PMC11263239 DOI: 10.1007/s00299-024-03285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
KEY MESSAGE Volatile compounds released from basil prime the tomato wound response by promoting jasmonic acid, mitogen-activated protein kinase, and reactive oxygen species signaling. Within mixed planting systems, companion plants can promote growth or enhance stress responses in target plants. However, the mechanisms underlying these effects remain poorly understood. To gain insight into the molecular nature of the effects of companion plants, we investigated the effects of basil plants (Ocimum basilicum var. minimum) on the wound response in tomato plants (Solanum lycopersicum cv. 'Micro-Tom') within a mixed planting system under environmentally controlled chamber. The results showed that the expression of Pin2, which specifically responds to mechanical wounding, was induced more rapidly and more strongly in the leaves of tomato plants cultivated with companion basil plants. This wound response priming effect was replicated through the exposure of tomato plants to an essential oil (EO) prepared from basil leaves. Tomato leaves pre-exposed to basil EO showed enhanced expression of genes related to jasmonic acid, mitogen-activated protein kinase (MAPK), and reactive oxygen species (ROS) signaling after wounding stress. Basil EO also enhanced ROS accumulation in wounded tomato leaves. The wound response priming effect of basil EO was confirmed in wounded Arabidopsis plants. Loss-of-function analysis of target genes revealed that MAPK genes play pivotal roles in controlling the observed priming effects. Spodoptera litura larvae-fed tomato leaves pre-exposed to basil EO showed reduced growth compared with larvae-fed control leaves. Thus, mixed planting with basil may enhance defense priming in both tomato and Arabidopsis plants through the activation of volatile signaling.
Collapse
Affiliation(s)
- Riichiro Yoshida
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, 890-0065, Japan.
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, 890-0065, Japan.
| | - Shoma Taguchi
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, 890-0065, Japan
| | - Chihiro Wakita
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, 890-0065, Japan
| | - Shinichiro Serikawa
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, 890-0065, Japan
| | - Hiroyuki Miyaji
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, 890-0065, Japan
| |
Collapse
|
8
|
Delaeter M, Magnin-Robert M, Randoux B, Lounès-Hadj Sahraoui A. Arbuscular Mycorrhizal Fungi as Biostimulant and Biocontrol Agents: A Review. Microorganisms 2024; 12:1281. [PMID: 39065050 PMCID: PMC11278648 DOI: 10.3390/microorganisms12071281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are soil microorganisms living in symbiosis with most terrestrial plants. They are known to improve plant tolerance to numerous abiotic and biotic stresses through the systemic induction of resistance mechanisms. With the aim of developing more sustainable agriculture, reducing the use of chemical inputs is becoming a major concern. After providing an overview on AMF history, phylogeny, development cycle and symbiosis benefits, the current review aims to explore the potential of AMF as biostimulants and/or biocontrol agents. Nowadays, AMF inoculums are already increasingly used as biostimulants, improving mineral nutrient plant acquisition. However, their role as a promising tool in the biocontrol market, as an alternative to chemical phytosanitary products, is underexplored and underdiscussed. Thus, in the current review, we will address the mechanisms of mycorrhized plant resistance to biotic stresses induced by AMF, and highlight the various factors in favor of inoculum application, but also the challenges that remain to be overcome.
Collapse
Affiliation(s)
| | | | | | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), Université du Littoral Côte d’Opale, 50 Rue Ferdinand Buisson, 62228 Calais, France
| |
Collapse
|
9
|
Kang Y, Twagirayezu G, Xu J, Wen Y, Shang P, Song J, Wang Q, Li X, Liu S, Chen T, Cheng T, Zhang J. Arbuscular Mycorrhizal Fungi Regulate Lipid and Amino Acid Metabolic Pathways to Promote the Growth of Poncirus trifoliata (L.) Raf. J Fungi (Basel) 2024; 10:427. [PMID: 38921413 PMCID: PMC11204456 DOI: 10.3390/jof10060427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Arbuscular mycorrhizal (AM) fungi can enhance the uptake of soil nutrients and water by citrus, promoting its growth. However, the specific mechanisms underlying the action of AM fungi in promoting the growth of citrus were not fully elucidated. This study aimed to explore the role of AM fungi Funneliformis mosseae in the regulatory mechanisms of P. trifoliata growth. Pot experiments combined with non-targeted metabolomics methods were used to observe the growth process and changes in metabolic products of P. trifoliata under the conditions of F. mosseae inoculation. The results showed that F. mosseae could form an excellent symbiotic relationship with P. trifoliata, thereby enhancing the utilization of soil nutrients and significantly promoting its growth. Compared with the control, the plant height, stem diameter, number of leaves, and aboveground and underground dry weight in the F. mosseae inoculation significantly increased by 2.57, 1.29, 1.57, 4.25, and 2.78 times, respectively. Moreover, the root system results confirmed that F. mosseae could substantially promote the growth of P. trifoliata. Meanwhile, the metabolomics data indicated that 361 differential metabolites and 56 metabolic pathways were identified in the roots of P. trifoliata and were inoculated with F. mosseae. This study revealed that the inoculated F. mosseae could participate in ABC transporters by upregulating their participation, glycerophospholipid metabolism, aminoacyl tRNA biosynthesis, tryptophan metabolism and metabolites from five metabolic pathways of benzoxazinoid biosynthesis [mainly enriched in lipid (39.50%) and amino acid-related metabolic pathways] to promote the growth of P. trifoliata.
Collapse
Affiliation(s)
- Yihao Kang
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.K.); (J.X.); (Y.W.); (J.S.); (Q.W.); (T.C.)
- School of Public Health, Xiamen University, Xiamen 361102, China;
| | - Gratien Twagirayezu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Xu
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.K.); (J.X.); (Y.W.); (J.S.); (Q.W.); (T.C.)
| | - Yunying Wen
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.K.); (J.X.); (Y.W.); (J.S.); (Q.W.); (T.C.)
- School of Public Health, Xiamen University, Xiamen 361102, China;
| | - Pengxiang Shang
- School of Public Health, Xiamen University, Xiamen 361102, China;
| | - Juan Song
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.K.); (J.X.); (Y.W.); (J.S.); (Q.W.); (T.C.)
| | - Qian Wang
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.K.); (J.X.); (Y.W.); (J.S.); (Q.W.); (T.C.)
| | - Xianliang Li
- Guangxi Academy of Specialty Crops, Guilin 541004, China; (X.L.); (S.L.)
| | - Shengqiu Liu
- Guangxi Academy of Specialty Crops, Guilin 541004, China; (X.L.); (S.L.)
| | - Tingsu Chen
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.K.); (J.X.); (Y.W.); (J.S.); (Q.W.); (T.C.)
| | - Tong Cheng
- School of Life Sciences, Xiamen University, Xiamen 361102, China;
| | - Jinlian Zhang
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.K.); (J.X.); (Y.W.); (J.S.); (Q.W.); (T.C.)
| |
Collapse
|
10
|
Sevillano-Caño J, García MJ, Córdoba-Galván C, Luque-Cruz C, Agustí-Brisach C, Lucena C, Ramos J, Pérez-Vicente R, Romera FJ. Exploring the Role of Debaryomyces hansenii as Biofertilizer in Iron-Deficient Environments to Enhance Plant Nutrition and Crop Production Sustainability. Int J Mol Sci 2024; 25:5729. [PMID: 38891917 PMCID: PMC11171756 DOI: 10.3390/ijms25115729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The European "Green Deal" policies are shifting toward more sustainable and environmentally conscious agricultural practices, reducing the use of chemical fertilizer and pesticides. This implies exploring alternative strategies. One promising alternative to improve plant nutrition and reinforce plant defenses is the use of beneficial microorganisms in the rhizosphere, such as "Plant-growth-promoting rhizobacteria and fungi". Despite the great abundance of iron (Fe) in the Earth's crust, its poor solubility in calcareous soil makes Fe deficiency a major agricultural issue worldwide. Among plant promoting microorganisms, the yeast Debaryomyces hansenii has been very recently incorporated, for its ability to induce morphological and physiological key responses to Fe deficiency in plants, under hydroponic culture conditions. The present work takes it a step further and explores the potential of D. hansenii to improve plant nutrition and stimulate growth in cucumber plants grown in calcareous soil, where ferric chlorosis is common. Additionally, the study examines D. hansenii's ability to induce systemic resistance (ISR) through a comparative relative expression study by qRT-PCR of ethylene (ET) biosynthesis (ACO1), or ET signaling (EIN2 and EIN3), and salicylic acid (SA) biosynthesis (PAL)-related genes. The results mark a significant milestone since D. hansenii not only enhances nutrient uptake and stimulates plant growth and flower development but could also amplify induced systemic resistance (ISR). Although there is still much work ahead, these findings make D. hansenii a promising candidate to be used for sustainable and environmentally friendly integrated crop management.
Collapse
Affiliation(s)
- Jesús Sevillano-Caño
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - María José García
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - Clara Córdoba-Galván
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - Carmen Luque-Cruz
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - Carlos Agustí-Brisach
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - Carlos Lucena
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - José Ramos
- Departamento de Química Agrícola, Edafología y Microbiología, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Rafael Pérez-Vicente
- Departamento de Botánica, Ecología y Fisiología Vegetal, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Francisco Javier Romera
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| |
Collapse
|
11
|
Zhang S, Wu Y, Skaro M, Cheong JH, Bouffier-Landrum A, Torrres I, Guo Y, Stupp L, Lincoln B, Prestel A, Felt C, Spann S, Mandal A, Johnson N, Arnold J. Computer vision models enable mixed linear modeling to predict arbuscular mycorrhizal fungal colonization using fungal morphology. Sci Rep 2024; 14:10866. [PMID: 38740920 DOI: 10.1038/s41598-024-61181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The presence of Arbuscular Mycorrhizal Fungi (AMF) in vascular land plant roots is one of the most ancient of symbioses supporting nitrogen and phosphorus exchange for photosynthetically derived carbon. Here we provide a multi-scale modeling approach to predict AMF colonization of a worldwide crop from a Recombinant Inbred Line (RIL) population derived from Sorghum bicolor and S. propinquum. The high-throughput phenotyping methods of fungal structures here rely on a Mask Region-based Convolutional Neural Network (Mask R-CNN) in computer vision for pixel-wise fungal structure segmentations and mixed linear models to explore the relations of AMF colonization, root niche, and fungal structure allocation. Models proposed capture over 95% of the variation in AMF colonization as a function of root niche and relative abundance of fungal structures in each plant. Arbuscule allocation is a significant predictor of AMF colonization among sibling plants. Arbuscules and extraradical hyphae implicated in nutrient exchange predict highest AMF colonization in the top root section. Our work demonstrates that deep learning can be used by the community for the high-throughput phenotyping of AMF in plant roots. Mixed linear modeling provides a framework for testing hypotheses about AMF colonization phenotypes as a function of root niche and fungal structure allocations.
Collapse
Affiliation(s)
- Shufan Zhang
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Yue Wu
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Michael Skaro
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | | | | | - Isaac Torrres
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Yinping Guo
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Lauren Stupp
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Brooke Lincoln
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Anna Prestel
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Camryn Felt
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Sedona Spann
- School of Earth and Sustainability and Department of Biological Sciences, North Arizona University, Flagstaff, AZ, USA
| | - Abhyuday Mandal
- Statistics Department, University of Georgia, Athens, GA, USA
| | - Nancy Johnson
- School of Earth and Sustainability and Department of Biological Sciences, North Arizona University, Flagstaff, AZ, USA
| | - Jonathan Arnold
- Genetics Department, University of Georgia, Athens, GA, USA.
| |
Collapse
|
12
|
Gille CE, Finnegan PM, Hayes PE, Ranathunge K, Burgess TI, de Tombeur F, Migliorini D, Dallongeville P, Glauser G, Lambers H. Facilitative and competitive interactions between mycorrhizal and nonmycorrhizal plants in an extremely phosphorus-impoverished environment: role of ectomycorrhizal fungi and native oomycete pathogens in shaping species coexistence. THE NEW PHYTOLOGIST 2024; 242:1630-1644. [PMID: 38105548 DOI: 10.1111/nph.19489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Nonmycorrhizal cluster root-forming species enhance the phosphorus (P) acquisition of mycorrhizal neighbours in P-impoverished megadiverse systems. However, whether mycorrhizal plants facilitate the defence of nonmycorrhizal plants against soil-borne pathogens, in return and via their symbiosis, remains unknown. We characterised growth and defence-related compounds in Banksia menziesii (nonmycorrhizal) and Eucalyptus todtiana (ectomycorrhizal, ECM) seedlings grown either in monoculture or mixture in a multifactorial glasshouse experiment involving ECM fungi and native oomycete pathogens. Roots of B. menziesii had higher levels of phytohormones (salicylic and jasmonic acids, jasmonoyl-isoleucine and 12-oxo-phytodienoic acid) than E. todtiana which further activated a salicylic acid-mediated defence response in roots of B. menziesii, but only in the presence of ECM fungi. We also found that B. menziesii induced a shift in the defence strategy of E. todtiana, from defence-related secondary metabolites (phenolic and flavonoid) towards induced phytohormone response pathways. We conclude that ECM fungi play a vital role in the interactions between mycorrhizal and nonmycorrhizal plants in a severely P-impoverished environment, by introducing a competitive component within the facilitation interaction between the two plant species with contrasting nutrient-acquisition strategies. This study sheds light on the interplay between beneficial and detrimental soil microbes that shape plant-plant interaction in severely nutrient-impoverished ecosystems.
Collapse
Affiliation(s)
- Clément E Gille
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick E Hayes
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Kosala Ranathunge
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Treena I Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Félix de Tombeur
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- CEFE, CNRS, EPHE, IRD, University of Montpellier, 34000, Montpellier, France
| | - Duccio Migliorini
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- National Research Council, Institute for Sustainable Plant Protection, Sesto Fiorentino, Florence, 50019, Italy
| | - Paul Dallongeville
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
13
|
Wang X, Zhang J, Lu X, Bai Y, Wang G. Two diversities meet in the rhizosphere: root specialized metabolites and microbiome. J Genet Genomics 2024; 51:467-478. [PMID: 37879496 DOI: 10.1016/j.jgg.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Plants serve as rich repositories of diverse chemical compounds collectively referred to as specialized metabolites. These compounds are of importance for adaptive processes, including interactions with various microbes both beneficial and harmful. Considering microbes as bioreactors, the chemical diversity undergoes dynamic changes when root-derived specialized metabolites (RSMs) and microbes encounter each other in the rhizosphere. Recent advancements in sequencing techniques and molecular biology tools have not only accelerated the elucidation of biosynthetic pathways of RSMs but also unveiled the significance of RSMs in plant-microbe interactions. In this review, we provide a comprehensive description of the effects of RSMs on microbe assembly in the rhizosphere and the influence of corresponding microbial changes on plant health, incorporating the most up-to-date information available. Additionally, we highlight open questions that remain for a deeper understanding of and harnessing the potential of RSM-microbe interactions to enhance plant adaptation to the environment. Finally, we propose a pipeline for investigating the intricate associations between root exometabolites and the rhizomicrobiome.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingying Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Xinjun Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Caccia M, Marro N, Novák V, Ráez JAL, Castillo P, Janoušková M. Divergent colonization traits, convergent benefits: different species of arbuscular mycorrhizal fungi alleviate Meloidogyne incognita damage in tomato. MYCORRHIZA 2024; 34:145-158. [PMID: 38441668 PMCID: PMC10998783 DOI: 10.1007/s00572-024-01139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 04/07/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance and/or resistance to pests such as the root-knot nematode Meloidogyne incognita. However, the ameliorative effects may depend on AMF species. The aim of this work was therefore to evaluate whether four AMF species differentially affect plant performance in response to M. incognita infection. Tomato plants grown in greenhouse conditions were inoculated with four different AMF isolates (Claroideoglomus claroideum, Funneliformis mosseae, Gigaspora margarita, and Rhizophagus intraradices) and infected with 100 second stage juveniles of M. incognita at two different times: simultaneously or 2 weeks after the inoculation with AMF. After 60 days, the number of galls, egg masses, and reproduction factor of the nematodes were assessed along with plant biomass, phosphorus (P), and nitrogen concentrations in roots and shoots and root colonization by AMF. Only the simultaneous nematode inoculation without AMF caused a large reduction in plant shoot biomass, while all AMF species were able to ameliorate this effect and improve plant P uptake. The AMF isolates responded differently to the interaction with nematodes, either increasing the frequency of vesicles (C. claroideum) or reducing the number of arbuscules (F. mosseae and Gi. margarita). AMF inoculation did not decrease galls; however, it reduced the number of egg masses per gall in nematode simultaneous inoculation, except for C. claroideum. This work shows the importance of biotic stress alleviation associated with an improvement in P uptake and mediated by four different AMF species, irrespective of their fungal root colonization levels and specific interactions with the parasite.
Collapse
Affiliation(s)
- Milena Caccia
- Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic.
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina.
| | - Nicolás Marro
- Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| | - Václav Novák
- Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Juan Antonio López Ráez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain
| | - Pablo Castillo
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Campus de Excelencia Internacional Agroalimentario, ceiA3, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Martina Janoušková
- Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| |
Collapse
|
15
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Signals and Machinery for Mycorrhizae and Cereal and Oilseed Interactions towards Improved Tolerance to Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:826. [PMID: 38592805 PMCID: PMC10975020 DOI: 10.3390/plants13060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
In the quest for sustainable agricultural practices, there arises an urgent need for alternative solutions to mineral fertilizers and pesticides, aiming to diminish the environmental footprint of farming. Arbuscular mycorrhizal fungi (AMF) emerge as a promising avenue, bestowing plants with heightened nutrient absorption capabilities while alleviating plant stress. Cereal and oilseed crops benefit from this association in a number of ways, including improved growth fitness, nutrient uptake, and tolerance to environmental stresses. Understanding the molecular mechanisms shaping the impact of AMF on these crops offers encouraging prospects for a more efficient use of these beneficial microorganisms to mitigate climate change-related stressors on plant functioning and productivity. An increased number of studies highlighted the boosting effect of AMF on grain and oil crops' tolerance to (a)biotic stresses while limited ones investigated the molecular aspects orchestrating the different involved mechanisms. This review gives an extensive overview of the different strategies initiated by mycorrhizal cereal and oilseed plants to manage the deleterious effects of environmental stress. We also discuss the molecular drivers and mechanistic concepts to unveil the molecular machinery triggered by AMF to alleviate the tolerance of these crops to stressors.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory of Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Multidisciplinary Faculty of Nador, Mohammed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir 43150, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
16
|
Liu M, Wang H, Lin Z, Ke J, Zhang P, Zhang F, Ru D, Zhang L, Xiao Y, Liu X. Arbuscular mycorrhizal fungi inhibit necrotrophic, but not biotrophic, aboveground plant pathogens: a meta-analysis and experimental study. THE NEW PHYTOLOGIST 2024; 241:1308-1320. [PMID: 37964601 DOI: 10.1111/nph.19392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Microbial mutualists can profoundly modify host species ecology and evolution, by extension altering interactions with other microbial species, including pathogens. Arbuscular mycorrhizal fungi (AMF) may moderate infections by pathogens, but the direction and strength of these effects can be idiosyncratic. To assess how the introduction of AMF impacts the incidence and severity of aboveground plant diseases (i.e. 'disease impact'), we conducted a meta-analysis of 130 comparisons derived from 69 published studies. To elucidate the potential mechanisms underlying the influence of AMF on pathogens, we conducted three glasshouse experiments involving six non-woody plant species, yielded crucial data on leaf nutrient composition, plant defense compounds, and transcriptomes. Our meta-analysis revealed that the inoculation of AMF lead to a reduction in disease impact. More precisely, AMF inoculation was associated with a decrease in necrotrophic diseases, while no significant impact on biotrophic diseases. Chemical and transcriptome analyses suggested that these effects may be driven by AMF regulation of jasmonic acid and salicylic acid signaling pathways in glasshouse experiments. However, changes in plant nutritional status and secondary chemicals may also regulate disease impact. These results emphasize the importance of incorporating pathogen life history when predicting how microbial mutualisms affect disease impact.
Collapse
Affiliation(s)
- Mu Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hongqian Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Ziyuan Lin
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Junsheng Ke
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Peng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Feng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Dafu Ru
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Li Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yao Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
17
|
Ilyas U, du Toit LJ, Hajibabaei M, McDonald MR. Influence of plant species, mycorrhizal inoculant, and soil phosphorus level on arbuscular mycorrhizal communities in onion and carrot roots. FRONTIERS IN PLANT SCIENCE 2024; 14:1324626. [PMID: 38288412 PMCID: PMC10823018 DOI: 10.3389/fpls.2023.1324626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ancient and ecologically important symbionts that colonize plant roots. These symbionts assist in the uptake of water and nutrients, particularly phosphorus, from the soil. This important role has led to the development of AMF inoculants for use as biofertilizers in agriculture. Commercial mycorrhizal inoculants are increasingly popular to produce onion and carrot, but their specific effects on native mycorrhizal communities under field conditions are not known. Furthermore, adequate availability of nutrients in soils, specifically phosphorus, can reduce the diversity and abundance of AMF communities in the roots. The type of crop grown can also influence the composition of AMF communities colonizing the plant roots. This study aimed to investigate how AMF inoculants, soil phosphorus levels, and plant species influence the diversity of AMF communities that colonize the roots of onion and carrot plants. Field trials were conducted on high organic matter (muck) soil in the Holland Marsh, Ontario, Canada. The treatments included AMF-coated seeds (three to five propagules of Rhizophagus irregularis per seed) and non-treated onion and carrot seeds grown in soil with low (~46 ppm) and high (~78 ppm) phosphorus levels. The mycorrhizal communities colonizing the onion and carrot roots were identified by Illumina sequencing. Five genera, Diversispora, Claroideoglomus, Funneliformis, Rhizophagus, and Glomus, were identified in roots of both plant species. AMF communities colonizing carrot roots were more diverse and richer than those colonizing onion roots. Diversispora and Funneliformis had a 1.3-fold and 2.9-fold greater abundance, respectively, in onion roots compared to carrots. Claroideoglomus was 1.4-fold more abundant in carrot roots than in onions. Inoculation with R. irregularis increased the abundance and richness of Rhizophagus in AMF communities of onion roots but not in carrot roots. The soil phosphorus level had no effect on the richness and diversity of AMF in the roots of either crop. In summary, AMF inoculant and soil phosphorus levels influenced the composition of AMF communities colonizing the roots of onion and carrot plants, but the effects varied between plant species.
Collapse
Affiliation(s)
- Umbrin Ilyas
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Lindsey J. du Toit
- Northwestern Washington Research and Extension Center, Department of Plant Pathology, Washington State University, Mount Vernon, WA, United States
| | - Mehrdad Hajibabaei
- Centre for Biodiversity Genomics, Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Mary Ruth McDonald
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
18
|
Dady ER, Kleczewski N, Ugarte CM, Ngumbi E. Plant Variety, Mycorrhization, and Herbivory Influence Induced Volatile Emissions and Plant Growth Characteristics in Tomato. J Chem Ecol 2023; 49:710-724. [PMID: 37924424 DOI: 10.1007/s10886-023-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 11/06/2023]
Abstract
Plants produce a range of volatile organic compounds (VOCs) that mediate vital ecological interactions between herbivorous insects, their natural enemies, plants, and soil dwelling organisms including arbuscular mycorrhizal fungi (AMF). The composition, quantity, and quality of the emitted VOCs can vary and is influenced by numerous factors such as plant species, variety (cultivar), plant developmental stage, root colonization by soil microbes, as well as the insect developmental stage, and level of specialization of the attacking herbivore. Understanding factors shaping VOC emissions is important and can be leveraged to enhance plant health and pest resistance. In this greenhouse study, we evaluated the influence of plant variety, mycorrhizal colonization, herbivory, and their interactions on the composition of emitted volatiles in tomato plants (Solanum lycopersicum L.). Four tomato varieties from two breeding histories (two heirlooms and two hybrids), were used. Tomato plants were inoculated with a commercial inoculum blend consisting of four species of AMF. Plants were also subjected to herbivory by Manduca sexta (Lepidoptera: Sphingidae L.) five weeks after transplanting. Headspace volatiles were collected from inoculated and non-inoculated plants with and without herbivores using solid phase-microextraction. Volatile profiles consisted of 21 different volatiles in detectable quantities. These included monoterpenes, sesquiterpenes, and alkane hydrocarbons. We documented a strong plant variety effect on VOC emissions. AMF colonization and herbivory suppressed VOC emissions. Plant biomass was improved by colonization of AMF. Our results show that mycorrhization, herbivory and plant variety can alter tomato plant VOC emissions and further shape volatile-mediated insect and plant interactions.
Collapse
Affiliation(s)
- Erinn R Dady
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Carmen M Ugarte
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Esther Ngumbi
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
19
|
de Freitas Pereira M, Cohen D, Auer L, Aubry N, Bogeat-Triboulot MB, Buré C, Engle NL, Jolivet Y, Kohler A, Novák O, Pavlović I, Priault P, Tschaplinski TJ, Hummel I, Vaultier MN, Veneault-Fourrey C. Ectomycorrhizal symbiosis prepares its host locally and systemically for abiotic cue signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1784-1803. [PMID: 37715981 DOI: 10.1111/tpj.16465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Tree growth and survival are dependent on their ability to perceive signals, integrate them, and trigger timely and fitted molecular and growth responses. While ectomycorrhizal symbiosis is a predominant tree-microbe interaction in forest ecosystems, little is known about how and to what extent it helps trees cope with environmental changes. We hypothesized that the presence of Laccaria bicolor influences abiotic cue perception by Populus trichocarpa and the ensuing signaling cascade. We submitted ectomycorrhizal or non-ectomycorrhizal P. trichocarpa cuttings to short-term cessation of watering or ozone fumigation to focus on signaling networks before the onset of any physiological damage. Poplar gene expression, metabolite levels, and hormone levels were measured in several organs (roots, leaves, mycorrhizas) and integrated into networks. We discriminated the signal responses modified or maintained by ectomycorrhization. Ectomycorrhizas buffered hormonal changes in response to short-term environmental variations systemically prepared the root system for further fungal colonization and alleviated part of the root abscisic acid (ABA) signaling. The presence of ectomycorrhizas in the roots also modified the leaf multi-omics landscape and ozone responses, most likely through rewiring of the molecular drivers of photosynthesis and the calcium signaling pathway. In conclusion, P. trichocarpa-L. bicolor symbiosis results in a systemic remodeling of the host's signaling networks in response to abiotic changes. In addition, ectomycorrhizal, hormonal, metabolic, and transcriptomic blueprints are maintained in response to abiotic cues, suggesting that ectomycorrhizas are less responsive than non-mycorrhizal roots to abiotic challenges.
Collapse
Affiliation(s)
| | - David Cohen
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Lucas Auer
- Université de Lorraine, INRAE, Laboratory of Excellence ARBRE, UMR Interactions Arbres/Microorganismes, F-54000, Nancy, France
| | - Nathalie Aubry
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | | | - Cyril Buré
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Nancy L Engle
- Plant Systems Biology Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, Laboratory of Excellence ARBRE, UMR Interactions Arbres/Microorganismes, F-54000, Nancy, France
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Iva Pavlović
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Pierrick Priault
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Timothy J Tschaplinski
- Plant Systems Biology Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Irène Hummel
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | | | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, Laboratory of Excellence ARBRE, UMR Interactions Arbres/Microorganismes, F-54000, Nancy, France
| |
Collapse
|
20
|
Hennecke J, Bassi L, Mommer L, Albracht C, Bergmann J, Eisenhauer N, Guerra CA, Heintz-Buschart A, Kuyper TW, Lange M, Solbach MD, Weigelt A. Responses of rhizosphere fungi to the root economics space in grassland monocultures of different age. THE NEW PHYTOLOGIST 2023; 240:2035-2049. [PMID: 37691273 DOI: 10.1111/nph.19261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Recent studies on root traits have shown that there are two axes explaining trait variation belowground: the collaboration axis with mycorrhizal partners and the conservation ('fast - slow') axis. However, it is yet unknown whether these trait axes affect the assembly of soilborne fungi. We expect saprotrophic fungi to link to the conservation axis of root traits, whereas pathogenic and arbuscular mycorrhizal fungi link to the collaboration axis, but in opposite directions, as arbuscular mycorrhizal fungi might provide pathogen protection. To test these hypotheses, we sequenced rhizosphere fungal communities and measured root traits in monocultures of 25 grassland plant species, differing in age. Within the fungal guilds, we evaluated fungal species richness, relative abundance and community composition. Contrary to our hypotheses, fungal diversity and relative abundance were not strongly related to the root trait axes. However, saprotrophic fungal community composition was affected by the conservation gradient and pathogenic community composition by the collaboration gradient. The rhizosphere AMF community composition did not change along the collaboration gradient, even though the root trait axis was in line with the root mycorrhizal colonization rate. Overall, our results indicate that in the long term, the root trait axes are linked with fungal community composition.
Collapse
Affiliation(s)
- Justus Hennecke
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Leonardo Bassi
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Liesje Mommer
- Forest Ecology and Forest Management Group, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Cynthia Albracht
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, 06120, Halle, Germany
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Joana Bergmann
- Sustainable Grassland Systems, Leibniz Centre for Agricultural Landscape Research (ZALF), 14641, Paulinenaue, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, 04103, Leipzig, Germany
| | - Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - Anna Heintz-Buschart
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Thomas W Kuyper
- Soil Biology Group, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Markus Lange
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
| | - Marcel Dominik Solbach
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, 50674, Cologne, Germany
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
21
|
Lutz S, Bodenhausen N, Hess J, Valzano-Held A, Waelchli J, Deslandes-Hérold G, Schlaeppi K, van der Heijden MGA. Soil microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi. Nat Microbiol 2023; 8:2277-2289. [PMID: 38030903 PMCID: PMC10730404 DOI: 10.1038/s41564-023-01520-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Alternative solutions to mineral fertilizers and pesticides that reduce the environmental impact of agriculture are urgently needed. Arbuscular mycorrhizal fungi (AMF) can enhance plant nutrient uptake and reduce plant stress; yet, large-scale field inoculation trials with AMF are missing, and so far, results remain unpredictable. We conducted on-farm experiments in 54 fields in Switzerland and quantified the effects on maize growth. Growth response to AMF inoculation was highly variable, ranging from -12% to +40%. With few soil parameters and mainly soil microbiome indicators, we could successfully predict 86% of the variation in plant growth response to inoculation. The abundance of pathogenic fungi, rather than nutrient availability, best predicted (33%) AMF inoculation success. Our results indicate that soil microbiome indicators offer a sustainable biotechnological perspective to predict inoculation success at the beginning of the growing season. This predictability increases the profitability of microbiome engineering as a tool for sustainable agricultural management.
Collapse
Affiliation(s)
- Stefanie Lutz
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Natacha Bodenhausen
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Julia Hess
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Alain Valzano-Held
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Jan Waelchli
- Plant Microbe Interactions, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Gabriel Deslandes-Hérold
- Plant Microbe Interactions, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Plant Biochemistry, Institute of Molecular Plant Biology, ETH Zurich, Zurich, Switzerland
| | - Klaus Schlaeppi
- Plant Microbe Interactions, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| | - Marcel G A van der Heijden
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland.
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland.
| |
Collapse
|
22
|
Wood KEA, Kobe RK, Ibáñez I, McCarthy-Neumann S. Tree seedling functional traits mediate plant-soil feedback survival responses across a gradient of light availability. PLoS One 2023; 18:e0293906. [PMID: 38011125 PMCID: PMC10681222 DOI: 10.1371/journal.pone.0293906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/21/2023] [Indexed: 11/29/2023] Open
Abstract
1. Though not often examined together, both plant-soil feedbacks (PSFs) and functional traits have important influences on plant community dynamics and could interact. For example, seedling functional traits could impact seedling survivorship responses to soils cultured by conspecific versus heterospecific adults. Furthermore, levels of functional traits could vary with soil culturing source. In addition, these relationships might shift with light availability, which can affect trait values, microbe abundance, and whether mycorrhizal colonization is mutualistic or parasitic to seedlings. 2. To determine the extent to which functional traits mediate PSFs via seedling survival, we conducted a field experiment. We planted seedlings of four temperate tree species across a gradient of light availability and into soil cores collected beneath conspecific (sterilized and live) and heterospecific adults. We monitored seedling survival twice per week over one growing season, and we randomly selected subsets of seedlings to measure mycorrhizal colonization and phenolics, lignin, and NSC levels at three weeks. 3. Though evidence for PSFs was limited, Acer saccharum seedlings exhibited positive PSFs (i.e., higher survival in conspecific than heterospecific soils). In addition, soil microbes had a negative effect on A. saccharum and Prunus serotina seedling survival, with reduced survival in live versus sterilized conspecific soil. In general, we found higher trait values (measured amounts of a given trait) in conspecific than heterospecific soils and higher light availability. Additionally, A. saccharum survival increased with higher levels of phenolics, which were higher in conspecific soils and high light. Quercus alba survival decreased with higher AMF colonization. 4. We demonstrate that functional trait values in seedlings as young as three weeks vary in response to soil source and light availability. Moreover, seedling survivorship was associated with trait values for two species, despite both drought and heavy rainfall during the growing season that may have obscured survivorship-trait relationships. These results suggest that seedling traits could have an important role in mediating the effects of local soil source and light levels on seedling survivorship and thus plant traits could have an important role in PSFs.
Collapse
Affiliation(s)
- Katherine E. A. Wood
- Department of Forestry, Michigan State University, East Lansing, Michigan, United States of America
- Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| | - Richard K. Kobe
- Department of Forestry, Michigan State University, East Lansing, Michigan, United States of America
- Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| | - Inés Ibáñez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sarah McCarthy-Neumann
- Department of Forestry, Michigan State University, East Lansing, Michigan, United States of America
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, Tennessee, United States of America
| |
Collapse
|
23
|
M D, Kamra A, Singh D, Gawade B, Sirohi A. Plant growth promoting Bacillus species elicit defense against Meloidogyne incognita infecting tomato in polyhouse. J Basic Microbiol 2023; 63:1233-1241. [PMID: 37528495 DOI: 10.1002/jobm.202300146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 08/03/2023]
Abstract
The effects of four nematicidal rhizobacterial isolates; Bacillus subtilis, Bacillus pumilus, Bacillus megaterium, and Bacillus cereus on infection and multiplication of root-knot nematode, Meloidogyne incognita on tomato were compared with the application of a chemical nematicide, fluopyram 34.48% SC (Velum Prime). The bio-efficacy trial conducted in pots preinoculated with the above isolates followed by M. incognita inoculation resulted in a significant reduction in percent root galling viz. 91.95 in B. subtilis, 84.21 in B. pumilus, 83.70 in B. megaterium, and 81.8 in B. cereus, at 75 days after inoculation (DAI). The reproduction factor of the nematode was the lowest (15.83) in B. subtilis, followed by B. pumilus (21.00), compared with 48.16 in control, with enhanced photosynthetic and transpiration rates. The mechanism of induced resistance was assessed using quantitative reverse-transcription polymerase chain reaction (qRT-PCR) for quantification of three key defense genes (PR-1b, JERF3, and CAT) at 0,2,4,8 and16 days DAI. The defence genes, PR-1b, JERF3, and CAT were expressed at 2.5-7.5-folds in rhizobacterialtreated plants, but not in nematicide treatment. The defense enzymes viz., super oxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (PO), and phenylalanine ammonia lyase (PAL) when quantified (μmol/mg protein) showed an increase from 1.5 to 17.5 for SOD, 2.1 to 7.8 in PPO, 1.8 to 10.2 in PO, and 1.8 to 8.7 in PAL during 0 to 16 DAI, in rhizobacteria-treated plants.
Collapse
Affiliation(s)
- Devindrappa M
- Division of Crop Protection, Indian Institute of Pulse Research, IIPR, Kanpur, Uttar Pradesh, India
| | - Anju Kamra
- Division of Nematology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Dinesh Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Bharat Gawade
- Division of Plant Quarantine, ICAR- National Bureau of Plant Genetic Resources, Pusa, New Delhi, India
| | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| |
Collapse
|
24
|
Li W, Hu XY, Zhu CS, Guo SX, Li M. Control effect of root exudates from mycorrhizal watermelon seedlings on Fusarium wilt and the bacterial community in continuously cropped soil. FRONTIERS IN PLANT SCIENCE 2023; 14:1225897. [PMID: 37767292 PMCID: PMC10520283 DOI: 10.3389/fpls.2023.1225897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Watermelon (Citrullus lanatus) is susceptible to wilt disease caused by Fusarium oxysporum f. sp niveum (FON). AMF colonization alleviates watermelon wilt and regulates the composition of root exudates, but the effects of mycorrhizal watermelon root exudates on watermelon Fusarium wilt is not well understood. Root exudates of watermelon inoculated with AMF (Funeliformis mosseae or Glomus versiformme) were collected in this study. Then the root exudates of control plants and mycorrhizal plants were used to irrigate watermelon in continuous cropping soil, respectively. Meanwhile, the watermelon growth, antioxidant enzyme activity, rhizosphere soil enzyme activities and bacterial community composition, as well as the control effect on FON were analyzed. The results indicated that mycorrhizal watermelon root exudates promoted the growth of watermelon seedlings and increased soil enzyme activities, actinomyces, and the quantity of bacteria in rhizosphere soil. The proportion of Proteobacteria and Bacteroides was decreased, and the proportion of Actinobacteria, Firmicutes, and Chloroflexi in rhizosphere soil was increased when the seedlings were watered with high concentrations of mycorrhizal root exudates. The dominant bacterial genera in rhizosphere soil were Kaistobacter, Rhodanobacter, Thermomonas, Devosia, and Bacillus. The root exudates of mycorrhizal watermelon could reduce the disease index of Fusarium wilt by 6.7-30%, and five ml/L of watermelon root exudates inoculated with F. mosseae had the strongest inhibitory effect on watermelon Fusarium wilt. Our results suggest mycorrhizal watermelon root exudates changed the composition of bacteria and soil enzyme activities in rhizosphere soil, which increase the resistance of watermelon to Fusarium wilt and promoted the growth of plants in continuous cropping soil.
Collapse
Affiliation(s)
- Wei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xue-Yi Hu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Cheng-Shang Zhu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shao Xia Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Min Li
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
25
|
García-Espinoza F, García MJ, Quesada-Moraga E, Yousef-Yousef M. Entomopathogenic Fungus-Related Priming Defense Mechanisms in Cucurbits Impact Spodoptera littoralis (Boisduval) Fitness. Appl Environ Microbiol 2023; 89:e0094023. [PMID: 37439674 PMCID: PMC10467339 DOI: 10.1128/aem.00940-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023] Open
Abstract
Entomopathogenic fungi (EPF) exhibit direct and indirect mechanisms to increase plant resistance against biotic and abiotic stresses. Plant responses to these stresses are interconnected by common regulators such as ethylene (ET), which is involved in both iron (Fe) deficiency and induced systemic resistance responses. In this work, the roots of cucurbit seedlings were primed with Metarhizium brunneum (EAMa 01/58-Su strain), and relative expression levels of 18 genes related to ethylene (ET), jasmonic acid (JA), and salicylic acid (SA) synthesis, as well as pathogen-related (PR) protein genes, were studied by reverse transcription-quantitative PCR (qRT-PCR). Effects of priming on Spodoptera littoralis were studied by feeding larvae for 15 days with primed and control plants. Genes showed upregulation in studied species; however, the highest relative expression was observed in roots and shoots of plants with Fe deficiency, demonstrating the complexity and the overlapping degree of the regulatory network. EIN2 and EIN3 should be highlighted; both are key genes of the ET transduction pathway that enhanced their expression levels up to eight and four times, respectively, in shoots of primed cucumber. Also, JA and SA synthesis and PR genes showed significant upregulation during the observation period (e.g., the JA gene LOX1 increased 506 times). Survival and fitness of S. littoralis were affected with significant effects on mortality of larvae fed on primed plants versus controls, length of the larval stage, pupal weight, and the percentage of abnormal pupae. These results highlight the role of the EAMa 01/58-Su strain in the induction of resistance, which could be translated into direct benefits for plant development. IMPORTANCE Entomopathogenic fungi are multipurpose microorganisms with direct and indirect effects on insect pests. Also, EPF provide multiple benefits to plants by solubilizing minerals and facilitating nutrient acquisition. A very interesting and novel effect of these fungi is the enhancement of plant defense systems by inducing systematic and acquired resistance. However, little is known about this function. This study sheds light on the molecular mechanisms involved in cucurbits plants' defense activation after being primed by the EPF M. brunneum. Furthermore, the subsequent effects on the fitness of the lepidopteran pest S. littoralis are shown. In this regard, a significant upregulation was recorded for the genes that regulate JA, SA, and ET pathways. This increased expression of defense genes caused lethal and sublethal effects on S. littoralis. This could be considered an added value for the implementation of EPF in integrated pest management programs.
Collapse
Affiliation(s)
- F. García-Espinoza
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2023, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
- Departamento de Parasitología. Universidad Autónoma Agraria Antonio Narro – Unidad Laguna, Torreón, Coahuila, Mexico
| | - M. J. García
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2023, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - E. Quesada-Moraga
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2023, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - M. Yousef-Yousef
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2023, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
26
|
Gomez SK, Maurya AK, Irvin L, Kelly MP, Schoenherr AP, Huguet-Tapia JC, Bombarely A. A snapshot of the transcriptome of Medicago truncatula (Fabales: Fabaceae) shoots and roots in response to an arbuscular mycorrhizal fungus and the pea aphid (Acyrthosiphon pisum) (Hemiptera: Aphididae). ENVIRONMENTAL ENTOMOLOGY 2023; 52:667-680. [PMID: 37467039 DOI: 10.1093/ee/nvad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
Plants simultaneously interact with belowground symbionts such as arbuscular mycorrhizal (AM) fungi and aboveground antagonists such as aphids. Generally, plants gain access to valuable resources including nutrients and water through the AM symbiosis and are more resistant to pests. Nevertheless, aphids' performance improves on mycorrhizal plants, and it remains unclear whether a more nutritious food source and/or attenuated defenses are the contributing factors. This study examined the shoot and root transcriptome of barrel medic (Medicago truncatula Gaertn.) plants highly colonized by the AM fungus Rhizophagus irregularis (Blaszk., Wubet, Renker, and Buscot) C. Walker and A. Schüßler (Glomerales: Glomeraceae) and exposed to 7 days of mixed age pea aphid (Acyrthosiphon pisum (Harris)) herbivory. The RNA-seq samples chosen for this study showed that aphids were heavier when fed mycorrhizal plants compared to nonmycorrhizal plants. We hypothesized that (i) insect-related plant defense pathways will be downregulated in shoots of mycorrhizal plants with aphids compared to nonmycorrhizal plants with aphids; (ii) pathways involved in nutrient acquisition, carbohydrate-related and amino acid transport will be upregulated in shoots of mycorrhizal plants with aphids compared to nonmycorrhizal plants with aphids; and (iii) roots of mycorrhizal plants with aphids will exhibit mycorrhiza-induced resistance. The transcriptome data revealed that the gene repertoire related to defenses, nutrient transport, and carbohydrates differs between nonmycorrhizal and mycorrhizal plants with aphids, which could explain the weight gain in aphids. We also identified novel candidate genes that are differentially expressed in nonmycorrhizal plants with aphids, thus setting the stage for future functional studies.
Collapse
Affiliation(s)
- Susana K Gomez
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Abhinav K Maurya
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
- Apex Bait Technologies, Inc., Santa Clara, CA 95054, USA
| | - Lani Irvin
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Michael P Kelly
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Andrew P Schoenherr
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Jose C Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), UPV-CSIC, 46022 Valencia, Spain
| |
Collapse
|
27
|
Pokluda R, Ragasová LN, Jurica M, Kalisz A, Komorowska M, Niemiec M, Caruso G, Gąstoł M, Sekara A. The shaping of onion seedlings performance through substrate formulation and co-inoculation with beneficial microorganism consortia. FRONTIERS IN PLANT SCIENCE 2023; 14:1222557. [PMID: 37521928 PMCID: PMC10382143 DOI: 10.3389/fpls.2023.1222557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Introduction Smart management in crop cultivation is increasingly supported by application of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting microorganisms (PGPM), which sustain soil fertility and plant performance. The aim of this study was the evaluation of the effects of consortia composed of (Claroideoglomus claroideum BEG96, Claroideoglomus etunicatum BEG92, Funneliformis geosporum BEG199, Funneliformis mosseae BEG 95, and Rhizophagus irregularis BEG140) and PGPM (Azospirillum brasilense - AZ, or Saccharothrix sp. - S) on onion cultivated in growing media with a composition corresponding to a degraded soil. Methods Three types of substrate formulations were used, with peat:sand ratios of 50:50, 70:30, 100:0 (v:v). The analysis of substrate parameters crucial for its fertility (pH, salinity, sorption complex capacity, and elements' content) and characteristics reflecting onion seedlings' performance (fresh weight, stress biomarkers, and elements' content) was performed. Results AMF colonized onion roots in all treatments, showing increasing potential to form intercellular structures in the substrates rich in organic matter. Additionally, co-inoculation with PGPM microorganisms accelerated arbuscular mycorrhiza establishment. Increased antioxidant activity and glutathione peroxidase (GPOX) activity of onion roots sampled from the formulations composed of peat and sand in the ratio of 100:0, inoculated with AMF+S, and positive correlation between GPOX, fresh weight and antioxidant activity of onion roots reflected the successful induction of plant acclimatization response. Total phenols content was the highest in roots and leaves of onion grown in substrates with 70:30 peat:sand ratio, and, in the case of roots, it was correlated with AMF colonization parameters but not with antioxidant activity. Discussion AMF and PGPM efficiency in supporting onion growth should be linked to the increased onion root system capacity in mineral salts absorption, resulting in more efficient aboveground biomass production. AMF and PGPM consortia were effective in releasing minerals to soluble fraction in substrates rich in organic matter, making elements available for uptake by onion root system, though this phenomenon depended on the PGPM species. Microorganism consortia enhanced onion seedlings' performance also in substrates with lower content of organic carbon through plant biofertilization and phytostimulation.
Collapse
Affiliation(s)
- Robert Pokluda
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University, Brno, Czechia
| | - Lucia Nedorost Ragasová
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University, Brno, Czechia
| | - Miloš Jurica
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University, Brno, Czechia
| | - Andrzej Kalisz
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, Krakow, Poland
| | - Monika Komorowska
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Marcin Niemiec
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Maciej Gąstoł
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, Krakow, Poland
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, Krakow, Poland
| |
Collapse
|
28
|
Rosas-Moreno J, Walker C, Duffy K, Krüger C, Krüger M, Robinson CH, Pittman JK. Isolation and identification of arbuscular mycorrhizal fungi from an abandoned uranium mine and their role in soil-to-plant transfer of radionuclides and metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162781. [PMID: 36906011 DOI: 10.1016/j.scitotenv.2023.162781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Arbuscular mycorrhizal fungi were recovered from soil samples from the naturally radioactive soil at the long-abandoned South Terras uranium mine in Cornwall, UK. Species of Rhizophagus, Claroideoglomus, Paraglomus, Septoglomus, and Ambispora were recovered, and pot cultures from all except Ambispora were established. Cultures were identified to species level using morphological observation and rRNA gene sequencing combined with phylogenetic analysis. These cultures were used in pot experiments designed with a compartmentalised system to assess the contribution of fungal hyphae to the accumulation of essential elements, such as copper and zinc, and non-essential elements, such as lead, arsenic, thorium, and uranium into root and shoot tissues of Plantago lanceolata. The results indicated that none of the treatments had any positive or negative impact on shoot and root biomass. However, Rhizophagus irregularis treatments showed higher accumulation of copper and zinc in shoots, while R. irregularis and Septoglomus constrictum enhanced arsenic accumulation in roots. Moreover, R. irregularis increased uranium concentration in roots and shoots of the P. lanceolata plant. This study provides useful insight into fungal-plant interactions that determine metal and radionuclide transfer from soil into the biosphere at contaminated sites such as mine workings.
Collapse
Affiliation(s)
- Jeanette Rosas-Moreno
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Christopher Walker
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Royal Botanic Garden Edinburgh, 21A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Katie Duffy
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Claudia Krüger
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Manuela Krüger
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Clare H Robinson
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jon K Pittman
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
29
|
Formenti L, Iwanycki Ahlstrand N, Hassemer G, Glauser G, van den Hoogen J, Rønsted N, van der Heijden M, Crowther TW, Rasmann S. Macroevolutionary decline in mycorrhizal colonization and chemical defense responsiveness to mycorrhization. iScience 2023; 26:106632. [PMID: 37168575 PMCID: PMC10165190 DOI: 10.1016/j.isci.2023.106632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/02/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) have evolved associations with roots of 60% plant species, but the net benefit for plants vary broadly from mutualism to parasitism. Yet, we lack a general understanding of the evolutionary and ecological forces driving such variation. To this end, we conducted a comparative phylogenetic experiment with 24 species of Plantago, encompassing worldwide distribution, to address the effect of evolutionary history and environment on plant growth and chemical defenses in response to AMF colonization. We demonstrate that different species within one plant genus vary greatly in their ability to associate with AMF, and that AMF arbuscule colonization intensity decreases monotonically with increasing phylogenetic branch length, but not with concomitant changes in pedological and climatic conditions across species. Moreover, we demonstrate that species with the highest colonization levels are also those that change their defensive chemistry the least. We propose that the costs imposed by high AMF colonization in terms of reduced changes in secondary chemistry might drive the observed macroevolutionary decline in mycorrhization.
Collapse
Affiliation(s)
- Ludovico Formenti
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Institute of Ecology and Evolution, Terrestrial ecology, University of Bern, Bern, Switzerland
| | - Natalie Iwanycki Ahlstrand
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen, Denmark
| | - Gustavo Hassemer
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen, Denmark
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry (NPAC), University of Neuchâtel, Neuchâtel, Switzerland
| | - Johan van den Hoogen
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Nina Rønsted
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen, Denmark
- National Tropical Botanical Garden, Kalaheo, HI 96741, USA
| | - Marcel van der Heijden
- Plant-Soil Interactions, Institute for Sustainability Sciences, Agroscope, 8046 Zürich, Switzerland
| | - Thomas W. Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Sergio Rasmann
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Corresponding author
| |
Collapse
|
30
|
Hamidian M, Movahhedi-Dehnavi M, Sayyed RZ, Almalki WH, Gafur A, Fazeli-Nasab B. Co-inoculation of Mycorrhiza and methyl jasmonate regulates morpho-physiological and antioxidant responses of Crocus sativus (Saffron) under salinity stress conditions. Sci Rep 2023; 13:7378. [PMID: 37149662 PMCID: PMC10164175 DOI: 10.1038/s41598-023-34359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023] Open
Abstract
Salinity stress is the second most devastating abiotic factor limiting plant growth and yields. Climate changes have significantly increased salinity levels of soil. Besides improving the physiological responses under stress conditions, jasmonates modulate Mycorrhiza-Plant relationships. The present study aimed to evaluate the effects of methyl jasmonate (MeJ) and Funneliformis mosseae (Arbuscular mycorrhizal (AM) on morphology and improving antioxidant mechanisms in Crocus sativus L. under salinity stress. After inoculation with AM, pre-treated C. sativus corms with MeJ were grown under low, moderate, and severe salinity stress. Intense salinity levels damaged the corm, root, total leaf dry weight, and area. Salinities up to 50 mM increased Proline content and Polyphenol oxidase (PPO) activity, but MeJ increased this trend in proline. Generally, MeJ increased anthocyanins, total soluble sugars, and PPO. Total chlorophyll and superoxide dismutase (SOD) activity increased by salinity. The maximum catalase and SOD activities in + MeJ + AM were 50 and 125 mM, respectively, and the maximum total chlorophyll in -MeJ + AM treatment was 75 mM. Although 20 and 50 mM increased plant growth, using mycorrhiza and jasmonate enhanced this trend. Moreover, these treatments reduced the damage of 75 and 100 mM salinity stress. Using MeJ and AM can improve the growth of saffron under various ranges of salinity stress levels; however, in severe levels like 120 mM, this phytohormone and F. mosseae effects on saffron could be adverse.
Collapse
Affiliation(s)
- Mohammad Hamidian
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Mohsen Movahhedi-Dehnavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran.
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, 425409, India.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, 24382, Saudi Arabia
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang, Indonesia
| | - Bahman Fazeli-Nasab
- Department of Agronomy and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, Iran
- Plant Biotechnology and Breeding Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
31
|
Malviya D, Singh P, Singh UB, Paul S, Kumar Bisen P, Rai JP, Verma RL, Fiyaz RA, Kumar A, Kumari P, Dei S, Ahmed MR, Bagyaraj DJ, Singh HV. Arbuscular mycorrhizal fungi-mediated activation of plant defense responses in direct seeded rice ( Oryza sativa L.) against root-knot nematode Meloidogyne graminicola. Front Microbiol 2023; 14:1104490. [PMID: 37200920 PMCID: PMC10185796 DOI: 10.3389/fmicb.2023.1104490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 05/20/2023] Open
Abstract
Rhizosphere is the battlefield of beneficial and harmful (so called phytopathogens) microorganisms. Moreover, these microbial communities are struggling for their existence in the soil and playing key roles in plant growth, mineralization, nutrient cycling and ecosystem functioning. In the last few decades, some consistent pattern have been detected so far that link soil community composition and functions with plant growth and development; however, it has not been studied in detail. AM fungi are model organisms, besides potential role in nutrient cycling; they modulate biochemical pathways directly or indirectly which lead to better plant growth under biotic and abiotic stress conditions. In the present investigations, we have elucidated the AM fungi-mediated activation of plant defense responses against Meloidogyne graminicola causing root-knot disease in direct seeded rice (Oryza sativa L.). The study describes the multifarious effects of Funneliformis mosseae, Rhizophagus fasciculatus, and Rhizophagus intraradices inoculated individually or in combination under glasshouse conditions in rice plants. It was found that F. mosseae, R. fasciculatus and R. intraradices when applied individually or in combination modulated the biochemical and molecular mechanisms in the susceptible and resistant inbred lines of rice. AM inoculation significantly increased various plant growth attributes in plants with simultaneous decrease in the root-knot intensity. Among these, the combined application of F. mosseae, R. fasciculatus, and R. intraradices was found to enhance the accumulation and activities of biomolecules and enzymes related to defense priming as well as antioxidation in the susceptible and resistant inbred lines of rice pre-challenged with M. graminicola. The application of F. mosseae, R. fasciculatus and R. intraradices, induced the key genes involved in plant defense and signaling and it has been demonstrated for the first time. Results of the present investigation advocated that the application of F. mosseae, R. fasciculatus and R. intraradices, particularly a combination of all three, not only helped in the control of root-knot nematodes but also increased plant growth as well as enhances the gene expression in rice. Thus, it proved to be an excellent biocontrol as well as plant growth-promoting agent in rice even when the crop is under biotic stress of the root-knot nematode, M. graminicola.
Collapse
Affiliation(s)
- Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Prakash Singh
- Department of Plant Breeding and Genetics, Veer Kunwar Singh College of Agriculture, Bihar Agricultural University, Dumraon, India
| | - Udai B Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Surinder Paul
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | | | - Jai P Rai
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Ram Lakhan Verma
- Division of Crop Improvement, ICAR-National Rice Research Institute, Cuttack, India
| | - R Abdul Fiyaz
- Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - A Kumar
- Bihar Agricultural University, Bhagalpur, India
| | - Poonam Kumari
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | | | - Mohd Reyaz Ahmed
- Department of Plant Pathology, Veer Kunwar Singh College of Agriculture, Bihar Agricultural University, Dumraon, India
| | - D J Bagyaraj
- Centre for Natural Biological Resources and Community Development, Bengaluru, India
| | - Harsh V Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| |
Collapse
|
32
|
Pichler G, Muggia L, Carniel FC, Grube M, Kranner I. How to build a lichen: from metabolite release to symbiotic interplay. THE NEW PHYTOLOGIST 2023; 238:1362-1378. [PMID: 36710517 PMCID: PMC10952756 DOI: 10.1111/nph.18780] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Exposing their vegetative bodies to the light, lichens are outstanding amongst other fungal symbioses. Not requiring a pre-established host, 'lichenized fungi' build an entirely new structure together with microbial photosynthetic partners that neither can form alone. The signals involved in the transition of a fungus and a compatible photosynthetic partner from a free-living to a symbiotic state culminating in thallus formation, termed 'lichenization', and in the maintenance of the symbiosis, are poorly understood. Here, we synthesise the puzzle pieces of the scarce knowledge available into an updated concept of signalling involved in lichenization, comprising five main stages: (1) the 'pre-contact stage', (2) the 'contact stage', (3) 'envelopment' of algal cells by the fungus, (4) their 'incorporation' into a pre-thallus and (5) 'differentiation' into a complex thallus. Considering the involvement of extracellularly released metabolites in each phase, we propose that compounds such as fungal lectins and algal cyclic peptides elicit early contact between the symbionts-to-be, whereas phytohormone signalling, antioxidant protection and carbon exchange through sugars and sugar alcohols are of continued importance throughout all stages. In the fully formed lichen thallus, secondary lichen metabolites and mineral nutrition are suggested to stabilize the functionalities of the thallus, including the associated microbiota.
Collapse
Affiliation(s)
- Gregor Pichler
- Department of BotanyUniversity of InnsbruckSternwartestraße 156020InnsbruckAustria
| | - Lucia Muggia
- Department of Life SciencesUniversity of TriesteVia L. Giorgieri 1034127TriesteItaly
| | | | - Martin Grube
- Institute of BiologyUniversity of GrazHolteigasse 68010GrazAustria
| | - Ilse Kranner
- Department of BotanyUniversity of InnsbruckSternwartestraße 156020InnsbruckAustria
| |
Collapse
|
33
|
Gaši E, Radić T, Čarija M, Gambino G, Balestrini R, Hančević K. Arbuscular Mycorrhizal Fungi Induce Changes of Photosynthesis-Related Parameters in Virus Infected Grapevine. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091783. [PMID: 37176841 PMCID: PMC10180532 DOI: 10.3390/plants12091783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
The negative effects of viruses and the positive effects of arbuscular mycorrhizal fungi (AMF) on grapevine performance are well reported, in contrast to the knowledge about their interactive effects in perennial plants, e.g., in grapevine. To elucidate the physiological consequences of grapevine-AMF-virus interactions, two different AMF inoculum (Rhizophagus irregularis and 'Mix AMF') were used on grapevine infected with grapevine rupestris stem pitting virus, grapevine leafroll associated virus 3 and/or grapevine pinot gris virus. Net photosynthesis rate (AN), leaf transpiration (E), intercellular CO2 concentration (Ci) and conductance to H2O (gs) were measured at three time points during one growing season. Furthermore, quantum efficiency in light (ΦPSII) and electron transport rate (ETR) were surveyed in leaves of different maturity, old (basal), mature (middle) and young (apical) leaf. Lastly, pigment concentration and growth parameters were analysed. Virus induced changes in grapevine were minimal in this early infection stage. However, the AMF induced changes of grapevine facing biotic stress were most evident in higher net photosynthesis rate, conductance to H2O, chlorophyll a concentration, total carotenoid concentration and dry matter content. The AMF presence in the grapevine roots seem to prevail over virus infection, with Rhizophagus irregularis inducing greater photosynthesis changes in solitary form rather than mixture. This study shows that AMF can be beneficial for grapevine facing viral infection, in the context of functional physiology.
Collapse
Affiliation(s)
- Emanuel Gaši
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Tomislav Radić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Mate Čarija
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy
| | - Raffaella Balestrini
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy
| | - Katarina Hančević
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| |
Collapse
|
34
|
Kebert M, Kostić S, Stojnić S, Čapelja E, Markić AG, Zorić M, Kesić L, Flors V. A Fine-Tuning of the Plant Hormones, Polyamines and Osmolytes by Ectomycorrhizal Fungi Enhances Drought Tolerance in Pedunculate Oak. Int J Mol Sci 2023; 24:ijms24087510. [PMID: 37108671 PMCID: PMC10139069 DOI: 10.3390/ijms24087510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The drought sensitivity of the pedunculate oak (Quercus robur L.) poses a threat to its survival in light of climate change. Mycorrhizal fungi, which orchestrate biogeochemical cycles and particularly have an impact on the plant's defense mechanisms and metabolism of carbon, nitrogen, and phosphorus, are among the microbes that play a significant role in the mitigation of the effects of climate change on trees. The study's main objectives were to determine whether ectomycorrhizal (ECM) fungi alleviate the effects of drought stress in pedunculate oak and to investigate their priming properties. The effects of two levels of drought (mild and severe, corresponding to 60% and 30% of field capacity, respectively) on the biochemical response of pedunculate oak were examined in the presence and absence of ectomycorrhizal fungi. To examine whether the ectomycorrhizal fungi modulate the drought tolerance of pedunculate oak, levels of plant hormones and polyamines were quantified using UPLC-TQS and HPLC-FD techniques in addition to gas exchange measurements and the main osmolyte amounts (glycine betaine-GB and proline-PRO) which were determined spectrophotometrically. Droughts increased the accumulation of osmolytes, such as proline and glycine betaine, as well as higher polyamines (spermidine and spermine) levels and decreased putrescine levels in both, mycorrhized and non-mycorrhized oak seedlings. In addition to amplifying the response of oak to severe drought in terms of inducible proline and abscisic acid (ABA) levels, inoculation with ECM fungi significantly increased the constitutive levels of glycine betaine, spermine, and spermidine regardless of drought stress. This study found that compared to non-mycorrhized oak seedlings, unstressed ECM-inoculated oak seedlings had higher levels of salicylic (SA) and abscisic acid (ABA) but not jasmonic acid (JA), indicating a priming mechanism of ECM is conveyed via these plant hormones. According to a PCA analysis, the effect of drought was linked to the variability of parameters along the PC1 axe, such as osmolytes PRO, GB, polyamines, and plant hormones such as JA, JA-Ile, SAG, and SGE, whereas mycorrhization was more closely associated with the parameters gathered around the PC2 axe (SA, ODPA, ABA, and E). These findings highlight the beneficial function of the ectomycorrhizal fungi, in particular Scleroderma citrinum, in reducing the effects of drought stress in pedunculate oak.
Collapse
Affiliation(s)
- Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia
| | - Saša Kostić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia
| | - Srđan Stojnić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia
| | - Eleonora Čapelja
- Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Anđelina Gavranović Markić
- Division for Silviculture, Croatian Forest Research Institute, Cvjetno Naselje 41, 10450 Jastrebarsko, Croatia
| | - Martina Zorić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia
| | - Lazar Kesić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia
| | - Victor Flors
- Plant Immunity and Biochemistry Group, Department of Biology, Biochemistry, and Natural Sciences, Jaume I University, 12071 Castellón de la Plana, Spain
| |
Collapse
|
35
|
Guercio AM, Palayam M, Shabek N. Strigolactones: diversity, perception, and hydrolysis. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:339-360. [PMID: 37201177 PMCID: PMC10191409 DOI: 10.1007/s11101-023-09853-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/03/2023] [Indexed: 05/20/2023]
Abstract
Strigolactones (SLs) are a unique and novel class of phytohormones that regulate numerous processes of growth and development in plants. Besides their endogenous functions as hormones, SLs are exuded by plant roots to stimulate critical interactions with symbiotic fungi but can also be exploited by parasitic plants to trigger their seed germination. In the past decade, since their discovery as phytohormones, rapid progress has been made in understanding the SL biosynthesis and signaling pathway. Of particular interest are the diversification of natural SLs and their exact mode of perception, selectivity, and hydrolysis by their dedicated receptors in plants. Here we provide an overview of the emerging field of SL perception with a focus on the diversity of canonical, non-canonical, and synthetic SL probes. Moreover, this review offers useful structural insights into SL perception, the precise molecular adaptations that define receptor-ligand specificities, and the mechanisms of SL hydrolysis and its attenuation by downstream signaling components.
Collapse
Affiliation(s)
- Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, CA 95616, USA
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, CA 95616, USA
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, CA 95616, USA
| |
Collapse
|
36
|
Domingo G, Vannini C, Bracale M, Bonfante P. Proteomics as a tool to decipher plant responses in arbuscular mycorrhizal interactions: a meta-analysis. Proteomics 2023; 23:e2200108. [PMID: 36571480 DOI: 10.1002/pmic.202200108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
The beneficial symbiosis between plants and arbuscular mycorrhizal (AM) fungi leads to a deep reprogramming of plant metabolism, involving the regulation of several molecular mechanisms, many of which are poorly characterized. In this regard, proteomics is a powerful tool to explore changes related to plant-microbe interactions. This study provides a comprehensive proteomic meta-analysis conducted on AM-modulated proteins at local (roots) and systemic (shoots/leaves) level. The analysis was implemented by an in-depth study of root membrane-associated proteins and by a comparison with a transcriptome meta-analysis. A total of 4262 differentially abundant proteins were retrieved and, to identify the most relevant AM-regulated processes, a range of bioinformatic studies were conducted, including functional enrichment and protein-protein interaction network analysis. In addition to several protein transporters which are present in higher amounts in AM plants, and which are expected due to the well-known enhancement of AM-induced mineral uptake, our analysis revealed some novel traits. We detected a massive systemic reprogramming of translation with a central role played by the ribosomal translational apparatus. On one hand, these new protein-synthesis efforts well support the root cellular re-organization required by the fungal penetration, and on the other they have a systemic impact on primary metabolism.
Collapse
Affiliation(s)
- Guido Domingo
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Candida Vannini
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Marcella Bracale
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
37
|
Samaras K, Mourtiadou S, Arampatzis T, Kakagianni M, Feka M, Wäckers F, Papadopoulou KK, Broufas GD, Pappas ML. Plant-Mediated Effects of Beneficial Microbes and a Plant Strengthener against Spider Mites in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040938. [PMID: 36840286 PMCID: PMC9959994 DOI: 10.3390/plants12040938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 05/31/2023]
Abstract
The two-spotted spider mite Tetranychus urticae is a polyphagous herbivore with a worldwide distribution, and is a serious pest in tomato and other crops. As an alternative to chemical pesticides, biological control with the release of natural enemies such as predatory mites represent an efficient method to control T. urticae in many crops, but not in tomato. Other biological control agents, such as beneficial microbes, as well as chemical compounds, which can act as plant defense elicitors that confer plant resistance against pests and pathogens, may prove promising biological solutions for the suppression of spider mite populations in tomato. Here, we assessed this hypothesis by recording the effects of a series of fungal and bacterial strains and the plant strengthener acibenzolar-s-methyl for their plant-mediated effects on T. urticae performance in two tomato cultivars. We found significant negative effects on the survival, egg production and spider mite feeding damage on plants inoculated with microbes or treated with the plant strengthener as compared to the control plants. Our results highlight the potential of beneficial microbes and plant strengtheners in spider mite suppression in addition to plant disease control.
Collapse
Affiliation(s)
- Konstantinos Samaras
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Soultana Mourtiadou
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Theodoros Arampatzis
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Myrsini Kakagianni
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
- Department of Food Science and Nutrition, University of Thessaly, 43100 Karditsa, Greece
| | - Maria Feka
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Felix Wäckers
- R&D Department, Biobest Group N.V., 2260 Westerlo, Belgium
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YW, UK
| | - Kalliope K. Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - George D. Broufas
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Maria L. Pappas
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece
| |
Collapse
|
38
|
Wang M, Wang Z, Guo M, Qu L, Biere A. Effects of arbuscular mycorrhizal fungi on plant growth and herbivore infestation depend on availability of soil water and nutrients. FRONTIERS IN PLANT SCIENCE 2023; 14:1101932. [PMID: 36778709 PMCID: PMC9909235 DOI: 10.3389/fpls.2023.1101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Fitness of plants is affected by their symbiotic interactions with arbuscular mycorrhizal fungi (AMF), and such effects are highly dependent on the environmental context. METHODS In the current study, we inoculated the nursery shrub species Artemisia ordosica with AMF species Funneliformis mosseae under contrasting levels of soil water and nutrients (diammonium phosphate fertilization), to assess their effects on plant growth, physiology and natural infestation by herbivores. RESULTS Overall, plant biomass was synergistically enhanced by increasing soil water and soil nutrient levels. However, plant height was surprisingly repressed by AMF inoculation, but only under low water conditions. Similarly, plant biomass was also reduced by AMF but only under low water and nutrient conditions. Furthermore, AMF significantly reduced leaf phosphorus levels, that were strongly enhanced under high nutrient conditions, but had only minor effects on leaf chlorophyll and proline levels. Under low water and nutrient conditions, specific root length was enhanced, but average root diameter was decreased by AMF inoculation. The negative effects of AMF on plant growth at low water and nutrient levels may indicate that under these conditions AMF inoculation does not strongly contribute to nutrient and water acquisition. On the contrary, the AMF might have suppressed the direct pathway of water and nutrient absorption by the plant roots themselves despite low levels of mycorrhizal colonization. AMF inoculation reduced the abundance of the foliar herbivore Chrysolina aeruginosa on plants that had been grown on the low nutrient soil, but not on high nutrient soil. Fertilization enhanced the abundance of this herbivore but only in plants that had received the high water treatment. The lower abundance of the herbivore on AMF plants could be related to their decreased leaf P content. In conclusion, our results indicate that AMF negatively affect the growth of Artemisia ordosica but makes them less attractive to a dominant herbivore. DISCUSSION Our study highlights that plant responses to AMF depend not only on the environmental context, but that the direction of the responses can differ for different components of plant performance (growth vs. defense).
Collapse
Affiliation(s)
- Minggang Wang
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Zhongbin Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Mingjie Guo
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Laiye Qu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
39
|
Vincent M, Boubakri H, Gasser M, Hay AE, Herrera-Belaroussi A. What contribution of plant immune responses in Alnus glutinosa-Frankia symbiotic interactions? Symbiosis 2023. [DOI: 10.1007/s13199-022-00889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
40
|
Zhang S, Nie Y, Fan X, Wei W, Chen H, Xie X, Tang M. A transcriptional activator from Rhizophagus irregularis regulates phosphate uptake and homeostasis in AM symbiosis during phosphorous starvation. Front Microbiol 2023; 13:1114089. [PMID: 36741887 PMCID: PMC9895418 DOI: 10.3389/fmicb.2022.1114089] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Phosphorus (P) is one of the most important nutrient elements for plant growth and development. Under P starvation, arbuscular mycorrhizal (AM) fungi can promote phosphate (Pi) uptake and homeostasis within host plants. However, the underlying mechanisms by which AM fungal symbiont regulates the AM symbiotic Pi acquisition from soil under P starvation are largely unknown. Here, we identify a HLH domain containing transcription factor RiPho4 from Rhizophagus irregularis. Methods To investigate the biological functions of the RiPho4, we combined the subcellular localization and Yeast One-Hybrid (Y1H) experiments in yeasts with gene expression and virus-induced gene silencing approach during AM symbiosis. Results The approach during AM symbiosis. The results indicated that RiPho4 encodes a conserved transcription factor among different fungi and is induced during the in planta phase. The transcription of RiPho4 is significantly up-regulated by P starvation. The subcellular localization analysis revealed that RiPho4 is located in the nuclei of yeast cells during P starvation. Moreover, knock-down of RiPho4 inhibits the arbuscule development and mycorrhizal Pi uptake under low Pi conditions. Importantly, RiPho4 can positively regulate the downstream components of the phosphate (PHO) pathway in R. irregularis. Discussion In summary, these new findings reveal that RiPho4 acts as a transcriptional activator in AM fungus to maintain arbuscule development and regulate Pi uptake and homeostasis in the AM symbiosis during Pi starvation.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianan Xie
- *Correspondence: Xianan Xie, ; Ming Tang,
| | - Ming Tang
- *Correspondence: Xianan Xie, ; Ming Tang,
| |
Collapse
|
41
|
Sarkar AK, Sadhukhan S. Unearthing the alteration in plant volatiles induced by mycorrhizal fungi: A shield against plant pathogens. PHYSIOLOGIA PLANTARUM 2023; 175:e13845. [PMID: 36546667 DOI: 10.1111/ppl.13845] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Plants produce a large range of structurally varied low molecular weight secondary metabolites, which evaporate, known as volatile organic compounds (VOCs). Several of them are emitted in response to biotic stress as a defensive measure against pathogen attacks. Arbuscular Mycorrhizal Fungi (AMFs) can change the VOC pattern in parts of the plant and may promote plant defense via direct or indirect mechanisms. Mycorrhization of plants positively affects plant immunization along with growth and yield. The presence of AMF may raise the concentration of phenolic compounds and the activity of critical defense-related enzymes. AMF-induced changes in plant chemistry and associated volatile emissions lead to stronger immunity against pathogenic microorganisms. Despite substantial research into the origins of diversity in VOC-mediated plant communication, very little is known about the mechanism of influence of several AMFs on plant VOC emissions and modulation of plant immunization. Moreover, the molecular mechanism for VOC sensing in plants and mycorrhizal association is still unclear. In the present review, we have presented an up-to-date understanding of the cross-talk of AMF and VOC patterns in plants and the subsequent modulation of resistance against microbial pathogens.
Collapse
Affiliation(s)
- Anup Kumar Sarkar
- Department of Botany, Dukhulal Nibaran Chandra College, Murshidabad, West Bengal, India
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Uttar Dinajpur, West Bengal, India
| | - Sanjoy Sadhukhan
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Uttar Dinajpur, West Bengal, India
| |
Collapse
|
42
|
Sarmiento-López LG, López-Espinoza MY, Juárez-Verdayes MA, López-Meyer M. Genome-wide characterization of the xyloglucan endotransglucosylase/hydrolase gene family in Solanum lycopersicum L. and gene expression analysis in response to arbuscular mycorrhizal symbiosis. PeerJ 2023; 11:e15257. [PMID: 37159836 PMCID: PMC10163873 DOI: 10.7717/peerj.15257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
Xyloglucan endotransglucosylase/hydrolases (XTHs) are a glycoside hydrolase protein family involved in the biosynthesis of xyloglucans, with essential roles in the regulation of plant cell wall extensibility. By taking advantage of the whole genome sequence in Solanum lycopersicum, 37 SlXTHs were identified in the present work. SlXTHs were classified into four subfamilies (ancestral, I/II, III-A, III-B) when aligned to XTHs of other plant species. Gene structure and conserved motifs showed similar compositions in each subfamily. Segmental duplication was the primary mechanism accounting for the expansion of SlXTH genes. In silico expression analysis showed that SlXTH genes exhibited differential expression in several tissues. GO analysis and 3D protein structure indicated that all 37 SlXTHs participate in cell wall biogenesis and xyloglucan metabolism. Promoter analysis revealed that some SlXTHs have MeJA- and stress-responsive elements. qRT-PCR expression analysis of nine SlXTHs in leaves and roots of mycorrhizal colonized vs. non-colonized plants showed that eight of these genes were differentially expressed in leaves and four in roots, suggesting that SlXTHs might play roles in plant defense induced by arbuscular mycorrhiza. Our results provide valuable insight into the function of XTHs in S. lycopersicum, in addition to the response of plants to mycorrhizal colonization.
Collapse
Affiliation(s)
- Luis G. Sarmiento-López
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa-Instituto Politécnico Nacional, Guasave, Sinaloa, México
| | - Maury Yanitze López-Espinoza
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa-Instituto Politécnico Nacional, Guasave, Sinaloa, México
| | - Marco Adán Juárez-Verdayes
- Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, México
| | - Melina López-Meyer
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa-Instituto Politécnico Nacional, Guasave, Sinaloa, México
| |
Collapse
|
43
|
Boosting Sustainable Agriculture by Arbuscular Mycorrhiza under Stress Condition: Mechanism and Future Prospective. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5275449. [PMID: 36619307 PMCID: PMC9815931 DOI: 10.1155/2022/5275449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
Global agriculture is frequently subjected to stresses from increased salt content, drought, heavy metals, and other factors, which limit plant growth and production, deteriorate soil health, and constitute a severe danger to global food security. Development of environmentally acceptable mitigation techniques against stresses and restrictions on the use of chemical fertilizers in agricultural fields is essential. Therefore, eco-friendly practises must be kept to prevent the detrimental impacts of stress on agricultural regions. The advanced metabolic machinery needed to handle this issue is not now existent in plants to deal against the stresses. Research has shown that the key role and mechanisms of arbuscular mycorrhiza fungi (AMF) to enhance plant nutrient uptake, immobilisation and translocation of heavy metals, and plant growth-promoting attributes may be suitable agents for plant growth under diversed stressed condition. The successful symbiosis and the functional relationship between the plant and AMF may build the protective regulatory mechansm against the key challenge in particular stress. AMF's compatibility with hyperaccumulator plants has also been supported by studies on gene regulation and theoretical arguments. In order to address this account, the present review included reducing the impacts of biotic and abiotic stress through AMF, the mechanisms of AMF to improve the host plant's capacity to endure stress, and the strategies employed by AM fungus to support plant survival in stressful conditions.
Collapse
|
44
|
Vicente TFL, Félix C, Félix R, Valentão P, Lemos MFL. Seaweed as a Natural Source against Phytopathogenic Bacteria. Mar Drugs 2022; 21:23. [PMID: 36662196 PMCID: PMC9867177 DOI: 10.3390/md21010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Plant bacterial pathogens can be devastating and compromise entire crops of fruit and vegetables worldwide. The consequences of bacterial plant infections represent not only relevant economical losses, but also the reduction of food availability. Synthetic bactericides have been the most used tool to control bacterial diseases, representing an expensive investment for the producers, since cyclic applications are usually necessary, and are a potential threat to the environment. The development of greener methodologies is of paramount importance, and some options are already available in the market, usually related to genetic manipulation or plant community modulation, as in the case of biocontrol. Seaweeds are one of the richest sources of bioactive compounds, already being used in different industries such as cosmetics, food, medicine, pharmaceutical investigation, and agriculture, among others. They also arise as an eco-friendly alternative to synthetic bactericides. Several studies have already demonstrated their inhibitory activity over relevant bacterial phytopathogens, some of these compounds are known for their eliciting ability to trigger priming defense mechanisms. The present work aims to gather the available information regarding seaweed extracts/compounds with antibacterial activity and eliciting potential to control bacterial phytopathogens, highlighting the extracts from brown algae with protective properties against microbial attack.
Collapse
Affiliation(s)
- Tânia F. L. Vicente
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Carina Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Rafael Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marco F. L. Lemos
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
45
|
Dejana L, Ramírez-Serrano B, Rivero J, Gamir J, López-Ráez JA, Pozo MJ. Phosphorus availability drives mycorrhiza induced resistance in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1060926. [PMID: 36600909 PMCID: PMC9806178 DOI: 10.3389/fpls.2022.1060926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis can provide multiple benefits to the host plant, including improved nutrition and protection against biotic stress. Mycorrhiza induced resistance (MIR) against pathogens and insect herbivores has been reported in different plant systems, but nutrient availability may influence the outcome of the interaction. Phosphorus (P) is a key nutrient for plants and insects, but also a regulatory factor for AM establishment and functioning. However, little is known about how AM symbiosis and P interact to regulate plant resistance to pests. Here, using the tomato-Funneliformis mosseae mycorrhizal system, we analyzed the effect of moderate differences in P fertilization on plant and pest performance, and on MIR against biotic stressors including the fungal pathogen Botrytis cinerea and the insect herbivore Spodoperta exigua. P fertilization impacted plant nutritional value, plant defenses, disease development and caterpillar survival, but these effects were modulated by the mycorrhizal status of the plant. Enhanced resistance of F. mosseae-inoculated plants against B. cinerea and S. exigua depended on P availability, as no protection was observed under the most P-limiting conditions. MIR was not directly explained by changes in the plant nutritional status nor to basal differences in defense-related phytohormones. Analysis of early plant defense responses to the damage associated molecules oligogalacturonides showed primed transcriptional activation of plant defenses occurring at intermediate P levels, but not under severe P limitation. The results show that P influences mycorrhizal priming of plant defenses and the resulting induced-resistance is dependent on P availability, and suggest that mycorrhiza fine-tunes the plant growth vs defense prioritization depending on P availability. Our results highlight how MIR is context dependent, thus unravel molecular mechanism based on plant defence in will contribute to improve the efficacy of mycorrhizal inoculants in crop protection.
Collapse
Affiliation(s)
- Laura Dejana
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Beatriz Ramírez-Serrano
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261, /Universite de Tours Centre National de la Recherche Scientifique (CNRS), Tours, France
| | - Javier Rivero
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Jordi Gamir
- Plant Immunity and Biochemistry Group, Department of Biology Biochemistry and Natural Sciences, Universitat Jaume I, Avd. Vicente Sos Baynat s/n, Castellón, Spain
| | - Juan A. López-Ráez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María J. Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
46
|
Zeng M, Hause B, van Dam NM, Uthe H, Hoffmann P, Krajinski F, Martínez-Medina A. The mycorrhizal symbiosis alters the plant defence strategy in a model legume plant. PLANT, CELL & ENVIRONMENT 2022; 45:3412-3428. [PMID: 35982608 DOI: 10.1111/pce.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis modulates plant-herbivore interactions. Still, how it shapes the overall plant defence strategy and the mechanisms involved remain unclear. We investigated how AM symbiosis simultaneously modulates plant resistance and tolerance to a shoot herbivore, and explored the underlying mechanisms. Bioassays with Medicago truncatula plants were used to study the effect of the AM fungus Rhizophagus irregularis on plant resistance and tolerance to Spodoptera exigua herbivory. By performing molecular and chemical analyses, we assessed the impact of AM symbiosis on herbivore-triggered phosphate (Pi)- and jasmonate (JA)-related responses. Upon herbivory, AM symbiosis led to an increased leaf Pi content by boosting the mycorrhizal Pi-uptake pathway. This enhanced both plant tolerance and herbivore performance. AM symbiosis counteracted the herbivore-triggered JA burst, reducing plant resistance. To disentangle the role of the mycorrhizal Pi-uptake pathway in the plant's response to herbivory, we used the mutant line ha1-2, impaired in the H+ -ATPase gene HA1, which is essential for Pi-uptake via the mycorrhizal pathway. We found that mycorrhiza-triggered enhancement of herbivore performance was compromised in ha1-2 plants. AM symbiosis thus affects the defence pattern of M. truncatula by altering resistance and tolerance simultaneously. We propose that the mycorrhizal Pi-uptake pathway is involved in the modulation of the plant defence strategy.
Collapse
Affiliation(s)
- Ming Zeng
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, General and Applied Botany, Universität Leipzig, Leipzig, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Moelcular Interaction Ecology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Henriette Uthe
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Moelcular Interaction Ecology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Petra Hoffmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Franziska Krajinski
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, General and Applied Botany, Universität Leipzig, Leipzig, Germany
| | - Ainhoa Martínez-Medina
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Moelcular Interaction Ecology, Friedrich-Schiller-University Jena, Jena, Germany
- Plant-Microorganism Interactions Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
47
|
Eck JL, Kytöviita M, Laine A. Arbuscular mycorrhizal fungi influence host infection during epidemics in a wild plant pathosystem. THE NEW PHYTOLOGIST 2022; 236:1922-1935. [PMID: 36093733 PMCID: PMC9827988 DOI: 10.1111/nph.18481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/15/2022] [Indexed: 05/29/2023]
Abstract
While pathogenic and mutualistic microbes are ubiquitous across ecosystems and often co-occur within hosts, how they interact to determine patterns of disease in genetically diverse wild populations is unknown. To test whether microbial mutualists provide protection against pathogens, and whether this varies among host genotypes, we conducted a field experiment in three naturally occurring epidemics of a fungal pathogen, Podosphaera plantaginis, infecting a host plant, Plantago lanceolata, in the Åland Islands, Finland. In each population, we collected epidemiological data on experimental plants from six allopatric populations that had been inoculated with a mixture of mutualistic arbuscular mycorrhizal fungi or a nonmycorrhizal control. Inoculation with arbuscular mycorrhizal fungi increased growth in plants from every population, but also increased host infection rate. Mycorrhizal effects on disease severity varied among host genotypes and strengthened over time during the epidemic. Host genotypes that were more susceptible to the pathogen received stronger protective effects from inoculation. Our results show that arbuscular mycorrhizal fungi introduce both benefits and risks to host plants, and shift patterns of infection in host populations under pathogen attack. Understanding how mutualists alter host susceptibility to disease will be important for predicting infection outcomes in ecological communities and in agriculture.
Collapse
Affiliation(s)
- Jenalle L. Eck
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich8057ZurichSwitzerland
| | - Minna‐Maarit Kytöviita
- Department of Biological and Environmental ScienceUniversity of Jyväskylä40014JyväskyläFinland
| | - Anna‐Liisa Laine
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich8057ZurichSwitzerland
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental SciencesUniversity of Helsinki00790HelsinkiFinland
| |
Collapse
|
48
|
Tan M, Li Y, Xu J, Yan S, Jiang D. Effects of Arbuscular Mycorrhizal Fungi-Colonized Populus alba × P. berolinensis Seedlings on the Microbial and Metabolic Status of Gypsy Moth Larvae. INSECTS 2022; 13:1002. [PMID: 36354825 PMCID: PMC9697668 DOI: 10.3390/insects13111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are considered as important biological factors that can affect insect resistance of plants. Herein, we used AMF-poplar seedlings that could either increase or decrease the resistance to gypsy moth larvae, to elucidate the mechanism of mycorrhizal-induced insect resistance/susceptibility at the larval microbial and metabolic levels. Our results found that larval plant consumption and growth were significantly inhibited in the Glomus mossae (GM)-colonized seedlings, whereas they were enhanced in the Glomus intraradices (GI)-colonized seedlings. GM inoculation reduced the beneficial bacteria abundance in the larval gut and inhibited the detoxification and metabolic functions of gut microbiota. However, GI inoculation improved the larval gut environment by decreasing the pathogenic bacteria and activating specific metabolic pathways. Furthermore, GM inoculation triggers a metabolic disorder in the larval fat body, accompanied by the suppression of detoxification and energy production pathways. The levels of differentially accumulated metabolites related to amino acid synthesis and metabolism and exogenous toxin metabolism pathways were significantly increased in the GI group. Taken together, the disadaptation of gypsy moth larvae to leaves of GM-colonized seedlings led to the GM-induced insect resistance in poplar, and to the GI-induced insect susceptibility involved in the improvement of larval gut environment and fat body energy metabolism.
Collapse
Affiliation(s)
- Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yaning Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jinsheng Xu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
49
|
Papantoniou D, Chang D, Martínez-Medina A, van Dam NM, Weinhold A. Root symbionts alter herbivore-induced indirect defenses of tomato plants by enhancing predator attraction. Front Physiol 2022; 13:1003746. [PMID: 36338467 PMCID: PMC9634184 DOI: 10.3389/fphys.2022.1003746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 03/28/2024] Open
Abstract
Beneficial root microbes are among the most frequently used biocontrol agents in cropping systems, since they have been shown to promote plant growth and crop yield. Moreover, they are able to enhance protection against pathogens and insect herbivores by activating plant resistance mechanisms. Plant defense responses against herbivorous insects include the induction of metabolic pathways involved in the synthesis of defense-related metabolites. These metabolites include volatile organic compounds (VOCs), which attract natural enemies of the herbivores as a form of indirect resistance. Considering that beneficial root microbes may affect direct herbivore resistance, we hypothesized that also indirect resistance may be affected. We tested this hypothesis in a study system composed of tomato, the arbuscular mycorrhizal fungus Rhizophagus irregularis, the growth-promoting fungus Trichoderma harzianum, the generalist chewing herbivore Spodoptera exigua and the omnivorous predator Macrolophus pygmaeus. Using a Y-tube olfactometer we found that M. pygmaeus preferred plants with S. exigua herbivory, but microbe-inoculated plants more than non-inoculated ones. We used a targeted GC-MS approach to assess the impact of beneficial microbes on the emission of volatiles 24 h after herbivory to explain the choice of M. pygmaeus. We observed that the volatile composition of the herbivore-infested plants differed from that of the non-infested plants, which was driven by the higher emission of green leaf volatile compounds, methyl salicylate, and several monoterpenes and sesquiterpenes. Inoculation with microbes had only a marginal effect on the emission of some terpenoids in our experiment. Gene expression analysis showed that the marker genes involved in the jasmonic and salicylic acid pathways were differentially expressed in the microbe-inoculated plants after herbivory. Our results pinpoint the role of root symbionts in determining plant-microbe-insect interactions up to the third trophic level, and elucidates their potential to be used in plant protection.
Collapse
Affiliation(s)
- Dimitra Papantoniou
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Jena, Germany
| | - Dongik Chang
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Jena, Germany
| | - Ainhoa Martínez-Medina
- Plant-Microorganism Interaction, Institute of Natural Resources and Agrobiology of Salamanca, Salamanca, Spain
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Jena, Germany
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Jena, Germany
| |
Collapse
|
50
|
de Souza Gouveia A, Monteiro TSA, Balbino HM, de Magalhães FC, Ramos MES, Silva de Moura VA, Luiz PHD, de Almeida Oliveira MG, de Freitas LG, de Oliveira Ramos HJ. Inoculation of Pochonia chlamydosporia triggers a defense response in tomato roots, affecting parasitism by Meloidogyne javanica. Microbiol Res 2022; 266:127242. [DOI: 10.1016/j.micres.2022.127242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|