1
|
Jiang C, Kan J, Gao G, Dockter C, Li C, Wu W, Yang P, Stein N. Barley2035: A decadal vision for barley research and breeding. MOLECULAR PLANT 2025; 18:195-218. [PMID: 39690737 DOI: 10.1016/j.molp.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Barley (Hordeum vulgare ssp. vulgare) is one of the oldest founder crops in human civilization and has been widely dispersed across the globe to support human society as a livestock feed and a raw material for the brewing industries. Since the early half of the 20th century, it has been used for innovative research on cytogenetics, biochemistry, and genetics, facilitated by its mode of reproduction through self-pollination and its true diploid status, which have contributed to the accumulation of numerous germplasm and mutant resources. In the era of molecular genomics and biology, a multitude of barley genes and their related regulatory mechanisms have been identified and functionally validated, providing a paradigm for equivalent studies in other Triticeae crops. This review highlights important advances on barley research over the past decade, focusing mainly on genomics and genomics-assisted germplasm exploration, genetic dissection of developmental and adaptation-related traits, and the complex dynamics of yield and quality formation. In the coming decade, the prospect of integrating these innovations in barley research and breeding shows great promise. Barley is proposed as a reference Triticeae crop for the discovery and functional validation of new genes and the dissection of their molecular mechanisms. The application of precise genome editing as well as genomic prediction and selection, further enhanced by artificial intelligence-based tools and applications, is expected to promote barley improvement to efficiently meet the evolving global demands for this important crop.
Collapse
Affiliation(s)
- Congcong Jiang
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinhong Kan
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangqi Gao
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen, Denmark
| | - Chengdao Li
- Western Crop Genetic Alliance, Murdoch University, Perth, WA 6150, Australia
| | - Wenxue Wu
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ping Yang
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany; Crop Plant Genetics, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
2
|
Sayde E, Chalak L, Baydoun S, Shehadeh A, El Zein H, Al Beyrouthy J, Yazbek M. Surveying and mapping cereals and legumes wild relatives in Mount Hermon (Bekaa, Lebanon). Ecol Evol 2024; 14:e10943. [PMID: 38469046 PMCID: PMC10926055 DOI: 10.1002/ece3.10943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/25/2023] [Accepted: 01/03/2024] [Indexed: 03/13/2024] Open
Abstract
Crop Wild Relatives (CWR) should be highly prioritized, monitored, and conserved as they have an immense effect on sustainability and livelihood. In this study we aim to survey and map cereal and legume wild relatives of Fabaceae and Poaceae families. Mount Hermon, Bekaa side, Lebanon. A set of 46 CWR species were targeted based on desk selection analysis and prioritization by the International Center for Agricultural Research in Dry Areas genebank for their potential importance in breeding programs. A botanical survey of 17 sites of the various habitats of Mount Hermon was performed during April-June 2021 using a systematic transect/quadrate sampling method. Recorded genera and species were accurately georeferenced and then mapped with the DIVA-GIS program. In total, 854 occurrences were observed belonging to 34 species of Fabaceae and 12 species of Poaceae. High H' Shannon diversity values were recorded in three sites (Al Fakiaa, Sham El Hafour and Ain Ata- al Berke) of the Mount with values ranking between 2.45 and 2.83. This was confirmed by the richness distribution maps of genera and species. Richness distribution maps provide relevant clues on candidate sites for high concentrations of each of the species under study. At least the three sites, hosting 87% of the surveyed CWR's species, can be considered for further in situ conservation actions.
Collapse
Affiliation(s)
- Eliane Sayde
- Faculty of Agronomy, Department of Plant ProductionLebanese UniversityBeirutLebanon
| | - Lamis Chalak
- Faculty of Agronomy, Department of Plant ProductionLebanese UniversityBeirutLebanon
| | - Safaa Baydoun
- Research Center for Environment and DevelopmentBeirut Arab UniversityBekaaLebanon
| | - Ali Shehadeh
- International Center for Agricultural Research in Dry Areas (ICARDA)BeirutLebanon
| | | | | | - Mariana Yazbek
- International Center for Agricultural Research in Dry Areas (ICARDA)BeirutLebanon
| |
Collapse
|
3
|
Cao H, Liu Z, Guo J, Jia Z, Shi Y, Kang K, Peng W, Wang Z, Chen L, Neuhaeuser B, Wang Y, Liu X, Hao D, Yuan L. ZmNRT1.1B (ZmNPF6.6) determines nitrogen use efficiency via regulation of nitrate transport and signalling in maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:316-329. [PMID: 37786281 PMCID: PMC10826987 DOI: 10.1111/pbi.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Nitrate (NO3 - ) is crucial for optimal plant growth and development and often limits crop productivity under low availability. In comparison with model plant Arabidopsis, the molecular mechanisms underlying NO3 - acquisition and utilization remain largely unclear in maize. In particular, only a few genes have been exploited to improve nitrogen use efficiency (NUE). Here, we demonstrated that NO3 - -inducible ZmNRT1.1B (ZmNPF6.6) positively regulated NO3 - -dependent growth and NUE in maize. We showed that the tandem duplicated proteoform ZmNRT1.1C is irrelevant to maize seedling growth under NO3 - supply; however, the loss of function of ZmNRT1.1B significantly weakened plant growth under adequate NO3 - supply under both hydroponic and field conditions. The 15 N-labelled NO3 - absorption assay indicated that ZmNRT1.1B mediated the high-affinity NO3 - -transport and root-to-shoot NO3 - translocation. Transcriptome analysis further showed, upon NO3 - supply, ZmNRT1.1B promotes cytoplasmic-to-nuclear shuttling of ZmNLP3.1 (ZmNLP8), which co-regulates the expression of genes involved in NO3 - response, cytokinin biosynthesis and carbon metabolism. Remarkably, overexpression of ZmNRT1.1B in modern maize hybrids improved grain yield under N-limiting fields. Taken together, our study revealed a crucial role of ZmNRT1.1B in high-affinity NO3 - transport and signalling and offers valuable genetic resource for breeding N use efficient high-yield cultivars.
Collapse
Affiliation(s)
- Huairong Cao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Zhi Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Jia Guo
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Zhongtao Jia
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Yandong Shi
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Kai Kang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Wushuang Peng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Zhangkui Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Benjamin Neuhaeuser
- Department of Nutritional Crop Physiology, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| | - Yong Wang
- National Key Laboratory of Wheat Improvement, College of Life SciencesShandong Agricultural UniversityTai'anShandongChina
| | - Xiangguo Liu
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Dongyun Hao
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Lixing Yuan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| |
Collapse
|
4
|
Zheng H, Dang Y, Sui N. Sorghum: A Multipurpose Crop. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17570-17583. [PMID: 37933850 DOI: 10.1021/acs.jafc.3c04942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Sorghum (Sorghum bicolor L.) is one of the top five cereal crops in the world in terms of production and planting area and is widely grown in areas with severe abiotic stresses such as drought and saline-alkali land due to its excellent stress resistance. Moreover, sorghum is a rare multipurpose crop that can be classified into grain sorghum, energy sorghum, and silage sorghum according to its domestication direction and utilization traits, endowing it with broad breeding and economic value. In this review, we mainly discuss the latest research progress and regulatory genes of agronomic traits of sorghum as a grain, energy, and silage crop, as well as the future improvement direction of multipurpose sorghum. We also emphasize the feasibility of cultivating multipurpose sorghum through genetic engineering methods by exploring potential targets using wild sorghum germplasm and genetic resources, as well as genomic resources.
Collapse
Affiliation(s)
- Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, 250014, China
- Dongying Institute, Shandong Normal University, Dongying, 257000, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
5
|
Levy AA, Feldman M. Evolution and origin of bread wheat. THE PLANT CELL 2022; 34:2549-2567. [PMID: 35512194 PMCID: PMC9252504 DOI: 10.1093/plcell/koac130] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/18/2022] [Indexed: 05/12/2023]
Abstract
Bread wheat (Triticum aestivum, genome BBAADD) is a young hexaploid species formed only 8,500-9,000 years ago through hybridization between a domesticated free-threshing tetraploid progenitor, genome BBAA, and Aegilops tauschii, the diploid donor of the D subgenome. Very soon after its formation, it spread globally from its cradle in the fertile crescent into new habitats and climates, to become a staple food of humanity. This extraordinary global expansion was probably enabled by allopolyploidy that accelerated genetic novelty through the acquisition of new traits, new intergenomic interactions, and buffering of mutations, and by the attractiveness of bread wheat's large, tasty, and nutritious grain with high baking quality. New genome sequences suggest that the elusive donor of the B subgenome is a distinct (unknown or extinct) species rather than a mosaic genome. We discuss the origin of the diploid and tetraploid progenitors of bread wheat and the conflicting genetic and archaeological evidence on where it was formed and which species was its free-threshing tetraploid progenitor. Wheat experienced many environmental changes throughout its evolution, therefore, while it might adapt to current climatic changes, efforts are needed to better use and conserve the vast gene pool of wheat biodiversity on which our food security depends.
Collapse
Affiliation(s)
- Avraham A Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Moshe Feldman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100 Israel
| |
Collapse
|
6
|
Zhi X, Tao Y, Jordan D, Borrell A, Hunt C, Cruickshank A, Potgieter A, Wu A, Hammer G, George-Jaeggli B, Mace E. Genetic control of leaf angle in sorghum and its effect on light interception. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:801-816. [PMID: 34698817 DOI: 10.1093/jxb/erab467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Developing sorghum genotypes adapted to different light environments requires understanding of a plant's ability to capture light, determined through leaf angle specifically. This study dissected the genetic basis of leaf angle in 3 year field trials at two sites, using a sorghum diversity panel (729 accessions). A wide range of variation in leaf angle with medium heritability was observed. Leaf angle explained 36% variation in canopy light extinction coefficient, highlighting the extent to which variation in leaf angle influences light interception at the whole-canopy level. This study also found that the sorghum races of Guinea and Durra consistently having the largest and smallest leaf angle, respectively, highlighting the potential role of leaf angle in adaptation to distinct environments. The genome-wide association study detected 33 quantitative trait loci (QTLs) associated with leaf angle. Strong synteny was observed with previously detected leaf angle QTLs in maize (70%) and rice (40%) within 10 cM, among which the overlap was significantly enriched according to χ2 tests, suggesting a highly consistent genetic control in grasses. A priori leaf angle candidate genes identified in maize and rice were found to be enriched within a 1-cM window around the sorghum leaf angle QTLs. Additionally, protein domain analysis identified the WD40 protein domain as being enriched within a 1-cM window around the QTLs. These outcomes show that there is sufficient heritability and natural variation in the angle of upper leaves in sorghum which may be exploited to change light interception and optimize crop canopies for different contexts.
Collapse
Affiliation(s)
- Xiaoyu Zhi
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD, Australia
| | - Yongfu Tao
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD, Australia
| | - David Jordan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD, Australia
| | - Andrew Borrell
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD, Australia
| | - Colleen Hunt
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD, Australia
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Hermitage Research Facility, Warwick, QLD, Australia
| | - Alan Cruickshank
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Hermitage Research Facility, Warwick, QLD, Australia
| | - Andries Potgieter
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Gatton, QLD, Australia
| | - Alex Wu
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia
| | - Graeme Hammer
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia
| | - Barbara George-Jaeggli
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD, Australia
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Hermitage Research Facility, Warwick, QLD, Australia
| | - Emma Mace
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD, Australia
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Hermitage Research Facility, Warwick, QLD, Australia
| |
Collapse
|
7
|
Sayed MA, Allam M, Heck QK, Urbanavičiūtė I, Rutten T, Stuart D, Zakhrabekova S, Börner A, Pillen K, Hansson M, Youssef HM. Analyses of MADS-box Genes Suggest HvMADS56 to Regulate Lateral Spikelet Development in Barley. PLANTS (BASEL, SWITZERLAND) 2021; 10:2825. [PMID: 34961296 PMCID: PMC8703372 DOI: 10.3390/plants10122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
MADS-box transcription factors are crucial regulators of inflorescence and flower development in plants. Therefore, the recent interest in this family has received much attention in plant breeding programs due to their impact on plant development and inflorescence architecture. The aim of this study was to investigate the role of HvMADS-box genes in lateral spikelet development in barley (Hordeum vulgare L.). A set of 30 spike-contrasting barley lines were phenotypically and genotypically investigated under controlled conditions. We detected clear variations in the spike and spikelet development during the developmental stages among the tested lines. The lateral florets in the deficiens and semi-deficiens lines were more reduced than in two-rowed cultivars except cv. Kristina. Interestingly, cv. Kristina, int-h.43 and int-i.39 exhibited the same behavior as def.5, def.6, semi-def.1, semi-def.8 regarding development and showed reduced lateral florets size. In HOR1555, HOR7191 and HOR7041, the lateral florets continued their development, eventually setting seeds. In contrast, lateral florets in two-rowed barley stopped differentiating after the awn primordia stage giving rise to lateral floret sterility. At harvest, the lines tested showed large variation for all central and lateral spikelet-related traits. Phylogenetic analysis showed that more than half of the 108 MADS-box genes identified are highly conserved and are expressed in different barley tissues. Re-sequence analysis of a subset of these genes showed clear polymorphism in either SNPs or in/del. Variation in HvMADS56 correlated with altered lateral spikelet morphology. This suggests that HvMADS56 plays an important role in lateral spikelet development in barley.
Collapse
Affiliation(s)
- Mohammed A. Sayed
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany; (M.A.S.); (T.R.); (A.B.)
- Faculty of Agriculture, Assuit University, Assuit 71526, Egypt;
| | - Mohamed Allam
- Faculty of Agriculture, Assuit University, Assuit 71526, Egypt;
- Department of Agricultural and Forest Sciences, Tuscia University, Via S. C. de Lellis, snc, 01100 Viterbo, Italy;
| | - Quinn Kalby Heck
- Department of Biology, Lund University, Sölvegatan 35B, 22362 Lund, Sweden; (Q.K.H.); (D.S.); (S.Z.); (M.H.)
| | - Ieva Urbanavičiūtė
- Department of Agricultural and Forest Sciences, Tuscia University, Via S. C. de Lellis, snc, 01100 Viterbo, Italy;
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany; (M.A.S.); (T.R.); (A.B.)
| | - David Stuart
- Department of Biology, Lund University, Sölvegatan 35B, 22362 Lund, Sweden; (Q.K.H.); (D.S.); (S.Z.); (M.H.)
| | - Shakhira Zakhrabekova
- Department of Biology, Lund University, Sölvegatan 35B, 22362 Lund, Sweden; (Q.K.H.); (D.S.); (S.Z.); (M.H.)
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany; (M.A.S.); (T.R.); (A.B.)
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany;
| | - Mats Hansson
- Department of Biology, Lund University, Sölvegatan 35B, 22362 Lund, Sweden; (Q.K.H.); (D.S.); (S.Z.); (M.H.)
| | - Helmy M. Youssef
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany;
- Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| |
Collapse
|
8
|
Feng S, Liu Z, Cheng J, Li Z, Tian L, Liu M, Yang T, Liu Y, Liu Y, Dai H, Yang Z, Zhang Q, Wang G, Zhang J, Jiang H, Wei A. Zanthoxylum-specific whole genome duplication and recent activity of transposable elements in the highly repetitive paleotetraploid Z. bungeanum genome. HORTICULTURE RESEARCH 2021; 8:205. [PMID: 34480029 PMCID: PMC8417289 DOI: 10.1038/s41438-021-00665-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 05/14/2023]
Abstract
Zanthoxylum bungeanum is an important spice and medicinal plant that is unique for its accumulation of abundant secondary metabolites, which create a characteristic aroma and tingling sensation in the mouth. Owing to the high proportion of repetitive sequences, high heterozygosity, and increased chromosome number of Z. bungeanum, the assembly of its chromosomal pseudomolecules is extremely challenging. Here, we present a genome sequence for Z. bungeanum, with a dramatically expanded size of 4.23 Gb, assembled into 68 chromosomes. This genome is approximately tenfold larger than that of its close relative Citrus sinensis. After the divergence of Zanthoxylum and Citrus, the lineage-specific whole-genome duplication event η-WGD approximately 26.8 million years ago (MYA) and the recent transposable element (TE) burst ~6.41 MYA account for the substantial genome expansion in Z. bungeanum. The independent Zanthoxylum-specific WGD event was followed by numerous fusion/fission events that shaped the genomic architecture. Integrative genomic and transcriptomic analyses suggested that prominent species-specific gene family expansions and changes in gene expression have shaped the biosynthesis of sanshools, terpenoids, and anthocyanins, which contribute to the special flavor and appearance of Z. bungeanum. In summary, the reference genome provides a valuable model for studying the impact of WGDs with recent TE activity on gene gain and loss and genome reconstruction and provides resources to accelerate Zanthoxylum improvement.
Collapse
Affiliation(s)
- Shijing Feng
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China
| | - Zhenshan Liu
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zihe Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shanxi, China
| | - Lu Tian
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Tuxi Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China
| | - Yonghong Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China
| | - He Dai
- Biomarker Technologies Corporation, Beijing, China
| | - Zujun Yang
- Center for Information in Biology, College of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qing Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gang Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China.
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China.
| |
Collapse
|
9
|
Genome Wide Analysis of U-Box E3 Ubiquitin Ligases in Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:ijms22052699. [PMID: 33800063 PMCID: PMC7962133 DOI: 10.3390/ijms22052699] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
U-box E3 ligase genes play specific roles in protein degradation by post-translational modification in plant signaling pathways, developmental stages, and stress responses; however, little is known about U-box E3 genes in wheat. We identified 213 U-box E3 genes in wheat based on U-box and other functional domains in their genome sequences. The U-box E3 genes were distributed among 21 chromosomes and most showed high sequence homology with homoeologous U-box E3 genes. Synteny analysis of wheat U-box E3 genes was conducted with other plant species such as Brachypodium distachyon, barley, rice, Triricum uratu, and Aegilops tauschii. A total of 209 RNA-seq samples representing 22 tissue types, from grain, root, leaf, and spike samples across multiple time points, were analyzed for clustering of U-box E3 gene expression during developmental stages, and the genes responded differently in various tissues and developmental stages. In addition, expression analysis of U-box E3 genes under abiotic stress, including drought, heat, and both heat and drought, and cold conditions, was conducted to provide information on U-box E3 gene expression under specific stress conditions. This analysis of U-box E3 genes could provide valuable information to elucidate biological functions for a better understanding of U-box E3 genes in wheat.
Collapse
|
10
|
Zheng X, Liu C, Qiao L, Zhao J, Han R, Wang X, Ge C, Zhang W, Zhang S, Qiao L, Zheng J, Hao C. The MYB transcription factor TaPHR3-A1 is involved in phosphate signaling and governs yield-related traits in bread wheat. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5808-5822. [PMID: 32725154 DOI: 10.1093/jxb/eraa355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Improved inorganic phosphate (Pi) use efficiency in crops will be important for sustainable agriculture. Exploring molecular mechanisms that regulate Pi uptake could provide useful information for breeding wheat with improved Pi use efficiency. Here, a TaPHR3-A1 (Gene ID: TraesCS7A02G415800) ortholog of rice OsPHR3 that functions in transcriptional regulation of Pi signaling was cloned from wheat chromosome 7A. Ectopic expression of TaPHR3-A1 in Arabidopsis and rice produced enhanced vegetative growth and more seeds. Overexpression in transgenic rice led to increased biomass, grain number, and primary panicle branching by 61.23, 42.12, and 36.34% compared with the wild type. Transgenic wheat lines with down-regulation of TaPHR3-A1 exhibited retarded growth and root hair development at the seedling stage, and showed yield-related effects at the adult stage when grown in both low- and sufficient Pi conditions, indicating that TaPHR3-A1 positively regulated tolerance to low Pi. Introgression lines further confirmed the effect of TaPHR3-A1 in improving grain number. The Chinese wheat mini core collection and a recombinant inbred line analysis demonstrated that the favorable allele TaPHR3-A1-A associated with higher grain number was positively selected in breeding. A TaPHR3-A1-derived cleaved amplified polymorphic sequence marker effectively identified haplotype TaPHR3-A1-A. Our results suggested that TaPHR3-A1 was a functional regulatory factor for Pi uptake and provided useful information for marker-assisted selection for high yield in wheat.
Collapse
Affiliation(s)
- Xingwei Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat & Maize, Jinan, China
| | - Ling Qiao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Jiajia Zhao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Ran Han
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat & Maize, Jinan, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat & Maize, Jinan, China
| | - Chuan Ge
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Wenyun Zhang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Shuwei Zhang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Linyi Qiao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Chenyang Hao
- The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Liu Y, Jia Z, Li X, Wang Z, Chen F, Mi G, Forde B, Takahashi H, Yuan L. Involvement of a truncated MADS-box transcription factor ZmTMM1 in root nitrate foraging. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4547-4561. [PMID: 32133500 PMCID: PMC7382388 DOI: 10.1093/jxb/eraa116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/01/2020] [Indexed: 05/20/2023]
Abstract
Plants can develop root systems with distinct anatomical features and morphological plasticity to forage nutrients distributed heterogeneously in soils. Lateral root proliferation is a typical nutrient-foraging response to a local supply of nitrate, which has been investigated across many plant species. However, the underlying mechanism in maize roots remains largely unknown. Here, we report on identification of a maize truncated MIKC-type MADS-box transcription factor (ZmTMM1) lacking K- and C-domains, expressed preferentially in the lateral root branching zone and induced by the localized supply of nitrate. ZmTMM1 belongs to the AGL17-like MADS-box transcription factor family that contains orthologs of ANR1, a key regulator for root nitrate foraging in Arabidopsis. Ectopic overexpression of ZmTMM1 recovers the defective growth of lateral roots in the Arabidopsis anr1 agl21 double mutant. The local activation of glucocorticoid receptor fusion proteins for ZmTMM1 and an artificially truncated form of AtANR1 without the K- and C-domains stimulates the lateral root growth of the Arabidopsis anr1 agl21 mutant, providing evidence that ZmTMM1 encodes a functional MADS-box that modulates lateral root development. However, no phenotype was observed in ZmTMM1-RNAi transgenic maize lines, suggesting a possible genetic redundancy of ZmTMM1 with other AGL17-like genes in maize. A comparative genome analysis further suggests that a nitrate-inducible transcriptional regulation is probably conserved in both truncated and non-truncated forms of ZmTMM1-like MADS-box transcription factors found in grass species.
Collapse
Affiliation(s)
- Ying Liu
- Key Lab of Plant–Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Zhongtao Jia
- Key Lab of Plant–Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xuelian Li
- Key Lab of Plant–Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Zhangkui Wang
- Key Lab of Plant–Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Fanjun Chen
- Key Lab of Plant–Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Guohua Mi
- Key Lab of Plant–Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Brian Forde
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Lixing Yuan
- Key Lab of Plant–Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
12
|
Buffagni V, Vurro F, Janni M, Gullì M, Keller AA, Marmiroli N. Shaping Durum Wheat for the Future: Gene Expression Analyses and Metabolites Profiling Support the Contribution of BCAT Genes to Drought Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:891. [PMID: 32719694 PMCID: PMC7350509 DOI: 10.3389/fpls.2020.00891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Global climate change, its implications for agriculture, and the complex scenario presented by the scientific community are of worldwide concern. Drought is a major abiotic stress that can restrict plants growth and yields, thus the identification of genotypes with higher adaptability to drought stress represents one of the primary goals in breeding programs. During abiotic stress, metabolic adaptation is crucial for stress tolerance, and accumulation of specific amino acids and/or as secondary metabolites deriving from amino acid metabolism may correlate with the increased tolerance to adverse environmental conditions. This work, focused on the metabolism of branched chain-amino acids (BCAAs) in durum wheat and the role of branched-chain amino acid aminotransferases (BCATs) in stress response. The role of BCATs in plant response to drought was previously proposed for Arabidopsis, where the levels of BCAAs were altered at the transcriptional level under drought conditions, triggering the onset of defense response metabolism. However, in wheat the role of BCAAs as a trigger of the onset of the drought defense response has not been elucidated. A comparative genomic approach elucidated the composition of the BCAT gene family in durum wheat. Here we demonstrate a tissue and developmental stage specificity of BCATs regulation in the drought response. Moreover, a metabolites profiling was performed on two contrasting durum wheat cultivars Colosseo and Cappelli resulting in the detection of a specific pattern of metabolites accumulated among genotypes and, in particular, in an enhanced BCAAs accumulation in the tolerant cv Cappelli further supporting a role of BCAAs in the drought defense response. The results support the use of gene expression and target metabolomic in modern breeding to shape new cultivars more resilient to a changing climate.
Collapse
Affiliation(s)
- Valentina Buffagni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Filippo Vurro
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parma, Italy
| | - Michela Janni
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parma, Italy
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Bari, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Arturo A. Keller
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- CINSA Interuniversity Consortium for Environmental Sciences, Parma/Venice, Italy
| |
Collapse
|
13
|
Tao Y, Zhao X, Wang X, Hathorn A, Hunt C, Cruickshank AW, van Oosterom EJ, Godwin ID, Mace ES, Jordan DR. Large-scale GWAS in sorghum reveals common genetic control of grain size among cereals. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1093-1105. [PMID: 31659829 PMCID: PMC7061873 DOI: 10.1111/pbi.13284] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/30/2019] [Accepted: 10/24/2019] [Indexed: 05/20/2023]
Abstract
Grain size is a key yield component of cereal crops and a major quality attribute. It is determined by a genotype's genetic potential and its capacity to fill the grains. This study aims to dissect the genetic architecture of grain size in sorghum. An integrated genome-wide association study (GWAS) was conducted using a diversity panel (n = 837) and a BC-NAM population (n = 1421). To isolate genetic effects associated with genetic potential of grain size, rather than the genotype's capacity to fill the grains, a treatment of removing half of the panicle was imposed during flowering. Extensive and highly heritable variation in grain size was observed in both populations in 5 field trials, and 81 grain size QTL were identified in subsequent GWAS. These QTL were enriched for orthologues of known grain size genes in rice and maize, and had significant overlap with SNPs associated with grain size in rice and maize, supporting common genetic control of this trait among cereals. Grain size genes with opposite effect on grain number were less likely to overlap with the grain size QTL from this study, indicating the treatment facilitated identification of genetic regions related to the genetic potential of grain size. These results enhance understanding of the genetic architecture of grain size in cereal, and pave the way for exploration of underlying molecular mechanisms and manipulation of this trait in breeding practices.
Collapse
Affiliation(s)
- Yongfu Tao
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandHermitage Research FacilityWarwickQldAustralia
| | - Xianrong Zhao
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandHermitage Research FacilityWarwickQldAustralia
| | - Xuemin Wang
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandHermitage Research FacilityWarwickQldAustralia
| | - Adrian Hathorn
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandHermitage Research FacilityWarwickQldAustralia
| | - Colleen Hunt
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandHermitage Research FacilityWarwickQldAustralia
- Agri‐Science QueenslandDepartment of Agriculture and Fisheries (DAF)Hermitage Research FacilityWarwickQldAustralia
| | - Alan W. Cruickshank
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandHermitage Research FacilityWarwickQldAustralia
- Agri‐Science QueenslandDepartment of Agriculture and Fisheries (DAF)Hermitage Research FacilityWarwickQldAustralia
| | - Erik J. van Oosterom
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandBrisbaneQldAustralia
| | - Ian D. Godwin
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandBrisbaneQldAustralia
| | - Emma S. Mace
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandHermitage Research FacilityWarwickQldAustralia
- Agri‐Science QueenslandDepartment of Agriculture and Fisheries (DAF)Hermitage Research FacilityWarwickQldAustralia
| | - David R. Jordan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandHermitage Research FacilityWarwickQldAustralia
| |
Collapse
|
14
|
Kumar A, Kapoor P, Chunduri V, Sharma S, Garg M. Potential of Aegilops sp. for Improvement of Grain Processing and Nutritional Quality in Wheat ( Triticum aestivum). FRONTIERS IN PLANT SCIENCE 2019; 10:308. [PMID: 30936886 PMCID: PMC6431632 DOI: 10.3389/fpls.2019.00308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Wheat is one of the most important staple crops in the world and good source of calories and nutrition. Its flour and dough have unique physical properties and can be processed to make unique products like bread, cakes, biscuits, pasta, noodles etc., which is not possible from other staple crops. Due to domestication, the genetic variability of the genes coding for different economically important traits in wheat is narrow. This genetic variability can be increased by utilizing its wild relatives. Its closest relative, genus Aegilops can be an important source of new alleles. Aegilops has played a very important role in evolution of tetraploid and hexaploid wheat. It consists of 22 species with C, D, M, N, S, T and U genomes with high allelic diversity relative to wheat. Its utilization for wheat improvement for various abiotic and biotic stresses has been reported by various scientific publications. Here in, for the first time, we review the potential of Aegilops for improvement of processing and nutritional traits in wheat. Among processing quality related gluten proteins; high molecular weight glutenins (HMW GS), being easiest to study have been explored in highest number of accessions or lines i.e., 681 belonging to 13 species and selected ones like Ae. searsii, Ae. geniculata and Ae. longissima have been linked with improved bread making quality of wheat. Gliadins and low molecular weight glutenins (LMW GS) have also been extensively explored for wheat improvement and Ae. umbellulata specific LMW GS have been linked with wheat bread making quality improvement. Aegilops has been explored for seed texture diversity and proteins like puroindolins (Pin) and grain softness proteins (GSP). For nutrition quality improvement, it has been screened for essential micronutrients like Fe, Zn, phytochemicals like carotenoids and dietary fibers like arabinoxylan and β-glucan. Ae. kotschyi and Ae. biuncialis transfer in wheat have been associated with higher Fe, Zn content. In this article we have tried to compile information available on exploration of nutritional and processing quality related traits in Aegilops section and their utilization for wheat improvement by different approaches.
Collapse
|
15
|
Ju L, Deng G, Liang J, Zhang H, Li Q, Pan Z, Yu M, Long H. Structural organization and functional divergence of high isoelectric point α-amylase genes in bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). BMC Genet 2019; 20:25. [PMID: 30845909 PMCID: PMC6404323 DOI: 10.1186/s12863-019-0732-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/26/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND High isoelectric point α-amylase genes (Amy1) play major roles during cereal seed germination, and are associated with unacceptable high residual α-amylase activities in ripe wheat grains. However, in wheat and barley, due to extremely high homology of duplicated copies, and large and complex genome background, the knowledge on this multigene family is limited. RESULTS In the present work, we identified a total of 41 Amy1 genes among 13 investigated grasses. By using genomic resources and experimental validation, the exact copy numbers and chromosomal locations in wheat and barley were determined. Phylogenetic and syntenic analyses revealed tandem gene duplication and chromosomal rearrangement leading to separation of Amy1 into two distinct loci, Amy1θ and Amy1λ. The divergence of Amy1λ from Amy1θ was driven by adaptive selection pressures performed on two amino acids, Arg97 and Asn233 (P > 0.95*). The predicted protein structural alteration caused by substitution of Asp233Asn in the conserved starch binding surface site, and significantly expressional differentiation during seed germination and grain development provided evidence of functional divergence between Amy1θ and Amy1λ genes. We screened out candidate copies (TaAmy1-A1/A2 and TaAmy1-D1) associated with high residual α-amylase activities in ripe grains. Furthermore, we proposed an evolutionary model for expansion dynamics of Amy1 genes. CONCLUSIONS Our study provides comprehensive analyses of the Amy1 multigene family, and defines the fixation of two spatially structural Amy1 loci in wheat and barley. Potential functional divergence between them is reflected by their sequence features and expressional patterns, and driven by gene duplication, chromosome rearrangement and natural selections during gene family evolution. Furthermore, the discrimination of differentially effective copies during seed germination and/or grain development will provide guidance to manipulation of α-amylase activity in wheat and barley breeding for better yield and processing properties.
Collapse
Affiliation(s)
- Liangliang Ju
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| |
Collapse
|
16
|
Loginova DB, Silkova OG. The Genome of Bread Wheat Triticum aestivum L.: Unique Structural and Functional Properties. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418040105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat Genet 2018; 50:368-374. [PMID: 29434355 DOI: 10.1038/s41588-018-0051-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/02/2018] [Indexed: 01/04/2023]
Abstract
Deployment of fast-evolving disease-resistance genes is one of the most successful strategies used by plants to fend off pathogens1,2. In gene-for-gene relationships, most cloned disease-resistance genes encode intracellular nucleotide-binding leucine-rich-repeat proteins (NLRs) recognizing pathogen-secreted isolate-specific avirulence (Avr) effectors delivered to the host cytoplasm3,4. This process often triggers a localized hypersensitive response, which halts further disease development 5 . Here we report the map-based cloning of the wheat Stb6 gene and demonstrate that it encodes a conserved wall-associated receptor kinase (WAK)-like protein, which detects the presence of a matching apoplastic effector6-8 and confers pathogen resistance without a hypersensitive response 9 . This report demonstrates gene-for-gene disease resistance controlled by this class of proteins in plants. Moreover, Stb6 is, to our knowledge, the first cloned gene specifying resistance to Zymoseptoria tritici, an important foliar fungal pathogen affecting wheat and causing economically damaging septoria tritici blotch (STB) disease10-12.
Collapse
|
18
|
Prade VM, Gundlach H, Twardziok S, Chapman B, Tan C, Langridge P, Schulman AH, Stein N, Waugh R, Zhang G, Platzer M, Li C, Spannagl M, Mayer KFX. The pseudogenes of barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:502-514. [PMID: 29205595 DOI: 10.1111/tpj.13794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/16/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Pseudogenes have a reputation of being 'evolutionary relics' or 'junk DNA'. While they are well characterized in mammals, studies in more complex plant genomes have so far been hampered by the absence of reference genome sequences. Barley is one of the economically most important cereals and has a genome size of 5.1 Gb. With the first high-quality genome reference assembly available for a Triticeae crop, we conducted a whole-genome assessment of pseudogenes on the barley genome. We identified, characterized and classified 89 440 gene fragments and pseudogenes scattered along the chromosomes, with occasional hotspots and higher densities at the chromosome ends. Full-length pseudogenes (11 015) have preferentially retained their exon-intron structure. Retrotransposition of processed mRNAs only plays a marginal role in their creation. However, the distribution of retroposed pseudogenes reflects the Rabl configuration of barley chromosomes and thus hints at founding mechanisms. While parent genes related to the defense-response were found to be under-represented in cultivated barley, we detected several defense-related pseudogenes in wild barley accessions. The percentage of transcriptionally active pseudogenes is 7.2%, and these may potentially adopt new regulatory roles.The barley genome is rich in pseudogenes and small gene fragments mainly located towards chromosome tips or as tandemly repeated units. Our results indicate non-random duplication and pseudogenization preferences and improve our understanding of the dynamics of gene birth and death in large plant genomes and the mechanisms that lead to evolutionary innovations.
Collapse
Affiliation(s)
- Verena M Prade
- Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Heidrun Gundlach
- Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Sven Twardziok
- Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Brett Chapman
- Centre for Comparative Genomics, Murdoch University, 90 South Street, WA6150, Murdoch, Australia
| | - Cong Tan
- School of Veterinary and Life Sciences, Murdoch University, 90 South Street, WA6150, Murdoch, Australia
| | - Peter Langridge
- School of Agriculture, University of Adelaide, Waite Campus, SA5064, Urrbrae, Australia
| | - Alan H Schulman
- Green Technology, Natural Resources Institute (Luke), Viikki Plant Science Centre, Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
- School of Plant Biology, University of Western Australia, Crawley, WA6009, Australia
| | - Robbie Waugh
- The James Hutton Institute, Dundee, DD2 5DA, UK
- School of Life Sciences, University of Dundee, Dundee, DD2 5DA, UK
| | - Guoping Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Matthias Platzer
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Chengdao Li
- School of Veterinary and Life Sciences, Murdoch University, 90 South Street, WA6150, Murdoch, Australia
- Department of Agriculture and Food, Government of Western Australia, South Perth, WA, 6151, Australia
| | - Manuel Spannagl
- Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany
| |
Collapse
|
19
|
Zhou F, Zhang Y, Tang W, Wang M, Gao T. Transcriptomics analysis of the flowering regulatory genes involved in the herbicide resistance of Asia minor bluegrass (Polypogon fugax). BMC Genomics 2017; 18:953. [PMID: 29212446 PMCID: PMC5719899 DOI: 10.1186/s12864-017-4324-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/21/2017] [Indexed: 11/29/2022] Open
Abstract
Background Asia minor bluegrass (Polypogon fugax, P. fugax), a weed that is both distributed across China and associated with winter crops, has evolved resistance to acetyl-CoA carboxylase (ACCase) herbicides, but the resistance mechanism remains unclear. The goal of this study was to analyze the transcriptome between resistant and sensitive populations of P. fugax at the flowering stage. Results Populations resistant and susceptible to clodinafop-propargyl showed distinct transcriptome profiles. A total of 206,041 unigenes were identified; 165,901 unique sequences were annotated using BLASTX alignment databases. Among them, 5904 unigenes were classified into 58 transcription factor families. Nine families were related to the regulation of plant growth and development and to stress responses. Twelve unigenes were differentially expressed between the clodinafop-propargyl-sensitive and clodinafop-propargyl-resistant populations at the early flowering stage; among those unigenes, three belonged to the ABI3VP1, BHLH, and GRAS families, while the remaining nine belonged to the MADS family. Compared with the clodinafop-propargyl-sensitive plants, the resistant plants exhibited different expression pattern of these 12 unigenes. Conclusion This study identified differentially expressed unigenes related to ACCase-resistant P. fugax and thus provides a genomic resource for understanding the molecular basis of early flowering. Electronic supplementary material The online version of this article (10.1186/s12864-017-4324-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fengyan Zhou
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230001, China.
| | - Yong Zhang
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Wei Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Mei Wang
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Tongchun Gao
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| |
Collapse
|
20
|
Xiao J, Dai K, Fu L, Vrána J, Kubaláková M, Wan W, Sun H, Zhao J, Yu C, Wu Y, Abrouk M, Wang H, Doležel J, Wang X. Sequencing flow-sorted short arm of Haynaldia villosa chromosome 4V provides insights into its molecular structure and virtual gene order. BMC Genomics 2017; 18:791. [PMID: 29037165 PMCID: PMC5644170 DOI: 10.1186/s12864-017-4211-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 10/12/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Haynaldia villosa (H. villosa) has been recognized as a species potentially useful for wheat improvement. The availability of its genomic sequences will boost its research and application. RESULTS In this work, the short arm of H. villosa chromosome 4V (4VS) was sorted by flow cytometry and sequenced using Illumina platform. About 170.6 Mb assembled sequences were obtained. Further analysis showed that repetitive elements accounted for about 64.6% of 4VS, while the coding fraction, which is corresponding to 1977 annotated genes, represented 1.5% of the arm. The syntenic regions of the 4VS were searched and identified on wheat group 4 chromosomes 4AL, 4BS, 4DS, Brachypodium chromosomes 1 and 4, rice chromosomes 3 and 11, and sorghum chromosomes 1, 5 and 8. Based on genome-zipper analysis, a virtual gene order comprising 735 gene loci on 4VS genome was built by referring to the Brachypodium genome, which was relatively consistent with the scaffold order determined for Ae. tauschii chromosome 4D. The homologous alleles of several cloned genes on wheat group 4 chromosomes including Rht-1 gene were identified. CONCLUSIONS The sequences provided valuable information for mapping and positional-cloning genes located on 4VS, such as the wheat yellow mosaic virus resistance gene Wss1. The work on 4VS provided detailed insights into the genome of H. villosa, and may also serve as a model for sequencing the remaining parts of H. villosa genome.
Collapse
Affiliation(s)
- Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Keli Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Lian Fu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Haná Region for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-783671 Olomouc, Czech Republic
| | - Marie Kubaláková
- Institute of Experimental Botany, Centre of the Haná Region for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-783671 Olomouc, Czech Republic
| | - Wentao Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Haojie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Jing Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Chunyan Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Michael Abrouk
- Institute of Experimental Botany, Centre of the Haná Region for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-783671 Olomouc, Czech Republic
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Haná Region for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-783671 Olomouc, Czech Republic
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| |
Collapse
|
21
|
Mochizuki T, Tanizawa Y, Fujisawa T, Ohta T, Nikoh N, Shimizu T, Toyoda A, Fujiyama A, Kurata N, Nagasaki H, Kaminuma E, Nakamura Y. DNApod: DNA polymorphism annotation database from next-generation sequence read archives. PLoS One 2017; 12:e0172269. [PMID: 28234924 PMCID: PMC5325239 DOI: 10.1371/journal.pone.0172269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/02/2017] [Indexed: 01/18/2023] Open
Abstract
With the rapid advances in next-generation sequencing (NGS), datasets for DNA polymorphisms among various species and strains have been produced, stored, and distributed. However, reliability varies among these datasets because the experimental and analytical conditions used differ among assays. Furthermore, such datasets have been frequently distributed from the websites of individual sequencing projects. It is desirable to integrate DNA polymorphism data into one database featuring uniform quality control that is distributed from a single platform at a single place. DNA polymorphism annotation database (DNApod; http://tga.nig.ac.jp/dnapod/) is an integrated database that stores genome-wide DNA polymorphism datasets acquired under uniform analytical conditions, and this includes uniformity in the quality of the raw data, the reference genome version, and evaluation algorithms. DNApod genotypic data are re-analyzed whole-genome shotgun datasets extracted from sequence read archives, and DNApod distributes genome-wide DNA polymorphism datasets and known-gene annotations for each DNA polymorphism. This new database was developed for storing genome-wide DNA polymorphism datasets of plants, with crops being the first priority. Here, we describe our analyzed data for 679, 404, and 66 strains of rice, maize, and sorghum, respectively. The analytical methods are available as a DNApod workflow in an NGS annotation system of the DNA Data Bank of Japan and a virtual machine image. Furthermore, DNApod provides tables of links of identifiers between DNApod genotypic data and public phenotypic data. To advance the sharing of organism knowledge, DNApod offers basic and ubiquitous functions for multiple alignment and phylogenetic tree construction by using orthologous gene information.
Collapse
Affiliation(s)
- Takako Mochizuki
- Genome Informatics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yasuhiro Tanizawa
- Genome Informatics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takatomo Fujisawa
- Genome Informatics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tazro Ohta
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Naruo Nikoh
- Department of Liberal Arts, The Open University of Japan, Chiba, Chiba, Japan
| | - Tokurou Shimizu
- Division of Citrus Research, Institute of Fruit Tree and Tea Science, NARO, Shimizu, Shizuoka, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Nori Kurata
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hideki Nagasaki
- Genome Informatics Group, Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Eli Kaminuma
- Genome Informatics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- * E-mail:
| | - Yasukazu Nakamura
- Genome Informatics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
22
|
Gell G, Kovács K, Veres G, Korponay-Szabó IR, Juhász A. Characterization of globulin storage proteins of a low prolamin cereal species in relation to celiac disease. Sci Rep 2017; 7:39876. [PMID: 28051174 PMCID: PMC5209737 DOI: 10.1038/srep39876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022] Open
Abstract
Brachypodium distachyon, a small annual grass with seed storage globulins as primary protein reserves was used in our study to analyse the toxic nature of non-prolamin seed storage proteins related to celiac disease. The main storage proteins of B. distachyon are the 7S globulin type proteins and the 11S, 12S seed storage globulins similar to oat and rice. Immunoblot analyses using serum samples from celiac disease patients were carried out followed by the identification of immune-responsive proteins using mass spectrometry. Serum samples from celiac patients on a gluten-free diet, from patients with Crohn’s disease and healthy subjects, were used as controls. The identified proteins with intense serum-IgA reactivity belong to the 7S and 11–12S seed globulin family. Structure prediction and epitope predictions analyses confirmed the presence of celiac disease-related linear B cell epitope homologs and the presence of peptide regions with strong HLA-DQ8 and DQ2 binding capabilities. These results highlight that both MHC-II presentation and B cell response may be developed not only to prolamins but also to seed storage globulins. This is the first study of the non-prolamin type seed storage proteins of Brachypodium from the aspect of the celiac disease.
Collapse
Affiliation(s)
- Gyöngyvér Gell
- Agricultural Institute, MTA Centre for Agricultural Research, Department of Applied Genomics Martonvásár, HU 2462, Hungary
| | - Krisztina Kovács
- Agricultural Institute, MTA Centre for Agricultural Research, Department of Applied Genomics Martonvásár, HU 2462, Hungary
| | - Gábor Veres
- Semmelweis University of Medicine, 1st Department of Pediatrics, Budapest, HU 1083, Hungary
| | - Ilma R Korponay-Szabó
- Coeliac Disease Center, Heim Pál Children's Hospital, Budapest, HU 1089 and Department of Pediatrics, Clinical Center, University of Debrecen, Debrecen, Hungary
| | - Angéla Juhász
- Agricultural Institute, MTA Centre for Agricultural Research, Department of Applied Genomics Martonvásár, HU 2462, Hungary
| |
Collapse
|
23
|
Spannagl M, Bader K, Pfeifer M, Nussbaumer T, Mayer KFX. PGSB/MIPS Plant Genome Information Resources and Concepts for the Analysis of Complex Grass Genomes. Methods Mol Biol 2016; 1374:165-86. [PMID: 26519405 DOI: 10.1007/978-1-4939-3167-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
PGSB (Plant Genome and Systems Biology; formerly MIPS-Munich Institute for Protein Sequences) has been involved in developing, implementing and maintaining plant genome databases for more than a decade. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable datasets for model plant genomes as a backbone against which experimental data, e.g., from high-throughput functional genomics, can be organized and analyzed. In addition, genomes from both model and crop plants form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny) between related species on macro- and micro-levels.The genomes of many economically important Triticeae plants such as wheat, barley, and rye present a great challenge for sequence assembly and bioinformatic analysis due to their enormous complexity and large genome size. Novel concepts and strategies have been developed to deal with these difficulties and have been applied to the genomes of wheat, barley, rye, and other cereals. This includes the GenomeZipper concept, reference-guided exome assembly, and "chromosome genomics" based on flow cytometry sorted chromosomes.
Collapse
Affiliation(s)
- Manuel Spannagl
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Kai Bader
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Matthias Pfeifer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Thomas Nussbaumer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany. .,School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
24
|
Gawroński P, Pawełkowicz M, Tofil K, Uszyński G, Sharifova S, Ahluwalia S, Tyrka M, Wędzony M, Kilian A, Bolibok-Brągoszewska H. DArT Markers Effectively Target Gene Space in the Rye Genome. FRONTIERS IN PLANT SCIENCE 2016; 7:1600. [PMID: 27833625 PMCID: PMC5080361 DOI: 10.3389/fpls.2016.01600] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/10/2016] [Indexed: 05/02/2023]
Abstract
Large genome size and complexity hamper considerably the genomics research in relevant species. Rye (Secale cereale L.) has one of the largest genomes among cereal crops and repetitive sequences account for over 90% of its length. Diversity Arrays Technology is a high-throughput genotyping method, in which a preferential sampling of gene-rich regions is achieved through the use of methylation sensitive restriction enzymes. We obtained sequences of 6,177 rye DArT markers and following a redundancy analysis assembled them into 3,737 non-redundant sequences, which were then used in homology searches against five Pooideae sequence sets. In total 515 DArT sequences could be incorporated into publicly available rye genome zippers providing a starting point for the integration of DArT- and transcript-based genomics resources in rye. Using Blast2Go pipeline we attributed putative gene functions to 1101 (29.4%) of the non-redundant DArT marker sequences, including 132 sequences with putative disease resistance-related functions, which were found to be preferentially located in the 4RL and 6RL chromosomes. Comparative analysis based on the DArT sequences revealed obvious inconsistencies between two recently published high density consensus maps of rye. Furthermore we demonstrated that DArT marker sequences can be a source of SSR polymorphisms. Obtained data demonstrate that DArT markers effectively target gene space in the large, complex, and repetitive rye genome. Through the annotation of putative gene functions and the alignment of DArT sequences relative to reference genomes we obtained information, that will complement the results of the studies, where DArT genotyping was deployed, by simplifying the gene ontology and microcolinearity based identification of candidate genes.
Collapse
Affiliation(s)
- Piotr Gawroński
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
| | - Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
| | - Katarzyna Tofil
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
| | | | - Saida Sharifova
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
- Department of Biotechnology, Genetic Resources Institute of Azerbaijan National Academy of SciencesBaku, Azerbaijan
| | - Shivaksh Ahluwalia
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
- Kusuma School of Biological Sciences, Indian Institute of TechnologyNew Delhi, India
| | - Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Rzeszow University of TechnologyRzeszow, Poland
| | - Maria Wędzony
- Department of Genetics and Cytology, Pedagogical University of CracowCracow, Poland
| | | | - Hanna Bolibok-Brągoszewska
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
- *Correspondence: Hanna Bolibok-Brągoszewska,
| |
Collapse
|
25
|
Silvar C, Martis MM, Nussbaumer T, Haag N, Rauser R, Keilwagen J, Korzun V, Mayer KFX, Ordon F, Perovic D. Assessing the Barley Genome Zipper and Genomic Resources for Breeding Purposes. THE PLANT GENOME 2015; 8:eplantgenome2015.06.0045. [PMID: 33228270 DOI: 10.3835/plantgenome2015.06.0045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/31/2015] [Indexed: 06/11/2023]
Abstract
The aim of this study was to estimate the accuracy and convergence of newly developed barley (Hordeum vulgare L.) genomic resources, primarily genome zipper (GZ) and population sequencing (POPSEQ), at the genome-wide level and to assess their usefulness in applied barley breeding by analyzing seven known loci. Comparison of barley GZ and POPSEQ maps to a newly developed consensus genetic map constructed with data from 13 individual linkage maps yielded an accuracy of 97.8% (GZ) and 99.3% (POPSEQ), respectively, regarding the chromosome assignment. The percentage of agreement in marker position indicates that on average only 3.7% GZ and 0.7% POPSEQ positions are not in accordance with their centimorgan coordinates in the consensus map. The fine-scale comparison involved seven genetic regions on chromosomes 1H, 2H, 4H, 6H, and 7H, harboring major genes and quantitative trait loci (QTL) for disease resistance. In total, 179 GZ loci were analyzed and 64 polymorphic markers were developed. Entirely, 89.1% of these were allocated within the targeted intervals and 84.2% followed the predicted order. Forty-four markers showed a match to a POPSEQ-anchored contig, the percentage of collinearity being 93.2%, on average. Forty-four markers allowed the identification of twenty-five fingerprinted contigs (FPCs) and a more clear delimitation of the physical regions containing the traits of interest. Our results demonstrate that an increase in marker density of barley maps by using new genomic data significantly improves the accuracy of GZ. In addition, the combination of different barley genomic resources can be considered as a powerful tool to accelerate barley breeding.
Collapse
Affiliation(s)
- Cristina Silvar
- Julius Kühn-Institute (JKI), Federal Research Institute for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, 06484, Quedlinburg, Germany
- Grupo de Investigación en Bioloxía Evolutiva, Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruna, 15071, A Coruña, Spain
| | - Mihaela M Martis
- Plant Genome and System Biology (PGSB), Helmholtz Center Munich, 85764, Neuherberg, Germany
- BILS (Bioinformatics Infrastructure for Life Sciences), Division of Cell Biology, Faculty of Health Sciences, Linköping Univ., SE-581 85, Linköping, Sweden
| | - Thomas Nussbaumer
- Plant Genome and System Biology (PGSB), Helmholtz Center Munich, 85764, Neuherberg, Germany
- Division of Computational Systems Biology, Dep. of Microbiology and Ecosystem Science, Univ. of Vienna, 1090, Vienna, Austria
| | - Nicolai Haag
- Julius Kühn-Institute (JKI), Federal Research Institute for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, 06484, Quedlinburg, Germany
- Julius Kühn-Institute (JKI), Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, 76833, Siebeldingen, Germany
| | - Ruben Rauser
- Julius Kühn-Institute (JKI), Federal Research Institute for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, 06484, Quedlinburg, Germany
| | - Jens Keilwagen
- Julius Kühn-Institute (JKI), Federal Research Institute for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, 06484, Quedlinburg, Germany
| | | | - Klaus F X Mayer
- Plant Genome and System Biology (PGSB), Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Frank Ordon
- Julius Kühn-Institute (JKI), Federal Research Institute for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, 06484, Quedlinburg, Germany
| | - Dragan Perovic
- Julius Kühn-Institute (JKI), Federal Research Institute for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, 06484, Quedlinburg, Germany
| |
Collapse
|
26
|
Gardin JAC, Gouzy J, Carrère S, Délye C. ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass). BMC Genomics 2015; 16:590. [PMID: 26265378 PMCID: PMC4534104 DOI: 10.1186/s12864-015-1804-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/31/2015] [Indexed: 12/29/2022] Open
Abstract
Background Herbicide resistance in agrestal weeds is a global problem threatening food security. Non-target-site resistance (NTSR) endowed by mechanisms neutralising the herbicide or compensating for its action is considered the most agronomically noxious type of resistance. Contrary to target-site resistance, NTSR mechanisms are far from being fully elucidated. A part of weed response to herbicide stress, NTSR is considered to be largely driven by gene regulation. Our purpose was to establish a transcriptome resource allowing investigation of the transcriptomic bases of NTSR in the major grass weed Alopecurus myosuroides L. (Poaceae) for which almost no genomic or transcriptomic data was available. Results RNA-Seq was performed from plants in one F2 population that were sensitive or expressing NTSR to herbicides inhibiting acetolactate-synthase. Cloned plants were sampled over seven time-points ranging from before until 73 h after herbicide application. Assembly of over 159M high-quality Illumina reads generated a transcriptomic resource (ALOMYbase) containing 65,558 potentially active contigs (N50 = 1240 nucleotides) predicted to encode 32,138 peptides with 74 % GO annotation, of which 2017 were assigned to protein families presumably involved in NTSR. Comparison with the fully sequenced grass genomes indicated good coverage and correct representation of A. myosuroides transcriptome in ALOMYbase. The part of the herbicide transcriptomic response common to the resistant and the sensitive plants was consistent with the expected effects of acetolactate-synthase inhibition, with striking similarities observed with published Arabidopsis thaliana data. A. myosuroides plants with NTSR were first affected by herbicide action like sensitive plants, but ultimately overcame it. Analysis of differences in transcriptomic herbicide response between resistant and sensitive plants did not allow identification of processes directly explaining NTSR. Five contigs associated to NTSR in the F2 population studied were tentatively identified. They were predicted to encode three cytochromes P450 (CYP71A, CYP71B and CYP81D), one peroxidase and one disease resistance protein. Conclusions Our data confirmed that gene regulation is at the root of herbicide response and of NTSR. ALOMYbase proved to be a relevant resource to support NTSR transcriptomic studies, and constitutes a valuable tool for future research aiming at elucidating gene regulations involved in NTSR in A. myosuroides. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1804-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jérôme Gouzy
- INRA, UMR441 LIPM, F-31326, Castanet-Tolosan, France.
| | | | - Christophe Délye
- INRA, UMR1347 Agroécologie, 17 rue de Sully, F-21000, Dijon, France.
| |
Collapse
|
27
|
Murat F, Zhang R, Guizard S, Gavranović H, Flores R, Steinbach D, Quesneville H, Tannier E, Salse J. Karyotype and gene order evolution from reconstructed extinct ancestors highlight contrasts in genome plasticity of modern rosid crops. Genome Biol Evol 2015; 7:735-49. [PMID: 25637221 PMCID: PMC5322550 DOI: 10.1093/gbe/evv014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We used nine complete genome sequences, from grape, poplar, Arabidopsis, soybean, lotus, apple, strawberry, cacao, and papaya, to investigate the paleohistory of rosid crops. We characterized an ancestral rosid karyotype, structured into 7/21 protochomosomes, with a minimal set of 6,250 ordered protogenes and a minimum physical coding gene space of 50 megabases. We also proposed ancestral karyotypes for the Caricaceae, Brassicaceae, Malvaceae, Fabaceae, Rosaceae, Salicaceae, and Vitaceae families with 9, 8, 10, 6, 12, 9, 12, and 19 protochromosomes, respectively. On the basis of these ancestral karyotypes and present-day species comparisons, we proposed a two-step evolutionary scenario based on allohexaploidization involving the newly characterized A, B, and C diploid progenitors leading to dominant (stable) and sensitive (plastic) genomic compartments in any modern rosid crops. Finally, a new user-friendly online tool, “DicotSyntenyViewer” (available from http://urgi.versailles.inra.fr/synteny-dicot), has been made available for accurate translational genomics in rosids.
Collapse
Affiliation(s)
- Florent Murat
- INRA/UBP UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', Clermont Ferrand, France
| | - Rongzhi Zhang
- INRA/UBP UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', Clermont Ferrand, France
| | - Sébastien Guizard
- INRA/UBP UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', Clermont Ferrand, France
| | - Haris Gavranović
- Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Raphael Flores
- INRA 'Unité de Recherche en Génomique et Informatique', Centre INRA de Versailles, Versailles, France
| | - Delphine Steinbach
- INRA 'Unité de Recherche en Génomique et Informatique', Centre INRA de Versailles, Versailles, France
| | - Hadi Quesneville
- INRA 'Unité de Recherche en Génomique et Informatique', Centre INRA de Versailles, Versailles, France
| | - Eric Tannier
- INRIA Rhône-Alpes, Université de Lyon 1, CNRS UMR5558, Laboratoire Biométrie et Biologie Évolutive, Villeurbanne Cedex, France
| | - Jérôme Salse
- INRA/UBP UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', Clermont Ferrand, France
| |
Collapse
|
28
|
Ain QU, Rasheed A, Anwar A, Mahmood T, Imtiaz M, Mahmood T, Xia X, He Z, Quraishi UM. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. FRONTIERS IN PLANT SCIENCE 2015; 6:743. [PMID: 26442056 PMCID: PMC4585131 DOI: 10.3389/fpls.2015.00743] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/31/2015] [Indexed: 05/18/2023]
Abstract
Genome-wide association studies (GWAS) were undertaken to identify SNP markers associated with yield and yield-related traits in 123 Pakistani historical wheat cultivars evaluated during 2011-2014 seasons under rainfed field conditions. The population was genotyped by using high-density Illumina iSelect 90K single nucleotide polymorphism (SNP) assay, and finally 14,960 high quality SNPs were used in GWAS. Population structure examined using 1000 unlinked markers identified seven subpopulations (K = 7) that were representative of different breeding programs in Pakistan, in addition to local landraces. Forty four stable marker-trait associations (MTAs) with -log p > 4 were identified for nine yield-related traits. Nine multi-trait MTAs were found on chromosomes 1AL, 1BS, 2AL, 2BS, 2BL, 4BL, 5BL, 6AL, and 6BL, and those on 5BL and 6AL were stable across two seasons. Gene annotation and syntey identified that 14 trait-associated SNPs were linked to genes having significant importance in plant development. Favorable alleles for days to heading (DH), plant height (PH), thousand grain weight (TGW), and grain yield (GY) showed minor additive effects and their frequencies were slightly higher in cultivars released after 2000. However, no selection pressure on any favorable allele was identified. These genomic regions identified have historically contributed to achieve yield gains from 2.63 million tons in 1947 to 25.7 million tons in 2015. Future breeding strategies can be devised to initiate marker assisted breeding to accumulate these favorable alleles of SNPs associated with yield-related traits to increase grain yield. Additionally, in silico identification of 454-contigs corresponding to MTAs will facilitate fine mapping and subsequent cloning of candidate genes and functional marker development.
Collapse
Affiliation(s)
- Qurat-ul Ain
- Molecular Plant Breeding, Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
| | - Awais Rasheed
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- International Maize and Wheat Improvement Center (CIMMYT), C/O Chinese Academy of Agricultural SciencesBeijing, China
| | - Alia Anwar
- Molecular Plant Breeding, Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
| | - Tariq Mahmood
- Higher Education Commission, Research and DevelopmentIslamabad, Pakistan
| | - Muhammad Imtiaz
- International Maize and Wheat Improvement Center (CIMMYT), C/O National Agriculture Research CenterIslamabad, Pakistan
| | - Tariq Mahmood
- Molecular Plant Breeding, Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- International Maize and Wheat Improvement Center (CIMMYT), C/O Chinese Academy of Agricultural SciencesBeijing, China
| | - Umar M. Quraishi
- Molecular Plant Breeding, Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
- *Correspondence: Umar M. Quraishi, Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
29
|
Abstract
Maize occupies dual roles as both (a) one of the big-three grain species (along with rice and wheat) responsible for providing more than half of the calories consumed around the world, and (b) a model system for plant genetics and cytogenetics dating back to the origin of the field of genetics in the early twentieth century. The long history of genetic investigation in this species combined with modern genomic and quantitative genetic data has provided particular insight into the characteristics of genes linked to phenotypes and how these genes differ from many other sequences in plant genomes that are not easily distinguishable based on molecular data alone. These recent results suggest that the number of genes in plants that make significant contributions to phenotype may be lower than the number of genes defined by current molecular criteria, and also indicate that syntenic conservation has been underemphasized as a marker for gene function.
Collapse
Affiliation(s)
- James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583;
| |
Collapse
|
30
|
Nussbaumer T, Kugler KG, Schweiger W, Bader KC, Gundlach H, Spannagl M, Poursarebani N, Pfeifer M, Mayer KFX. chromoWIZ: a web tool to query and visualize chromosome-anchored genes from cereal and model genomes. BMC PLANT BIOLOGY 2014; 14:348. [PMID: 25491094 PMCID: PMC4266971 DOI: 10.1186/s12870-014-0348-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/24/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Over the last years reference genome sequences of several economically and scientifically important cereals and model plants became available. Despite the agricultural significance of these crops only a small number of tools exist that allow users to inspect and visualize the genomic position of genes of interest in an interactive manner. DESCRIPTION We present chromoWIZ, a web tool that allows visualizing the genomic positions of relevant genes and comparing these data between different plant genomes. Genes can be queried using gene identifiers, functional annotations, or sequence homology in four grass species (Triticum aestivum, Hordeum vulgare, Brachypodium distachyon, Oryza sativa). The distribution of the anchored genes is visualized along the chromosomes by using heat maps. Custom gene expression measurements, differential expression information, and gene-to-group mappings can be uploaded and can be used for further filtering. CONCLUSIONS This tool is mainly designed for breeders and plant researchers, who are interested in the location and the distribution of candidate genes as well as in the syntenic relationships between different grass species. chromoWIZ is freely available and online accessible at http://mips.helmholtz-muenchen.de/plant/chromoWIZ/index.jsp.
Collapse
Affiliation(s)
- Thomas Nussbaumer
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Karl G Kugler
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Wolfgang Schweiger
- />Institute for Biotechnology in Plant Production, IFA-Tulln, University of
Natural Resources and Life Sciences, A-3430 Tulln, Austria
| | - Kai C Bader
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Heidrun Gundlach
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Manuel Spannagl
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Naser Poursarebani
- />Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Matthias Pfeifer
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Klaus FX Mayer
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| |
Collapse
|
31
|
Reconstructing the Evolution of Brachypodium Genomes Using Comparative Chromosome Painting. PLoS One 2014; 9:e115108. [PMID: 25493646 PMCID: PMC4262448 DOI: 10.1371/journal.pone.0115108] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/18/2014] [Indexed: 11/19/2022] Open
Abstract
Brachypodium distachyon is a model for the temperate cereals and grasses and has a biology, genomics infrastructure and cytogenetic platform fit for purpose. It is a member of a genus with fewer than 20 species, which have different genome sizes, basic chromosome numbers and ploidy levels. The phylogeny and interspecific relationships of this group have not to date been resolved by sequence comparisons and karyotypical studies. The aims of this study are not only to reconstruct the evolution of Brachypodium karyotypes to resolve the phylogeny, but also to highlight the mechanisms that shape the evolution of grass genomes. This was achieved through the use of comparative chromosome painting (CCP) which hybridises fluorescent, chromosome-specific probes derived from B. distachyon to homoeologous meiotic chromosomes of its close relatives. The study included five diploids (B. distachyon 2n = 10, B. sylvaticum 2n = 18, B. pinnatum 2n = 16; 2n = 18, B. arbuscula 2n = 18 and B. stacei 2n = 20) three allotetraploids (B. pinnatum 2n = 28, B. phoenicoides 2n = 28 and B. hybridum 2n = 30), and two species of unknown ploidy (B. retusum 2n = 38 and B. mexicanum 2n = 40). On the basis of the patterns of hybridisation and incorporating published data, we propose two alternative, but similar, models of karyotype evolution in the genus Brachypodium. According to the first model, the extant genome of B. distachyon derives from B. mexicanum or B. stacei by several rounds of descending dysploidy, and the other diploids evolve from B. distachyon via ascending dysploidy. The allotetraploids arise by interspecific hybridisation and chromosome doubling between B. distachyon and other diploids. The second model differs from the first insofar as it incorporates an intermediate 2n = 18 species between the B. mexicanum or B. stacei progenitors and the dysploidic B. distachyon.
Collapse
|
32
|
Zheng J, Liu H, Wang Y, Wang L, Chang X, Jing R, Hao C, Zhang X. TEF-7A, a transcript elongation factor gene, influences yield-related traits in bread wheat (Triticum aestivum L.). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5351-65. [PMID: 25056774 PMCID: PMC4157721 DOI: 10.1093/jxb/eru306] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 05/20/2023]
Abstract
In this study, TaTEF-7A, a member of the transcript elongation factor gene family, and its flanking sequences were isolated. TaTEF-7A was located on chromosome 7A and was flanked by markers Xwmc83 and XP3156.3. Subcellular localization revealed that TaTEF-7A protein was localized in the nucleus. This gene was expressed in all organs, but the highest expression occurred in young spikes and developing seeds. Overexpression of TaTEF-7A in Arabidopsis thaliana produced pleiotropic effects on vegetative and reproductive development that enhanced grain length, silique number, and silique length. No diversity was found in the coding region of TaTEF-7A, but 16 single nucleotide polymorphisms and Indels were detected in the promoter regions of different cultivars. Markers based on sequence variations in the promoter regions (InDel-629 and InDel-604) were developed, and three haplotypes were identified based on those markers. Haplotype-trait association analysis of the Chinese wheat mini core collection revealed that TaTEF-7A was significantly associated with grain number per spike. Phenotyping of near-isogenic lines (NILs) confirmed that TaTEF-7A increases potential grain yield and yield-related traits. Frequency changes in favoured haplotypes gradually increased in cultivars released in China from the 1940s. Geographic distributions of favoured haplotypes were characterized in six major wheat production regions worldwide. The presence of Hap-7A-3, the favoured haplotype, showed a positive correlation with yield in a global set of breeding lines. These results suggest that TaTEF-7A is a functional regulatory factor for grain number per spike and provide a basis for marker-assisted selection.
Collapse
Affiliation(s)
- Jun Zheng
- Crop Genomics and Bioinformatics Center and National Key Lab of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China Institute of Wheat Research, Shanxi Academy of Agricultural Sciences, Linfen 041000, China
| | - Hong Liu
- Crop Genomics and Bioinformatics Center and National Key Lab of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuquan Wang
- Crop Genomics and Bioinformatics Center and National Key Lab of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lanfen Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoping Chang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruilian Jing
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueyong Zhang
- Crop Genomics and Bioinformatics Center and National Key Lab of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
33
|
Crossability of Triticum urartu and Triticum monococcum wheats, homoeologous recombination, and description of a panel of interspecific introgression lines. G3-GENES GENOMES GENETICS 2014; 4:1931-41. [PMID: 25147190 PMCID: PMC4199699 DOI: 10.1534/g3.114.013623] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Triticum monococcum (genome Am) and T. urartu (genome Au) are diploid wheats, with the first having been domesticated in the Neolithic Era and the second being a wild species. In a germplasm collection, rare wild T. urartu lines with the presence of T. monococcum alleles were found. This stimulated our interest to develop interspecific introgression lines of T. urartu in T. monococcum, a breeding tool currently implemented in several crop species. Moreover, the experiments reported were designed to reveal the existence in nature of Am/Au intermediate forms and to clarify whether the two species are at least marginally sexually compatible. From hand-made interspecific crosses, almost-sterile F1 plants were obtained when the seed-bearing parent was T. monococcum. A high degree of fertility was, however, evident in some advanced generations, particularly when T. urartu donors were molecularly more related to T. monococcum. Analysis of the marker populations demonstrated chromosome pairing and recombination in F1 hybrid plants. Forty-six introgression lines were developed using a line of T. monococcum with several positive agronomic traits as a recurrent parent. Microsatellite markers were tested on Au and Am genomes, ordered in a T. monococcum molecular map, and used to characterize the exotic DNA fragments present in each introgression line. In a test based on 28 interspecific introgression lines, the existence of genetic variation associated with T. urartu chromosome fragments was proven for the seed content of carotenoids, lutein, β-cryptoxanthin, and zinc. The molecular state of available introgression lines is summarized.
Collapse
|
34
|
Murat F, Zhang R, Guizard S, Flores R, Armero A, Pont C, Steinbach D, Quesneville H, Cooke R, Salse J. Shared subgenome dominance following polyploidization explains grass genome evolutionary plasticity from a seven protochromosome ancestor with 16K protogenes. Genome Biol Evol 2014; 6:12-33. [PMID: 24317974 PMCID: PMC3914691 DOI: 10.1093/gbe/evt200] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Modern plant genomes are diploidized paleopolyploids. We revisited grass genome paleohistory in response to the diploidization process through a detailed investigation of the evolutionary fate of duplicated blocks. Ancestrally duplicated genes can be conserved, deleted, and shuffled, defining dominant (bias toward duplicate retention) and sensitive (bias toward duplicate erosion) chromosomal fragments. We propose a new grass genome paleohistory deriving from an ancestral karyotype structured in seven protochromosomes containing 16,464 protogenes and following evolutionary rules where 1) ancestral shared polyploidizations shaped conserved dominant (D) and sensitive (S) subgenomes, 2) subgenome dominance is revealed by both gene deletion and shuffling from the S blocks, 3) duplicate deletion/movement may have been mediated by single-/double-stranded illegitimate recombination mechanisms, 4) modern genomes arose through centromeric fusion of protochromosomes, leading to functional monocentric neochromosomes, 5) the fusion of two dominant blocks leads to supradominant neochromosomes (D + D = D) with higher ancestral gene retention compared with D + S = D (i.e., fusion of blocks with opposite sensitivity) or even S + S = S (i.e., fusion of two sensitive ancestral blocks). A new user-friendly online tool named "PlantSyntenyViewer," available at http://urgi.versailles.inra.fr/synteny-cereal, presents the refined comparative genomics data.
Collapse
Affiliation(s)
- Florent Murat
- INRA/UBP UMR 1095 GDEC (Génétique, Diversité et Ecophysiologie des Céréales), Clermont Ferrand, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pfeifer M, Kugler KG, Sandve SR, Zhan B, Rudi H, Hvidsten TR, Mayer KFX, Olsen OA. Genome interplay in the grain transcriptome of hexaploid bread wheat. Science 2014; 345:1250091. [PMID: 25035498 DOI: 10.1126/science.1250091] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Allohexaploid bread wheat (Triticum aestivum L.) provides approximately 20% of calories consumed by humans. Lack of genome sequence for the three homeologous and highly similar bread wheat genomes (A, B, and D) has impeded expression analysis of the grain transcriptome. We used previously unknown genome information to analyze the cell type-specific expression of homeologous genes in the developing wheat grain and identified distinct co-expression clusters reflecting the spatiotemporal progression during endosperm development. We observed no global but cell type- and stage-dependent genome dominance, organization of the wheat genome into transcriptionally active chromosomal regions, and asymmetric expression in gene families related to baking quality. Our findings give insight into the transcriptional dynamics and genome interplay among individual grain cell types in a polyploid cereal genome.
Collapse
Affiliation(s)
- Matthias Pfeifer
- Plant Genome and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Karl G Kugler
- Plant Genome and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Simen R Sandve
- Department of Plant Sciences/Centre for Integrative Genetics, The Norwegian University of Life Sciences (NMBU), 1432 Åas, Norway
| | - Bujie Zhan
- Department of Plant Sciences/Centre for Integrative Genetics, The Norwegian University of Life Sciences (NMBU), 1432 Åas, Norway
| | - Heidi Rudi
- Department of Plant Sciences/Centre for Integrative Genetics, The Norwegian University of Life Sciences (NMBU), 1432 Åas, Norway
| | - Torgeir R Hvidsten
- Department of Chemistry, Biotechnology and Food Science, NMBU, 1432 Åas, Norway
| | | | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Odd-Arne Olsen
- Department of Plant Sciences/Centre for Integrative Genetics, The Norwegian University of Life Sciences (NMBU), 1432 Åas, Norway.
| |
Collapse
|
36
|
Aitken KS, McNeil MD, Berkman PJ, Hermann S, Kilian A, Bundock PC, Li J. Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane. BMC PLANT BIOLOGY 2014; 14:190. [PMID: 25059596 PMCID: PMC4222257 DOI: 10.1186/s12870-014-0190-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/14/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND The understanding of sugarcane genetics has lagged behind that of other members of the Poaceae family such as wheat, rice, barley and sorghum mainly due to the complexity, size and polyploidization of the genome. We have used the genetic map of a sugarcane cultivar to generate a consensus genetic map to increase genome coverage for comparison to the sorghum genome. We have utilized the recently developed sugarcane DArT array to increase the marker density within the genetic map. The sequence of these DArT markers plus SNP and EST-SSR markers was then used to form a bridge to the sorghum genomic sequence by BLAST alignment to start to unravel the complex genomic architecture of sugarcane. RESULTS Comparative mapping revealed that certain sugarcane chromosomes show greater levels of synteny to sorghum than others. On a macrosyntenic level a good collinearity was observed between sugarcane and sorghum for 4 of the 8 homology groups (HGs). These 4 HGs were syntenic to four sorghum chromosomes with from 98% to 100% of these chromosomes covered by these linked markers. Four major chromosome rearrangements were identified between the other four sugarcane HGs and sorghum, two of which were condensations of chromosomes reducing the basic chromosome number of sugarcane from x = 10 to x = 8. This macro level of synteny was transferred to other members within the Poaceae family such as maize to uncover the important evolutionary relationships that exist between sugarcane and these species. CONCLUSIONS Comparative mapping of sugarcane to the sorghum genome has revealed new information on the genome structure of sugarcane which will help guide identification of important genes for use in sugarcane breeding. Furthermore of the four major chromosome rearrangements identified in this study, three were common to maize providing some evidence that chromosome reduction from a common paleo-ancestor of both maize and sugarcane was driven by the same translocation events seen in both species.
Collapse
Affiliation(s)
- Karen S Aitken
- CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane 4067, QLD, Australia
| | - Meredith D McNeil
- CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane 4067, QLD, Australia
| | - Paul J Berkman
- CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane 4067, QLD, Australia
| | - Scott Hermann
- BSES Limited, 50 Meiers Road, Indooroopilly, Brisbane 4068, QLD, Australia
| | - Andrzej Kilian
- Diversity Arrays P/L, 1 Wilf Crane Crescent, Yarralumla, Canberra 2600, ACT, Australia
| | - Peter C Bundock
- Southern Cross University, Ctr Plant Conservation Genetics, Lismore 2480, NSW, Australia
| | - Jingchuan Li
- CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane 4067, QLD, Australia
| |
Collapse
|
37
|
Valluru R, Reynolds MP, Salse J. Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1463-89. [PMID: 24913362 DOI: 10.1007/s00122-014-2332-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 05/15/2014] [Indexed: 05/21/2023]
Abstract
Transferring the knowledge bases between related species may assist in enlarging the yield potential of crop plants. Being cereals, rice and wheat share a high level of gene conservation; however, they differ at metabolic levels as a part of the environmental adaptation resulting in different yield capacities. This review focuses on the current understanding of genetic and molecular regulation of yield-associated traits in both crop species, highlights the similarities and differences and presents the putative knowledge gaps. We focus on the traits associated with phenology, photosynthesis, and assimilate partitioning and lodging resistance; the most important drivers of yield potential. Currently, there are large knowledge gaps in the genetic and molecular control of such major biological processes that can be filled in a translational biology approach in transferring genomics and genetics informations between rice and wheat.
Collapse
Affiliation(s)
- Ravi Valluru
- Wheat Physiology, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 56130, Mexico DF, Mexico,
| | | | | |
Collapse
|
38
|
Martin JA, Johnson NV, Gross SM, Schnable J, Meng X, Wang M, Coleman-Derr D, Lindquist E, Wei CL, Kaeppler S, Chen F, Wang Z. A near complete snapshot of the Zea mays seedling transcriptome revealed from ultra-deep sequencing. Sci Rep 2014; 4:4519. [PMID: 24682209 PMCID: PMC3970191 DOI: 10.1038/srep04519] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 02/26/2014] [Indexed: 02/04/2023] Open
Abstract
RNA-sequencing (RNA-seq) enables in-depth exploration of transcriptomes, but typical sequencing depth often limits its comprehensiveness. In this study, we generated nearly 3 billion RNA-Seq reads, totaling 341 Gb of sequence, from a Zea mays seedling sample. At this depth, a near complete snapshot of the transcriptome was observed consisting of over 90% of the annotated transcripts, including lowly expressed transcription factors. A novel hybrid strategy combining de novo and reference-based assemblies yielded a transcriptome consisting of 126,708 transcripts with 88% of expressed known genes assembled to full-length. We improved current annotations by adding 4,842 previously unannotated transcript variants and many new features, including 212 maize transcripts, 201 genes, 10 genes with undocumented potential roles in seedlings as well as maize lineage specific gene fusion events. We demonstrated the power of deep sequencing for large transcriptome studies by generating a high quality transcriptome, which provides a rich resource for the research community.
Collapse
Affiliation(s)
- Jeffrey A Martin
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Nicole V Johnson
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Stephen M Gross
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - James Schnable
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Xiandong Meng
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Mei Wang
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Devin Coleman-Derr
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Erika Lindquist
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Chia-Lin Wei
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Shawn Kaeppler
- Department of Agronomy and Great Lakes Bioenergy Research Center, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | - Feng Chen
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Zhong Wang
- 1] Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA [2] Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| |
Collapse
|
39
|
Idziak D, Hazuka I, Poliwczak B, Wiszynska A, Wolny E, Hasterok R. Insight into the karyotype evolution of brachypodium species using comparative chromosome barcoding. PLoS One 2014; 9:e93503. [PMID: 24675822 PMCID: PMC3968144 DOI: 10.1371/journal.pone.0093503] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/04/2014] [Indexed: 11/18/2022] Open
Abstract
Paleogenomic studies based on bioinformatic analyses of DNA sequences have enabled unprecedented insight into the evolution of grass genomes. They have revealed that nested chromosome fusions played an important role in the divergence of modern grasses. Nowadays, studies on karyotype evolution based on the sequence analysis can also be effectively complemented by the fine-scale cytomolecular approach. In this work, we studied the karyotype evolution of small genome grasses using BAC-FISH based comparative chromosome barcoding in four Brachypodium species: diploid B. distachyon (2n = 10) and B. sylvaticum (2n = 18), diploid (2n = 18) and allopolyploid (2n = 28) B. pinnatum as well as B. phoenicoides (2n = 28). Using BAC clones derived from the B. distachyon genomic libraries for the chromosomes Bd2 and Bd3, we identified the descending dysploidy events that were common for diploids with x = 9 and B. distachyon as well as two nested chromosome fusions that were specific only for B. distachyon. We suggest that dysploidy events that are shared by different lineages of the genus had already appeared in their common ancestor. We also show that additional structural rearrangements, such as translocations and duplications, contributed to increasing genome diversification in the species analysed. No chromosomes structured exactly like Bd2 and Bd3 were found in B. pinnatum (2n = 28) and B. phoenicoides. The structure of Bd2 and Bd3 homeologues belonging to the two genomes in the allopolyploids resembled the structure of their counterparts in the 2n = 18 diploids. These findings reinforce the hypothesis which excludes B. distachyon as a potential parent for Eurasian perennial Brachypodium allopolyploids. Our cytomolecular data elucidate some mechanisms of the descending dysploidy in monocots and enable reconstructions of the evolutionary events which shaped the extant karyotypes in both the genus Brachypodium and in grasses as a whole.
Collapse
Affiliation(s)
- Dominika Idziak
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Iwona Hazuka
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Beata Poliwczak
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Anna Wiszynska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Elzbieta Wolny
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
40
|
Zhang R, Murat F, Pont C, Langin T, Salse J. Paleo-evolutionary plasticity of plant disease resistance genes. BMC Genomics 2014; 15:187. [PMID: 24617999 PMCID: PMC4234491 DOI: 10.1186/1471-2164-15-187] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/25/2014] [Indexed: 01/28/2023] Open
Abstract
Background The recent access to a large set of genome sequences, combined with a robust evolutionary scenario of modern monocot (i.e. grasses) and eudicot (i.e. rosids) species from their founder ancestors, offered the opportunity to gain insights into disease resistance genes (R-genes) evolutionary plasticity. Results We unravel in the current article (i) a R-genes repertoire consisting in 7883 for monocots and 15758 for eudicots, (ii) a contrasted R-genes conservation with 23.8% for monocots and 6.6% for dicots, (iii) a minimal ancestral founder pool of 384 R-genes for the monocots and 150 R-genes for the eudicots, (iv) a general pattern of organization in clusters accounting for more than 60% of mapped R-genes, (v) a biased deletion of ancestral duplicated R-genes between paralogous blocks possibly compensated by clusterization, (vi) a bias in R-genes clusterization where Leucine-Rich Repeats act as a ‘glue’ for domain association, (vii) a R-genes/miRNAs interome enriched toward duplicated R-genes. Conclusions Together, our data may suggest that R-genes family plasticity operated during plant evolution (i) at the structural level through massive duplicates loss counterbalanced by massive clusterization following polyploidization; as well as at (ii) the regulation level through microRNA/R-gene interactions acting as a possible source of functional diploidization of structurally retained R-genes duplicates. Such evolutionary shuffling events leaded to CNVs (i.e. Copy Number Variation) and PAVs (i.e. Presence Absence Variation) between related species operating in the decay of R-genes colinearity between plant species.
Collapse
Affiliation(s)
| | | | | | | | - Jerome Salse
- INRA/UBP UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', 5 chemin de Beaulieu, 63100 Clermont-Ferrand, France.
| |
Collapse
|
41
|
Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci U S A 2014; 111:5135-40. [PMID: 24591624 DOI: 10.1073/pnas.1400975111] [Citation(s) in RCA: 454] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As an economic crop, pepper satisfies people's spicy taste and has medicinal uses worldwide. To gain a better understanding of Capsicum evolution, domestication, and specialization, we present here the genome sequence of the cultivated pepper Zunla-1 (C. annuum L.) and its wild progenitor Chiltepin (C. annuum var. glabriusculum). We estimate that the pepper genome expanded ∼0.3 Mya (with respect to the genome of other Solanaceae) by a rapid amplification of retrotransposons elements, resulting in a genome comprised of ∼81% repetitive sequences. Approximately 79% of 3.48-Gb scaffolds containing 34,476 protein-coding genes were anchored to chromosomes by a high-density genetic map. Comparison of cultivated and wild pepper genomes with 20 resequencing accessions revealed molecular footprints of artificial selection, providing us with a list of candidate domestication genes. We also found that dosage compensation effect of tandem duplication genes probably contributed to the pungent diversification in pepper. The Capsicum reference genome provides crucial information for the study of not only the evolution of the pepper genome but also, the Solanaceae family, and it will facilitate the establishment of more effective pepper breeding programs.
Collapse
|
42
|
Raats D, Frenkel Z, Krugman T, Dodek I, Sela H, Simková H, Magni F, Cattonaro F, Vautrin S, Bergès H, Wicker T, Keller B, Leroy P, Philippe R, Paux E, Doležel J, Feuillet C, Korol A, Fahima T. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol 2013; 14:R138. [PMID: 24359668 PMCID: PMC4053865 DOI: 10.1186/gb-2013-14-12-r138] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/20/2013] [Indexed: 11/16/2022] Open
Abstract
Background The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution. Results Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere. Conclusions This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications.
Collapse
|
43
|
Tanaka T, Kobayashi F, Joshi GP, Onuki R, Sakai H, Kanamori H, Wu J, Simkova H, Nasuda S, Endo TR, Hayakawa K, Doležel J, Ogihara Y, Itoh T, Matsumoto T, Handa H. Next-generation survey sequencing and the molecular organization of wheat chromosome 6B. DNA Res 2013; 21:103-14. [PMID: 24086083 PMCID: PMC3989483 DOI: 10.1093/dnares/dst041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Common wheat (Triticum aestivum L.) is one of the most important cereals in the world. To improve wheat quality and productivity, the genomic sequence of wheat must be determined. The large genome size (∼17 Gb/1 C) and the hexaploid status of wheat have hampered the genome sequencing of wheat. However, flow sorting of individual chromosomes has allowed us to purify and separately shotgun-sequence a pair of telocentric chromosomes. Here, we describe a result from the survey sequencing of wheat chromosome 6B (914 Mb/1 C) using massively parallel 454 pyrosequencing. From the 4.94 and 5.51 Gb shotgun sequence data from the two chromosome arms of 6BS and 6BL, 235 and 273 Mb sequences were assembled to cover ∼55.6 and 54.9% of the total genomic regions, respectively. Repetitive sequences composed 77 and 86% of the assembled sequences on 6BS and 6BL, respectively. Within the assembled sequences, we predicted a total of 4798 non-repetitive gene loci with the evidence of expression from the wheat transcriptome data. The numbers and chromosomal distribution patterns of the genes for tRNAs and microRNAs in wheat 6B were investigated, and the results suggested a significant involvement of DNA transposon diffusion in the evolution of these non-protein-coding RNA genes. A comparative analysis of the genomic sequences of wheat 6B and monocot plants clearly indicated the evolutionary conservation of gene contents.
Collapse
Affiliation(s)
- Tsuyoshi Tanaka
- 1Bioinformatics Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Qi LL, Wu JJ, Friebe B, Qian C, Gu YQ, Fu DL, Gill BS. Sequence organization and evolutionary dynamics of Brachypodium-specific centromere retrotransposons. Chromosome Res 2013; 21:507-21. [PMID: 23955173 DOI: 10.1007/s10577-013-9378-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
Abstract
Brachypodium distachyon is a wild annual grass belonging to the Pooideae, more closely related to wheat, barley, and forage grasses than rice and maize. As an experimental model, the completed genome sequence of B. distachyon provides a unique opportunity to study centromere evolution during the speciation of grasses. Centromeric satellite sequences have been identified in B. distachyon, but little is known about centromeric retrotransposons in this species. In the present study, bacterial artificial chromosome (BAC)-fluorescence in situ hybridization was conducted in maize, rice, barley, wheat, and rye using B. distachyon (Bd) centromere-specific BAC clones. Eight Bd centromeric BAC clones gave no detectable fluorescence in situ hybridization (FISH) signals on the chromosomes of rice and maize, and three of them also did not yield any FISH signals in barley, wheat, and rye. In addition, four of five Triticeae centromeric BAC clones did not hybridize to the B. distachyon centromeres, implying certain unique features of Brachypodium centromeres. Analysis of Brachypodium centromeric BAC sequences identified a long terminal repeat (LTR)-centromere retrotransposon of B. distachyon (CRBd1). This element was found in high copy number accounting for 1.6 % of the B. distachyon genome, and is enriched in Brachypodium centromeric regions. CRBd1 accumulated in active centromeres, but was lost from inactive ones. The LTR of CRBd1 appears to be specific to B. distachyon centromeres. These results reveal different evolutionary events of this retrotransposon family across grass species.
Collapse
Affiliation(s)
- L L Qi
- Northern Crop Science Laboratory, USDA-ARS, 1605 Albrecht Blvd N, Fargo, ND 58102-2765, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Bassi FM, Kumar A, Zhang Q, Paux E, Huttner E, Kilian A, Dizon R, Feuillet C, Xu SS, Kianian SF. Radiation hybrid QTL mapping of Tdes2 involved in the first meiotic division of wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1977-1990. [PMID: 23715938 DOI: 10.1007/s00122-013-2111-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/20/2013] [Indexed: 06/02/2023]
Abstract
Since the dawn of wheat cytogenetics, chromosome 3B has been known to harbor a gene(s) that, when removed, causes chromosome desynapsis and gametic sterility. The lack of natural genetic diversity for this gene(s) has prevented any attempt to fine map and further characterize it. Here, gamma radiation treatment was used to create artificial diversity for this locus. A total of 696 radiation hybrid lines were genotyped with a custom mini array of 140 DArT markers, selected to evenly span the whole 3B chromosome. The resulting map spanned 2,852 centi Ray with a calculated resolution of 0.384 Mb. Phenotyping for the occurrence of meiotic desynapsis was conducted by measuring the level of gametic sterility as seeds produced per spikelet and pollen viability at booting. Composite interval mapping revealed a single QTL with LOD of 16.2 and r (2) of 25.6 % between markers wmc326 and wPt-8983 on the long arm of chromosome 3B. By independent analysis, the location of the QTL was confirmed to be within the deletion bin 3BL7-0.63-1.00 and to correspond to a single gene located ~1.4 Mb away from wPt-8983. The meiotic behavior of lines lacking this gene was characterized cytogenetically to reveal striking similarities with mutants for the dy locus, located on the syntenic chromosome 3 of maize. This represents the first example to date of employing radiation hybrids for QTL analysis. The success achieved by this approach provides an ideal starting point for the final cloning of this interesting gene involved in meiosis of cereals.
Collapse
Affiliation(s)
- F M Bassi
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Poursarebani N, Ariyadasa R, Zhou R, Schulte D, Steuernagel B, Martis MM, Graner A, Schweizer P, Scholz U, Mayer K, Stein N. Conserved synteny-based anchoring of the barley genome physical map. Funct Integr Genomics 2013. [PMID: 23812960 DOI: 10.1007/s10142‐013‐0327‐2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gene order is largely collinear in the small-grained cereals, a feature which has proved helpful in both marker development and positional cloning. The accuracy of a virtual gene order map ("genome zipper") for barley (Hordeum vulgare), developed by combining a genetic map of this species with a large number of gene locations obtained from the maps constructed in other grass species, was evaluated here both at the genome-wide level and at the fine scale in a representative segment of the genome. Comparing the whole genome "genome zipper" maps with a genetic map developed by using transcript-derived markers, yielded an accuracy of >94 %. The fine-scale comparison involved a 14 cM segment of chromosome arm 2HL. One hundred twenty-eight genes of the "genome zipper" interval were analysed. Over 95 % (45/47) of the polymorphic markers were genetically mapped and allocated to the expected region of 2HL, following the predicted order. A further 80 of the 128 genes were assigned to the correct chromosome arm 2HL by analysis of wheat-barley addition lines. All 128 gene-based markers developed were used to probe a barley bacterial artificial chromosome (BAC) library, delivering 26 BAC contigs from which all except two were anchored to the targeted zipper interval. The results demonstrate that the gene order predicted by the "genome zipper" is remarkably accurate and that the "genome zipper" represents a highly efficient informational resource for the systematic identification of gene-based markers and subsequent physical map anchoring of the barley genome.
Collapse
Affiliation(s)
- Naser Poursarebani
- Leibniz Institute of Plant Genetics and Crop Plant Research-IPK, Corrensstr. 3, 06466 Seeland, OT, Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Poursarebani N, Ariyadasa R, Zhou R, Schulte D, Steuernagel B, Martis MM, Graner A, Schweizer P, Scholz U, Mayer K, Stein N. Conserved synteny-based anchoring of the barley genome physical map. Funct Integr Genomics 2013; 13:339-50. [PMID: 23812960 DOI: 10.1007/s10142-013-0327-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/17/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
Gene order is largely collinear in the small-grained cereals, a feature which has proved helpful in both marker development and positional cloning. The accuracy of a virtual gene order map ("genome zipper") for barley (Hordeum vulgare), developed by combining a genetic map of this species with a large number of gene locations obtained from the maps constructed in other grass species, was evaluated here both at the genome-wide level and at the fine scale in a representative segment of the genome. Comparing the whole genome "genome zipper" maps with a genetic map developed by using transcript-derived markers, yielded an accuracy of >94 %. The fine-scale comparison involved a 14 cM segment of chromosome arm 2HL. One hundred twenty-eight genes of the "genome zipper" interval were analysed. Over 95 % (45/47) of the polymorphic markers were genetically mapped and allocated to the expected region of 2HL, following the predicted order. A further 80 of the 128 genes were assigned to the correct chromosome arm 2HL by analysis of wheat-barley addition lines. All 128 gene-based markers developed were used to probe a barley bacterial artificial chromosome (BAC) library, delivering 26 BAC contigs from which all except two were anchored to the targeted zipper interval. The results demonstrate that the gene order predicted by the "genome zipper" is remarkably accurate and that the "genome zipper" represents a highly efficient informational resource for the systematic identification of gene-based markers and subsequent physical map anchoring of the barley genome.
Collapse
Affiliation(s)
- Naser Poursarebani
- Leibniz Institute of Plant Genetics and Crop Plant Research-IPK, Corrensstr. 3, 06466 Seeland, OT, Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Silvar C, Perovic D, Nussbaumer T, Spannagl M, Usadel B, Casas A, Igartua E, Ordon F. Towards positional isolation of three quantitative trait loci conferring resistance to powdery mildew in two Spanish barley landraces. PLoS One 2013; 8:e67336. [PMID: 23826271 PMCID: PMC3691219 DOI: 10.1371/journal.pone.0067336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/17/2013] [Indexed: 01/09/2023] Open
Abstract
Three quantitative trait loci (QTL) conferring broad spectrum resistance to powdery mildew, caused by the fungus Blumeria graminis f. sp. hordei, were previously identified on chromosomes 7HS, 7HL and 6HL in the Spanish barley landrace-derived lines SBCC097 and SBCC145. In the present work, a genome-wide putative linear gene index of barley (Genome Zipper) and the first draft of the physical, genetic and functional sequence of the barley genome were used to go one step further in the shortening and explicit demarcation on the barley genome of these regions conferring resistance to powdery mildew as well as in the identification of candidate genes. First, a comparative analysis of the target regions to the barley Genome Zippers of chromosomes 7H and 6H allowed the development of 25 new gene-based molecular markers, which slightly better delimit the QTL intervals. These new markers provided the framework for anchoring of genetic and physical maps, figuring out the outline of the barley genome at the target regions in SBCC097 and SBCC145. The outermost flanking markers of QTLs on 7HS, 7HL and 6HL defined a physical area of 4 Mb, 3.7 Mb and 3.2 Mb, respectively. In total, 21, 10 and 16 genes on 7HS, 7HL and 6HL, respectively, could be interpreted as potential candidates to explain the resistance to powdery mildew, as they encode proteins of related functions with respect to the known pathogen defense-related processes. The majority of these were annotated as belonging to the NBS-LRR class or protein kinase family.
Collapse
Affiliation(s)
- Cristina Silvar
- Department of Ecology, Plant and Animal Biology, University of Coruña, A Coruña, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Terracciano I, Maccaferri M, Bassi F, Mantovani P, Sanguineti MC, Salvi S, Simková H, Doležel J, Massi A, Ammar K, Kolmer J, Tuberosa R. Development of COS-SNP and HRM markers for high-throughput and reliable haplotype-based detection of Lr14a in durum wheat (Triticum durum Desf.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1077-101. [PMID: 23292293 DOI: 10.1007/s00122-012-2038-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/17/2012] [Indexed: 05/09/2023]
Abstract
Leaf rust (Puccinia triticina Eriks. & Henn.) is a major disease affecting durum wheat production. The Lr14a-resistant gene present in the durum wheat cv. Creso and its derivative cv. Colosseo is one of the best characterized leaf-rust resistance sources deployed in durum wheat breeding. Lr14a has been mapped close to the simple sequence repeat markers gwm146, gwm344 and wmc10 in the distal portion of the chromosome arm 7BL, a gene-dense region. The objectives of this study were: (1) to enrich the Lr14a region with single nucleotide polymorphisms (SNPs) and high-resolution melting (HRM)-based markers developed from conserved ortholog set (COS) genes and from sequenced Diversity Array Technology (DArT(®)) markers; (2) to further investigate the gene content and colinearity of this region with the Brachypodium and rice genomes. Ten new COS-SNP and five HRM markers were mapped within an 8.0 cM interval spanning Lr14a. Two HRM markers pinpointed the locus in an interval of <1.0 cM and eight COS-SNPs were mapped 2.1-4.1 cM distal to Lr14a. Each marker was tested for its capacity to predict the state of Lr14a alleles (in particular, Lr14-Creso associated to resistance) in a panel of durum wheat elite germplasm including 164 accessions. Two of the most informative markers were converted into KASPar(®) markers. Single assay markers ubw14 and wPt-4038-HRM designed for agarose gel electrophoresis/KASPar(®) assays and high-resolution melting analysis, respectively, as well as the double-marker combinations ubw14/ubw18, ubw14/ubw35 and wPt-4038-HRM-ubw35 will be useful for germplasm haplotyping and for molecular-assisted breeding.
Collapse
Affiliation(s)
- Irma Terracciano
- Department of Agricultural Sciences (DipSA), University of Bologna, Viale Fanin 44, Bologna 40127, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Alnemer LM, Seetan RI, Bassi FM, Chitraranjan C, Helsene A, Loree P, Goshn SB, Gu YQ, Luo MC, Iqbal MJ, Lazo GR, Denton AM, Kianian SF. Wheat Zapper: a flexible online tool for colinearity studies in grass genomes. Funct Integr Genomics 2013; 13:11-7. [PMID: 23474942 DOI: 10.1007/s10142-013-0317-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
In the course of evolution, the genomes of grasses have maintained an observable degree of gene order conservation. The information available for already sequenced genomes can be used to predict the gene order of nonsequenced species by means of comparative colinearity studies. The "Wheat Zapper" application presented here performs on-demand colinearity analysis between wheat, rice, Sorghum, and Brachypodium in a simple, time efficient, and flexible manner. This application was specifically designed to provide plant scientists with a set of tools, comprising not only synteny inference, but also automated primer design, intron/exon boundaries prediction, visual representation using the graphic tool Circos 0.53, and the possibility of downloading FASTA sequences for downstream applications. Quality of the "Wheat Zapper" prediction was confirmed against the genome of maize, with good correlation (r > 0.83) observed between the gene order predicted on the basis of synteny and their actual position on the genome. Further, the accuracy of "Wheat Zapper" was calculated at 0.65 considering the "Genome Zipper" application as the "gold" standard. The differences between these two tools are amply discussed, making the point that "Wheat Zapper" is an accurate and reliable on-demand tool that is sure to benefit the cereal scientific community. The Wheat Zapper is available at http://wge.ndsu.nodak.edu/wheatzapper/ .
Collapse
Affiliation(s)
- Loai M Alnemer
- Computer Information Systems Department, The University of Jordan, Amman, 11942, Jordan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|