1
|
Chen GL, Wang DR, Liu X, Wang X, Liu HF, Zhang CL, Zhang ZL, Li LG, You CX. The apple lipoxygenase MdLOX3 positively regulates zinc tolerance. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132553. [PMID: 37722326 DOI: 10.1016/j.jhazmat.2023.132553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Various abiotic stresses, especially heavy metals near factories around the world, limit plant growth and productivity worldwide. Zinc is a light gray transition metal, and excessive zinc will inactivate enzymes in the soil, weaken the biological function of microorganisms, and enter the food chain through enrichment, thus affecting human health. Lipoxygenase (LOX) can catalyze the production of fatty acid derivatives from phenolic triglycerides in plants and is an important pathway of fatty acid oxidation in plants, which usually begins under unfavorable conditions, especially under biotic and abiotic stresses. Lipoxygenase can be divided into 9-LOX and 13-LOX. MdLOX3 is a homolog of AtLOX3 and has been identified in apples (housefly apples). MdLOX3 has a typical conserved lipoxygenase domain, and promoter analysis shows that it contains multiple stress response elements. In addition, different abiotic stresses and hormonal treatments induced the MdLOX3 response. In order to explore the inherent anti-heavy metal mechanism of MdLOX3, this study verified the properties of MdLOX3 based on genetic analysis and overexpression experiments, including plant taproots length, plant fresh weight, chlorophyll, anthocyanins, MDA, relative electrical conductivity, hydrogen peroxide and superoxide anion, NBT\DAB staining, etc. In the experiment, overexpression of MdLOX3 in apple callus and Arabidopsis effectively enhanced the tolerance to zinc stress by improving the ability to clear ROS. Meanwhile, tomato materials with overexpression of ectopia grew better under excessive zinc ion stress. These results indicated that MdLOX3 had a good tolerance to heavy metal zinc. Homologous mutants are more sensitive to zinc, which proves that MdLOX3 plays an important positive role in zinc stressed apples, which broadens the range of action of LOX3 in different plants.
Collapse
Affiliation(s)
- Guo-Lin Chen
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Da-Ru Wang
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Xin Liu
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Xun Wang
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Hao-Feng Liu
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | | | - Zhen-Lu Zhang
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Lin-Guang Li
- Shandong Institute of Pomology, Taian, Shandong 271000, China.
| | - Chun-Xiang You
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
2
|
González-Guerrero M, Navarro-Gómez C, Rosa-Núñez E, Echávarri-Erasun C, Imperial J, Escudero V. Forging a symbiosis: transition metal delivery in symbiotic nitrogen fixation. THE NEW PHYTOLOGIST 2023; 239:2113-2125. [PMID: 37340839 DOI: 10.1111/nph.19098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Symbiotic nitrogen fixation carried out by the interaction between legumes and rhizobia is the main source of nitrogen in natural ecosystems and in sustainable agriculture. For the symbiosis to be viable, nutrient exchange between the partners is essential. Transition metals are among the nutrients delivered to the nitrogen-fixing bacteria within the legume root nodule cells. These elements are used as cofactors for many of the enzymes controlling nodule development and function, including nitrogenase, the only known enzyme able to convert N2 into NH3 . In this review, we discuss the current knowledge on how iron, zinc, copper, and molybdenum reach the nodules, how they are delivered to nodule cells, and how they are transferred to nitrogen-fixing bacteria within.
Collapse
Affiliation(s)
- Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Cristina Navarro-Gómez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Carlos Echávarri-Erasun
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| |
Collapse
|
3
|
Sumalan RL, Nescu V, Berbecea A, Sumalan RM, Crisan M, Negrea P, Ciulca S. The Impact of Heavy Metal Accumulation on Some Physiological Parameters in Silphium perfoliatum L. Plants Grown in Hydroponic Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:1718. [PMID: 37111941 PMCID: PMC10146597 DOI: 10.3390/plants12081718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Heavy metals like cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn), resulting from anthropogenic activities, are elements with high persistence in nature, being able to accumulate in soils, water, and plants with significant impact to human and animal health. This study investigates the phytoremediation capacity of Silphium perfoliatum L. as a specific heavy metal hyperaccumulator and the effects of Cu, Zn, Cd, and Pb on some physiological and biochemical indices by growing plants under floating hydroponic systems in nutrient solutions under the presence of heavy metals. One-year-old plants of S. perfoliatum grown for 20 days in Hoagland solution with the addition of (ppm) Cu-400, Zn-1200, Cd-20, Pb-400, and Cu+Zn+Cd+Pb (400/1200/20/400) were investigated with respect to the control. The level of phytoremediation, manifested by the ability of heavy metal absorption and accumulation, was assessed. In addition, the impact of stress on the proline content, photosynthetic pigments, and enzymatic activity, as being key components of metabolism, was determined. The obtained results revealed a good absorption and selective accumulation capacity of S. perfoliatum plants for the studied heavy metals. Therefore, Cu and Zn mainly accumulate in the stems, Cd in the roots and stems, while Pb mainly accumulates in the roots. The proline tended to increase under stress conditions, depending on the pollutant and its concentration, with higher values in leaves and stems under the associated stress of the four metals and individually for Pb and Cd. In addition, the enzymatic activity recorded different values depending on the plant organ, its type, and the metal concentration on its substrate. The obtained results indicate a strong correlation between the metal type, concentration, and the mechanisms of absorption/accumulation of S. perfoliatum species, as well as the specific reactions of metabolic response.
Collapse
Affiliation(s)
- Radu Liviu Sumalan
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (V.N.); (R.M.S.)
| | - Vlad Nescu
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (V.N.); (R.M.S.)
| | - Adina Berbecea
- Faculty of Agriculture, 119 Calea Aradului, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania;
| | - Renata Maria Sumalan
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (V.N.); (R.M.S.)
| | - Manuela Crisan
- “Coriolan Dragulescu” Institute of Chemistry, 24 Mihai Viteazul Blvd., 300223 Timisoara, Romania;
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, 6 Bv. Vasile Parvan, 300223 Timisoara, Romania;
| | - Sorin Ciulca
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (V.N.); (R.M.S.)
| |
Collapse
|
4
|
Kusiak M, Sierocka M, Świeca M, Pasieczna-Patkowska S, Sheteiwy M, Jośko I. Unveiling of interactions between foliar-applied Cu nanoparticles and barley suffering from Cu deficiency. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121044. [PMID: 36639040 DOI: 10.1016/j.envpol.2023.121044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The objective of this study was to evaluate nano-Cu-plant interactions under Cu deficiency. Nano-Cu at rates of 100 and 1000 mg L-1 was applied as foliar spray to Hordeum vulgare L. during increased demand for nutrients at tillering stage. Corresponding treatment with CuSO4 was used to exam the nano-specific effects. Cu compounds-plant leaves interactions were analyzed with spectroscopic and microscopic methods (ICP-OES, FTIR/ATR, SEM-EDS). Moreover, the effect of Cu compounds on plants in terms of biomass, pigments content, lipid peroxidation, antiradical properties, the activity of enzymes involved in plant defense against stress (SOD, CAT, POD, GR, PAL, PPO) and the content of non-enzymatic antioxidants (GSH, GSSG, TPC) was determined after 1 and 7 days of exposure. Cu loading to plant leaves increased over time, but the content of Cu under treatment with nano-Cu at 100 mg L-1 was lower by 76% than CuSO4 at 7th day of exposure. The changes induced by applied Cu compounds in biochemical traits were mostly observed after 1 day. Our data showed that CuSO4 exposure induce oxidative stress (increased MDA level and GSSG content) when compared to control and nano-Cu treated plants. Noteworthy, nano Cu at 100 mg L-1 demonstrated enhanced stress tolerance as indicated by boosted GSH content. After 7 days, the antioxidant response was almost same compared to control sample. However, based on other indicators (pigment content, chlorosis sign, biomass), it should be noted that CuSO4 caused serve oxidative burst of plant which may resulted in damage of defense system. Nano-Cu, especially at 100 mg L-1, showed promising effect on plant health, and obtained results may be useful for optimizing of nano-Cu application as fertilizer agent.
Collapse
Affiliation(s)
- Magdalena Kusiak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Małgorzata Sierocka
- Department of Biochemistry and Food Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences, Lublin, Poland
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences, Lublin, Poland
| | - Sylwia Pasieczna-Patkowska
- Department of Chemical Technology, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Mohamed Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland.
| |
Collapse
|
5
|
CITF1 Functions Downstream of SPL7 to Specifically Regulate Cu Uptake in Arabidopsis. Int J Mol Sci 2022; 23:ijms23137239. [PMID: 35806241 PMCID: PMC9266912 DOI: 10.3390/ijms23137239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Copper (Cu) is one of the most indispensable micronutrients, and proper Cu homeostasis is required for plants to maintain essential cellular functions. Plants activate the Cu uptake system during Cu limitation. Although SPL7 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 7) and CITF1 (Cu-DEFICIENCY INDUCED TRANSCRIPTION FACTOR 1) are two transcription factors in Cu homeostasis, it remains unclear how SPL7 and CITF1 control the Cu uptake system. Here, we reveal that overexpression of CITF1 causes the enhanced tolerance to Cu deficiency and the elevated expression of Cu uptake genes COPT2, FRO4 and FRO5. Electrophoretic mobility shift assays (EMSA) and transient expression assays indicate that SPL7 directly binds to and activates the promoter of CITF1. The overexpression of CITF1 partially rescues the sensitivity of spl7-1 to Cu deficiency. Transcriptome data suggest that SPL7 and CITF1 coregulate the Cu-homeostasis-signaling network, and CITF1 has its own independent functions. Moreover, both SPL7 and CITF1 can directly bind to and activate the promoters of three Cu uptake genes COPT2, FRO4 and FRO5. This work shows the functions of CITF1 in the Cu-homeostasis-signaling network, providing insights into the complicated molecular mechanism underlying Cu homeostasis.
Collapse
|
6
|
Wahinya FW, Yamazaki K, Jing Z, Takami T, Kamiya T, Kajiya-Kanegae H, Takanashi H, Iwata H, Tsutsumi N, Fujiwara T, Sakamoto W. Sorghum Ionomics Reveals the Functional SbHMA3a Allele that Limits Excess Cadmium Accumulation in Grains. PLANT & CELL PHYSIOLOGY 2022; 63:713-728. [PMID: 35312772 DOI: 10.1093/pcp/pcac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Understanding uptake and redistribution of essential minerals or sequestering of toxic elements is important for optimized crop production. Although the mechanisms controlling mineral transport have been elucidated in rice and other species, little is understood in sorghum-an important C4 cereal crop. Here, we assessed the genetic factors that govern grain ionome profiles in sorghum using recombinant inbred lines (RILs) derived from a cross between BTx623 and NOG (Takakibi). Pairwise correlation and clustering analysis of 22 elements, measured in sorghum grains harvested under greenhouse conditions, indicated that the parental lines, as well as the RILs, show different ionomes. In particular, BTx623 accumulated significantly higher levels of cadmium (Cd) than NOG, because of differential root-to-shoot translocation factors between the two lines. Quantitative trait locus (QTL) analysis revealed a prominent QTL for grain Cd concentration on chromosome 2. Detailed analysis identified SbHMA3a, encoding a P1B-type ATPase heavy metal transporter, as responsible for low Cd accumulation in grains; the NOG allele encoded a functional HMA3 transporter (SbHMA3a-NOG) whose Cd-transporting activity was confirmed by heterologous expression in yeast. BTx623 possessed a truncated, loss-of-function SbHMA3a allele. The functionality of SbHMA3a in NOG was confirmed by Cd concentrations of F2 grains derived from the reciprocal cross, in which the NOG allele behaved in a dominant manner. We concluded that SbHMA3a-NOG is a Cd transporter that sequesters excess Cd in root tissues, as shown in other HMA3s. Our findings will facilitate the isolation of breeding cultivars with low Cd in grains or in exploiting high-Cd cultivars for phytoremediation.
Collapse
Affiliation(s)
- Fiona Wacera Wahinya
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Kiyoshi Yamazaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Zihuan Jing
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Hiromi Kajiya-Kanegae
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, 2-14-1 Nishi-shimbashi, Minato-ku, Tokyo, 105-0003 Japan
| | - Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
7
|
Perea-García A, Puig S, Peñarrubia L. The role of post-transcriptional modulators of metalloproteins in response to metal deficiencies. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1735-1750. [PMID: 34849747 DOI: 10.1093/jxb/erab521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Copper and iron proteins have a wide range of functions in living organisms. Metal assembly into metalloproteins is a complex process, where mismetalation is detrimental and energy consuming to cells. Under metal deficiency, metal distribution is expected to reach a metalation ranking, prioritizing essential versus dispensable metalloproteins, while avoiding interference with other metals and protecting metal-sensitive processes. In this review, we propose that post-transcriptional modulators of metalloprotein mRNA (ModMeR) are good candidates in metal prioritization under metal-limited conditions. ModMeR target high quota or redundant metalloproteins and, by adjusting their synthesis, ModMeR act as internal metal distribution valves. Inappropriate metalation of ModMeR targets could compete with metal delivery to essential metalloproteins and interfere with metal-sensitive processes, such as chloroplastic photosynthesis and mitochondrial respiration. Regulation of ModMeR targets could increase or decrease the metal flow through interconnected pathways in cellular metal distribution, helping to achieve adequate differential metal requirements. Here, we describe and compare ModMeR that function in response to copper and iron deficiencies. Specifically, we describe copper-miRNAs from Arabidopsis thaliana and diverse iron ModMeR from yeast, mammals, and bacteria under copper and iron deficiencies, as well as the influence of oxidative stress. Putative functions derived from their role as ModMeR are also discussed.
Collapse
Affiliation(s)
- Ana Perea-García
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| |
Collapse
|
8
|
Shuting Z, Hongwei D, Qing M, Rui H, Huarong T, Lianyu Y. Identification and expression analysis of the ZRT, IRT-like protein (ZIP) gene family in Camellia sinensis (L.) O. Kuntze. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:87-100. [PMID: 35038675 DOI: 10.1016/j.plaphy.2022.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The ZRT, IRT-like protein (ZIP) family plays an essential role in the homeostasis of zinc and iron in plants. However, studies on this family are mainly limited to model species. Here, 12 CsZIPs were identified and investigated the function in Camellia sinensis, being named CsZIP1-12 and divided into four different groups based on phylogenetic relationships. These CsZIPs contained 2-9 TMDs and other conserved motifs for ZIP proteins. And CsZIPs were located in cell membrane, excepting for CsZIP4 and CsZIP6. The expression of CsZIPs were different in varieties and organs of tea plants. They were involved in the response process of abiotic stresses, such as NaCl, drought, cold and exogenous Me-JA. In addition, 31 types of promoter elements were identified in the CsZIPs, including core promoters, light responsiveness, stress responsive and other elements. The CsZIP1, CsZIP2, CsZIP4, CsZIP5, CsZIP6, CsZIP11 and CsZIP12 could be induced by zinc deficiency and 50 μM Zn treatment, but CsZIP7 and CsZIP8 were up regulated by 300 μM Zn. Heterogeneous complementation analysis showed that CsZIP1, CsZIP2, CsZIP7 and CsZIP8 could complement the Zn sensitivity of △zrc1cot1 yeast double mutant. There was a positive correlation between the expression of CsZIPs and secondary metabolites in tea plant. Together, our analysis of CsZIPs could provide comprehensive insights on the structure and function of this protein family in the regulation of zinc and ion homeostasis in the tea plant.
Collapse
Affiliation(s)
- Zheng Shuting
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Dai Hongwei
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Meng Qing
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Huang Rui
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Tong Huarong
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuan Lianyu
- College of Food Science, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
9
|
Mancini E, Garcia-Molina A. Analysis of Alternative Splicing During the Combinatorial Response to Simultaneous Copper and Iron Deficiency in Arabidopsis Reveals Differential Events in Genes Involved in Amino Acid Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:827828. [PMID: 35173758 PMCID: PMC8841432 DOI: 10.3389/fpls.2022.827828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Copper (Cu) and iron (Fe) constitute fundamental nutrients for plant biology but are often limited due to low bioavailability. Unlike responses to single Cu or Fe deprivation, the consequences of simultaneous Cu and Fe deficiency have not yet been fully deciphered. Previously, it was demonstrated that Cu and Fe deficiency applied in combination imposes transcriptome, proteome, and metabolome changes different from those triggered under each deficiency individually. Here, we evaluated the effect of alternative splicing (AS) on the transcriptome of rosette leaves under single and simultaneous Cu and Fe deficiency. Differentially spliced genes (DSGs) and differentially expressed genes (DEGs) coincided in number (2,600 approx.) although the overlapping fraction was minimal (15%). Functional annotation of changes exclusively detected under simultaneous Cu and Fe deficiency revealed that DEGs participated in general stress responses and translation, while DSGs were involved in metabolic reactions, especially amino acid biosynthesis. Interestingly, transcripts encoding central features for tryptophan (Trp) and asparagine (Asn) synthesis - two significantly altered metabolites under simultaneous Cu and Fe deficiency - underwent exclusive intron retention events under the double deficiency. However, transcript and protein amounts for these enzymes did not correlate with Trp and Asn concentration. In consequence, we propose that AS might act as a regulatory mechanism to modify the stability and/or functionality of the enzymes and therefore fine-tune amino acid production during the combinatorial response to simultaneous Cu and Fe deficiency.
Collapse
Affiliation(s)
| | - Antoni Garcia-Molina
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| |
Collapse
|
10
|
Urwat U, Ahmad SM, Masi A, Ganai NA, Murtaza I, Khan I, Zargar SM. Fe and Zn stress induced gene expression analysis unraveled mechanisms of mineral homeostasis in common bean (Phaseolus vulgaris L.). Sci Rep 2021; 11:24026. [PMID: 34912040 PMCID: PMC8674274 DOI: 10.1038/s41598-021-03506-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022] Open
Abstract
Iron (Fe) and zinc (Zn) stress significantly affects fundamental metabolic and physiological processes in plants that results in reduction of plant growth and development. In the present study, common bean variety; Shalimar French Bean-1 (SFB-1) was used as an experimental material. Four different MGRL media i.e. normal MGRL medium (Control), media without Fe (0-Fe), media without Zn (0-Zn) and media with excess Zn (300-Zn) were used for growing seeds of SFB-1 under in vitro condition for three weeks under optimum conditions. Three week old shoot and root tissues were harvested from the plants grown in these four different in vitro conditions and were, subjected to Fe and Zn estimation. Further, extraction of total RNA for differential gene expression of ten candidate genes selected based on our in silico investigation and their classification, phylogeny and expression pattern was unraveled. Expression analysis of three candidate genes (OPT3, NRAMP2 and NRAMP3) in roots revealed possible cross talk among Fe/Zn stress that was further confirmed by observing less accumulation of Fe in roots under both these conditions. However, we observed, higher accumulation of Fe in shoots under 0-Fe condition compared to control that suggests precise sensing for priority based compartmentalization and partitioning leading to higher accumulation of Fe in shoots. Furthermore, the expression analysis of IRT1, FRO1 and Ferritin 1 genes under Fe/Zn stress suggested their role in uptake/transport and signaling of Fe and Zn, whereas the expression of ZIP2, NRAMP1, HA2 and GLP1 genes were highly responsive to Zn in Phaseolus vulgaris. The identified genes highly responsive to Fe and Zn stress condition can be potential candidates for overcoming mineral stress in dicot crop plants.
Collapse
Affiliation(s)
- Uneeb Urwat
- grid.444725.40000 0004 0500 6225Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India
| | - Syed Mudasir Ahmad
- grid.444725.40000 0004 0500 6225Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shuhama Campus, Jammu & Kashmir, India
| | - Antonio Masi
- grid.5608.b0000 0004 1757 3470Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Nazir Ahmad Ganai
- grid.444725.40000 0004 0500 6225Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shuhama Campus, Jammu & Kashmir, India
| | - Imtiyaz Murtaza
- grid.444725.40000 0004 0500 6225Divisions of Basic Sciences, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shuhama Campus, Jammu & Kashmir, India
| | - Imran Khan
- grid.444725.40000 0004 0500 6225Division of Statistics, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shuhama Campus, Jammu & Kashmir, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India.
| |
Collapse
|
11
|
Jośko I, Kusiak M, Xing B, Oleszczuk P. Combined effect of nano-CuO and nano-ZnO in plant-related system: From bioavailability in soil to transcriptional regulation of metal homeostasis in barley. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126230. [PMID: 34492984 DOI: 10.1016/j.jhazmat.2021.126230] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/25/2021] [Accepted: 05/12/2021] [Indexed: 05/24/2023]
Abstract
The co-existence of engineered nanoparticles (ENPs) in the environment is an emerging issue remaining poorly investigated. The present study aimed at analyzing the fate of binary mixtures of CuO and ZnO ENPs in a soil-plant system. The ENPs were singly or jointly dosed into soil at 300 mg kg-1 and aged for 7 and 30 days. To evaluate nano-specific effects, individual and combined treatments of metal salts were also applied. Interactions between ENPs and soil-grown barley Hordeum vulgare were determined in terms of biomass, plant mineral composition as well as expression of genes regulating metal homeostasis (ZIP1,3,6,8,10,14, RAN1, PAA1,2, MTP1, COPT5) and detoxification (MT1-3). The bioavailability of Zn and Cu in bulk soil and in the rooting zone was determined using the 0.01 mol L-1 CaCl2 extraction. After combined treatment of ENPs, the extractable concentrations of Cu and Zn were lower than upon individual exposure in bulk soil. The opposite tendency was noted for metal salts. Genes related to metal uptake (ZIP) and cellular compartment (PAA2, RAN1) were mostly up-regulated by single rather than combined application of ENPs. The single and joint exposure to metals salts induced the down-regulation of these genes.
Collapse
Affiliation(s)
- Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, 13 Akademicka Street, 20-950 Lublin, Poland.
| | - Magdalena Kusiak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, 13 Akademicka Street, 20-950 Lublin, Poland
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
12
|
Clavero-León C, Ruiz D, Cillero J, Orlando J, González B. The multi metal-resistant bacterium Cupriavidus metallidurans CH34 affects growth and metal mobilization in Arabidopsis thaliana plants exposed to copper. PeerJ 2021; 9:e11373. [PMID: 34040892 PMCID: PMC8127957 DOI: 10.7717/peerj.11373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/07/2021] [Indexed: 11/20/2022] Open
Abstract
Copper (Cu) is important for plant growth, but high concentrations can lead to detrimental effects such as primary root length inhibition, vegetative tissue chlorosis, and even plant death. The interaction between plant-soil microbiota and roots can potentially affect metal mobility and availability, and, therefore, overall plant metal concentration. Cupriavidus metallidurans CH34 is a multi metal-resistant bacterial model that alters metal mobility and bioavailability through ion pumping, metal complexation, and reduction processes. The interactions between strain CH34 and plants may affect the growth, metal uptake, and translocation of Arabidopsis thaliana plants that are exposed to or not exposed to Cu. In this study, we looked also at the specific gene expression changes in C. metallidurans when co-cultured with Cu-exposed A. thaliana. We found that A. thaliana’s rosette area, primary and secondary root growth, and dry weight were affected by strain CH34, and that beneficial or detrimental effects depended on Cu concentration. An increase in some plant growth parameters was observed at copper concentrations lower than 50 µM and significant detrimental effects were found at concentrations higher than 50 µM Cu. We also observed up to a 90% increase and 60% decrease in metal accumulation and mobilization in inoculated A. thaliana. In turn, copper-stressed A. thaliana altered C. metallidurans colonization, and cop genes that encoded copper resistance in strain CH34 were induced by the combination of A. thaliana and Cu. These results reveal the complexity of the plant-bacteria-metal triad and will contribute to our understanding of their applications in plant growth promotion, protection, and phytoremediation strategies.
Collapse
Affiliation(s)
- Claudia Clavero-León
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,(CAPES), Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Daniela Ruiz
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,(CAPES), Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Javier Cillero
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,(CAPES), Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Julieta Orlando
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Bernardo González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,(CAPES), Center of Applied Ecology and Sustainability, Santiago, Chile
| |
Collapse
|
13
|
Analysis of Cadmium Root Retention for Two Contrasting Rice Accessions Suggests an Important Role for OsHMA2. PLANTS 2021; 10:plants10040806. [PMID: 33923918 PMCID: PMC8073749 DOI: 10.3390/plants10040806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022]
Abstract
Two rice accessions, Capataz and Beirao, contrasting for cadmium (Cd) tolerance and root retention, were exposed to a broad range of Cd concentrations (0.01, 0.1, and 1 μM) and analyzed for their potential capacity to chelate, compartmentalize, and translocate Cd to gain information about the relative contribution of these processes in determining the different pathways of Cd distribution along the plants. In Capataz, Cd root retention increased with the external Cd concentration, while in Beirao it resulted independent of Cd availability and significantly higher than in Capataz at the lowest Cd concentrations analyzed. Analysis of thiol accumulation in the roots revealed that the different amounts of these compounds in Capataz and Beirao, as well as the expression levels of genes involved in phytochelatin biosynthesis and direct Cd sequestration into the vacuoles of the root cells, were not related to the capacity of the accessions to trap the metal into the roots. Interestingly, the relative transcript abundance of OsHMA2, a gene controlling root-to-shoot Cd/Zn translocation, was not influenced by Cd exposure in Capataz and progressively increased in Beirao with the external Cd concentration, suggesting that activity of the OsHMA2 transporter may differentially limit root-to-shoot Cd/Zn translocation in Capataz and Beirao.
Collapse
|
14
|
|
15
|
Garcia-Molina A, Marino G, Lehmann M, Leister D. Systems biology of responses to simultaneous copper and iron deficiency in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2119-2138. [PMID: 32578228 DOI: 10.1111/tpj.14887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 06/09/2020] [Indexed: 05/29/2023]
Abstract
Plant responses to coincident nutrient deficiencies cannot be predicted from the responses to individual deficiencies. Although copper (Cu) and iron (Fe) are essential micronutrients for plant growth that are often and concurrently limited in soils, the combinatorial response to Cu-Fe deficiency remains elusive. In the present study, we characterised the responses of Arabidopsis thaliana plants deprived of Cu, Fe or both (-Cu-Fe) at the level of plant development, mineral composition, and reconfiguration of transcriptomes, proteomes and metabolomes. Compared to single deficiencies, simultaneous -Cu-Fe leads to a distinct pattern in leaf physiology and microelement concentration characterised by lowered protein content and enhanced manganese and zinc levels. Conditional networking analysis of molecular changes indicates that biological processes also display different co-expression patterns among single and double deficiencies. Indeed, the interaction between Cu and Fe deficiencies causes distinct expression profiles for 15% of all biomolecules, leading to specific enhancement of general stress responses and protein homeostasis mechanisms, at the same time as severely arresting photosynthesis. Accordingly, central carbon metabolites, in particular photosynthates, decrease especially under -Cu-Fe conditions, whereas the pool of free amino acids increases. Further meta-analysis of transcriptomes and proteomes corroborated that protein biosynthesis and folding capacity were readjusted during the combinatorial response and unveiled important rearrangements in the metabolism of organic acids. Consequently, our results demonstrate that the response to -Cu-Fe imposes a distinct reconfiguration of large sets of molecules, not triggered by single deficiencies, resulting into a switch from autotrophy to heterotrophy and involving organic acids such as fumaric acid as central mediators of the response.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Giada Marino
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Martin Lehmann
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Dario Leister
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| |
Collapse
|
16
|
Tefera W, Liu T, Lu L, Ge J, Webb SM, Seifu W, Tian S. Micro-XRF mapping and quantitative assessment of Cd in rice (Oryza sativa L.) roots. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110245. [PMID: 32092577 DOI: 10.1016/j.ecoenv.2020.110245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Understanding Cd uptake and distribution in rice roots is important for breeding varieties that do not accumulate Cd in the grain to any large extent. Here, we examined the physiological and molecular factors responsible for Cd uptake and transport differences between two japonica rice cultivars prescreened as high (zhefu7) or low (Xiangzaoxian45) accumulators of Cd in the grain. No significant differences in Cd uptake between the two cultivars were observed; however, Xiangzaoxian45 retained most of the absorbed Cd in the roots, whereas zhefu7 showed higher transport of Cd from the root to the shoot, regardless of the duration of exposure to Cd. The inability to sequester Cd into root vacuoles caused high accumulation of Cd in the grain in zhefu7, whereas inefficient transport of Cd from roots to shoots in Xiangzaoxian45 caused low accumulation of Cd in the grain. Cd sequestration in the roots and transport from the root to the shoot were greatly influenced by the expression patterns of transport-related genes OsHMA3 and OsHMA2, respectively. Further, micro-X-ray fluorescence spectroscopy mapping confirmed that more Cd was sequestered in the roots of Xiangzaoxian45 than in those of zhefu7, with a significant amount of Cd localized in the root hairs, as well as in the meristematic and elongation zones, and dermal and stele tissues. Therefore, we propose that effective Cd sequestration in root vacuoles was the major determinant of divergent Cd-accumulation patterns in the two rice cultivars under study.
Collapse
Affiliation(s)
- Wolde Tefera
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University, College of Environmental & Resource Science), Ministry of Education, Hangzhou, 310058, China; Department of Plant Sciences, Salale University, Fitche, Ethiopia
| | - Ting Liu
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University, College of Environmental & Resource Science), Ministry of Education, Hangzhou, 310058, China
| | - Lingli Lu
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University, College of Environmental & Resource Science), Ministry of Education, Hangzhou, 310058, China
| | - Jun Ge
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University, College of Environmental & Resource Science), Ministry of Education, Hangzhou, 310058, China
| | - Samuel M Webb
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Weldemariam Seifu
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University, College of Environmental & Resource Science), Ministry of Education, Hangzhou, 310058, China; Department of Plant Sciences, Salale University, Fitche, Ethiopia
| | - Shengke Tian
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University, College of Environmental & Resource Science), Ministry of Education, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Xie R, Zhao J, Lu L, Ge J, Brown PH, Wei S, Wang R, Qiao Y, Webb SM, Tian S. Efficient phloem remobilization of Zn protects apple trees during the early stages of Zn deficiency. PLANT, CELL & ENVIRONMENT 2019; 42:3167-3181. [PMID: 31325325 DOI: 10.1111/pce.13621] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 05/27/2023]
Abstract
Apple trees are extensively cultivated worldwide but are often affected by zinc (Zn) deficiency. Limited knowledge regarding Zn remobilization within fruit crops has hampered the development of efficient strategies for providing adequate amounts of Zn. In the present study, Zn distribution and remobilization were compared among apple trees cultivated under different Zn conditions. Without Zn application, plants showed visible symptoms of Zn deficiency at the shoot tips after 1 year but appeared to grow normally during the first 6 months (early stage of Zn deficiency). Compared with apple plants under sufficient Zn treatment, plants suffering from early-stage Zn deficiency showed preferential Zn distribution to young leaves and higher Zn levels in phloem, demonstrating that hidden Zn deficiency triggers a highly efficient remobilization of Zn in this species. The in vivo Zn-nicotianamine complex in phloem tissues, combined with the significant enhanced expression of MdNAS3 and MdYSL6, suggested a positive role for nicotianamine in the phloem remobilization of Zn. These results strongly suggest that a proportion of Zn in the old leaves of apple trees can be efficiently remobilized by phloem transport to the shoot tips, partially in the form of Zn-nicotianamine, thus protecting apple trees against the early stages of Zn deficiency.
Collapse
Affiliation(s)
- Ruohan Xie
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jianqi Zhao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jun Ge
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Patrick H Brown
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Shuai Wei
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Runze Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Yabei Qiao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
18
|
Szuba A, Lorenc-Plucińska G. Field proteomics of Populus alba grown in a heavily modified environment - An example of a tannery waste landfill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:1557-1571. [PMID: 28712470 DOI: 10.1016/j.scitotenv.2017.06.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 05/19/2023]
Abstract
Tannery waste is highly toxic and dangerous to living organisms because of the high heavy metal content, especially chromium [Cr(III)]. This study analysed the proteomic response of the Populus alba L. clone 'Villafranca' grown for 4years on a tannery waste landfill. In this extremely hostile environment, the plants struggled with continuous stress, which inhibited growth by 54%, with a 67% decrease in tree height and diameter at breast height compared to those of the forest reference plot, respectively. The leaves and roots of the tannery landfill-grown plants produced strong proteomic stress signals for protection against reactive oxygen species (ROS) and repair to ROS-damaged proteins and DNA as well as signals for protection of the photosynthetic apparatus. The content of HSP80 was also high. However, primary metabolic pathways were generally unaffected, and signals of increased protein protection, but not turnover, were found, indicating mechanisms of adaptation to long-term stress conditions present at the landfill. A proteomic tool, two-dimensional electrophoresis coupled with tandem mass spectrometry, was successfully applied in this environmental in situ study of distant plots (280km apart).
Collapse
Affiliation(s)
- Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.
| | | |
Collapse
|
19
|
Kutrowska A, Małecka A, Piechalak A, Masiakowski W, Hanć A, Barałkiewicz D, Andrzejewska B, Zbierska J, Tomaszewska B. Effects of binary metal combinations on zinc, copper, cadmium and lead uptake and distribution in Brassica juncea. J Trace Elem Med Biol 2017; 44:32-39. [PMID: 28965594 DOI: 10.1016/j.jtemb.2017.05.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 11/27/2022]
Abstract
The interaction between lead, copper, cadmium and zinc in their binary combinations was investigated in Indian mustard seedlings (Brassica juncea L. var. Malopolska). Fourteen-days-old seedlings were treated with Pb(NO3)2, CuSO4, CdCl2, ZnSO4 at 50μmol of metal ion concentration and at 25μmol of each metal ion in combinations. Metal combinations were generally more inhibiting in terms of biomass production. This inhibiting effect followed an order: Cu+Cd>Cu+Zn, Cd+Pb>Cu+Pb>Zn+Pb, Cu>Cd>Zn>Zn+Cd>Pb. We observed synergistic and antagonistic effects of metal uptake in binary metal treatments, suggesting metal crosstalk at the plant uptake site. Metal content in plant tissues varied among different combinations. The metal concentrations followed an order of Pb>Cu>Zn>Cd in roots, Zn>Cu>Pb>Cd in the stem and Zn>Cu>Cd>Pb in leaves. Presence of metals altered the distribution of micronutrients (Cu, Zn) in plants: Cu concentration was lowered in roots and leaves and increased in stems; Zn content was increased in plants, with stems having up to 4 or 5 times more Zn than in control plants.
Collapse
Affiliation(s)
- Agnieszka Kutrowska
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznan, Poland.
| | - Arleta Małecka
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznan, Poland
| | - Aneta Piechalak
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznan, Poland
| | - Wacław Masiakowski
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznan, Poland
| | - Anetta Hanć
- Department of Trace Element Analysis by Spectroscopy Method, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614 Poznan, Poland
| | - Danuta Barałkiewicz
- Department of Trace Element Analysis by Spectroscopy Method, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614 Poznan, Poland
| | - Barbara Andrzejewska
- Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Janina Zbierska
- Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Barbara Tomaszewska
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
20
|
Andrés-Bordería A, Andrés F, Garcia-Molina A, Perea-García A, Domingo C, Puig S, Peñarrubia L. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 2017; 95:17-32. [PMID: 28631167 DOI: 10.1007/s11103-017-0622-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/08/2017] [Indexed: 05/23/2023]
Abstract
Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.
Collapse
Affiliation(s)
- Amparo Andrés-Bordería
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Dr Moliner 50, Burjassot, 46100, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, Burjassot, 46100, Valencia, Spain
| | - Fernando Andrés
- Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada - Náquera Km 4.5 Moncada, 46113, Valencia, Spain
- INRA, UMR AGAP, Equipe Architecture et Fonctionnement des Espèces Fruitières, Avenue d'Agropolis - TA-A-108/03, Cedex 5, 34398, Montpellier, France
| | - Antoni Garcia-Molina
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Dr Moliner 50, Burjassot, 46100, Valencia, Spain
- Department of Biology I. Plant Molecular Biology (Botany), Ludwig Maximilian University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Munich, Germany
| | - Ana Perea-García
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Dr Moliner 50, Burjassot, 46100, Valencia, Spain
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Calle Catedrático Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Concha Domingo
- Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada - Náquera Km 4.5 Moncada, 46113, Valencia, Spain
| | - Sergi Puig
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Dr Moliner 50, Burjassot, 46100, Valencia, Spain
| | - Lola Peñarrubia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Dr Moliner 50, Burjassot, 46100, Valencia, Spain.
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, Burjassot, 46100, Valencia, Spain.
| |
Collapse
|
21
|
Peris-Peris C, Serra-Cardona A, Sánchez-Sanuy F, Campo S, Ariño J, San Segundo B. Two NRAMP6 Isoforms Function as Iron and Manganese Transporters and Contribute to Disease Resistance in Rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:385-398. [PMID: 28430017 DOI: 10.1094/mpmi-01-17-0005-r] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Metal ions are essential elements for all living organisms. However, metals can be toxic when present in excess. In plants, metal homeostasis is partly achieved through the function of metal transporters, including the diverse natural resistance-associated macrophage proteins (NRAMP). Among them, the OsNramp6 gene encodes a previously uncharacterized member of the rice NRAMP family that undergoes alternative splicing to produce different NRAMP6 proteins. In this work, we determined the metal transport activity and biological role of the full-length and the shortest NRAMP6 proteins (l-NRAMP6 and s-NRAMP6, respectively). Both l-NRAMP6 and s-NRAMP6 are plasma membrane-localized proteins that function as iron and manganese transporters. The expression of l-Nramp6 and s-Nramp6 is regulated during infection with the fungal pathogen Magnaporthe oryzae, albeit with different kinetics. Rice plants grown under high iron supply show stronger induction of rice defense genes and enhanced resistance to M. oryzae infection. Also, loss of function of OsNramp6 results in enhanced resistance to M. oryzae, supporting the idea that OsNramp6 negatively regulates rice immunity. Furthermore, nramp6 plants showed reduced biomass, pointing to a role of OsNramp6 in plant growth. A better understanding of OsNramp6-mediated mechanisms underlying disease resistance in rice will help in developing appropriate strategies for crop protection.
Collapse
Affiliation(s)
- Cristina Peris-Peris
- 1 Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain; and
| | - Albert Serra-Cardona
- 2 Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Ferrán Sánchez-Sanuy
- 1 Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain; and
| | - Sonia Campo
- 1 Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain; and
| | - Joaquin Ariño
- 2 Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Blanca San Segundo
- 1 Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain; and
| |
Collapse
|
22
|
Xu Q, Wang C, Li S, Li B, Li Q, Chen G, Chen W, Wang F. Cadmium adsorption, chelation and compartmentalization limit root-to-shoot translocation of cadmium in rice (Oryza sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11319-11330. [PMID: 28303536 DOI: 10.1007/s11356-017-8775-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/08/2017] [Indexed: 05/15/2023]
Abstract
Strategies to reduce cadmium (Cd) in rice grain, below concentrations that represent serious human health concerns, require that the mechanisms of Cd distribution and accumulation within rice plants be established. Here, a comprehensive hydroponic experiment was performed to investigate the differences in the Cd uptake, chelation and compartmentalization between high (D83B) and low (D62B) Cd-accumulation cultivars contrasting in Cd accumulation in order to establish the roles of these processes in limiting Cd translocation from root to shoot. D83B showed 3-fold higher Cd accumulation in the shoots than the cultivar D62B. However, a short-term Cd uptake experiment showed more Cd uptake by D62B than by D83B. The distribution of Cd in roots and shoots differed significantly. D83B translocated 38% of total Cd taken up to the shoots, whereas D62B retained most of the Cd in the roots. D62B had higher amounts of non-protein thiols (NPTs) and glutathione (GSH) than D83B. The NPT and Cd distribution ratio (CDR) in the anionic form in the roots of D62B increased gradually as Cd concentration increased. In D83B, in contrast, levels of CDR in the cationic form increased significantly from 22.10 to 43.37%, while NPT only increased slightly. Furthermore, the percentage of Cd ions retained in thiol-rich peptides, especially in the HMW complexes, was significantly higher in D62B compared with D83B. However, D83B possessed a greater proportion of potentially mobile (cationic) Cd in the roots and showed superior Cd translocation from root to shoot. Taken as a whole, the results presented in this study revealed that Cd chelation, compartmentalization and adsorption contribute to the Cd retention in roots.
Collapse
Affiliation(s)
- Qiang Xu
- College of Resources, Sichuan Agricultural University, Huimin Road 211, Chengdu, Sichuan, 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Huimin Road 211, Chengdu, Sichuan, 611130, China.
| | - Shigui Li
- Rice Research Institute, Sichuan Agricultural University, Huimin Road 211, Chengdu, Sichuan, 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Huimin Road 211, Chengdu, Sichuan, 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Huimin Road 211, Chengdu, Sichuan, 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Huimin Road 211, Chengdu, Sichuan, 611130, China
| | - Weilan Chen
- Rice Research Institute, Sichuan Agricultural University, Huimin Road 211, Chengdu, Sichuan, 611130, China
| | - Feng Wang
- Department of Agriculture Science, Helsinki University, P.O. Box 27, Latokartanonkaari 5, FI-00014, Helsinki, Finland
| |
Collapse
|
23
|
Ferrol N, Tamayo E, Vargas P. The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6253-6265. [PMID: 27799283 DOI: 10.1093/jxb/erw403] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Arbuscular mycorrhizal symbioses that involve most plants and Glomeromycota fungi are integral and functional parts of plant roots. In these associations, the fungi not only colonize the root cortex but also maintain an extensive network of hyphae that extend out of the root into the surrounding environment. These external hyphae contribute to plant uptake of low mobility nutrients, such as P, Zn, and Cu. Besides improving plant mineral nutrition, arbuscular mycorrhizal fungi (AMF) can alleviate heavy metal (HM) toxicity to their host plants. HMs, such as Cu, Zn, Fe, and Mn, play essential roles in many biological processes but are toxic when present in excess. This makes their transport and homeostatic control of particular importance to all living organisms. AMF play an important role in modulating plant HM acquisition in a wide range of soil metal concentrations and have been considered to be a key element in the improvement of micronutrient concentrations in crops and in the phytoremediation of polluted soils. In the present review, we provide an overview of the contribution of AMF to plant HM acquisition and performance under deficient and toxic HM conditions, and summarize current knowledge of metal homeostasis mechanisms in arbuscular mycorrhizas.
Collapse
Affiliation(s)
- Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain
| | - Elisabeth Tamayo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain
| | - Paola Vargas
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
24
|
Barabasz A, Klimecka M, Kendziorek M, Weremczuk A, Ruszczyńska A, Bulska E, Antosiewicz DM. The ratio of Zn to Cd supply as a determinant of metal-homeostasis gene expression in tobacco and its modulation by overexpressing the metal exporter AtHMA4. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6201-6214. [PMID: 27811086 PMCID: PMC5100030 DOI: 10.1093/jxb/erw389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This study links changes in the tobacco endogenous metal-homeostasis network caused by transgene expression with engineering of novel features. It also provides insight into the concentration-dependent mutual interactions between Zn and Cd, leading to differences in the metal partitioning between wild-type and transgenic plants. In tobacco, expression of the export protein AtHMA4 modified Zn/Cd root/shoot distribution, but the pattern depended on their concentrations in the medium. To address this phenomenon, the expression of genes identified by suppression subtractive hybridization and the Zn/Cd accumulation pattern were examined upon exposure to six variants of low/high Zn and Cd concentrations. Five tobacco metal-homeostasis genes were identified: NtZIP2, NtZIP4, NtIRT1-like, NtNAS, and NtVTL. In the wild type, their expression depended on combinations of low/high Zn and Cd concentrations; co-ordinated responses of NtZIP1, NtZIP2, and NtVTL were shown in medium containing 4 µM Cd, and at 0.5 µM versus 10 µM Zn. In transgenics, qualitative changes detected for NtZIP1, NtZIP4, NtIRT1-like, and NtVTL are considered crucial for modification of Zn/Cd supply-dependent Zn/Cd root/shoot distribution. Notwithstanding, NtVTL was the most responsive gene in wild-type and transgenic plants under all concentrations of Zn and Cd tested; thus it is a candidate gene for the regulation of metal cross-homeostasis processes involved in engineering new metal-related traits.
Collapse
Affiliation(s)
- Anna Barabasz
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Department of Plant Anatomy and Cytology, Miecznikowa str 1, 02-096 Warszawa, Poland
| | - Maria Klimecka
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Department of Plant Anatomy and Cytology, Miecznikowa str 1, 02-096 Warszawa, Poland
| | - Maria Kendziorek
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Department of Plant Anatomy and Cytology, Miecznikowa str 1, 02-096 Warszawa, Poland
| | - Aleksandra Weremczuk
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Department of Plant Anatomy and Cytology, Miecznikowa str 1, 02-096 Warszawa, Poland
| | - Anna Ruszczyńska
- University of Warsaw, Faculty of Chemistry, Pasteura str. 1, 02-093 Warszawa, Poland
| | - Ewa Bulska
- University of Warsaw, Faculty of Chemistry, Pasteura str. 1, 02-093 Warszawa, Poland
| | - Danuta Maria Antosiewicz
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Department of Plant Anatomy and Cytology, Miecznikowa str 1, 02-096 Warszawa, Poland
| |
Collapse
|
25
|
Essential and Beneficial Trace Elements in Plants, and Their Transport in Roots: a Review. Appl Biochem Biotechnol 2016; 181:464-482. [PMID: 27687587 DOI: 10.1007/s12010-016-2224-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/26/2016] [Indexed: 01/09/2023]
Abstract
The essentiality of 14 mineral elements so far have been reported in plant nutrition. Eight of these elements were known as micronutrients due to their lower concentrations in plants (usually ≤100 mg/kg/dw). However, it is still challenging to mention an exact number of plant micronutrients since some elements have not been strictly proposed yet either as essential or beneficial. Micronutrients participate in very diverse metabolic processes, including from the primary and secondary metabolism to the cell defense, and from the signal transduction to the gene regulation, energy metabolism, and hormone perception. Thus, the attempt to understand the molecular mechanism(s) behind their transport has great importance in terms of basic and applied plant sciences. Moreover, their deficiency or toxicity also caused serious disease symptoms in plants, even plant destruction if not treated, and many people around the world suffer from the plant-based dietary deficiencies or metal toxicities. In this sense, shedding some light on this issue, the 13 mineral elements (Fe, B, Cu, Mn, Mo, Si, Zn, Ni, Cl, Se, Na, Al, and Co), required by plants at trace amounts, has been reviewed with the primary focus on the transport proteins (transporters/channels) in plant roots. So, providing the compiled but extensive information about the structural and functional roles of micronutrient transport genes/proteins in plant roots.
Collapse
|
26
|
Goswami S, Das S. Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 126:211-218. [PMID: 26773830 DOI: 10.1016/j.ecoenv.2015.12.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 12/16/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
Cu phytoremediation potential of an ornamental plant, Calandula officinalis, was explored in terms of growth responses, photosynthetic activities and antioxidant enzymes such as SOD, CAT and GPX. The results showed that this plant had high Cu tolerance of up to 400 mg/kg, which is far above the phytotoxic range for non hyperaccumulators. It grew normally in soils at all the doses (150-400 mg/kg) without showing external signs of phytotoxicity. At 150 mg/kg, flowering was augmented; root and shoot biomass, root lengths and leaf soluble protein contents remained same as that of the control. However, chlorophyll and carotenoid pigment contents declined significantly along with significant elevations in lipid peroxidation, at all the doses. Elevations of antioxidant enzymes reflected stress as well as probable mitigation of reactive oxygen species due to Cu stress. Except for the highest conc. (400 mg/kg), leaf accumulation of Cu was higher than root accumulations. The Cu accumulation peaked at 300 mg/kg Cu in soil, with leaf and root accumulations to be respectively, 4675 and 3995 µg/g dry wt., far more than the minimum of 1000 µg/g dry wt. for a Cu hyperaccumulator. The plant root at all the doses tolerated Cu, with the tolerance index ranging from 94-62.7. The soil to plant metal uptake capacity, indicated by extraction coefficient and the root to shoot translocation, indicated by translocation factor, at all the doses of Cu were >1, pointed towards efficient phytoremediation potential.
Collapse
Affiliation(s)
- Sunayana Goswami
- Aquatic Toxicology and Remediation Laboratory Department of Life Science and Bioinformatics, Assam University, Silchar 788011 India
| | - Suchismita Das
- Aquatic Toxicology and Remediation Laboratory Department of Life Science and Bioinformatics, Assam University, Silchar 788011 India.
| |
Collapse
|
27
|
Vatansever R, Ozyigit II, Filiz E. Genome-Wide Identification and Comparative Analysis of Copper Transporter Genes in Plants. Interdiscip Sci 2016; 9:278-291. [DOI: 10.1007/s12539-016-0150-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/29/2015] [Accepted: 01/28/2016] [Indexed: 01/18/2023]
|
28
|
Printz B, Guerriero G, Sergeant K, Audinot JN, Guignard C, Renaut J, Lutts S, Hausman JF. Combining -Omics to Unravel the Impact of Copper Nutrition on Alfalfa (Medicago sativa) Stem Metabolism. PLANT & CELL PHYSIOLOGY 2016; 57:407-22. [PMID: 26865661 PMCID: PMC4771972 DOI: 10.1093/pcp/pcw001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/31/2015] [Indexed: 05/21/2023]
Abstract
Copper can be found in the environment at concentrations ranging from a shortage up to the threshold of toxicity for plants, with optimal growth conditions situated in between. The plant stem plays a central role in transferring and distributing minerals, water and other solutes throughout the plant. In this study, alfalfa is exposed to different levels of copper availability, from deficiency to slight excess, and the impact on the metabolism of the stem is assessed by a non-targeted proteomics study and by the expression analysis of key genes controlling plant stem development. Under copper deficiency, the plant stem accumulates specific copper chaperones, the expression of genes involved in stem development is decreased and the concentrations of zinc and molybdenum are increased in comparison with the optimum copper level. At the optimal copper level, the expression of cell wall-related genes increases and proteins playing a role in cell wall deposition and in methionine metabolism accumulate, whereas copper excess imposes a reduction in the concentration of iron in the stem and a reduced abundance of ferritins. Secondary ion mass spectrometry (SIMS) analysis suggests a role for the apoplasm as a copper storage site in the case of copper toxicity.
Collapse
Affiliation(s)
- Bruno Printz
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, Luxembourg Université Catholique de Louvain, Earth and Life Institute Agronomy (ELI-A), Groupe de Recherche en Physiologie Végétale (GRPV), Louvain-la-Neuve, Belgium
| | - Gea Guerriero
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, Luxembourg
| | - Kjell Sergeant
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, Luxembourg
| | - Jean-Nicolas Audinot
- Luxembourg Institute of Science and Technology (LIST), Materials Research and Technology (MRT) Department, Esch/Alzette, Luxembourg
| | - Cédric Guignard
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, Luxembourg
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, Luxembourg
| | - Stanley Lutts
- Université Catholique de Louvain, Earth and Life Institute Agronomy (ELI-A), Groupe de Recherche en Physiologie Végétale (GRPV), Louvain-la-Neuve, Belgium
| | - Jean-Francois Hausman
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, Luxembourg
| |
Collapse
|
29
|
Nguyen C, Soulier AJ, Masson P, Bussière S, Cornu JY. Accumulation of Cd, Cu and Zn in shoots of maize (Zea mays L.) exposed to 0.8 or 20 nM Cd during vegetative growth and the relation with xylem sap composition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3152-3164. [PMID: 26573313 DOI: 10.1007/s11356-015-5782-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
This work focuses on the exposure of maize plants to nanomolar concentrations of Cd, which is relevant for agricultural soils cropped with food and feed plants. Maize plants were cultivated in nutrient solution at 0.8 or 20 nM Cd during the vegetative growth stages. No significant hormesis or toxic effects of Cd were observed on maize growth, but a decrease in the allocation of Cd to shoots between the 0.8 and 20 nM Cd exposures revealed that the plants already responded to these low concentrations of Cd according to a shoot Cd excluder strategy. The Cd, Cu and Zn concentrations in shoots decreased with time as the result of an early decrease in the root/shoot ratio and of a decrease in the coefficient of allocation to aboveground for Zn and Cd at 20 nM. As a consequence, shoots of young plants were richer in micronutrients Cu and Zn but also in toxic Cd. The rate of delivery of Cd, Cu and Zn from xylem sap was successfully used to predict the time course of concentrations of Cd, Cu and Zn in the shoot. However, it overestimated the actual concentrations of Cd in the shoot, presumably because the reallocation of this trace element from shoots back to roots was not taken into account.
Collapse
Affiliation(s)
- C Nguyen
- INRA, UMR 1391 ISPA, 33140, Villenave d'Ornon, France.
- Bordeaux Sciences Agro, UMR 1391 ISPA, 33170, Gradignan, France.
| | - A J Soulier
- INRA, UMR 1391 ISPA, 33140, Villenave d'Ornon, France
- Bordeaux Sciences Agro, UMR 1391 ISPA, 33170, Gradignan, France
| | - P Masson
- Unité de Services et de Recherche en Analyses Végétales et Environnementales (USRAVE), INRA, Centre de Bordeaux Aquitaine, 33140, Villenave d'Ornon, France
| | - S Bussière
- INRA, UMR 1391 ISPA, 33140, Villenave d'Ornon, France
- Bordeaux Sciences Agro, UMR 1391 ISPA, 33170, Gradignan, France
| | - J Y Cornu
- INRA, UMR 1391 ISPA, 33140, Villenave d'Ornon, France
- Bordeaux Sciences Agro, UMR 1391 ISPA, 33170, Gradignan, France
| |
Collapse
|
30
|
Abstract
Heavy-metal soil contamination is one of the major abiotic stress factors that, by negatively affecting plant growth and development, severely limit agricultural productivity worldwide. Plants have evolved various tolerance and detoxification strategies in order to cope with heavy-metal toxicity while ensuring adequate supply of essential micronutrients at the whole-plant as well as cellular levels. Genetic studies in the model plant Arabidopsis thaliana have been instrumental in elucidating such mechanisms. The root assay constitutes a very powerful and simple method to assess heavy-metal stress tolerance in Arabidopsis seedlings. It allows the simultaneous determination of all the standard growth parameters affected by heavy-metal stress (primary root elongation, lateral root development, shoot biomass, and chlorophyll content) in a single experiment. Additionally, this protocol emphasizes the tips and tricks that become particularly useful when quantifying subtle alterations in tolerance to a given heavy-metal stress, when simultaneously pursuing a large number of plant lines, or when testing sensitivity to a wide range of heavy metals for a single line.
Collapse
Affiliation(s)
- Estelle Remy
- Plant Molecular Biology, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Paula Duque
- Plant Molecular Biology, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
31
|
Perea-García A, Sanz A, Moreno J, Andrés-Bordería A, de Andrés SM, Davis AM, Huijser P, Davis SJ, Peñarrubia L. Daily rhythmicity of high affinity copper transport. PLANT SIGNALING & BEHAVIOR 2016; 11:e1140291. [PMID: 26890490 PMCID: PMC4883881 DOI: 10.1080/15592324.2016.1140291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/06/2016] [Indexed: 05/30/2023]
Abstract
A differential demand for copper (Cu) of essential cupro-proteins that act within the mitochondrial and chloroplastal electronic transport chains occurs along the daily light/dark cycles. This requires a fine-tuned spatiotemporal regulation of Cu delivery, becoming especially relevant under non-optimal growth conditions. When scarce, Cu is imported through plasma membrane-bound high affinity Cu transporters (COPTs) whose coding genes are transcriptionally induced by the SPL7 transcription factor. Temporal homeostatic mechanisms are evidenced by the presence of multiple light- and clock-responsive regulatory cis elements in the promoters of both SPL7 and its COPT targets. A model is presented here for such temporal regulation that is based on the synchrony between the basal oscillatory pattern of SPL7 and its targets, such as COPT2. Conversely, Cu feeds back to coordinate intracellular Cu availability on the SPL7-dependent regulation of further Cu acquisition. This occurs via regulation at COPT transporters. Moreover, exogenous Cu affects several circadian-clock components, such as the timing of GIGANTEA transcript abundance. Together we propose that there is a dynamic response to Cu that is integrated over diurnal time to maximize metabolic efficiency under challenging conditions.
Collapse
Affiliation(s)
- Ana Perea-García
- Departament de Bioquímica i Biologia Molecular, Universitat de Valéencia, Burjassot, Valencia, Spain
| | - Amparo Sanz
- Departament de Biologia Vegetal, Universitat de València, Valencia, Spain
| | - Joaquín Moreno
- Departament de Bioquímica i Biologia Molecular, Universitat de Valéencia, Burjassot, Valencia, Spain
| | - Amparo Andrés-Bordería
- Departament de Bioquímica i Biologia Molecular, Universitat de Valéencia, Burjassot, Valencia, Spain
| | - Sonia Mayo de Andrés
- Departament de Bioquímica i Biologia Molecular, Universitat de Valéencia, Burjassot, Valencia, Spain
| | - Amanda M. Davis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
- Department of Biology, University of York, United Kingdom
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Seth J. Davis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
- Department of Biology, University of York, United Kingdom
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular, Universitat de Valéencia, Burjassot, Valencia, Spain
| |
Collapse
|
32
|
Nouet C, Charlier JB, Carnol M, Bosman B, Farnir F, Motte P, Hanikenne M. Functional analysis of the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5783-95. [PMID: 26044091 PMCID: PMC4566976 DOI: 10.1093/jxb/erv280] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In Arabidopsis halleri, the HMA4 gene has an essential function in Zn/Cd hypertolerance and hyperaccumulation by mediating root-to-shoot translocation of metals. Constitutive high expression of AhHMA4 results from a tandem triplication and cis-activation of the promoter of all three copies. The three AhHMA4 copies possess divergent promoter sequences, but highly conserved coding sequences, and display identical expression profiles in the root and shoot vascular system. Here, an AhHMA4::GFP fusion was expressed under the control of each of the three A. halleri HMA4 promoters in a hma2hma4 double mutant of A. thaliana to individually examine the function of each AhHMA4 copy. The protein showed non-polar localization at the plasma membrane of the root pericycle cells of both A. thaliana and A. halleri. The expression of each AhHMA4::GFP copy complemented the severe Zn-deficiency phenotype of the hma2hma4 mutant by restoring root-to-shoot translocation of Zn. However, each copy had a different impact on metal homeostasis in the A. thaliana genetic background: AhHMA4 copies 2 and 3 were more highly expressed and provided higher Zn tolerance in roots and accumulation in shoots than copy 1, and AhHMA4 copy 3 also increased Cd tolerance in roots. These data suggest a certain extent of functional differentiation among the three A. halleri HMA4 copies, stemming from differences in expression levels rather than in expression profile. HMA4 is a key node of the Zn homeostasis network and small changes in expression level can have a major impact on Zn allocation to root or shoot tissues.
Collapse
Affiliation(s)
- Cécile Nouet
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering (CIP), Department of Life Sciences, University of Liège, B-4000 Liège, Belgium
| | - Jean-Benoit Charlier
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering (CIP), Department of Life Sciences, University of Liège, B-4000 Liège, Belgium
| | - Monique Carnol
- Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, B-4000 Liège, Belgium
| | - Bernard Bosman
- Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, B-4000 Liège, Belgium
| | - Frédéric Farnir
- Biostatistics and Bioinformatics, FARAH, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | - Patrick Motte
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering (CIP), Department of Life Sciences, University of Liège, B-4000 Liège, Belgium PhytoSYSTEMS, University of Liège, B-4000 Liège, Belgium
| | - Marc Hanikenne
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering (CIP), Department of Life Sciences, University of Liège, B-4000 Liège, Belgium PhytoSYSTEMS, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
33
|
Bokor B, Bokorová S, Ondoš S, Švubová R, Lukačová Z, Hýblová M, Szemes T, Lux A. Ionome and expression level of Si transporter genes (Lsi1, Lsi2, and Lsi6) affected by Zn and Si interaction in maize. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:6800-11. [PMID: 25430013 DOI: 10.1007/s11356-014-3876-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/16/2014] [Indexed: 05/21/2023]
Abstract
Zinc (Zn) is an essential microelement involved in various plant physiological processes. However, in excess, Zn becomes toxic and represents serious problem for plants resulting in Zn toxicity symptoms and decreasing biomass production. The effect of high Zn and its combination with silicon (Si) on ionome and expression level of ZmLsi genes was investigated in maize (Zea mays, L; hybrid Novania). Plants were cultivated hydroponically in different treatments: control (C), Zn (800 μM ZnSO4 · 7H2O), Si5 (5 mM of sodium silicate solution), and Si5 + Zn (combination of Zn and Si treatments). Growth of plants cultivated for 10 days was significantly inhibited in the presence of high Zn concentration and also by Zn and Si interaction in plants. Based on principal component analysis (PCA) and mineral element concentration in tissues, root ionome was significantly altered in both Zn and Si5 + Zn treatments in comparison to control. Mineral elements Mn, Fe, Ca, P, Mg, Ni, Co, and K significantly decreased, and Se increased in Zn and Si5 + Zn treatments. Shoot ionome was less affected than root ionome. Concentration of shoot Cu, Mn, and P decreased, and Mo increased in Zn and Si5 + Zn treatments. The PCA also revealed that the responsibility for ionome changes is mainly due to Zn exposure and also, but less, by Si application to Zn stressed plants. Expression level of Lsi1 and Lsi2 genes for the Si influx and efflux transporters was downregulated in roots after Si supply and even more downregulated by Zinc alone and also by Zn and Si interaction. Expression level of shoot Lsi6 gene was differently regulated in the first and second leaf. These results indicate negative effect of high Zn alone and also in interaction with Si on Lsi gene expression level and together with ionomic data, it was shown that homeostatic network of mineral elements was disrupted and caused negative alterations in mineral nutrition of young maize plants.
Collapse
Affiliation(s)
- Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, 84215, Bratislava, Slovakia,
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Pinto E, Ferreira IMPLVO. Cation transporters/channels in plants: Tools for nutrient biofortification. JOURNAL OF PLANT PHYSIOLOGY 2015; 179:64-82. [PMID: 25841207 DOI: 10.1016/j.jplph.2015.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 05/07/2023]
Abstract
Cation transporters/channels are key players in a wide range of physiological functions in plants, including cell signaling, osmoregulation, plant nutrition and metal tolerance. The recent identification of genes encoding some of these transport systems has allowed new studies toward further understanding of their integrated roles in plant. This review summarizes recent discoveries regarding the function and regulation of the multiple systems involved in cation transport in plant cells. The role of membrane transport in the uptake, distribution and accumulation of cations in plant tissues, cell types and subcellular compartments is described. We also discuss how the knowledge of inter- and intra-species variation in cation uptake, transport and accumulation as well as the molecular mechanisms responsible for these processes can be used to increase nutrient phytoavailability and nutrients accumulation in the edible tissues of plants. The main trends for future research in the field of biofortification are proposed.
Collapse
Affiliation(s)
- Edgar Pinto
- REQUIMTE/Department of Chemical Sciences, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy - University of Porto, Portugal; CISA - Research Centre on Environment and Health, School of Allied Health Sciences, Polytechnic Institute of Porto, Portugal.
| | - Isabel M P L V O Ferreira
- REQUIMTE/Department of Chemical Sciences, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy - University of Porto, Portugal
| |
Collapse
|
35
|
Peñarrubia L, Romero P, Carrió-Seguí A, Andrés-Bordería A, Moreno J, Sanz A. Temporal aspects of copper homeostasis and its crosstalk with hormones. FRONTIERS IN PLANT SCIENCE 2015; 6:255. [PMID: 25941529 PMCID: PMC4400860 DOI: 10.3389/fpls.2015.00255] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/31/2015] [Indexed: 05/20/2023]
Abstract
To cope with the dual nature of copper as being essential and toxic for cells, plants temporarily adapt the expression of copper homeostasis components to assure its delivery to cuproproteins while avoiding the interference of potential oxidative damage derived from both copper uptake and photosynthetic reactions during light hours. The circadian clock participates in the temporal organization of coordination of plant nutrition adapting metabolic responses to the daily oscillations. This timely control improves plant fitness and reproduction and holds biotechnological potential to drive increased crop yields. Hormonal pathways, including those of abscisic acid, gibberellins, ethylene, auxins, and jasmonates are also under direct clock and light control, both in mono and dicotyledons. In this review, we focus on copper transport in Arabidopsis thaliana and Oryza sativa and the presumable role of hormones in metal homeostasis matching nutrient availability to growth requirements and preventing metal toxicity. The presence of putative hormone-dependent regulatory elements in the promoters of copper transporters genes suggests hormonal regulation to match special copper requirements during plant development. Spatial and temporal processes that can be affected by hormones include the regulation of copper uptake into roots, intracellular trafficking and compartmentalization, and long-distance transport to developing vegetative and reproductive tissues. In turn, hormone biosynthesis and signaling are also influenced by copper availability, which suggests reciprocal regulation subjected to temporal control by the central oscillator of the circadian clock. This transcriptional regulatory network, coordinates environmental and hormonal signaling with developmental pathways to allow enhanced micronutrient acquisition efficiency.
Collapse
Affiliation(s)
- Lola Peñarrubia
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, ValenciaSpain
- *Correspondence: Lola Peñarrubia, Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, Avenida Doctor Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Paco Romero
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, ValenciaSpain
| | - Angela Carrió-Seguí
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, ValenciaSpain
| | - Amparo Andrés-Bordería
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, ValenciaSpain
| | - Joaquín Moreno
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, ValenciaSpain
| | - Amparo Sanz
- Department of Plant Biology, University of Valencia, ValenciaSpain
| |
Collapse
|
36
|
Viehweger K. How plants cope with heavy metals. BOTANICAL STUDIES 2014; 55:35. [PMID: 28510963 PMCID: PMC5432744 DOI: 10.1186/1999-3110-55-35] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 11/13/2013] [Indexed: 05/19/2023]
Abstract
Heavy metals are naturally occurring in the earth's crust but anthropogenic and industrial activities have led to drastic environmental pollutions in distinct areas. Plants are able to colonize such sites due to several mechanisms of heavy metal tolerance. Understanding of these pathways enables different fruitful approaches like phytoremediation and biofortification.Therefore, this review addresses mechanisms of heavy metal tolerance and toxicity in plants possessing a sophisticated network for maintenance of metal homeostasis. Key elements of this are chelation and sequestration which result either in removal of toxic metal from sensitive sites or conduct essential metal to their specific cellular destination. This implies shared pathways which can result in toxic symptoms especially in an excess of metal. These overlaps go on with signal transduction pathways induced by heavy metals which include common elements of other signal cascades. Nevertheless, there are specific reactions some of them will be discussed with special focus on the cellular level.
Collapse
Affiliation(s)
- Katrin Viehweger
- Radiotherapeutics Division, Helmholtz-Zentrum Dresden-Rossendorf eV; Institute of Radiopharmacy, P.O. Box 510119, D-01314, Dresden, Germany.
| |
Collapse
|
37
|
El-Ramady HR, Alshaal TA, Amer M, Domokos-Szabolcsy É, Elhawat N, Prokisch J, Fári M. Soil Quality and Plant Nutrition. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-06016-3_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proc Natl Acad Sci U S A 2014; 111:8293-8. [PMID: 24843126 DOI: 10.1073/pnas.1402262111] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In plants, the controlled absorption of soil nutrients by root epidermal cells is critical for growth and development. IRON-REGULATED TRANSPORTER 1 (IRT1) is the main root transporter taking up iron from the soil and is also the main entry route in plants for potentially toxic metals such as manganese, zinc, cobalt, and cadmium. Previous work demonstrated that the IRT1 protein localizes to early endosomes/trans-Golgi network (EE/TGN) and is constitutively endocytosed through a monoubiquitin- and clathrin-dependent mechanism. Here, we show that the availability of secondary non-iron metal substrates of IRT1 (Zn, Mn, and Co) controls the localization of IRT1 between the outer polar domain of the plasma membrane and EE/TGN in root epidermal cells. We also identify FYVE1, a phosphatidylinositol-3-phosphate-binding protein recruited to late endosomes, as an important regulator of IRT1-dependent metal transport and metal homeostasis in plants. FYVE1 controls IRT1 recycling to the plasma membrane and impacts the polar delivery of this transporter to the outer plasma membrane domain. This work establishes a functional link between the dynamics and the lateral polarity of IRT1 and the transport of its substrates, and identifies a molecular mechanism driving polar localization of a cell surface protein in plants.
Collapse
|
39
|
R Benatti M, Yookongkaew N, Meetam M, Guo WJ, Punyasuk N, AbuQamar S, Goldsbrough P. Metallothionein deficiency impacts copper accumulation and redistribution in leaves and seeds of Arabidopsis. THE NEW PHYTOLOGIST 2014; 202:940-951. [PMID: 24635746 DOI: 10.1111/nph.12718] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/22/2013] [Indexed: 05/29/2023]
Abstract
Most angiosperm genomes contain several genes encoding metallothionein (MT) proteins that can bind metals including copper (Cu) and zinc (Zn). Metallothionein genes are highly expressed under various conditions but there is limited information about their function. We have studied Arabidopsis mutants that are deficient in multiple MTs to learn about the functions of MTs in plants. T-DNA insertions were identified in four of the five Arabidopsis MT genes expressed in vegetative tissues. These were crossed to produce plants deficient in four MTs (mt1a/mt2a/mt2b/mt3). The concentration of Cu was lower in seeds but higher in old leaves of the quad-MT mutant compared to wild-type plants. Experiments with stable isotopes showed that Cu in seeds came from two sources: directly from roots and via remobilization from other organs. Mobilization of Cu out of senescing leaves was disrupted in MT-deficient plants. Tolerance to Cu, Zn and paraquat was unaffected by MT deficiency but these plants were slightly more sensitive to cadmium (Cd). The quad-MT mutant showed no change in resistance to a number of microbial pathogens, or in the progression of leaf senescence. Although these MTs are not required to complete the plant's life cycle, MTs are important for Cu homeostasis and distribution in Arabidopsis.
Collapse
Affiliation(s)
- Matheus R Benatti
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Nimnara Yookongkaew
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Metha Meetam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Woei-Jiun Guo
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Napassorn Punyasuk
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Synan AbuQamar
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Peter Goldsbrough
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
40
|
Rodríguez-Haas B, Finney L, Vogt S, González-Melendi P, Imperial J, González-Guerrero M. Iron distribution through the developmental stages of Medicago truncatula nodules. Metallomics 2014; 5:1247-53. [PMID: 23765084 DOI: 10.1039/c3mt00060e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paramount to symbiotic nitrogen fixation (SNF) is the synthesis of a number of metalloenzymes that use iron as a critical component of their catalytical core. Since this process is carried out by endosymbiotic rhizobia living in legume root nodules, the mechanisms involved in iron delivery to the rhizobia-containing cells are critical for SNF. In order to gain insight into iron transport to the nodule, we have used synchrotron-based X-ray fluorescence to determine the spatio-temporal distribution of this metal in nodules of the legume Medicago truncatula with hitherto unattained sensitivity and resolution. The data support a model in which iron is released from the vasculature into the apoplast of the infection/differentiation zone of the nodule (zone II). The infected cell subsequently takes up this apoplastic iron and delivers it to the symbiosome and the secretory system to synthesize ferroproteins. Upon senescence, iron is relocated to the vasculature to be reused by the shoot. These observations highlight the important role of yet to be discovered metal transporters in iron compartmentalization in the nodule and in the recovery of an essential and scarce nutrient for flowering and seed production.
Collapse
Affiliation(s)
- Benjamín Rodríguez-Haas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M40 km 37, 28223 Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Álvarez-Fernández A, Díaz-Benito P, Abadía A, López-Millán AF, Abadía J. Metal species involved in long distance metal transport in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:105. [PMID: 24723928 PMCID: PMC3971170 DOI: 10.3389/fpls.2014.00105] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/04/2014] [Indexed: 05/19/2023]
Abstract
The mechanisms plants use to transport metals from roots to shoots are not completely understood. It has long been proposed that organic molecules participate in metal translocation within the plant. However, until recently the identity of the complexes involved in the long-distance transport of metals could only be inferred by using indirect methods, such as analyzing separately the concentrations of metals and putative ligands and then using in silico chemical speciation software to predict metal species. Molecular biology approaches also have provided a breadth of information about putative metal ligands and metal complexes occurring in plant fluids. The new advances in analytical techniques based on mass spectrometry and the increased use of synchrotron X-ray spectroscopy have allowed for the identification of some metal-ligand species in plant fluids such as the xylem and phloem saps. Also, some proteins present in plant fluids can bind metals and a few studies have explored this possibility. This study reviews the analytical challenges researchers have to face to understand long-distance metal transport in plants as well as the recent advances in the identification of the ligand and metal-ligand complexes in plant fluids.
Collapse
Affiliation(s)
| | | | | | | | - Javier Abadía
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC)Zaragoza, Spain
| |
Collapse
|
42
|
Garcia L, Welchen E, Gonzalez DH. Mitochondria and copper homeostasis in plants. Mitochondrion 2014; 19 Pt B:269-74. [PMID: 24582977 DOI: 10.1016/j.mito.2014.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 11/17/2022]
Abstract
Copper (Cu) and other transition metals are essential for living organisms but also toxic when present in excess. To cope with this apparent paradox, organisms have developed sophisticated mechanisms to acquire, transport and store these metals. Particularly, plant mitochondria require Cu for the assembly and function of cytochrome c oxidase (COX), the terminal enzyme of the respiratory chain. COX assembly is a complex process that requires the action of multiple factors, many of them involved in the delivery and insertion of Cu into the enzyme. In this review, we summarize what is known about the processes involved in Cu delivery to mitochondria and how these processes impact in Cu homeostasis at the cellular level. We also discuss evidence indicating that metallochaperones involved in COX assembly play additional roles in signaling pathways related to changes in Cu and redox homeostasis and the response of plants to stress. We propose that cysteine-rich proteins present in the mitochondrial intermembrane space are excellent candidates as sensors of these changes and transducers of signals originated in the organelle to the rest of the cell.
Collapse
Affiliation(s)
- Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina.
| |
Collapse
|
43
|
Pottier M, Masclaux-Daubresse C, Yoshimoto K, Thomine S. Autophagy as a possible mechanism for micronutrient remobilization from leaves to seeds. FRONTIERS IN PLANT SCIENCE 2014; 5:11. [PMID: 24478789 PMCID: PMC3900762 DOI: 10.3389/fpls.2014.00011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/08/2014] [Indexed: 05/03/2023]
Abstract
Seed formation is an important step of plant development which depends on nutrient allocation. Uptake from soil is an obvious source of nutrients which mainly occurs during vegetative stage. Because seed filling and leaf senescence are synchronized, subsequent mobilization of nutrients from vegetative organs also play an essential role in nutrient use efficiency, providing source-sink relationships. However, nutrient accumulation during the formation of seeds may be limited by their availability in source tissues. While several mechanisms contributing to make leaf macronutrients available were already described, little is known regarding micronutrients such as metals. Autophagy, which is involved in nutrient recycling, was already shown to play a critical role in nitrogen remobilization to seeds during leaf senescence. Because it is a non-specific mechanism, it could also control remobilization of metals. This article reviews actors and processes involved in metal remobilization with emphasis on autophagy and methodology to study metal fluxes inside the plant. A better understanding of metal remobilization is needed to improve metal use efficiency in the context of biofortification.
Collapse
Affiliation(s)
- Mathieu Pottier
- Institut des Sciences du Végétal-UPR2355, Saclay Plant Sciences, CNRS, Gif-sur-YvetteFrance
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin-UMR1318, Saclay Plant Sciences, Institut National de la Recherche AgronomiqueVersailles, France
- Institut Jean-Pierre Bourgin-UMR1318, Saclay Plant Sciences, AgroParisTech, VersaillesFrance
| | - Kohki Yoshimoto
- Institut Jean-Pierre Bourgin-UMR1318, Saclay Plant Sciences, Institut National de la Recherche AgronomiqueVersailles, France
- Institut Jean-Pierre Bourgin-UMR1318, Saclay Plant Sciences, AgroParisTech, VersaillesFrance
| | - Sébastien Thomine
- Institut des Sciences du Végétal-UPR2355, Saclay Plant Sciences, CNRS, Gif-sur-YvetteFrance
| |
Collapse
|
44
|
|
45
|
Abstract
SIGNIFICANCE Photosynthesis, the process that drives life on earth, relies on transition metal (e.g., Fe and Cu) containing proteins that participate in electron transfer in the chloroplast. However, the light reactions also generate high levels of reactive oxygen species (ROS), which makes metal use in plants a challenge. RECENT ADVANCES Sophisticated regulatory networks govern Fe and Cu homeostasis in response to metal ion availability according to cellular needs and priorities. Molecular remodeling in response to Fe or Cu limitation leads to its economy to benefit photosynthesis. Fe toxicity is prevented by ferritin, a chloroplastic Fe-storage protein in plants. Recent studies on ferritin function and regulation revealed the interplay between iron homeostasis and the redox balance in the chloroplast. CRITICAL ISSUES Although the connections between metal excess and ROS in the chloroplast are established at the molecular level, the mechanistic details and physiological significance remain to be defined. The causality/effect relationship between transition metals, redox signals, and responses is difficult to establish. FUTURE DIRECTIONS Integrated approaches have led to a comprehensive understanding of Cu homeostasis in plants. However, the biological functions of several major families of Cu proteins remain unclear. The cellular priorities for Fe use under deficiency remain largely to be determined. A number of transcription factors that function to regulate Cu and Fe homeostasis under deficiency have been characterized, but we have not identified regulators that mediate responses to excess. Importantly, details of metal sensing mechanisms and cross talk to ROS-sensing mechanisms are so far poorly documented in plants.
Collapse
Affiliation(s)
- Karl Ravet
- Biology Department, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
46
|
Teklić T, Lončarić Z, Kovačević V, Singh BR. Metallic trace elements in cereal grain – a review: how much metal do we eat? Food Energy Secur 2013. [DOI: 10.1002/fes3.24] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Tihana Teklić
- Department of Agroecology Faculty of Agriculture University J. J. Strossmayer in Osijek Kralja Petra Svačića 1d 31000 Osijek Croatia
| | - Zdenko Lončarić
- Department of Agroecology Faculty of Agriculture University J. J. Strossmayer in Osijek Kralja Petra Svačića 1d 31000 Osijek Croatia
| | - Vlado Kovačević
- Department for Plant Production Faculty of Agriculture University J. J. Strossmayer in Osijek Kralja Petra Svačića 1d 31000 Osijek Croatia
| | - Bal Ram Singh
- Department of Plant and Environmental Sciences Norwegian University of Life Sciences PO Box 5003 1432 As Norway
| |
Collapse
|
47
|
Ricachenevsky FK, Menguer PK, Sperotto RA, Williams LE, Fett JP. Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. FRONTIERS IN PLANT SCIENCE 2013; 4:144. [PMID: 23717323 PMCID: PMC3653063 DOI: 10.3389/fpls.2013.00144] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/26/2013] [Indexed: 05/05/2023]
Abstract
Zinc (Zn) is an essential micronutrient for plants, playing catalytic or structural roles in enzymes, transcription factors, ribosomes, and membranes. In humans, Zn deficiency is the second most common mineral nutritional disorder, affecting around 30% of the world's population. People living in poverty usually have diets based on milled cereals, which contain low Zn concentrations. Biofortification of crops is an attractive cost-effective solution for low mineral dietary intake. In order to increase the amounts of bioavailable Zn in crop edible portions, it is necessary to understand how plants take up, distribute, and store Zn within their tissues, as well as to characterize potential candidate genes for biotechnological manipulation. The metal tolerance proteins (MTP) were described as metal efflux transporters from the cytoplasm, transporting mainly Zn(2+) but also Mn(2+), Fe(2+), Cd(2+), Co(2+), and Ni(2+). Substrate specificity appears to be conserved in phylogenetically related proteins. MTPs characterized so far in plants have a role in general Zn homeostasis and tolerance to Zn excess; in tolerance to excess Mn and also in the response to iron (Fe) deficiency. More recently, the first MTPs in crop species have been functionally characterized. In Zn hyperaccumulator plants, the MTP1 protein is related to hypertolerance to elevated Zn concentrations. Here, we review the current knowledge on this protein family, as well as biochemical functions and physiological roles of MTP transporters in Zn hyperaccumulators and non-accumulators. The potential applications of MTP transporters in biofortification efforts are discussed.
Collapse
Affiliation(s)
| | - Paloma K. Menguer
- Departamento de Botânica, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Raul A. Sperotto
- Centro de Ciências Biológicas e da Saúde, Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Centro Universitário UNIVATESLajeado, Brazil
| | | | - Janette P. Fett
- Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
- Departamento de Botânica, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| |
Collapse
|
48
|
Perea-García A, Garcia-Molina A, Andrés-Colás N, Vera-Sirera F, Pérez-Amador MA, Puig S, Peñarrubia L. Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling. PLANT PHYSIOLOGY 2013; 162:180-94. [PMID: 23487432 PMCID: PMC3641201 DOI: 10.1104/pp.112.212407] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/12/2013] [Indexed: 05/20/2023]
Abstract
Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops.
Collapse
|
49
|
Yuan HM, Xu HH, Liu WC, Lu YT. Copper regulates primary root elongation through PIN1-mediated auxin redistribution. PLANT & CELL PHYSIOLOGY 2013; 54:766-78. [PMID: 23396597 DOI: 10.1093/pcp/pct030] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The heavy metal copper (Cu) is an essential microelement required for normal plant growth and development, but it inhibits primary root growth when in excess. The mechanism underlying how excess Cu functions in this process remains to be further elucidated. Here, we report that a higher concentration of CuSO4 inhibited primary root elongation of Arabidopsis seedlings by affecting both the elongation and meristem zones. In the meristem zone, meristematic cell division potential was reduced by excess Cu. Further experiments showed that Cu can modulate auxin distribution, resulting in higher auxin activities in both the elongation and meristem zones of Cu-treated roots based on DR5::GUS expression patterns. This Cu-mediated auxin redistribution was shown to be responsible for Cu-mediated inhibition of primary root elongation. Additional genetic and physiological data demonstrated that it was PINFORMED1 (PIN1), but not PIN2 or AUXIN1 (AUX1), that regulated this process. However, Cu-induced hydrogen peroxide accumulation did not contribute to Cu-induced auxin redistribution for inhibition of root elongation. When the possible role of ethylene in this process was analyzed, Cu had a similar impact on the root elongation of both the wild type and the ein2-1 mutant, implying that Cu-mediated inhibition of primary root elongation was not due to the ethylene signaling pathway.
Collapse
Affiliation(s)
- Hong-Mei Yuan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | |
Collapse
|
50
|
Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, López-Millán AF, Grusak MA, Kachroo P. The plant vascular system: evolution, development and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:294-388. [PMID: 23462277 DOI: 10.1111/jipb.12041] [Citation(s) in RCA: 421] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.
Collapse
Affiliation(s)
- William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|