1
|
Cahoon EB, Kim P, Xie T, González Solis A, Han G, Gong X, Dunn TM. Sphingolipid homeostasis: How do cells know when enough is enough? Implications for plant pathogen responses. PLANT PHYSIOLOGY 2024; 197:kiae460. [PMID: 39222369 DOI: 10.1093/plphys/kiae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Sphingolipid homeostatic regulation is important for balancing plant life and death. Plant cells finely tune sphingolipid biosynthesis to ensure sufficient levels to support growth through their basal functions as major components of endomembranes and the plasma membrane. Conversely, accumulation of sphingolipid biosynthetic intermediates, long-chain bases (LCBs) and ceramides, is associated with programmed cell death. Limiting these apoptotic intermediates is important for cell viability, while overriding homeostatic regulation permits cells to generate elevated LCBs and ceramides to respond to pathogens to elicit the hypersensitive response in plant immunity. Key to sphingolipid homeostasis is serine palmitoyltransferase (SPT), an endoplasmic reticulum-associated, multi-subunit enzyme catalyzing the first step in the biosynthesis of LCBs, the defining feature of sphingolipids. Across eukaryotes, SPT interaction with its negative regulator Orosomucoid-like (ORM) is critical for sphingolipid biosynthetic homeostasis. The recent cryo-electron microscopy structure of the Arabidopsis SPT complex indicates that ceramides bind ORMs to competitively inhibit SPT activity. This system provides a sensor for intracellular ceramide concentrations for sphingolipid homeostatic regulation. Combining the newly elucidated Arabidopsis SPT structure and mutant characterization, we present a model for the role of the 2 functionally divergent Arabidopsis ceramide synthase classes to produce ceramides that form repressive (trihydroxy LCB-ceramides) or nonrepressive (dihydroxy LCB-ceramides) ORM interactions to influence SPT activity. We describe how sphingolipid biosynthesis is regulated by the interplay of ceramide synthases with ORM-SPT when "enough is enough" and override homeostatic suppression when "enough is not enough" to respond to environmental stimuli such as microbial pathogen attack.
Collapse
Affiliation(s)
- Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Panya Kim
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Tian Xie
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ariadna González Solis
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Xin Gong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
2
|
Sonkar K, Singh A. Metabolic and physiological functions of Patatin-like phospholipase-A in plants. Int J Biol Macromol 2024; 287:138474. [PMID: 39645102 DOI: 10.1016/j.ijbiomac.2024.138474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Patatin-like phospholipase-A (pPLA) is a class of lipid acyl hydrolase enzymes found in both, the animal and plant kingdoms. Plant pPLAs are related to the potato tuber storage protein patatin in solanaceous plants. Despite extensive investigation of pPLA functions in the animal system, the mechanistic functional details and regulatory roles of pPLA are poorly understood in plants. In recent years, research pertaining to pPLAs has gain some momentum as some of the key members of pPLA family have been characterized functionally. These findings have provided key insights into the structural features, biochemical activities, and functional roles of plant pPLAs. In this review, we are presenting a holistic overview of pPLAs in plants and providing the latest updates on pPLA research. We have highlighted the genomic diversity and structural features of pPLAs in plants. Importantly, we have discussed the role of pPLAs in lipid metabolism, including sphingolipid metabolism, lignin and cellulose accumulation, lipid breakdown and seed oil content enhancement. Moreover, regulatory roles of pPLAs in physiological processes, such as plant stress response, plant-pathogen interactions and plant development have been discussed. This information will be critical in the biotechnological programs for crop improvement.
Collapse
Affiliation(s)
- Kamankshi Sonkar
- National Institute of Plant genome Research, New Delhi 110067, India
| | - Amarjeet Singh
- National Institute of Plant genome Research, New Delhi 110067, India.
| |
Collapse
|
3
|
Luo N, Wang Y, Liu Y, Wang Y, Guo Y, Chen C, Gan Q, Song Y, Fan Y, Jin S, Ni Y. 3-ketoacyl-CoA synthase 19 contributes to the biosynthesis of seed lipids and cuticular wax in Arabidopsis and abiotic stress tolerance. PLANT, CELL & ENVIRONMENT 2024; 47:4599-4614. [PMID: 39041727 DOI: 10.1111/pce.15054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Very-long-chain fatty acids (VLCFAs) are essential precursors for plant membrane lipids, cuticular waxes, suberin, and storage oils. Integral to the fatty acid elongase (FAE) complex, 3-ketoacyl-CoA synthases (KCSs) function as crucial enzymes in the VLCFA pathway, determining the chain length of VLCFA. This study explores the in-planta role of the KCS19 gene. KCS19 is predominantly expressed in leaves and stem epidermis, sepals, styles, early silique walls, beaks, pedicels, and mature embryos. Localized in the endoplasmic reticulum, KCS19 interacts with other FAE proteins. kcs19 knockout mutants displayed reduced total wax and wax crystals, particularly alkanes, while KCS19 overexpression increased these components and wax crystals. Moreover, the cuticle permeability was higher for the kcs19 mutants compared to the wild type, rendering them more susceptible to drought and salt stress, whereas KCS19 overexpression enhanced drought and salt tolerance. Disrupting KCS19 increased C18 species and decreased C20 and longer species in seed fatty acids, indicating its role in elongating C18 to C20 VLCFAs, potentially up to C24 for seed storage lipids. Collectively, KCS19-mediated VLCFA synthesis is required for cuticular wax biosynthesis and seed storage lipids, impacting plant responses to abiotic stress.
Collapse
Affiliation(s)
- Na Luo
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Dongying Key Laboratory of Germplasm Resources Identification and Application of Oil Crops in Saline alkali Land, Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
| | - Yulu Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yu Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Dongying Key Laboratory of Germplasm Resources Identification and Application of Oil Crops in Saline alkali Land, Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
| | - Yuxin Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Dongying Key Laboratory of Germplasm Resources Identification and Application of Oil Crops in Saline alkali Land, Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
| | - Yanjun Guo
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Chunjie Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Dongying Key Laboratory of Germplasm Resources Identification and Application of Oil Crops in Saline alkali Land, Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
| | - Qiaoqiao Gan
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Dongying Key Laboratory of Germplasm Resources Identification and Application of Oil Crops in Saline alkali Land, Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
| | - Yuyang Song
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
- Dongying Key Laboratory of Germplasm Resources Identification and Application of Oil Crops in Saline alkali Land, Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
| | - Yongxin Fan
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
- Dongying Key Laboratory of Germplasm Resources Identification and Application of Oil Crops in Saline alkali Land, Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
| | - Shurong Jin
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yu Ni
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Dongying Key Laboratory of Germplasm Resources Identification and Application of Oil Crops in Saline alkali Land, Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
| |
Collapse
|
4
|
Listian SA, Mazur AC, Kol M, Ufelmann E, Eising S, Fröhlich F, Walter S, Holthuis JCM, Barisch C. Complex sphingolipid profiling and identification of an inositol-phosphorylceramide synthase in Dictyostelium discoideum. iScience 2024; 27:110609. [PMID: 39286488 PMCID: PMC11402645 DOI: 10.1016/j.isci.2024.110609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
Dictyostelium discoideum is a professional phagocyte frequently used to study cellular processes underlying the recognition, engulfment, and infection course of microbial pathogens. Sphingolipids are abundant components of the plasma membrane that bind cholesterol, control membrane properties, participate in signal transmission, and serve as adhesion molecules in recognition processes relevant to immunity and infection. By combining lipidomics with a bioinformatics-based cloning strategy, we show here that D. discoideum produces phosphoinositol-containing sphingolipids with predominantly phytoceramide backbones. Cell-free expression of candidate inositol-phosphorylceramide (IPC) synthases from D. discoideum enabled identification of an enzyme that selectively catalyzes the transfer of phosphoinositol from phosphatidylinositol onto ceramide. The IPC synthase, DdIPCS1, shares multiple sequence motifs with yeast IPC and human sphingomyelin synthases and localizes to the Golgi apparatus as well as the contractile vacuole of D. discoideum. These findings open up important opportunities for exploring a role of sphingolipids in phagocytosis and infection across major evolutionary boundaries.
Collapse
Affiliation(s)
- Stevanus A Listian
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Anna-Carina Mazur
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel (FZB) - Leibniz Lung Center, Borstel, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| | - Matthijs Kol
- Division of Molecular Cell Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Edwin Ufelmann
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Sebastian Eising
- Division of Molecular Membrane Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Florian Fröhlich
- Division of Molecular Membrane Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Joost C M Holthuis
- Division of Molecular Cell Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Caroline Barisch
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel (FZB) - Leibniz Lung Center, Borstel, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Osinuga A, González Solís A, Cahoon RE, Alsiyabi A, Cahoon EB, Saha R. Deciphering sphingolipid biosynthesis dynamics in Arabidopsis thaliana cell cultures: Quantitative analysis amid data variability. iScience 2024; 27:110675. [PMID: 39297170 PMCID: PMC11409011 DOI: 10.1016/j.isci.2024.110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/22/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024] Open
Abstract
Sphingolipids are pivotal for plant development and stress responses. Growing interest has been directed toward fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its de novo biosynthesis and homeostasis in Arabidopsis thaliana cell cultures, shedding light on fundamental metabolic mechanisms. Employing 15N isotope labeling and quantitative dynamic modeling approach, we obtained data with notable variations and developed a regularized and constraint-based dynamic metabolic flux analysis (r-DMFA) framework to predict metabolic shifts due to enzymatic changes. Our analysis revealed key enzymes such as sphingoid-base hydroxylase (SBH) and long-chain-base kinase (LCBK) to be critical for maintaining sphingolipid homeostasis. Disruptions in these enzymes were found to affect cellular viability and increase the potential for programmed cell death (PCD). Despite challenges posed by data variability, this work enhances our understanding of sphingolipid metabolism and demonstrates the utility of dynamic modeling in analyzing complex metabolic pathways.
Collapse
Affiliation(s)
- Abraham Osinuga
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ariadna González Solís
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rebecca E Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Adil Alsiyabi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
6
|
Oubohssaine M, Hnini M, Rabeh K. Exploring lipid signaling in plant physiology: From cellular membranes to environmental adaptation. JOURNAL OF PLANT PHYSIOLOGY 2024; 300:154295. [PMID: 38885581 DOI: 10.1016/j.jplph.2024.154295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Lipids have evolved as versatile signaling molecules that regulate a variety of physiological processes in plants. Convincing evidence highlights their critical role as mediators in a wide range of plant processes required for survival, growth, development, and responses to environmental conditions such as water availability, temperature changes, salt, pests, and diseases. Understanding lipid signaling as a critical process has helped us expand our understanding of plant biology by explaining how plants sense and respond to environmental cues. Lipid signaling pathways constitute a complex network of lipids, enzymes, and receptors that coordinate important cellular responses and stressing plant biology's changing and adaptable traits. Plant lipid signaling involves a wide range of lipid classes, including phospholipids, sphingolipids, oxylipins, and sterols, each of which contributes differently to cellular communication and control. These lipids function not only as structural components, but also as bioactive molecules that transfer signals. The mechanisms entail the production of lipid mediators and their detection by particular receptors, which frequently trigger downstream cascades that affect gene expression, cellular functions, and overall plant growth. This review looks into lipid signaling in plant physiology, giving an in-depth look and emphasizing its critical function as a master regulator of vital activities.
Collapse
Affiliation(s)
- Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco.
| | - Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| | - Karim Rabeh
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| |
Collapse
|
7
|
Nanfack AD, Nguefack J, Musonerimana S, La China S, Giovanardi D, Stefani E. Exploiting the microbiome associated with normal and abnormal sprouting rice (Oryza sativa L.) seed phenotypes through a metabarcoding approach. Microbiol Res 2024; 279:127546. [PMID: 37992468 DOI: 10.1016/j.micres.2023.127546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Rice germination and seedlings' growth are crucial stages that influence crop establishment and productivity. These performances depend on several factors, including the abundance and diversity of seed microbial endophytes. Two popular rainfed rice varieties cultivated in Cameroon, NERICA 3 and NERICA 8, were used for investigating the seed-associated microbiome using the Illumina-based 16 S rRNA gene. Significant differences were observed in terms of richness index between normal and abnormal seedlings developed from sprouting seeds, although no significant species evenness index was assessed within either phenotype. Two hundred ninety-two bacterial amplicon sequence variants were identified in seed microbiome of the rice varieties, and principal coordinate analysis revealed that microbial communities formed two distinct clusters in normal and abnormal seedling phenotypes. Overall, 38 bacteria genera were identified, belonging to 6 main phyla. Furthermore, the core microbiome was defined, and the differential abundance of 28 bacteria genera was assessed. Based on the collected results, putative bacterial genera were directly correlated with the development of normal seedlings. For most genera that are recognised to include beneficial species, such as Brevundimonas, Sphingomonas, Exiguobacterium, Luteibacter, Microbacterium and Streptomyces, a significant increase of their relative abundance was found in normal seedlings. Additionally, in abnormal seedlings, we also observed an increased abundance of the genera Kosakonia and Paenibacillus, which might have controversial aspects (beneficial or pathogenic), together with the presence of some genera (Clostridium sensu stricto) that are commonly correlated to sick plants. The putative functional gene annotation revealed the higher abundance of genes related to the metabolic biosynthesis of soluble carbohydrates and starch, tryptophan, nucleotides and ABC transporters in normal seedlings. Data presented in this study may help in further understanding the importance of the seed endophyte microbiome for driving a correct development of rice plants at the early stages and to identify possible beneficial bacteria for technological applications aimed to increase seed quality and crop productivity.
Collapse
Affiliation(s)
- Albert Dongmo Nanfack
- Department of Biochemistry, University of Yaoundé 1, Yaoundé, Cameroon; Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Julienne Nguefack
- Department of Biochemistry, University of Yaoundé 1, Yaoundé, Cameroon
| | - Samson Musonerimana
- International Centre for Genetic Engineering and Biotechnology, Padriciano, TS, Italy; Burundi University, Faculty of Agronomy and Bio-Engineering 2, UNESCO Avenue, P.O. Box 2940, Bujumbura, Burundi
| | - Salvatore La China
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Davide Giovanardi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy.
| | - Emilio Stefani
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; University Centre for International Cooperation and Development (CUSCOS), via Università 4, 41121 Modena, Italy
| |
Collapse
|
8
|
Su L, Zhang T, Yang B, Bai Y, Fang W, Xiong J, Cheng ZM(M. The Botrytis cinerea effector BcXYG1 suppresses immunity in Fragaria vesca by targeting FvBPL4 and FvACD11. HORTICULTURE RESEARCH 2024; 11:uhad251. [PMID: 38304330 PMCID: PMC10831327 DOI: 10.1093/hr/uhad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/14/2023] [Indexed: 02/03/2024]
Abstract
Botrytis cinerea is one of the most destructive pathogens in strawberry cultivation. Successful infection by B. cinerea requires releasing a large number of effectors that interfere with the plant's immune system. One of the effectors required by B. cinerea for optimal virulence is the secreted protein BcXYG1, which is thought to associate with proteins near the plasma membrane of the host plant to induce necrosis. However, the host proteins that associate with BcXYG1 at the plasma membrane are currently unknown. We found that BcXYG1 binds to FvBPL4 and FvACD11 at the plasma membrane. Both FvBPL4 and FvACD11 are negative regulators of plant immunity in strawberry. Our results demonstrate that degradation of FvBPL4 by BcXYG1 promotes disease resistance while stabilization of FvACD11 by BcXYG1 suppresses the immune response. These findings suggest that BcXYG1 suppresses plant immunity and promotes B. cinerea infection by regulating FvBPL4 and FvACD11 protein levels.
Collapse
Affiliation(s)
- Liyao Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yibo Bai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingsong Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zong-Ming (Max) Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Osinuga A, Solis AG, Cahoon RE, Al-Siyabi A, Cahoon EB, Saha R. Quantitative Dynamic Analysis of de novo Sphingolipid Biosynthesis in Arabidopsis thaliana. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570827. [PMID: 38105963 PMCID: PMC10723408 DOI: 10.1101/2023.12.08.570827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Sphingolipids are pivotal for plant development and stress responses. Growing interest has been directed towards fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its de novo biosynthesis and homeostasis in Arabidopsis thaliana cell cultures, shedding light on fundamental metabolic mechanisms. Employing 15N isotope labeling and quantitative dynamic modeling approach, we developed a regularized and constraint-based Dynamic Metabolic Flux Analysis (r-DMFA) framework to predict metabolic shifts due to enzymatic changes. Our analysis revealed key enzymes such as sphingoid-base hydroxylase (SBH) and long-chain-base kinase (LCBK) to be critical for maintaining sphingolipid homeostasis. Disruptions in these enzymes were found to affect cellular viability and increase the potential for programmed cell death (PCD). Thus, this work enhances our understanding of sphingolipid metabolism and demonstrates the utility of dynamic modeling in analyzing complex metabolic pathways.
Collapse
Affiliation(s)
- Abraham Osinuga
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ariadna Gonzalez Solis
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rebecca E Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Adil Al-Siyabi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
10
|
Li Y, Zhang R, Wu Y, Wu Q, Jiang Q, Ma J, Zhang Y, Qi P, Chen G, Jiang Y, Zheng Y, Wei Y, Xu Q. TaRBP1 stabilizes TaGLTP and negatively regulates stripe rust resistance in wheat. MOLECULAR PLANT PATHOLOGY 2023; 24:1205-1219. [PMID: 37306522 PMCID: PMC10502812 DOI: 10.1111/mpp.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
The dynamic balance and distribution of sphingolipid metabolites modulate the level of programmed cell death and plant defence. However, current knowledge is still limited regarding the molecular mechanism underlying the relationship between sphingolipid metabolism and plant defence. In this study, we identified a wheat RNA-binding protein 1 (TaRBP1) and TaRBP1 mRNA accumulation significantly decreased in wheat after infection by Puccinia striiformis f. sp. tritici (Pst). Knockdown of TaRBP1 via virus-induced gene silencing conferred strong resistance to Pst by enhancing host plant reactive oxygen species (ROS) accumulation and cell death, indicating that TaRBP1 may act as a negative regulator in response to Pst. TaRBP1 formed a homopolymer and interacted with TaRBP1 C-terminus in plants. Additionally, TaRBP1 physically interacted with TaGLTP, a sphingosine transfer protein. Knockdown of TaGLTP enhanced wheat resistance to the virulent Pst CYR31. Sphingolipid metabolites showed a significant accumulation in TaGLTP-silenced wheat and TaRBP1-silenced wheat, respectively. In the presence of the TaRBP1 protein, TaGLTP failed to be degraded in a 26S proteasome-dependent manner in plants. Our results reveal a novel susceptible mechanism by which a plant fine-tunes its defence responses by stabilizing TaGLTP accumulation to suppress ROS and sphingolipid accumulation during Pst infection.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Rongrong Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Yu Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Qin Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduChina
| |
Collapse
|
11
|
Uemura Y, Kimura S, Ohta T, Suzuki T, Mase K, Kato H, Sakaoka S, Uefune M, Komine Y, Hotta K, Shimizu M, Morikami A, Tsukagoshi H. A very long chain fatty acid responsive transcription factor, MYB93, regulates lateral root development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1408-1427. [PMID: 37247130 DOI: 10.1111/tpj.16330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Lateral roots (LRs) are critical to root system architecture development in plants. Although the molecular mechanisms by which auxin regulates LR development have been extensively studied, several additional regulatory systems are hypothesized to be involved. Recently, the regulatory role of very long chain fatty acids (VLCFAs) has been shown in LR development. Our analysis showed that LTPG1 and LTPG2, transporters of VLCFAs, are specifically expressed in the developing LR primordium (LRP), while the number of LRs is reduced in the ltpg1/ltpg2 double mutant. Moreover, late LRP development was hindered when the VLCFA levels were reduced by the VLCFA synthesis enzyme mutant, kcs1-5. However, the details of the regulatory mechanisms of LR development controlled by VLCFAs remain unknown. In this study, we propose a novel method to analyze the LRP development stages with high temporal resolution using a deep neural network and identify a VLCFA-responsive transcription factor, MYB93, via transcriptome analysis of kcs1-5. MYB93 showed a carbon chain length-specific expression response following treatment of VLCFAs. Furthermore, myb93 transcriptome analysis suggested that MYB93 regulated the expression of cell wall organization genes. In addition, we also found that LTPG1 and LTPG2 are involved in LR development through the formation of root cap cuticle, which is different from transcriptional regulation by VLCFAs. Our results suggest that VLCFA is a regulator of LRP development through transcription factor-mediated regulation of gene expression and the transportation of VLCFAs is also involved in LR development through root cap cuticle formation.
Collapse
Affiliation(s)
- Yuta Uemura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Saori Kimura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Tomomichi Ohta
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 478-8501, Japan
| | - Kosuke Mase
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Hiroyuki Kato
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Satomi Sakaoka
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Masayoshi Uefune
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Yuki Komine
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Kazuhiro Hotta
- Department of Electrical and Electronic Engineering, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Motoyuki Shimizu
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Atsushi Morikami
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Hironaka Tsukagoshi
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| |
Collapse
|
12
|
Wu XY, Xie LJ, He JJ, Yan XX, Zhang FF, Xu YY, Li YB. Lipidomics reveals the lipid metabolism disorders in Fructus Psoraleae-induced hepatotoxicity in rats with kidney-yin deficiency syndrome. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123898. [PMID: 37827069 DOI: 10.1016/j.jchromb.2023.123898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Fructus Psoraleae (FP), one of the important traditional Chinese medicines, is widely used in clinic and has been reported to be hepatotoxic. However, there is no report on the mechanism of FP-induced hepatotoxicity based on the theory of You Gu Wu Yun. In this study, plasma samples of rats with different kidney deficiency syndromes were investigated using a lipidomics approach based on UPLC/Q-TOF-MS technique. Firstly, multivariate statistical analysis, VIP value test, statistical test and other methods were used to find the lipid metabolites in the two syndrome model groups that were different from the normal group. The screening of differential lipid metabolites revealed that there were 12 biomarkers between the blank group and the kidney-yang deficiency model group as well as 16 differential metabolites between the kidney-yin deficiency model group, and finally a total of 17 relevant endogenous metabolites were identified, which could be used as differential lipid metabolites to distinguish between kidney-yin deficiency and kidney-yang deficiency evidence. Secondly, the relative content changes of metabolites in rats after administration of FP decoction were further compared to find the substances associated with toxicity after administration, and the diagnostic ability of the identified biomarkers was evaluated using a receiver operating characteristic curve (ROC). Results a total of 14 potential differential lipid metabolites, including LysoPC(20:0/0:0) and LysoPC(16:0/0:0), which may be related to hepatotoxicity in rats with kidney-yin deficiency syndrome were further screened, namely, the potential active lipid metabolites related to hepatotoxicity in rats induced by FP. Finally, cluster analysis, MetPA analysis and KEGG database were used to analyze metabolic pathways. It was discovered that the metabolism of glycerophospholipid and sphingolipid may be strongly related to the mechanism of hepatotoxicity brought on by FP. Overall, we described the lipidomics changes in rats treated with FP decoction and screened out 14 lipid metabolites related to hepatotoxicity in rats with kidney-yin deficiency, which served as a foundation for the theory of "syndrome differentiation and treatment" in traditional Chinese medicine and a guide for further investigation into the subsequent mechanism.
Collapse
Affiliation(s)
- Xiao-Yan Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Li-Juan Xie
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun-Jie He
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xing-Xu Yan
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fang-Fang Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan-Yan Xu
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yu-Bo Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
13
|
Sharma P, Lakra N, Goyal A, Ahlawat YK, Zaid A, Siddique KHM. Drought and heat stress mediated activation of lipid signaling in plants: a critical review. FRONTIERS IN PLANT SCIENCE 2023; 14:1216835. [PMID: 37636093 PMCID: PMC10450635 DOI: 10.3389/fpls.2023.1216835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023]
Abstract
Lipids are a principal component of plasma membrane, acting as a protective barrier between the cell and its surroundings. Abiotic stresses such as drought and temperature induce various lipid-dependent signaling responses, and the membrane lipids respond differently to environmental challenges. Recent studies have revealed that lipids serve as signal mediators forreducing stress responses in plant cells and activating defense systems. Signaling lipids, such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, and N-acylethanolamines, are generated in response to stress. Membrane lipids are essential for maintaining the lamellar stack of chloroplasts and stabilizing chloroplast membranes under stress. However, the effects of lipid signaling targets in plants are not fully understood. This review focuses on the synthesis of various signaling lipids and their roles in abiotic stress tolerance responses, providing an essential perspective for further investigation into the interactions between plant lipids and abiotic stress.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Botany and Plant Physiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Nita Lakra
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India
| | - Alisha Goyal
- Division of Crop Improvement, Indian Council of Agricultural Research (ICAR)—Central Soil Salinity Research Institute, Karnal, India
| | - Yogesh K. Ahlawat
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Botany, Government Gandhi Memorial (GGM) Science College, Cluster University Jammu, Jammu, India
| | | |
Collapse
|
14
|
Mori K, Naganuma T, Kihara A. Role of 2-hydroxy acyl-CoA lyase HACL2 in odd-chain fatty acid production via α-oxidation in vivo. Mol Biol Cell 2023; 34:ar85. [PMID: 37285239 PMCID: PMC10398889 DOI: 10.1091/mbc.e23-02-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Although most fatty acids (FAs) are even chain, certain tissues, including brain, contain relatively large quantities of odd-chain FAs in their sphingolipids. One of the pathways producing odd-chain FAs is the α-oxidation of 2-hydroxy (2-OH) FAs, where 2-OH acyl-CoA lyases (HACL1 and HACL2) catalyze the key cleavage reaction. However, the contribution of each HACL to odd-chain FA production in vivo remains unknown. Here, we found that HACL2 and HACL1 play major roles in the α-oxidation of 2-OH FAs (especially very-long-chain types) and 3-methyl FAs (other α-oxidation substrates), respectively, using ectopic expression systems of human HACL2 and HACL1 in yeast and analyzing Hacl1 and/or Hacl2 knockout (KO) CHO-K1 cells. We then generated Hacl2 KO mice and measured the quantities of odd-chain and 2-OH lipids (free FAs and sphingolipids [ceramides, sphingomyelins, and monohexosylceramides]) in 17 tissues. We observed fewer odd-chain lipids and more 2-OH lipids in many tissues of Hacl2 KO mice than in wild-type mice, and of these differences the reductions were most prominent for odd-chain monohexosylceramides in the brain and ceramides in the stomach. These results indicate that HACL2-involved α-oxidation of 2-OH FAs is mainly responsible for odd-chain FA production in the brain and stomach.
Collapse
Affiliation(s)
- Keisuke Mori
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuro Naganuma
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
15
|
Liu P, Xie T, Wu X, Han G, Gupta SD, Zhang Z, Yue J, Dong F, Gable K, Niranjanakumari S, Li W, Wang L, Liu W, Yao R, Cahoon EB, Dunn TM, Gong X. Mechanism of sphingolipid homeostasis revealed by structural analysis of Arabidopsis SPT-ORM1 complex. SCIENCE ADVANCES 2023; 9:eadg0728. [PMID: 36989369 PMCID: PMC10058238 DOI: 10.1126/sciadv.adg0728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The serine palmitoyltransferase (SPT) complex catalyzes the first and rate-limiting step in sphingolipid biosynthesis in all eukaryotes. ORM/ORMDL proteins are negative regulators of SPT that respond to cellular sphingolipid levels. However, the molecular basis underlying ORM/ORMDL-dependent homeostatic regulation of SPT is not well understood. We determined the cryo-electron microscopy structure of Arabidopsis SPT-ORM1 complex, composed of LCB1, LCB2a, SPTssa, and ORM1, in an inhibited state. A ceramide molecule is sandwiched between ORM1 and LCB2a in the cytosolic membrane leaflet. Ceramide binding is critical for the ORM1-dependent SPT repression, and dihydroceramides and phytoceramides differentially affect this repression. A hybrid β sheet, formed by the amino termini of ORM1 and LCB2a and induced by ceramide binding, stabilizes the amino terminus of ORM1 in an inhibitory conformation. Our findings provide mechanistic insights into sphingolipid homeostatic regulation via the binding of ceramide to the SPT-ORM/ORMDL complex that may have implications for plant-specific processes such as the hypersensitive response for microbial pathogen resistance.
Collapse
Affiliation(s)
- Peng Liu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tian Xie
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xinyue Wu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sita D. Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Zike Zhang
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jian Yue
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Feitong Dong
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Somashekarappa Niranjanakumari
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Wanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Lin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Wenchen Liu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Xin Gong
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
16
|
Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life (Basel) 2023; 13:life13030706. [PMID: 36983860 PMCID: PMC10051737 DOI: 10.3390/life13030706] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Several environmental stresses, including biotic and abiotic factors, adversely affect the growth and development of crops, thereby lowering their yield. However, abiotic factors, e.g., drought, salinity, cold, heat, ultraviolet radiations (UVr), reactive oxygen species (ROS), trace metals (TM), and soil pH, are extremely destructive and decrease crop yield worldwide. It is expected that more than 50% of crop production losses are due to abiotic stresses. Moreover, these factors are responsible for physiological and biochemical changes in plants. The response of different plant species to such stresses is a complex phenomenon with individual features for several species. In addition, it has been shown that abiotic factors stimulate multi-gene responses by making modifications in the accumulation of the primary and secondary metabolites. Metabolomics is a promising way to interpret biotic and abiotic stress tolerance in plants. The study of metabolic profiling revealed different types of metabolites, e.g., amino acids, carbohydrates, phenols, polyamines, terpenes, etc, which are accumulated in plants. Among all, primary metabolites, such as amino acids, carbohydrates, lipids polyamines, and glycine betaine, are considered the major contributing factors that work as osmolytes and osmoprotectants for plants from various environmental stress factors. In contrast, plant-derived secondary metabolites, e.g., phenolics, terpenoids, and nitrogen-containing compounds (alkaloids), have no direct role in the growth and development of plants. Nevertheless, such metabolites could play a significant role as a defense by protecting plants from biotic factors such as herbivores, insects, and pathogens. In addition, they can enhance the resistance against abiotic factors. Therefore, metabolomics practices are becoming essential and influential in plants by identifying different phytochemicals that are part of the acclimation responses to various stimuli. Hence, an accurate metabolome analysis is important to understand the basics of stress physiology and biochemistry. This review provides insight into the current information related to the impact of biotic and abiotic factors on variations of various sets of metabolite levels and explores how primary and secondary metabolites help plants in response to these stresses.
Collapse
|
17
|
Wang T, Li X, Zhang C, Xu J. Transcriptome analysis of Ganoderma lingzhi (Agaricomycetes) response to Trichoderma hengshanicum infection. Front Microbiol 2023; 14:1131599. [PMID: 36910175 PMCID: PMC9996313 DOI: 10.3389/fmicb.2023.1131599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Green mold caused by Trichoderma spp. has become one of the most serious diseases which threatening the production of Ganoderma lingzhi. To understand the possible resistance mechanism of the G. lingzhi response to T. hengshanicum infection, we examined the G. lingzhi transcript accumulation at 0, 12, and 24 h after T. hengshanicum inoculation. The gene expression analysis was conducted on the interaction between G. lingzhi and T. hengshanicum using RNA-seq and digital gene expression (DGE) profiling methods. Transcriptome sequencing indicated that there were 162 differentially expressed genes (DEGs) at three infection time points, containing 15 up-regulated DEGs and 147 down-regulated DEGs. Resistance-related genes thaumatin-like proteins (TLPs) (PR-5s), phenylalanine ammonia-lyase, and Beta-1,3-glucan binding protein were significantly up-regulated. At the three time points of infection, the heat shock proteins (HSPs) genes of G. lingzhi were down-regulated. The down-regulation of HSPs genes led to the inhibition of HSP function, which may compromise the HSP-mediated defense signaling transduction pathway, leading to G. lingzhi susceptibility. Pathway enrichment analyses showed that the main enriched pathways by G. lingzhi after infection were sphingolipid metabolism, ether lipid metabolism, and valine, leucine and isoleucine degradation pathway. Overall, the results described here improve fundamental knowledge of molecular responses to G. lingzhi defense and contribute to the design of strategies against Trichoderma spp.
Collapse
Affiliation(s)
- Tiantian Wang
- Agricultural College, Yanbian University, Yanji, China
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin, China
| | - Xiaobin Li
- Agricultural College, Yanbian University, Yanji, China
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin, China
| | - Chunlan Zhang
- College of Landscape Architecture, Changchun University, Changchun, China
| | - Jize Xu
- Agricultural College, Yanbian University, Yanji, China
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin, China
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
18
|
Li Y, Cao H, Dong T, Wang X, Ma L, Li K, Lou H, Song CP, Ren D. Phosphorylation of the LCB1 subunit of Arabidopsis serine palmitoyltransferase stimulates its activity and modulates sphingolipid biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36738228 DOI: 10.1111/jipb.13461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Indexed: 06/18/2023]
Abstract
Sphingolipids are the structural components of membrane lipid bilayers and act as signaling molecules in many cellular processes. Serine palmitoyltransferase (SPT) is the first committed and rate-limiting enzyme in the de novo sphingolipids biosynthetic pathway. The core SPT enzyme is a heterodimer consisting of LONG-CHAIN BASE1 (LCB1) and LCB2 subunits. SPT activity is inhibited by orosomucoid proteins and stimulated by small subunits of SPT (ssSPTs). However, whether LCB1 is modified and how such modification might regulate SPT activity have to date been unclear. Here, we show that activation of MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3) and MPK6 by upstream MKK9 and treatment with Flg22 (a pathogen-associated molecular pattern) increases SPT activity and induces the accumulation of sphingosine long-chain base t18:0 in Arabidopsis thaliana, with activated MPK3 and MPK6 phosphorylating AtLCB1. Phosphorylation of AtLCB1 strengthened its binding with AtLCB2b, promoted its binding with ssSPTs, and stimulated the formation of higher order oligomeric and active SPT complexes. Our findings therefore suggest a novel regulatory mechanism for SPT activity.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hanwei Cao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tingting Dong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoke Wang
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kun Li
- Collaborative Innovation Center of Crop Stress Biology, Henan Province. Institute of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475001, China
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chun-Peng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province. Institute of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475001, China
| | - Dongtao Ren
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
19
|
Adem AA, Belete A, Lai KK, Hage C, Neubert RH, Gebre-Mariam T. Nanoemulgel formulation for topical delivery of plant glucosylceramide: Characterization and optimization. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Zhao Y, Liu Z, Wang L, Liu H. Fumonisin B1 as a Tool to Explore Sphingolipid Roles in Arabidopsis Primary Root Development. Int J Mol Sci 2022; 23:12925. [PMID: 36361715 PMCID: PMC9654530 DOI: 10.3390/ijms232112925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 03/28/2024] Open
Abstract
Fumonisin B1 is a mycotoxin that is structurally analogous to sphinganine and sphingosine and inhibits the biosynthesis of complex sphingolipids by repressing ceramide synthase. Based on the connection between FB1 and sphingolipid metabolism, FB1 has been widely used as a tool to explore the multiple functions of sphingolipids in mammalian and plant cells. The aim of this work was to determine the effect of sphingolipids on primary root development by exposing Arabidopsis (Arabidopsis thaliana) seedlings to FB1. We show that FB1 decreases the expression levels of several PIN-FORMED (PIN) genes and the key stem cell niche (SCN)-defining transcription factor genes WUSCHEL-LIKE HOMEOBOX5 (WOX5) and PLETHORAs (PLTs), resulting in the loss of quiescent center (QC) identity and SCN maintenance, as well as stunted root growth. In addition, FB1 induces cell death at the root apical meristem in a non-cell-type-specific manner. We propose that sphingolipids play a key role in primary root growth through the maintenance of the root SCN and the amelioration of cell death in Arabidopsis.
Collapse
Affiliation(s)
- Yanxue Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Zhongjie Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Lei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| |
Collapse
|
21
|
Zhou L, Ye Y. Sphingolipids: A new piece in the puzzle of insect egg-triggered plant immunity. PLANT PHYSIOLOGY 2022; 190:1088-1089. [PMID: 35880839 PMCID: PMC9516722 DOI: 10.1093/plphys/kiac350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Lijuan Zhou
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | | |
Collapse
|
22
|
Zhang S, Sun L, Shi Y, Song Y, Wang Y, Fan K, Zong R, Li Y, Wang L, Bi C, Ding Z. The application of enzymatic fermented soybean effectively regulates associated microbial communities in tea soil and positively affects lipid metabolites in tea new shoots. Front Microbiol 2022; 13:992823. [PMID: 36081789 PMCID: PMC9445587 DOI: 10.3389/fmicb.2022.992823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Compared with traditional organic fertilizer, fermented soybean is a better fertilizer resource in tea plantations. The application of organic fertilizer is a feasible practice to mitigate the soil degradation caused by the overuse of chemical fertilizers, which can effectively regulate soil microbial communities in tea plantations. However, the effects of fermented soybean on soil microbial communities, soil metabolites and metabolites in tea new shoots have not been systematically demonstrated, and their interactions have never been studied. Here, we investigated the responses of the soil microbial community, soil metabolites and metabolites of tea new shoots to urea fertilization (UF), naturally fermented soybean fertilization (NFS) and enzymatic fermented soybean fertilization (EFS), and analyzed the relationships between soil microbes, soil metabolites and metabolites in tea new shoots. The results showed that soil bacterial communities were dominated by Pseudomonas, Romboutsia, Candidatus_Nitrosotalea and Helicobacter, and soil fungal communities were dominated by Peziza, Fusarium, Candida and Cheilymenia at the genus level. In EFS, bacterial genera (Glutamicibacter and Streptomyces) and fungal genera (Candida and Actinomucor) presented high abundances, which were correlated with soil carbohydrate and lipid including D-Mannitol, D-Sorbitol, 9,12-Octadecadienoic acid and (Z)-13-Docosenoic acid. Enzymatic fermented soybean fertilization also affected the lipid metabolites in tea new shoots. Glycerolipids and glycerophospholipids significantly increased in EFS, which positively correlated with some soil microbial communities. Besides, the application of fermented soybean fertilizer could increase the contents of TP, AP and AK, which were also important environmental factors affecting the structure of soil microbial community in tea plantation. It was concluded that fermented soybean fertilization could improve soil nutrition, regulate associated microbial communities, and positively affect lipid metabolites in tea new shoots. This study not only explores the relationships between soil microbes and metabolites in tea plants, but also provides feasible technical guidance to cultivate high-quality tea using soybean as high-grade fertilizer.
Collapse
Affiliation(s)
- Shuning Zhang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Litao Sun
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yujie Shi
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Yujie Song
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Rui Zong
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Yusheng Li
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Linjun Wang
- Weihai Agricultural and Rural Affairs Service Center, Weihai, China
| | - Caihong Bi
- Linyi Agricultural Technology Extension Center, Linyi, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
23
|
Huang LQ, Li PP, Yin J, Li YK, Chen DK, Bao HN, Fan RY, Liu HZ, Yao N. Arabidopsis alkaline ceramidase ACER functions in defense against insect herbivory. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4954-4967. [PMID: 35436324 DOI: 10.1093/jxb/erac166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Plant sphingolipids are important membrane components and bioactive molecules in development and defense responses. However, the function of sphingolipids in plant defense, especially against herbivores, is not fully understood. Here, we report that Spodoptera exigua feeding affects sphingolipid metabolism in Arabidopsis, resulting in increased levels of sphingoid long-chain bases, ceramides, and hydroxyceramides. Insect-induced ceramide and hydroxyceramide accumulation is dependent on the jasmonate signaling pathway. Loss of the Arabidopsis alkaline ceramidase ACER increases ceramides and decreases long-chain base levels in plants; in this work, we found that loss of ACER enhances plant resistance to S. exigua and improves response to mechanical wounding. Moreover, acer-1 mutants exhibited more severe root-growth inhibition and higher anthocyanin accumulation than wild-type plants in response to methyl jasmonate treatment, indicating that loss of ACER increases sensitivity to jasmonate and that ACER functions in jasmonate-mediated root growth and secondary metabolism. Transcript levels of ACER were also negatively regulated by jasmonates, and this process involves the transcription factor MYC2. Thus, our findings reveal that ACER is involved in mediating jasmonate-related plant growth and defense and that jasmonates function in regulating the expression of ACER.
Collapse
Affiliation(s)
- Li-Qun Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ping-Ping Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yong-Kang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - He-Nan Bao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Rui-Yuan Fan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hao-Zhuo Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
24
|
Groux R, Fouillen L, Mongrand S, Reymond P. Sphingolipids are involved in insect egg-induced cell death in Arabidopsis. PLANT PHYSIOLOGY 2022; 189:2535-2553. [PMID: 35608326 PMCID: PMC9342989 DOI: 10.1093/plphys/kiac242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
In Brassicaceae, hypersensitive-like programmed cell death (HR-like) is a central component of direct defenses triggered against eggs of the large white butterfly (Pieris brassicae). The signaling pathway leading to HR-like in Arabidopsis (Arabidopsis thaliana) is mainly dependent on salicylic acid (SA) accumulation, but downstream components are unclear. Here, we found that treatment with P. brassicae egg extract (EE) triggered changes in expression of sphingolipid metabolism genes in Arabidopsis and black mustard (Brassica nigra). Disruption of ceramide (Cer) synthase activity led to a significant decrease of EE-induced HR-like whereas SA signaling and reactive oxygen species levels were unchanged, suggesting that Cer are downstream activators of HR-like. Sphingolipid quantifications showed that Cer with C16:0 side chains accumulated in both plant species and this response was largely unchanged in the SA-induction deficient2 (sid2-1) mutant. Finally, we provide genetic evidence that the modification of fatty acyl chains of sphingolipids modulates HR-like. Altogether, these results show that sphingolipids play a key and specific role during insect egg-triggered HR-like.
Collapse
Affiliation(s)
- Raphaël Groux
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Laetitia Fouillen
- Laboratoire de Biogénèse Membranaire, CNRS, UMR 5200, University of Bordeaux, F-33140 Villenave d’Ornon, France
| | - Sébastien Mongrand
- Laboratoire de Biogénèse Membranaire, CNRS, UMR 5200, University of Bordeaux, F-33140 Villenave d’Ornon, France
| | | |
Collapse
|
25
|
Cheong BE, Yu D, Martinez-Seidel F, Ho WWH, Rupasinghe TWT, Dolferus R, Roessner U. The Effect of Cold Stress on the Root-Specific Lipidome of Two Wheat Varieties with Contrasting Cold Tolerance. PLANTS 2022; 11:plants11101364. [PMID: 35631789 PMCID: PMC9147729 DOI: 10.3390/plants11101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
Complex glycerolipidome analysis of wheat upon low temperature stress has been reported for above-ground tissues only. There are no reports on the effects of cold stress on the root lipidome nor on tissue-specific responses of cold stress wheat roots. This study aims to investigate the changes of lipid profiles in the different developmental zones of the seedling roots of two wheat varieties with contrasting cold tolerance exposed to chilling and freezing temperatures. We analyzed 273 lipid species derived from 21 lipid classes using a targeted profiling approach based on MS/MS data acquired from schedule parallel reaction monitoring assays. For both the tolerant Young and sensitive Wyalkatchem species, cold stress increased the phosphatidylcholine and phosphatidylethanolamine compositions, but decreased the monohexosyl ceramide compositions in the root zones. We show that the difference between the two varieties with contrasting cold tolerance could be attributed to the change in the individual lipid species, rather than the fluctuation of the whole lipid classes. The outcomes gained from this study may advance our understanding of the mechanisms of wheat adaptation to cold and contribute to wheat breeding for the improvement of cold-tolerance.
Collapse
Affiliation(s)
- Bo Eng Cheong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan Universiti, Kota Kinabalu 88400, Malaysia
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Correspondence: ; Tel.: +60-88-320000 (ext. 8530)
| | - Dingyi Yu
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Protein Chemistry and Metabolism Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Federico Martinez-Seidel
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - William Wing Ho Ho
- Advanced Genomics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | | | - Rudy Dolferus
- CSIRO Agriculture & Food, GPO Box 1700, Canberra, ACT 2601, Australia;
| | - Ute Roessner
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
26
|
Hassan MJ, Qi H, Cheng B, Hussain S, Peng Y, Liu W, Feng G, Zhao J, Li Z. Enhanced Adaptability to Limited Water Supply Regulated by Diethyl Aminoethyl Hexanoate (DA-6) Associated With Lipidomic Reprogramming in Two White Clover Genotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:879331. [PMID: 35668812 PMCID: PMC9163823 DOI: 10.3389/fpls.2022.879331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/19/2022] [Indexed: 06/04/2023]
Abstract
Membrane lipid reprogramming is one of the most important adaptive strategies in plant species under unfavorable environmental circumstances. Therefore, the present experiment was conducted to elucidate the effect of diethyl aminoethyl hexanoate (DA-6), a novel synthetic plant growth regulator, on oxidative damage, photosynthetic performance, changes in lipidomic profile, and unsaturation index of lipids in two white clover (Trifolium repens) cultivars (drought-sensitive "Ladino" and drought-resistant "Riverdel") under PEG-6000-induced water-deficit stress. Results revealed that water-deficit stress significantly enhanced oxidative damage and decreased photosynthetic functions in both cultivars. However, the damage was less in Riverdel. In addition, water-deficit stress significantly decreased the relative content of monogalactocyl-diacylglycerols (MGDG), sulfoquinovosyl-diacylglycerols (SQDG), phosphatidic acisd (PA), phosphatidyl-ethanolamines (PE), phosphatidyl-glycerols (PG), phosphatidyl-serines (PS), ceramides (Cer), hexosylmonoceramides (Hex1Cer), sphingomyelins (SM), and sphingosines (Sph) in both cultivars, but a more pronounced decline was observed in Ladino. Exogenous application of DA-6 significantly increased the relative content of digalactocyl-diacylglycerols (DGDG), monogalactocyl-diacylglycerolsabstra (MGDG), sulfoquinovosyl-diacylglycerols (SQDG), phosphatidic acids (PA), phosphatidyl-ethanolamines (PE), phosphatidyl-glycerols (PG), phosphatidyl-inositols (PI), phosphatidyl-serines (PS), ceramides (Cer), hexosylmonoceramides (Hex1Cer), neutral glycosphingolipids (CerG2GNAc1), and sphingosines (Sph) in the two cultivars under water-deficit stress. DA-6-treated Riverdel exhibited a significantly higher DGDG:MGDG ratio and relative content of sphingomyelins (SM) than untreated plants in response to water deficiency. Furthermore, the DA-6-pretreated plants increased the unsaturation index of phosphatidic acids (PA) and phosphatidylinositols (PI) in Ladino, ceramides (Cer) and hexosylmonoceramides (Hex1Cer) in Riverdel, and sulfoquinovosyl-diacylglycerols (SQDG) in both cultivars under water stress. These results suggested that DA-6 regulated drought resistance in white clover could be associated with increased lipid content and reprogramming, higher DGDG:MGDG ratio, and improved unsaturation index of lipids, contributing to enhanced membrane stability, integrity, fluidity, and downstream signaling transduction.
Collapse
Affiliation(s)
- Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hongyin Qi
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bizhen Cheng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shafiq Hussain
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
27
|
Sphingolipids at Plasmodesmata: Structural Components and Functional Modulators. Int J Mol Sci 2022; 23:ijms23105677. [PMID: 35628487 PMCID: PMC9145688 DOI: 10.3390/ijms23105677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmodesmata (PD) are plant-specific channels connecting adjacent cells to mediate intercellular communication of molecules essential for plant development and defense. The typical PD are organized by the close apposition of the plasma membrane (PM), the desmotubule derived from the endoplasmic reticulum (ER), and spoke-like elements linking the two membranes. The plasmodesmal PM (PD-PM) is characterized by the formation of unique microdomains enriched with sphingolipids, sterols, and specific proteins, identified by lipidomics and proteomics. These components modulate PD to adapt to the dynamic changes of developmental processes and environmental stimuli. In this review, we focus on highlighting the functions of sphingolipid species in plasmodesmata, including membrane microdomain organization, architecture transformation, callose deposition and permeability control, and signaling regulation. We also briefly discuss the difference between sphingolipids and sterols, and we propose potential unresolved questions that are of help for further understanding the correspondence between plasmodesmal structure and function.
Collapse
|
28
|
Liu Y, Wang L, Li X, Luo M. Detailed sphingolipid profile responded to salt stress in cotton root and the GhIPCS1 is involved in the regulation of plant salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111174. [PMID: 35151457 DOI: 10.1016/j.plantsci.2021.111174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 05/24/2023]
Abstract
Sphingolipids are major structural components of membrane and active signaling molecules and play an important role in plant developmental processes and stress responses. As land salinization has increased globally, salinity has compromised the growth and productivity of crops such as cotton. Understanding the mechanisms of plant adaptation to salt stress is essential for breeding salt-tolerant crops. In this study, we explored the comprehensive metabolic profile of sphingolipids in cotton root under salt stress using lipidomics. 118 sphingolipid molecular species were identified, of which PhytoSph, PhytoCer, PhytoCer-OHFA, IPC, and GIPC were relatively high in content, and PhytoSph, PhytoCer, PhytoCer-OHFA, Phyto-GluCer, and IPC showed significant changes after salt stress, especially inositol phosphatidyl ceramide (IPC), which was significantly upregulated after salt treatment. Subsequently, we identified the genes encoding IPC synthase (IPCS), and ectopic expression of GhIPCS1 enhanced salt sensitivity in Arabidopsis, which might result from the disruption on the balance between various sphingolipid classes and/or molecular species. Overall, this study reveals key lipids and genes response to salt stress in cotton and provides a theoretical basis for the use of genetic engineering to improve cotton stress resistance.
Collapse
Affiliation(s)
- Yujie Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| | - Xing Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
| | - Ming Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; Key Laboratory of Biotechnology and Crop Quality, Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
29
|
Sun AZ, Chen LS, Tang M, Chen JH, Li H, Jin XQ, Yi Y, Guo FQ. Lipidomic Remodeling in Begonia grandis Under Heat Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:843942. [PMID: 35251112 PMCID: PMC8891222 DOI: 10.3389/fpls.2022.843942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/27/2022] [Indexed: 05/15/2023]
Abstract
Characterization of the alterations in leaf lipidome in Begonia (Begonia grandis Dry subsp. sinensis) under heat stress will aid in understanding the mechanisms of stress adaptation to high-temperature stress often occurring during hot seasons at southern areas in China. The comparative lipidomic analysis was performed using leaves taken from Begonia plants exposed to ambient temperature or heat stress. The amounts of total lipids and major lipid classes, including monoacylglycerol (MG), diacylglycerol (DG), triacylglycerols (TG), and ethanolamine-, choline-, serine-, inositol glycerophospholipids (PE, PC, PS, PI) and the variations in the content of lipid molecular species, were analyzed and identified by tandem high-resolution mass spectrometry. Upon exposure to heat stress, a substantial increase in three different types of TG, including 18:0/16:0/16:0, 16:0/16:0/18:1, and 18:3/18:3/18:3, was detected, which marked the first stage of adaptation processes. Notably, the reduced accumulation of some phospholipids, including PI, PC, and phosphatidylglycerol (PG) was accompanied by an increased accumulation of PS, PE, and phosphatidic acid (PA) under heat stress. In contrast to the significant increase in the abundance of TG, all of the detected lysophospholipids and sphingolipids were dramatically reduced in the Begonia leaves exposed to heat stress, suggesting that a very dynamic and specified lipid remodeling process is highly coordinated and synchronized in adaptation to heat stress in Begonia plants.
Collapse
Affiliation(s)
- Ai-Zhen Sun
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Sha Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ming Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, China
| | - Juan-Hua Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Han Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Qi Jin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yin Yi
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
- *Correspondence: Yin Yi,
| | - Fang-Qing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Fang-Qing Guo,
| |
Collapse
|
30
|
Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Prog Lipid Res 2021; 85:101138. [PMID: 34774919 DOI: 10.1016/j.plipres.2021.101138] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
Monounsaturated fatty acids are straight-chain aliphatic monocarboxylic acids comprising a unique carbon‑carbon double bond, also termed unsaturation. More than 50 distinct molecular structures have been described in the plant kingdom, and more remain to be discovered. The evolution of land plants has apparently resulted in the convergent evolution of non-homologous enzymes catalyzing the dehydrogenation of saturated acyl chain substrates in a chemo-, regio- and stereoselective manner. Contrasted enzymatic characteristics and different subcellular localizations of these desaturases account for the diversity of existing fatty acid structures. Interestingly, the location and geometrical configuration of the unsaturation confer specific characteristics to these molecules found in a variety of membrane, storage, and surface lipids. An ongoing research effort aimed at exploring the links existing between fatty acid structures and their biological functions has already unraveled the importance of several monounsaturated fatty acids in various physiological and developmental contexts. What is more, the monounsaturated acyl chains found in the oils of seeds and fruits are widely and increasingly used in the food and chemical industries due to the physicochemical properties inherent in their structures. Breeders and plant biotechnologists therefore develop new crops with high monounsaturated contents for various agro-industrial purposes.
Collapse
|
31
|
Rondelli V, Koutsioubas A, Pršić J, Deboever E, Crowet JM, Lins L, Deleu M. Sitosterol and glucosylceramide cooperative transversal and lateral uneven distribution in plant membranes. Sci Rep 2021; 11:21618. [PMID: 34732753 PMCID: PMC8566578 DOI: 10.1038/s41598-021-00696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
The properties of biomembranes depend on the presence, local structure and relative distribution assumed by the thousands of components it is made of. As for animal cells, plant membranes have been demonstrated to be organized in subdomains with different persistence lengths and times. In plant cells, sitosterol has been demonstrated to confer to phospholipid membranes a more ordered structure while among lipids, glycosphingolipids are claimed to form rafts where they tightly pack with sterols. Glucosylceramides are glycosphingolipids involved in plant signalling and are essential for viability of cells and whole plant. The glucosylceramide-sitosterol structural coupling within PLPC membranes is here investigated by Langmuir films, in silico simulations and neutron reflectometry, unveiling that a strong direct interaction between the two molecules exists and governs their lateral and transversal distribution within membrane leaflets. The understanding of the driving forces governing specific molecules clustering and segregation in subdomains, such as glucosylceramide and sitosterol, have an impact on the mechanical properties of biomembranes and could reflect in the other membrane molecules partitioning and activity.
Collapse
Affiliation(s)
- V Rondelli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy.
| | - A Koutsioubas
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Garching, Germany.
| | - J Pršić
- Microbial Processes and Interactions Laboratory (MiPI), TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - E Deboever
- Laboratoire de Biophysique Moléculaire aux Interfaces, Structure Fédérative de Recherche Condorcet, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium.,Laboratory of Natural Molecules Chemistry, Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, 5030, Gembloux, Belgium.,FytoFend S.A., rue Georges Legrand, 6, 5032, Isnes, Belgium
| | - J M Crowet
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - L Lins
- Laboratoire de Biophysique Moléculaire aux Interfaces, Structure Fédérative de Recherche Condorcet, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - M Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, Structure Fédérative de Recherche Condorcet, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium.
| |
Collapse
|
32
|
Wang Q, Meng Q, Xu F, Chen Q, Ma C, Huang L, Li G, Luo M. Comparative Metabolomics Analysis Reveals Sterols and Sphingolipids Play a Role in Cotton Fiber Cell Initiation. Int J Mol Sci 2021; 22:ijms222111438. [PMID: 34768870 PMCID: PMC8583818 DOI: 10.3390/ijms222111438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 01/15/2023] Open
Abstract
Cotton fiber is a seed trichome that protrudes from the outer epidermis of cotton ovule on the day of anthesis (0 day past anthesis, 0 DPA). The initial number and timing of fiber cells are closely related to fiber yield and quality. However, the mechanism underlying fiber initiation is still unclear. Here, we detected and compared the contents and compositions of sphingolipids and sterols in 0 DPA ovules of Xuzhou142 lintless-fuzzless mutants (Xufl) and Xinxiangxiaoji lintless-fuzzless mutants (Xinfl) and upland cotton wild-type Xuzhou142 (XuFL). Nine classes of sphingolipids and sixty-six sphingolipid molecular species were detected in wild-type and mutants. Compared with the wild type, the contents of Sphingosine-1-phosphate (S1P), Sphingosine (Sph), Glucosylceramide (GluCer), and Glycosyl-inositol-phospho-ceramides (GIPC) were decreased in the mutants, while the contents of Ceramide (Cer) were increased. Detail, the contents of two Cer molecular species, d18:1/22:0 and d18:1/24:0, and two Phyto-Cer molecular species, t18:0/22:0 and t18:0/h22:1 were significantly increased, while the contents of all GluCer and GIPC molecular species were decreased. Consistent with this result, the expression levels of seven genes involved in GluCer and GIPC synthesis were decreased in the mutants. Furthermore, exogenous application of a specific inhibitor of GluCer synthase, PDMP (1-phenyl-2-decanoylamino-3-morpholino-1-propanol), in ovule culture system, significantly inhibited the initiation of cotton fiber cells. In addition, five sterols and four sterol esters were detected in wild-type and mutant ovules. Compared with the wild type, the contents of total sterol were not significantly changed. While the contents of stigmasterol and campesterol were significantly increased, the contents of cholesterol were significantly decreased, and the contents of total sterol esters were significantly increased. In particular, the contents of campesterol esters and stigmasterol esters increased significantly in the two mutants. Consistently, the expression levels of some sterol synthase genes and sterol ester synthase genes were also changed in the two mutants. These results suggested that sphingolipids and sterols might have some roles in the initiation of fiber cells. Our results provided a novel insight into the regulatory mechanism of fiber cell initiation.
Collapse
Affiliation(s)
- Qiaoling Wang
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Qian Meng
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Fan Xu
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Qian Chen
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400716, China
| | - Caixia Ma
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Li Huang
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Guiming Li
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Ming Luo
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
- Correspondence: or
| |
Collapse
|
33
|
Sessa L, Nardiello AM, Santoro J, Concilio S, Piotto S. Hydroxylated Fatty Acids: The Role of the Sphingomyelin Synthase and the Origin of Selectivity. MEMBRANES 2021; 11:membranes11100787. [PMID: 34677553 PMCID: PMC8539438 DOI: 10.3390/membranes11100787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]
Abstract
Sphingolipids are a class of lipids acting as key modulators of many physiological and pathophysiological processes. Hydroxylation patterns have a major influence on the biophysical properties of sphingolipids. In this work, we have studied the mechanism of action of hydroxylated lipids in sphingomyelin synthase (SMS). The structures of the two human isoforms, SMS1 and SMS2, have been generated through neural network supported homology. Furthermore, we have elucidated the reaction mechanism that allows SMS to recover the choline head from a phosphocholine (PC) and transfer it to ceramide, and we have clarified the role of the hydroxyl group in the interaction with the enzyme. Finally, the effect of partial inhibition of SMS on the levels of PC and sphingomyelin was calculated for different rate constants solving ordinary differential equation systems.
Collapse
|
34
|
Liu NJ, Hou LP, Bao JJ, Wang LJ, Chen XY. Sphingolipid metabolism, transport, and functions in plants: Recent progress and future perspectives. PLANT COMMUNICATIONS 2021; 2:100214. [PMID: 34746760 PMCID: PMC8553973 DOI: 10.1016/j.xplc.2021.100214] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/12/2021] [Accepted: 06/26/2021] [Indexed: 05/08/2023]
Abstract
Sphingolipids, which comprise membrane systems together with other lipids, are ubiquitous in cellular organisms. They show a high degree of diversity across plant species and vary in their structures, properties, and functions. Benefiting from the development of lipidomic techniques, over 300 plant sphingolipids have been identified. Generally divided into free long-chain bases (LCBs), ceramides, glycosylceramides (GlcCers) and glycosyl inositol phosphoceramides (GIPCs), plant sphingolipids exhibit organized aggregation within lipid membranes to form raft domains with sterols. Accumulating evidence has revealed that sphingolipids obey certain trafficking and distribution rules and confer unique properties to membranes. Functional studies using sphingolipid biosynthetic mutants demonstrate that sphingolipids participate in plant developmental regulation, stimulus sensing, and stress responses. Here, we present an updated metabolism/degradation map and summarize the structures of plant sphingolipids, review recent progress in understanding the functions of sphingolipids in plant development and stress responses, and review sphingolipid distribution and trafficking in plant cells. We also highlight some important challenges and issues that we may face during the process of studying sphingolipids.
Collapse
Affiliation(s)
- Ning-Jing Liu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- Corresponding author
| | - Li-Pan Hou
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing-Jing Bao
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling-Jian Wang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Xiao-Ya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
35
|
Chen Q, Xu F, Wang L, Suo X, Wang Q, Meng Q, Huang L, Ma C, Li G, Luo M. Sphingolipid Profile during Cotton Fiber Growth Revealed That a Phytoceramide Containing Hydroxylated and Saturated VLCFA Is Important for Fiber Cell Elongation. Biomolecules 2021; 11:biom11091352. [PMID: 34572565 PMCID: PMC8466704 DOI: 10.3390/biom11091352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022] Open
Abstract
Cotton fiber is a single-celled seed trichrome that arises from the epidermis of the ovule’s outer integument. The fiber cell displays high polar expansion and thickens but not is disrupted by cell division. Therefore, it is an ideal model for studying the growth and development of plant cells. Sphingolipids are important components of membranes and are also active molecules in cells. However, the sphingolipid profile during fiber growth and the differences in sphingolipid metabolism at different developmental stages are still unclear. In this study, we detected that there were 6 classes and 95 molecular species of sphingolipids in cotton fibers by ultrahigh performance liquid chromatography-MS/MS (UHPLC-MS/MS). Among these, the phytoceramides (PhytoCer) contained the most molecular species, and the PhytoCer content was highest, while that of sphingosine-1-phosphate (S1P) was the lowest. The content of PhytoCer, phytoceramides with hydroxylated fatty acyls (PhytoCer-OHFA), phyto-glucosylceramides (Phyto-GluCer), and glycosyl-inositol-phospho-ceramides (GIPC) was higher than that of other classes in fiber cells. With the development of fiber cells, phytosphingosine-1-phosphate (t-S1P) and PhytoCer changed greatly. The sphingolipid molecular species Ceramide (Cer) d18:1/26:1, PhytoCer t18:1/26:0, PhytoCer t18:0/26:0, PhytoCer t18:1/h20:0, PhytoCer t18:1/h26:0, PhytoCer t18:0/h26:0, and GIPC t18:0/h16:0 were significantly enriched in 10-DPA fiber cells while Cer d18:1/20:0, Cer d18:1/22:0, and GIPC t18:0/h18:0 were significantly enriched in 20-DPA fiber cells, indicating that unsaturated PhytoCer containing hydroxylated and saturated very long chain fatty acids (VLCFA) play some role in fiber cell elongation. Consistent with the content analysis results, the related genes involved in long chain base (LCB) hydroxylation and unsaturation as well as VLCFA synthesis and hydroxylation were highly expressed in rapidly elongating fiber cells. Furthermore, the exogenous application of a potent inhibitor of serine palmitoyltransferase, myriocin, severely blocked fiber cell elongation, and the exogenous application of sphingosine antagonized the inhibition of myriocin for fiber elongation. Taking these points together, we concluded that sphingolipids play crucial roles in fiber cell elongation and SCW deposition. This provides a new perspective for further studies on the regulatory mechanism of the growth and development of cotton fiber cells.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Fan Xu
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China;
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaodong Suo
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Qiaoling Wang
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Qian Meng
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Li Huang
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Caixia Ma
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Guiming Li
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Ming Luo
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
- Correspondence:
| |
Collapse
|
36
|
Zoong Lwe Z, Sah S, Persaud L, Li J, Gao W, Raja Reddy K, Narayanan S. Alterations in the leaf lipidome of Brassica carinata under high-temperature stress. BMC PLANT BIOLOGY 2021; 21:404. [PMID: 34488625 PMCID: PMC8419912 DOI: 10.1186/s12870-021-03189-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/13/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Brassica carinata (A) Braun has recently gained increased attention across the world as a sustainable biofuel crop. B. carinata is grown as a summer crop in many regions where high temperature is a significant stress during the growing season. However, little research has been conducted to understand the mechanisms through which this crop responds to high temperatures. Understanding traits that improve the high-temperature adaption of this crop is essential for developing heat-tolerant varieties. This study investigated lipid remodeling in B. carinata in response to high-temperature stress. A commercial cultivar, Avanza 641, was grown under sunlit-controlled environmental conditions in Soil-Plant-Atmosphere-Research (SPAR) chambers under optimal temperature (OT; 23/15°C) conditions. At eight days after sowing, plants were exposed to one of the three temperature treatments [OT, high-temperature treatment-1 (HT-1; 33/25°C), and high-temperature treatment-2 (HT-2; 38/30°C)]. The temperature treatment period lasted until the final harvest at 84 days after sowing. Leaf samples were collected at 74 days after sowing to profile lipids using electrospray-ionization triple quadrupole mass spectrometry. RESULTS Temperature treatment significantly affected the growth and development of Avanza 641. Both high-temperature treatments caused alterations in the leaf lipidome. The alterations were primarily manifested in terms of decreases in unsaturation levels of membrane lipids, which was a cumulative effect of lipid remodeling. The decline in unsaturation index was driven by (a) decreases in lipids that contain the highly unsaturated linolenic (18:3) acid and (b) increases in lipids containing less unsaturated fatty acids such as oleic (18:1) and linoleic (18:2) acids and/or saturated fatty acids such as palmitic (16:0) acid. A third mechanism that likely contributed to lowering unsaturation levels, particularly for chloroplast membrane lipids, is a shift toward lipids made by the eukaryotic pathway and the channeling of eukaryotic pathway-derived glycerolipids that are composed of less unsaturated fatty acids into chloroplasts. CONCLUSIONS The lipid alterations appear to be acclimation mechanisms to maintain optimal membrane fluidity under high-temperature conditions. The lipid-related mechanisms contributing to heat stress response as identified in this study could be utilized to develop biomarkers for heat tolerance and ultimately heat-tolerant varieties.
Collapse
Affiliation(s)
- Zolian Zoong Lwe
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Saroj Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, 39762, USA
| | - Leelawatti Persaud
- Plant and Soil Sciences, Mississippi State University, Starkville, MS, 39762, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, 39762, USA
| | - Wei Gao
- USDA UVB Monitoring and Research Program, Natural Resource Ecology Laboratory, Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, 80523, USA
| | - K Raja Reddy
- Plant and Soil Sciences, Mississippi State University, Starkville, MS, 39762, USA.
| | - Sruthi Narayanan
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
37
|
Zeng HY, Liu Y, Chen DK, Bao HN, Huang LQ, Yin J, Chen YL, Xiao S, Yao N. The immune components ENHANCED DISEASE SUSCEPTIBILITY 1 and PHYTOALEXIN DEFICIENT 4 are required for cell death caused by overaccumulation of ceramides in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1447-1465. [PMID: 34180563 DOI: 10.1111/tpj.15393] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/12/2021] [Accepted: 06/19/2021] [Indexed: 05/26/2023]
Abstract
Sphingolipids have key functions in plant membrane structure and signaling. Perturbations of plant sphingolipid metabolism often induce cell death and salicylic acid (SA) accumulation; SA accumulation, in turn, promotes sphingolipid metabolism and further cell death. However, the underlying molecular mechanisms remain unclear. Here, we show that the Arabidopsis thaliana lipase-like protein ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and its partner PHYTOALEXIN DEFICIENT 4 (PAD4) participate in sphingolipid metabolism and associated cell death. The accelerated cell death 5 (acd5) mutants accumulate ceramides due to a defect in ceramide kinase and show spontaneous cell death. Loss of function of EDS1, PAD4 or SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2) in the acd5 background suppressed the acd5 cell death phenotype and prevented ceramide accumulation. Treatment with the SA analogue benzothiadiazole partially restored sphingolipid accumulation in the acd5 pad4 and acd5 eds1 double mutants, showing that the inhibitory effect of the pad4-1 and eds1-2 mutations on acd5-conferred sphingolipid accumulation partly depends on SA. Moreover, the pad4-1 and eds1-2 mutations substantially rescued the susceptibility of the acd5 mutant to Botrytis cinerea. Consistent with this, B. cinerea-induced ceramide accumulation requires PAD4 or EDS1. Finally, examination of plants overexpressing the ceramide synthase gene LAG1 HOMOLOGUE2 suggested that EDS1, PAD4 and SA are involved in long-chain ceramide metabolism and ceramide-associated cell death. Collectively, our observations reveal that EDS1 and PAD4 mediate ceramide (especially long-chain ceramide) metabolism and associated cell death, by SA-dependent and SA-independent pathways.
Collapse
Affiliation(s)
- Hong-Yun Zeng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - He-Nan Bao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li-Qun Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yi-Li Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
38
|
Sphingolipids in foodstuff: Compositions, distribution, digestion, metabolism and health effects - A comprehensive review. Food Res Int 2021; 147:110566. [PMID: 34399542 DOI: 10.1016/j.foodres.2021.110566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/26/2022]
Abstract
Sphingolipids (SLs) are common in all eukaryotes, prokaryotes, and viruses, and played a vital role in human health. They are involved in physiological processes, including intracellular transport, cell division, and signal transduction. However, there are limited reviews on dietary effects on endogenous SLs metabolism and further on human health. Various dietary conditions, including the SLs-enriched diet, high-fat diet, and vitamins, can change the level of endogenous SLs metabolites and even affect human health. This review systematically summarizes the main known SLs in foods concerning their variety and contents, as well as their isolation and identification approaches. Moreover, the present review discusses the role of dietary (particularly SLs-enriched diet, high-fat diet, and vitamins) in endogenous SLs metabolism, highlighting how exogenous SLs are digested and absorbed. The role of SLs family in the pathogenesis of diseases, including cancers, neurological disorders, infectious and inflammatory diseases, and cardiovascular diseases, and in recently coronavirus disease-19 outbreak was also discussed. In the post-epidemic era, we believe that the concern for health and the need for plant-based products will increase. Therefore, a need for research on the absorption and metabolism pathway of SLs (especially plant-derived SLs) and their bioavailability is necessary. Moreover, the effects of storage treatment and processing on the content and composition of SLs in food are worth exploring. Further studies should also be conducted on the dose-response of SLs on human health to support the development of SLs supplements. More importantly, new approaches, such as, making SLs based hydrogels can effectively achieve sustained release and targeted therapies.
Collapse
|
39
|
Steinberger AR, Merino WO, Cahoon RE, Cahoon EB, Lynch DV. Disruption of long-chain base hydroxylation alters growth and impacts sphingolipid synthesis in Physcomitrella patens. PLANT DIRECT 2021; 5:e336. [PMID: 34355113 PMCID: PMC8320657 DOI: 10.1002/pld3.336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 05/24/2023]
Abstract
Sphingolipids have roles as membrane structural components and as bioactive molecules in plants. In Physcomitrella patens, 4-hydroxysphinganine (phytosphingosine, t18:0) is the predominant sphingolipid long-chain base (LCB). To assess the functional significance of t18:0, CRISPR-Cas9 mutagenesis was used to generate mutant lines lacking the sole SPHINGOID BASE HYDROXYLASE (SBH) gene encoding the hydroxylase responsible for converting sphinganine (d18:0) to t18:0. Total sphingolipid content in sbh protonemata was 2.4-fold higher than in wild-type. Modest changes in glycosyl inositolphosphorylceramide (GIPC) glycosylation patterns occurred. Sphingolipidomic analyses of mutants lacking t18:0 indicated modest alterations in acyl-chain pairing with d18:0 in GIPCs and ceramides, but dramatic alterations in acyl-chain pairing in glucosylceramides, in which 4,8-sphingadienine (d18:2) was the principal LCB. A striking accumulation of free and phosphorylated LCBs accompanied loss of the hydroxylase. The sbh lines exhibited altered morphology, including smaller chloronemal cell size, irregular cell shape, reduced gametophore size, and increased pigmentation. In the presence of the synthetic trihydroxy LCB t17:0, the endogenous sphingolipid content of sbh lines decreased to wild-type levels, and the mutants exhibited phenotypes more similar to wild-type plants. These results demonstrate the importance of sphingolipid content and composition to Physcomitrella growth. They also illuminate similarities in regulating sphingolipid content but differences in regulating sphingolipid species composition between the bryophyte P. patens and angiosperm A. thaliana.
Collapse
Affiliation(s)
| | | | - Rebecca E. Cahoon
- Center for Plant Science Innovation and Department of BiochemistryUniversity of NebraskaLincolnNEUSA
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of BiochemistryUniversity of NebraskaLincolnNEUSA
| | | |
Collapse
|
40
|
Xu F, Chen Q, Huang L, Luo M. Advances about the Roles of Membranes in Cotton Fiber Development. MEMBRANES 2021; 11:membranes11070471. [PMID: 34202386 PMCID: PMC8307351 DOI: 10.3390/membranes11070471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Cotton fiber is an extremely elongated single cell derived from the ovule epidermis and is an ideal model for studying cell development. The plasma membrane is tremendously expanded and accompanied by the coordination of various physiological and biochemical activities on the membrane, one of the three major systems of a eukaryotic cell. This review compiles the recent progress and advances for the roles of the membrane in cotton fiber development: the functions of membrane lipids, especially the fatty acids, sphingolipids, and phytosterols; membrane channels, including aquaporins, the ATP-binding cassette (ABC) transporters, vacuolar invertase, and plasmodesmata; and the regulation mechanism of membrane proteins, such as membrane binding enzymes, annexins, and receptor-like kinases.
Collapse
Affiliation(s)
- Fan Xu
- Biotechnology Research Center, Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Southwest University, Chongqing 400715, China; (F.X.); (L.H.)
| | - Qian Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China;
| | - Li Huang
- Biotechnology Research Center, Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Southwest University, Chongqing 400715, China; (F.X.); (L.H.)
| | - Ming Luo
- Biotechnology Research Center, Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Southwest University, Chongqing 400715, China; (F.X.); (L.H.)
- Correspondence:
| |
Collapse
|
41
|
Batsale M, Bahammou D, Fouillen L, Mongrand S, Joubès J, Domergue F. Biosynthesis and Functions of Very-Long-Chain Fatty Acids in the Responses of Plants to Abiotic and Biotic Stresses. Cells 2021; 10:1284. [PMID: 34064239 PMCID: PMC8224384 DOI: 10.3390/cells10061284] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Very-long-chain fatty acids (i.e., fatty acids with more than 18 carbon atoms; VLCFA) are important molecules that play crucial physiological and structural roles in plants. VLCFA are specifically present in several membrane lipids and essential for membrane homeostasis. Their specific accumulation in the sphingolipids of the plasma membrane outer leaflet is of primordial importance for its correct functioning in intercellular communication. VLCFA are found in phospholipids, notably in phosphatidylserine and phosphatidylethanolamine, where they could play a role in membrane domain organization and interleaflet coupling. In epidermal cells, VLCFA are precursors of the cuticular waxes of the plant cuticle, which are of primary importance for many interactions of the plant with its surrounding environment. VLCFA are also major components of the root suberin barrier, which has been shown to be fundamental for nutrient homeostasis and plant adaptation to adverse conditions. Finally, some plants store VLCFA in the triacylglycerols of their seeds so that they later play a pivotal role in seed germination. In this review, taking advantage of the many studies conducted using Arabidopsis thaliana as a model, we present our current knowledge on the biosynthesis and regulation of VLCFA in plants, and on the various functions that VLCFA and their derivatives play in the interactions of plants with their abiotic and biotic environment.
Collapse
Affiliation(s)
| | | | | | | | | | - Frédéric Domergue
- University of Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d’Ornon, France; (M.B.); (D.B.); (L.F.); (S.M.); (J.J.)
| |
Collapse
|
42
|
Yang B, Li M, Phillips A, Li L, Ali U, Li Q, Lu S, Hong Y, Wang X, Guo L. Nonspecific phospholipase C4 hydrolyzes phosphosphingolipids and sustains plant root growth during phosphate deficiency. THE PLANT CELL 2021; 33:766-780. [PMID: 33955494 PMCID: PMC8136900 DOI: 10.1093/plcell/koaa054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/23/2020] [Indexed: 05/07/2023]
Abstract
Phosphate is a vital macronutrient for plant growth, and its availability in soil is critical for agricultural sustainability and productivity. A substantial amount of cellular phosphate is used to synthesize phospholipids for cell membranes. Here, we identify a key enzyme, nonspecific phospholipase C4 (NPC4) that is involved in phosphosphingolipid hydrolysis and remodeling in Arabidopsis during phosphate starvation. The level of glycosylinositolphosphorylceramide (GIPC), the most abundant sphingolipid in Arabidopsis thaliana, decreased upon phosphate starvation. NPC4 was highly induced by phosphate deficiency, and NPC4 knockouts in Arabidopsis decreased the loss of GIPC and impeded root growth during phosphate starvation. Enzymatic analysis showed that NPC4 hydrolyzed GIPC and displayed a higher activity toward GIPC as a substrate than toward the common glycerophospholipid phosphatidylcholine. NPC4 was associated with the plasma membrane lipid rafts in which GIPC is highly enriched. These results indicate that NPC4 uses GIPC as a substrate in planta and the NPC4-mediated sphingolipid remodeling plays a positive role in root growth in Arabidopsis response to phosphate deficiency.
Collapse
Affiliation(s)
- Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Maoyin Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Anne Phillips
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Author for correspondence: (L.G) and (X.W.)
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Author for correspondence: (L.G) and (X.W.)
| |
Collapse
|
43
|
Moore WM, Chan C, Ishikawa T, Rennie EA, Wipf HML, Benites V, Kawai-Yamada M, Mortimer JC, Scheller HV. Reprogramming sphingolipid glycosylation is required for endosymbiont persistence in Medicago truncatula. Curr Biol 2021; 31:2374-2385.e4. [PMID: 33857428 DOI: 10.1016/j.cub.2021.03.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2020] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
Plant endosymbiosis relies on the development of specialized membranes that encapsulate the endosymbiont and facilitate nutrient exchange. However, the identity and function of lipids within these membrane interfaces is largely unknown. Here, we identify GLUCOSAMINE INOSITOL PHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) as a sphingolipid glycosyltransferase highly expressed in Medicago truncatula root nodules and roots colonized by arbuscular mycorrhizal (AM) fungi and further demonstrate that this enzyme functions in the synthesis of N-acetyl-glucosamine-decorated glycosyl inositol phosphoryl ceramides (GIPCs) in planta. MtGINT1 expression was developmentally regulated in symbiotic tissues associated with the development of symbiosome and periarbuscular membranes. RNAi silencing of MtGINT1 did not affect overall root growth but strongly impaired nodulation and AM symbiosis, resulting in the senescence of symbiosomes and arbuscules. Our results indicate that, although M. truncatula root sphingolipidome predominantly consists of hexose-decorated GIPCs, local reprogramming of GIPC glycosylation by MtGINT1 is required for the persistence of endosymbionts within the plant cell.
Collapse
Affiliation(s)
- William M Moore
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Candace Chan
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Saitama 388-8570, Japan
| | - Emilie A Rennie
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Heidi M-L Wipf
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Veronica Benites
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama 388-8570, Japan
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
44
|
Wang L, Suo X, Liu Y, Liu C, Luo M. Sphingosine Promotes Embryo Biomass in Upland Cotton: A Biochemical and Transcriptomic Analysis. Biomolecules 2021; 11:525. [PMID: 33915924 PMCID: PMC8065874 DOI: 10.3390/biom11040525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Sphingolipids are essential membrane components and signal molecules, but their regulatory role in cotton embryo growth is largely unclear. In this study, we evaluated the effects of treatment with the sphingolipid synthesis inhibitor fumonisin B1 (FB1), the serine palmityl transferase (SPT) inhibitor myriocin, the SPT sphingolipid product DHS (d18:0 dihydrosphingosine), and the post-hydroxylation DHS product PHS (t18:0 phytosphingosine) on embryo growth in culture, and performed comparative transcriptomic analysis on control and PHS-treated samples. We found that FB1 could inhibit cotton embryo development. At the five-day ovule/embryo developmental stage, PHS was the most abundant sphingolipid. An SPT enzyme inhibitor reduced the fresh weight of embryos, while PHS had the opposite effect. The transcriptomic analysis identified 2769 differentially expressed genes (1983 upregulated and 786 downregulated) in the PHS samples. A large number of transcription factors were highly upregulated, such as zinc finger, MYB, NAC, bHLH, WRKY, MADS, and GRF in PHS-treated samples compared to controls. The lipid metabolism and plant hormone (auxin, brassinosteroid, and zeatin) related genes were also altered. Our findings provide target metabolites and genes for cotton seed improvement.
Collapse
Affiliation(s)
- Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.L.); (C.L.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaodong Suo
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing 400716, China;
| | - Yujie Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.L.); (C.L.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Chen Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.L.); (C.L.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Ming Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.L.); (C.L.)
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing 400716, China;
| |
Collapse
|
45
|
Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation. J Biol Chem 2021; 296:100602. [PMID: 33785359 PMCID: PMC8099651 DOI: 10.1016/j.jbc.2021.100602] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/03/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph-mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM.
Collapse
|
46
|
Jing B, Ishikawa T, Soltis N, Inada N, Liang Y, Murawska G, Fang L, Andeberhan F, Pidatala R, Yu X, Baidoo E, Kawai‐Yamada M, Loque D, Kliebenstein DJ, Dupree P, Mortimer JC. The Arabidopsis thaliana nucleotide sugar transporter GONST2 is a functional homolog of GONST1. PLANT DIRECT 2021; 5:e00309. [PMID: 33763627 PMCID: PMC7980081 DOI: 10.1002/pld3.309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 11/24/2020] [Accepted: 01/27/2021] [Indexed: 05/15/2023]
Abstract
Glycosylinositolphosphorylceramides (GIPCs) are the predominant lipid in the outer leaflet of the plasma membrane. Characterized GIPC glycosylation mutants have severe or lethal plant phenotypes. However, the function of the glycosylation is unclear. Previously, we characterized Arabidopsis thaliana GONST1 and showed that it was a nucleotide sugar transporter which provides GDP-mannose for GIPC glycosylation. gonst1 has a severe growth phenotype, as well as a constitutive defense response. Here, we characterize a mutant in GONST1's closest homolog, GONST2. The gonst2-1 allele has a minor change to GIPC headgroup glycosylation. Like other reported GIPC glycosylation mutants, gonst1-1gonst2-1 has reduced cellulose, a cell wall polymer that is synthesized at the plasma membrane. The gonst2-1 allele has increased resistance to a biotrophic pathogen Golovinomyces orontii but not the necrotrophic pathogen Botrytis cinerea. Expression of GONST2 under the GONST1 promoter can rescue the gonst1 phenotype, indicating that GONST2 has a similar function to GONST1 in providing GDP-D-Man for GIPC mannosylation.
Collapse
Affiliation(s)
- Beibei Jing
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Toshiki Ishikawa
- Graduate School of Science and EngineeringSaitama UniversityJapan
| | | | - Noriko Inada
- Graduate School of Biological SciencesNAISTNaraJapan
- Present address:
Graduate School of Life and Environmental SciencesOsaka Prefecture UniversityOsakaJapan
| | - Yan Liang
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Gosia Murawska
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
- Present address:
Chemistry DepartmentBaselSwitzerland
| | - Lin Fang
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
- Present address:
Guangdong Provincial Key Laboratory of Applied BotanySouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Fekadu Andeberhan
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Ramana Pidatala
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Xiaolan Yu
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Edward Baidoo
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | | | - Dominique Loque
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | | | - Paul Dupree
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Jenny C. Mortimer
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
- School of Agriculture, Food and WineUniversity of AdelaideAdelaideSAAustralia
| |
Collapse
|
47
|
Zheng M, Peng T, Yang T, Yan J, Yang K, Meng D, Hsu YF. Arabidopsis MHP1, a homologue of yeast Mpo1, is involved in ABA signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110732. [PMID: 33568285 DOI: 10.1016/j.plantsci.2020.110732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 06/12/2023]
Abstract
Sphingolipids and their intermediates play multiple roles in biological processes. The sphingoid long-chain base component of sphingolipids has emerged as a participant in the regulation of plant biotic and abiotic stress responses. The phytohormone abscisic acid (ABA) regulates many stress responses in plants for environmental adaptation. However, the relationship between the sphingoid bases and ABA is undetermined. In this study, mhp1-1 (the yeast Mpo1 homolog in plants) was isolated through a sodium chloride (NaCl)-sensitivity screen of Arabidopsis transfer DNA (T-DNA) insertion mutants. mhp1-1 was hypersensitivity to salt/osmotic stress and ABA. MHP1 encodes a protein with a domain of unknown function 962 (DUF962). Endoplasmic reticulum-localized MHP1 was found to interact with ABI1. MHP1, a homolog of yeast dioxygenase Mpo1, rescued the growth arrest of mpo1Δ cells caused by ER stress, suggesting functional homology of MHP1 to Mpo1. Overall, MHP1 plays important roles in response to ABA.
Collapse
Affiliation(s)
- Min Zheng
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China.
| | - Tao Peng
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Tingting Yang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Jiawen Yan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dong Meng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Yi-Feng Hsu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China.
| |
Collapse
|
48
|
Creydt M, Ludwig L, Köhl M, Fromm J, Fischer M. Wood profiling by non-targeted high-resolution mass spectrometry: Part 1, Metabolite profiling in Cedrela wood for the determination of the geographical origin. J Chromatogr A 2021; 1641:461993. [PMID: 33611119 DOI: 10.1016/j.chroma.2021.461993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 11/18/2022]
Abstract
The determination of the geographical origin of wood can be highly relevant for several reasons: On the one hand, it can help to prevent illegal logging and timber trade, on the other hand, it is of special interest for archaeological artefacts made of wood, as well as for a variety of biological questions. For this reason, different extraction methods were first tested for the analysis of polar and non-polar metabolites using liquid chromatography coupled electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS). A two-phase extraction with chloroform, methanol and water proved to be particularly successful. Subsequently, cedrela (Cedrela odorata) samples from South America were measured to distinguish geographic origin. Using multivariate data analysis, numerous origin-dependent differences could be extracted. The identification of the marker substances indicated that several metabolic pathways were affected by the geographical influences, some of them probably indicating pest infections.
Collapse
Affiliation(s)
- Marina Creydt
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; Cluster of Excellence, Understanding Written Artefacts, University of Hamburg, Warburgstraße 26, 20354 Hamburg, Germany.
| | - Lea Ludwig
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Michael Köhl
- Institute of Wood Science, Research Unit World Forestry, University of Hamburg, Leuschnerstrasse 91e, 21031, Hamburg, Germany
| | - Jörg Fromm
- Cluster of Excellence, Understanding Written Artefacts, University of Hamburg, Warburgstraße 26, 20354 Hamburg, Germany; Institute of Wood Science, Research Unit Wood Biology, University of Hamburg, Leuschnerstrasse 91d, 21031, Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; Cluster of Excellence, Understanding Written Artefacts, University of Hamburg, Warburgstraße 26, 20354 Hamburg, Germany
| |
Collapse
|
49
|
Li J, Halitschke R, Li D, Paetz C, Su H, Heiling S, Xu S, Baldwin IT. Controlled hydroxylations of diterpenoids allow for plant chemical defense without autotoxicity. Science 2021; 371:255-260. [PMID: 33446550 DOI: 10.1126/science.abe4713] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2023]
Abstract
Many plant specialized metabolites function in herbivore defense, and abrogating particular steps in their biosynthetic pathways frequently causes autotoxicity. However, the molecular mechanisms underlying their defense and autotoxicity remain unclear. Here, we show that silencing two cytochrome P450s involved in diterpene biosynthesis in the wild tobacco Nicotiana attenuata causes severe autotoxicity symptoms that result from the inhibition of sphingolipid biosynthesis by noncontrolled hydroxylated diterpene derivatives. Moreover, the diterpenes' defensive function is achieved by inhibiting herbivore sphingolipid biosynthesis through postingestive backbone hydroxylation products. Thus, by regulating metabolic modifications, tobacco plants avoid autotoxicity and gain herbivore defense. The postdigestive duet that occurs between plants and their insect herbivores can reflect the plant's solutions to the "toxic waste dump" problem of using potent chemical defenses.
Collapse
Affiliation(s)
- Jiancai Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Christian Paetz
- Department of Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Haichao Su
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Sven Heiling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, D-48161 Münster, Germany.
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany.
| |
Collapse
|
50
|
Zeng HY, Li CY, Yao N. Fumonisin B1: A Tool for Exploring the Multiple Functions of Sphingolipids in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:600458. [PMID: 33193556 PMCID: PMC7652989 DOI: 10.3389/fpls.2020.600458] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/05/2020] [Indexed: 05/25/2023]
Abstract
Fumonisin toxins are produced by Fusarium fungal pathogens. Fumonisins are structural analogs of sphingosine and potent inhibitors of ceramide synthases (CerSs); they disrupt sphingolipid metabolism and cause disease in plants and animals. Over the past three decades, researchers have used fumonisin B1 (FB1), the most common fumonisin, as a probe to investigate sphingolipid metabolism in yeast and animals. Although the physiological effects of FB1 in plants have yet to be investigated in detail, forward and reverse genetic approaches have revealed many genes involved in these processes. In this review, we discuss the intricate network of signaling pathways affected by FB1, including changes in sphingolipid metabolism and the effects of these changes, with a focus on our current understanding of the multiple effects of FB1 on plant cell death and plant growth. We analyze the major findings that highlight the connections between sphingolipid metabolism and FB1-induced signaling, and we point out where additional research is needed to fill the gaps in our understanding of FB1-induced signaling pathways in plants.
Collapse
Affiliation(s)
- Hong-Yun Zeng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chun-Yu Li
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nan Yao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|