1
|
Cheng T, Liu Z, Li H, Huang X, Wang W, Shi C, Zhang X, Chen H, Yao Z, Zhao P, Peng X, Sun MX. Sperm-origin paternal effects on root stem cell niche differentiation. Nature 2024; 634:220-227. [PMID: 39198649 DOI: 10.1038/s41586-024-07885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Fertilization introduces parental genetic information into the zygote to guide embryogenesis. Parental contributions to postfertilization development have been discussed for decades, and the data available show that both parents contribute to the zygotic transcriptome, suggesting a paternal role in early embryogenesis1-6. However, because the specific paternal effects on postfertilization development and the molecular pathways underpinning these effects remain poorly understood, paternal contribution to early embryogenesis and plant development has not yet been adequately demonstrated7. Here our research shows that TREE1 and its homologue DAZ3 are expressed exclusively in Arabidopsis sperm. Despite presenting no evident defects in sperm development and fertilization, tree1 daz3 unexpectedly led to aberrant differentiation of the embryo root stem cell niche. This defect persisted in seedlings and disrupted root tip regeneration, comparable to congenital defects in animals. TREE1 and DAZ3 function by suppression of maternal RKD2 transcription, thus mitigating the detrimental maternal effects from RKD2 on root stem cell niche. Therefore, our findings illuminate how genetic deficiencies in sperm can exert enduring paternal effects on specific plant organ differentiation and how parental-of-origin genes interact to ensure normal embryogenesis. This work also provides a new concept of how gamete quality or genetic deficiency can affect specific plant organ formation.
Collapse
Affiliation(s)
- Tianhe Cheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhenzhen Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haiming Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaorong Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuecheng Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhuang Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Yang K, Tang Y, Li Y, Guo W, Hu Z, Wang X, Berger F, Li J. Two imprinted genes primed by DEMETER in the central cell and activated by WRKY10 in the endosperm. J Genet Genomics 2024; 51:855-865. [PMID: 38599515 DOI: 10.1016/j.jgg.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
The early development of the endosperm is crucial for balancing the allocation of maternal nutrients to offspring. This process is believed to be evolutionarily associated with genomic imprinting, resulting in parentally biased allelic gene expression. Beyond FertilizationIndependentSeed (FIS) genes, the number of imprinted genes involved in early endosperm development and seed size determination remains limited. This study introduces early endosperm-expressed HAIKU (IKU) downstream Candidate F-box 1 (ICF1) and ICF2 as maternally expressed imprinted genes (MEGs) in Arabidopsis thaliana. Although these genes are also demethylated by DEMETER (DME) in the central cell, their activation differs from the direct DME-mediated activation seen in classical MEGs such as the FIS genes. Instead, ICF maternal alleles carry pre-established hypomethylation in their promoters, priming them for activation by the WRKY10 transcription factor in the endosperm. On the contrary, paternal alleles are predominantly suppressed by CG methylation. Furthermore, we find that ICF genes partially contribute to the small seed size observed in iku mutants. Our discovery reveals a two-step regulatory mechanism that highlights the important role of conventional transcription factors in the activation of imprinted genes, which was previously not fully recognized. Therefore, the mechanism provides a new dimension to understand the transcriptional regulation of imprinting in plant reproduction and development.
Collapse
Affiliation(s)
- Ke Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, Hainan 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Yuling Tang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, Hainan 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Yue Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenbin Guo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhengdao Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xuanpeng Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, Hainan 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Jing Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, Hainan 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China.
| |
Collapse
|
3
|
Jia Z, Gao P, Yin F, Quilichini TD, Sheng H, Song J, Yang H, Gao J, Chen T, Yang B, Kochian LV, Zou J, Patterson N, Yang Q, Gillmor CS, Datla R, Li Q, Xiang D. Asymmetric gene expression in grain development of reciprocal crosses between tetraploid and hexaploid wheats. Commun Biol 2022; 5:1412. [PMID: 36564439 PMCID: PMC9789062 DOI: 10.1038/s42003-022-04374-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Production of viable progeny from interploid crosses requires precise regulation of gene expression from maternal and paternal chromosomes, yet the transcripts contributed to hybrid seeds from polyploid parent species have rarely been explored. To investigate the genome-wide maternal and paternal contributions to polyploid grain development, we analyzed the transcriptomes of developing embryos, from zygote to maturity, alongside endosperm in two stages of development, using reciprocal crosses between tetraploid and hexaploid wheats. Reciprocal crosses between species with varied levels of ploidy displayed broad impacts on gene expression, including shifts in alternative splicing events in select crosses, as illustrated by active splicing events, enhanced protein synthesis and chromatin remodeling. Homoeologous gene expression was repressed on the univalent D genome in pentaploids, but this suppression was attenuated in crosses with a higher ploidy maternal parent. Imprinted genes were identified in endosperm and early embryo tissues, supporting predominant maternal effects on early embryogenesis. By systematically investigating the complex transcriptional networks in reciprocal-cross hybrids, this study presents a framework for understanding the genomic incompatibility and transcriptome shock that results from interspecific hybridization and uncovers the transcriptional impacts on hybrid seeds created from agriculturally-relevant polyploid species.
Collapse
Affiliation(s)
- Zhen Jia
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Peng Gao
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Feifan Yin
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070 Wuhan, China
| | - Teagen D. Quilichini
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Huajin Sheng
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Jingpu Song
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Hui Yang
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Jie Gao
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ting Chen
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Bo Yang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Leon V. Kochian
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Jitao Zou
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Nii Patterson
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Qingyong Yang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070 Wuhan, China
| | - C. Stewart Gillmor
- grid.512574.0Langebio, Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, 36821 México
| | - Raju Datla
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Qiang Li
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Daoquan Xiang
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| |
Collapse
|
4
|
Chumakov MI, Mazilov SI. Genetic Control of Maize Gynogenesis. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
El-Sappah AH, Yan K, Huang Q, Islam MM, Li Q, Wang Y, Khan MS, Zhao X, Mir RR, Li J, El-Tarabily KA, Abbas M. Comprehensive Mechanism of Gene Silencing and Its Role in Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:705249. [PMID: 34589097 PMCID: PMC8475493 DOI: 10.3389/fpls.2021.705249] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/10/2021] [Indexed: 05/19/2023]
Abstract
Gene silencing is a negative feedback mechanism that regulates gene expression to define cell fate and also regulates metabolism and gene expression throughout the life of an organism. In plants, gene silencing occurs via transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). TGS obscures transcription via the methylation of 5' untranslated region (5'UTR), whereas PTGS causes the methylation of a coding region to result in transcript degradation. In this review, we summarized the history and molecular mechanisms of gene silencing and underlined its specific role in plant growth and crop production.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Kuan Yan
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Qiulan Huang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- College of Tea Science, Yibin University, Yibin, China
| | | | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yu Wang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Muhammad Sarwar Khan
- Center of Agriculture Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Xianming Zhao
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST–K), Sopore, India
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
6
|
Volokhina I, Gusev Y, Moiseeva Y, Gutorova O, Fadeev V, Chumakov M. Gene Expression in Parthenogenic Maize Proembryos. PLANTS (BASEL, SWITZERLAND) 2021; 10:964. [PMID: 34066123 PMCID: PMC8151209 DOI: 10.3390/plants10050964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Angiosperm plants reproduce both sexually and asexually (by apomixis). In apomictic plants, the embryo and endosperm develop without fertilization. Modern maize seems to have a broken apomixis-triggering mechanism, which still works in Tripsacum and in Tripsacum-maize hybrids. For the first time, maize lines characterized by pronounced and inheritable high-frequency maternal parthenogenesis were generated 40 years ago, but there are no data on gene expression in parthenogenic maize proembryos. Here we examined for the first time gene expression in parthenogenic proembryos isolated from unpollinated embryo sacs (ESs) of a parthenogenic maize line (AT-4). The DNA-methylation genes (dmt103, dmt105) and the genes coding for the chromatin-modifying enzymes (chr106, hdt104, hon101) were expressed much higher in parthenogenic proembryos than in unpollinated ESs. The expression of the fertilization-independent endosperm (fie1) genes was found for the first time in parthenogenic proembryos and unpollinated ESs. In parthenogenic proembryos, the Zm_fie2 gene was expressed up to two times higher than it was expressed in unpollinated ESs.
Collapse
Affiliation(s)
- Irina Volokhina
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (I.V.); (Y.G.); (Y.M.); (V.F.)
| | - Yury Gusev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (I.V.); (Y.G.); (Y.M.); (V.F.)
| | - Yelizaveta Moiseeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (I.V.); (Y.G.); (Y.M.); (V.F.)
| | - Olga Gutorova
- Genetics Department, Saratov State University, 83 Ulitsa Astrakhanskaya, 410012 Saratov, Russia;
| | - Vladimir Fadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (I.V.); (Y.G.); (Y.M.); (V.F.)
| | - Mikhail Chumakov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (I.V.); (Y.G.); (Y.M.); (V.F.)
| |
Collapse
|
7
|
Gimenez MD, Vazquez DV, Trepat F, Cambiaso V, Rodríguez GR. Fruit quality and DNA methylation are affected by parental order in reciprocal crosses of tomato. PLANT CELL REPORTS 2021; 40:171-186. [PMID: 33079280 DOI: 10.1007/s00299-020-02624-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Reciprocal effects were found for tomato fruit quality and DNA methylation. The epigenetic identity of reciprocal hybrids indicates that DNA methylation might be one of the mechanisms involved in POEs. Crosses between different genotypes and even between different species are commonly used in plant breeding programs. Reciprocal hybrids are obtained by changing the cross direction (or the sexual role) of parental genotypes in a cross. Phenotypic differences between these hybrids constitute reciprocal effects (REs). The aim of this study was to evaluate phenotypic differences in tomato fruit traits and DNA methylation profiles in three inter- and intraspecific reciprocal crosses. REs were detected for 13 of the 16 fruit traits analyzed. The number of traits with REs was the lowest in the interspecific cross, whereas the highest was found in the cross between recombinant inbred lines (RILs) derived from the same interspecific cross. An extension of gene action analysis was proposed to incorporate parent-of-origin effects (POEs). Maternal and paternal dominance were found in four fruit traits. REs and paternal inheritance were found for epiloci located at coding and non-coding regions. The epigenetic identity displayed by the reciprocal hybrids accounts for the phenotypic differences among them, indicating that DNA methylation might be one of the mechanisms involved in POEs.
Collapse
Affiliation(s)
- Magalí Diana Gimenez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, S2125ZAA, Zavalla, Santa Fe, Argentina
- CIGEOBIO, (CONICET-UNSJ), Complejo Universitario "Islas Malvinas", FCEFN, Universidad de San Juan, Av. Ignacio de la Roza 590, J5402DCS, Rivadavia, San Juan, Argentina
| | - Dana Valeria Vazquez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, S2125ZAA, Zavalla, Santa Fe, Argentina
| | - Felipe Trepat
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA, Zavalla, Santa Fe, Argentina
| | - Vladimir Cambiaso
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, S2125ZAA, Zavalla, Santa Fe, Argentina
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA, Zavalla, Santa Fe, Argentina
| | - Gustavo Rubén Rodríguez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, S2125ZAA, Zavalla, Santa Fe, Argentina.
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA, Zavalla, Santa Fe, Argentina.
| |
Collapse
|
8
|
Abstract
In higher plants, fertilization induces many structural and physiological changes in the fertilized egg that reflect the transition from the haploid female gamete to the diploid zygote - the first cell of the sporophyte. After fusion of the egg nucleus with the sperm nucleus, many molecular changes occur in the zygote during the process of zygote activation during embryogenesis. The zygote originates from the egg, from which some pre-stored translation initiation factors transfer into the zygote and function during zygote activation. This indicates that the control of zygote activation is pre-set in the egg. After the egg and sperm nuclei fuse, gene expression is activated in the zygote, and paternal and maternal gene expression patterns are displayed. This highlights the diversity of zygotic genome activation in higher plants. In addition to new gene expression in the zygote, some genes show quantitative changes in expression. The asymmetrical division of the zygote produces an apical cell and a basal cell that have different destinies during plant reconstruction; these destinies are determined in the zygote. This review describes significant advances in research on the mechanisms controlling zygote activation in higher plants.
Collapse
|
9
|
Genetic Screens to Target Embryo and Endosperm Pathways in Arabidopsis and Maize. Methods Mol Biol 2020. [PMID: 31975291 DOI: 10.1007/978-1-0716-0342-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The major tissue types and stem-cell niches of plants are established during embryogenesis, and thus knowledge of embryo development is essential for a full understanding of plant development. Studies of seed development are also important for human health, because the nutrients stored in both the embryo and endosperm of plant seeds provide an essential part of our diet. Arabidopsis and maize have evolved different types of seeds, opening a range of experimental opportunities. Development of the Arabidopsis embryo follows an almost invariant pattern, while cell division patterns of maize embryos are variable. Embryo-endosperm interactions are also different between the two species: in Arabidopsis, the endosperm is consumed during seed development, while mature maize seeds contain an enormous endosperm. Genetic screens have provided important insights into seed development in both species. In the genomic era, genetic analysis will continue to provide important tools for understanding embryo and endosperm biology in plants, because single gene functional studies can now be integrated with genome-wide information. Here, we lay out important factors to consider when designing genetic screens to identify new genes or to probe known pathways in seed development. We then highlight the technical details of two previous genetic screens that may serve as useful examples for future experiments.
Collapse
|
10
|
Kao P, Nodine MD. Transcriptional Activation of Arabidopsis Zygotes Is Required for Initial Cell Divisions. Sci Rep 2019; 9:17159. [PMID: 31748673 PMCID: PMC6868190 DOI: 10.1038/s41598-019-53704-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/04/2019] [Indexed: 11/10/2022] Open
Abstract
Commonly referred to as the maternal-to-zygotic transition, the shift of developmental control from maternal-to-zygotic genomes is a key event during animal and plant embryogenesis. Together with the degradation of parental gene products, the increased transcriptional activities of the zygotic genome remodels the early embryonic transcriptome during this transition. Although evidence from multiple flowering plants suggests that zygotes become transcriptionally active soon after fertilization, the timing and developmental requirements of zygotic genome activation in Arabidopsis thaliana (Arabidopsis) remained a matter of debate until recently. In this report, we optimized an expansion microscopy technique for robust immunostaining of Arabidopsis ovules and seeds. This enabled the detection of marks indicative of active transcription in zygotes before the first cell division. Moreover, we employed a live-imaging culture system together with transcriptional inhibitors to demonstrate that such active transcription is physiologically required in zygotes and early embryos. Our results indicate that zygotic genome activation occurs soon after fertilization and is required for the initial zygotic divisions in Arabidopsis.
Collapse
Affiliation(s)
- Ping Kao
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
11
|
Forgione I, Wołoszyńska M, Pacenza M, Chiappetta A, Greco M, Araniti F, Abenavoli MR, Van Lijsebettens M, Bitonti MB, Bruno L. Hypomethylated drm1 drm2 cmt3 mutant phenotype of Arabidopsis thaliana is related to auxin pathway impairment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:383-396. [PMID: 30824017 DOI: 10.1016/j.plantsci.2018.12.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/27/2018] [Accepted: 12/29/2018] [Indexed: 05/28/2023]
Abstract
DNA methylation carried out by different methyltransferase classes is a relevant epigenetic modification of DNA which plays a relevant role in the development of eukaryotic organisms. Accordingly, in Arabidopsis thaliana loss of DNA methylation due to combined mutations in genes encoding for DNA methyltransferases causes several developmental abnormalities. The present study describes novel growth disorders in the drm1 drm2 cmt3 triple mutant of Arabidopsis thaliana, defective both in maintenance and de novo DNA methylation, and highlights the correlation between DNA methylation and the auxin hormone pathway. By using an auxin responsive reporter gene, we discovered that auxin accumulation and distribution were affected in the mutant compared to the wild type, from embryo to adult plant stage. In addition, we demonstrated that the defective methylation status also affected the expression of genes that regulate auxin hormone pathways from synthesis to transport and signalling and a direct relationship between differentially expressed auxin-related genes and altered auxin accumulation and distribution in embryo, leaf and root was observed. Finally, we provided evidence of the direct and organ-specific modulation of auxin-related genes through the DNA methylation process.
Collapse
Affiliation(s)
- Ivano Forgione
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende (CS), 87036 Arcavacata di Rende, CS, Italy; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Magdalena Wołoszyńska
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Marianna Pacenza
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende (CS), 87036 Arcavacata di Rende, CS, Italy
| | - Adriana Chiappetta
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende (CS), 87036 Arcavacata di Rende, CS, Italy
| | - Maria Greco
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende (CS), 87036 Arcavacata di Rende, CS, Italy; The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Fabrizio Araniti
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Maria Rosa Abenavoli
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Maria Beatrice Bitonti
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende (CS), 87036 Arcavacata di Rende, CS, Italy
| | - Leonardo Bruno
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende (CS), 87036 Arcavacata di Rende, CS, Italy.
| |
Collapse
|
12
|
Armenta-Medina A, Gillmor CS. Genetic, molecular and parent-of-origin regulation of early embryogenesis in flowering plants. Curr Top Dev Biol 2019; 131:497-543. [DOI: 10.1016/bs.ctdb.2018.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
13
|
Histology versus phylogeny: Viewing plant embryogenesis from an evo-devo perspective. Curr Top Dev Biol 2019; 131:545-564. [DOI: 10.1016/bs.ctdb.2018.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Coping-Style Behavior Identified by a Survey of Parent-of-Origin Effects in the Rat. G3-GENES GENOMES GENETICS 2018; 8:3283-3291. [PMID: 30135107 PMCID: PMC6169385 DOI: 10.1534/g3.118.200489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study we investigate the effects of parent of origin on complex traits in the laboratory rat, with a focus on coping style behavior in stressful situations. We develop theory, based on earlier work, to partition heritability into a component due to a combination of parent of origin, maternal, paternal and shared environment, and another component that estimates classical additive genetic variance. We use this theory to investigate the effects on heritability of the parental origin of alleles in 798 outbred heterogeneous stock rats across 199 complex traits. Parent-of-origin-like heritability was on average 2.7fold larger than classical additive heritability. Among the phenotypes with the most enhanced parent-of-origin heritability were 10 coping style behaviors, with average 3.2 fold heritability enrichment. To confirm these findings on coping behavior, and to eliminate the possibility that the parent of origin effects are due to confounding with shared environment, we performed a reciprocal F1 cross between the behaviorally divergent RHA and RLA rat strains. We observed parent-of-origin effects on F1 rat anxiety/coping-related behavior in the Elevated Zero Maze test. Our study is the first to assess genetic parent-of-origin effects in rats, and confirm earlier findings in mice that such effects influence coping and impulsive behavior, and suggest these effects might be significant in other mammals, including humans.
Collapse
|
15
|
Roth M, Florez-Rueda AM, Paris M, Städler T. Wild tomato endosperm transcriptomes reveal common roles of genomic imprinting in both nuclear and cellular endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1084-1101. [PMID: 29953688 DOI: 10.1111/tpj.14012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 05/06/2023]
Abstract
Genomic imprinting is a conspicuous feature of the endosperm, a triploid tissue nurturing the embryo and synchronizing angiosperm seed development. An unknown subset of imprinted genes (IGs) is critical for successful seed development and should have highly conserved functions. Recent genome-wide studies have found limited conservation of IGs among distantly related species, but there is a paucity of data from closely related lineages. Moreover, most studies focused on model plants with nuclear endosperm development, and comparisons with properties of IGs in cellular-type endosperm development are lacking. Using laser-assisted microdissection, we characterized parent-specific expression in the cellular endosperm of three wild tomato lineages (Solanum section Lycopersicon). We identified 1025 candidate IGs and 167 with putative homologs previously identified as imprinted in distantly related taxa with nuclear-type endosperm. Forty-two maternally expressed genes (MEGs) and 17 paternally expressed genes (PEGs) exhibited conserved imprinting status across all three lineages, but differences in power to assess imprinted expression imply that the actual degree of conservation might be higher than that directly estimated (20.7% for PEGs and 10.4% for MEGs). Regardless, the level of shared imprinting status was higher for PEGs than for MEGs, indicating dissimilar evolutionary trajectories. Expression-level data suggest distinct epigenetic modulation of MEGs and PEGs, and gene ontology analyses revealed MEGs and PEGs to be enriched for different functions. Importantly, our data provide evidence that MEGs and PEGs interact in modulating both gene expression and the endosperm cell cycle, and uncovered conserved cellular functions of IGs uniting taxa with cellular- and nuclear-type endosperm.
Collapse
Affiliation(s)
- Morgane Roth
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Ana M Florez-Rueda
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Margot Paris
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Thomas Städler
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
16
|
Meng D, Zhao J, Zhao C, Luo H, Xie M, Liu R, Lai J, Zhang X, Jin W. Sequential gene activation and gene imprinting during early embryo development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:445-459. [PMID: 29172230 DOI: 10.1111/tpj.13786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 05/05/2023]
Abstract
Gene imprinting is a widely observed epigenetic phenomenon in maize endosperm; however, whether it also occurs in the maize embryo remains controversial. Here, we used high-throughput RNA sequencing on laser capture microdissected and manually dissected maize embryos from reciprocal crosses between inbred lines B73 and Mo17 at six time points (3-13 days after pollination, DAP) to analyze allelic gene expression patterns. Co-expression analysis revealed sequential gene activation during maize embryo development. Gene imprinting was observed in maize embryos, and a greater number of imprinted genes were identified at early embryo stages. Sixty-four strongly imprinted genes were identified (at the threshold of 9:1) on manually dissected embryos 5-13 DAP (more imprinted genes at 5 DAP). Forty-one strongly imprinted genes were identified from laser capture microdissected embryos at 3 and 5 DAP (more imprinted genes at 3 DAP). Furthermore, of the 56 genes that were completely imprinted (at the threshold of 99:1), 36 were not previously identified as imprinted genes in endosperm or embryos. In situ hybridization demonstrated that most of the imprinted genes were expressed abundantly in maize embryonic tissue. Our results shed lights on early maize embryo development and provide evidence to support that gene imprinting occurs in maize embryos.
Collapse
Affiliation(s)
- Dexuan Meng
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Jianyu Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Cheng Zhao
- Shanghai Centre for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haishan Luo
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Mujiao Xie
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Renyi Liu
- Shanghai Centre for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jinsheng Lai
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| |
Collapse
|
17
|
EARLY FLOWERING IN SHORT DAYS (EFS) regulates the seed size in Arabidopsis. SCIENCE CHINA-LIFE SCIENCES 2018; 61:214-224. [PMID: 29372509 DOI: 10.1007/s11427-017-9236-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/16/2017] [Indexed: 10/18/2022]
Abstract
Post-transcriptional modifications, including histone modifications and DNA methylation, alter the chromatin landscape to regulate gene expression, thus control various cellular processes in plants. EARLY FLOWERING IN SHORT DAYS (EFS) is the major contributor for H3K36 methylation in Arabidopsis and is important for plant development. Here, we find that EFS is expressed in different stages of embryo morphogenesis, and the efs mutant produces larger embryo that results in enlarged seeds. Further analysis reveals that an imprinted gene MOP9.5 is hypomethylated at the promoter region and its expression is derepressed in efs mutant. MOP9.5 promoter is marked by various epigenetic modifications, and we find that following the increase of H3K36me3, H3K27me3 and H3K9me2 levels are reduced in efs mutant. This data indicates an antagonistic regulation between H3K36me3 and DNA methylation, and/or H3K27me3 at MOP9.5. Our results further show that both maternal and paternal EFS alleles are responsible for the seed size regulation, which unraveled a novel function of EFS in plant development.
Collapse
|
18
|
Pires ND, Grossniklaus U. Identification of Parent-of-Origin-Dependent QTLs Using Bulk-Segregant Sequencing (Bulk-Seq). Methods Mol Biol 2018; 1675:361-371. [PMID: 29052202 DOI: 10.1007/978-1-4939-7318-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Parent-of-origin effects play important roles in plant reproduction and are often mediated by epigenetic modifications at the histone or DNA level. However, the genetic basis underlying these modifications can be challenging to identify. Here, we describe an approach (Bulk-Seq) that can be used to map loci mediating parent-of-origin-dependent effects using whole-genome sequencing of pools of DNA.
Collapse
Affiliation(s)
- Nuno D Pires
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland.
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| |
Collapse
|
19
|
Giovannoni J, Nguyen C, Ampofo B, Zhong S, Fei Z. The Epigenome and Transcriptional Dynamics of Fruit Ripening. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:61-84. [PMID: 28226232 DOI: 10.1146/annurev-arplant-042916-040906] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fruit has evolved myriad forms that facilitate seed dispersal in varied environmental and ecological contexts. Because fleshy fruits become attractive and nutritious to seed-dispersing animals, the transition from unripe to ripe fruit represents a dramatic shift in survival strategy-from protecting unripe fruit against damaging animals to making it appealing to those same animals once ripened. For optimal fitness, ripening therefore must be tightly controlled and coordinated with seed development. Fruits, like many vegetative tissues of plants that contribute to human diets, are also subject to decay, which is enhanced as a consequence of the ripening transition. As such, ripening control has enormous relevance for both plant biology and food security. Here, we review the complex interactions of hormones and transcription factors during fleshy-fruit ripening, with an emphasis on the recent discovery that epigenome dynamics are a critical and early regulator of the cascade of molecular events that ultimately contribute to fruit maturation and ripening.
Collapse
Affiliation(s)
- James Giovannoni
- Robert W. Holley Center, US Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853;
- Boyce Thompson Institute, Ithaca, New York 14853;
- School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853; ,
| | - Cuong Nguyen
- School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853; ,
| | - Betsy Ampofo
- School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853; ,
| | - Silin Zhong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, New York 14853;
| |
Collapse
|
20
|
Singh J, Clavijo Michelangeli JA, Gezan SA, Lee H, Vallejos CE. Maternal Effects on Seed and Seedling Phenotypes in Reciprocal F 1 Hybrids of the Common Bean ( Phaseolus vulgaris L.). FRONTIERS IN PLANT SCIENCE 2017; 8:42. [PMID: 28174586 PMCID: PMC5259735 DOI: 10.3389/fpls.2017.00042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/09/2017] [Indexed: 05/21/2023]
Abstract
Maternal control of seed size in the common bean provides an opportunity to study genotype-independent seed weight effects on early seedling growth and development. We set out to test the hypothesis that the early heterotrophic growth of bean seedlings is determined by both the relative amount of cotyledon storage reserves and the genotype of the seedling, provided the hybrid genotype could be fully expressed in the seedlings. The hypothesis was tested via comparison of seed weight and seedling growth phenotypes of small-seeded (wild, ~0.10 g) and large-seeded (landrace, ~0.55 g) parents and their reciprocal F1 hybrids. Akaike's Information Criteria were used to estimate growth parameters and identify the phenotypic model that best represented the data. The analysis presented here indicates that the hybrid embryo genotype is not fully expressed during both seed and seedling growth and development. The analysis presented here shows that seed growth and development are controlled by the sporophyte. The strong similarity in seed size and shape of the reciprocal hybrid seed with seeds of the maternal parents is evidence of this control. The analysis also indicates that since the maternal sporophyte controls seed size and therefore the amount of cotyledon reserves, the maternal sporophyte indirectly controls early seedling growth because the cotyledons are the primary nutrient source during heterotrophic growth. The most interesting and surprising results indicated that the maternal effects extended to the root architecture of the reciprocal hybrid seedlings. This phenomenon could not be explained by seed size, but by alterations in the control of the pattern of gene expression of the seedling, which apparently was set by a maternally controlled mechanism. Although seed weight increase was the main target of bean domestication, it also had positive repercussions on early-growth traits and stand establishment.
Collapse
Affiliation(s)
- Jugpreet Singh
- Department of Horticultural Sciences, University of FloridaGainesville, FL, USA
| | | | - Salvador A. Gezan
- School of Forest Resources and Conservation, University of FloridaGainesville, FL, USA
| | - Hyungwon Lee
- Department of Horticultural Sciences, University of FloridaGainesville, FL, USA
| | - C. Eduardo Vallejos
- Department of Horticultural Sciences, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| |
Collapse
|
21
|
Abstract
We have witnessed an explosion in our understanding of the evolution and structure of plant genomes in recent years. Here, we highlight three important emergent realizations: (1) that the evolutionary history of all plant genomes contains multiple, cyclical episodes of whole-genome doubling that were followed by myriad fractionation processes; (2) that the vast majority of the variation in genome size reflects the dynamics of proliferation and loss of lineage-specific transposable elements; and (3) that various classes of small RNAs help shape genomic architecture and function. We illustrate ways in which understanding these organism-level and molecular genetic processes can be used for crop plant improvement.
Collapse
Affiliation(s)
- Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA.,Division of Plant Sciences, University of Missouri-Columbia, 52 Agriculture Laboratory, Columbia, MO, 65211, USA
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, Tucson, AZ, 85750, USA.,T.T. Chang Genetic Resource Center, International Rice Research Institute, Los Baños, Laguna, Philippines
| |
Collapse
|
22
|
Del Toro-De León G, Lepe-Soltero D, Gillmor CS. Zygotic genome activation in isogenic and hybrid plant embryos. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:148-53. [PMID: 26802806 DOI: 10.1016/j.pbi.2015.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 05/24/2023]
Abstract
Zygotic genome activation (ZGA) is the onset of large-scale transcription that occurs after fertilization. In animal embryos, ZGA occurs after a period of transcriptional quiescence that varies between species. In plants, the timing of ZGA may also vary between species, and may or may not occur in a parent-of-origin dependent manner: some studies have shown a maternal bias in mRNA transcripts and gene activity in early embryogenesis, while other experiments have found the contribution of maternal and paternal genomes to be equal. In order to differentiate between maternal and paternal mRNAs, RNA sequencing studies of ZGA in plants have used embryos hybrid for polymorphic accessions. A recent genetic assay in Arabidopsis demonstrated significant variation in paternal allele activity between some hybrid combinations and isogenic embryos, as well as between different hybrid combinations, suggesting a possible source for conflicting results obtained by various experiments on paternal genome activation. We review recent literature on paternal genome activation studies in the zygote in both isogenic and hybrid embryos, and discuss possible explanations for the effects of hybridization on gene expression in early embryogenesis in plants.
Collapse
Affiliation(s)
- Gerardo Del Toro-De León
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Daniel Lepe-Soltero
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México.
| |
Collapse
|
23
|
Gallusci P, Hodgman C, Teyssier E, Seymour GB. DNA Methylation and Chromatin Regulation during Fleshy Fruit Development and Ripening. FRONTIERS IN PLANT SCIENCE 2016; 7:807. [PMID: 27379113 PMCID: PMC4905957 DOI: 10.3389/fpls.2016.00807] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/23/2016] [Indexed: 05/19/2023]
Abstract
Fruit ripening is a developmental process that results in the leaf-like carpel organ of the flower becoming a mature ovary primed for dispersal of the seeds. Ripening in fleshy fruits involves a profound metabolic phase change that is under strict hormonal and genetic control. This work reviews recent developments in our understanding of the epigenetic regulation of fruit ripening. We start by describing the current state of the art about processes involved in histone post-translational modifications and the remodeling of chromatin structure and their impact on fruit development and ripening. However, the focus of the review is the consequences of changes in DNA methylation levels on the expression of ripening-related genes. This includes those changes that result in heritable phenotypic variation in the absence of DNA sequence alterations, and the mechanisms for their initiation and maintenance. The majority of the studies described in the literature involve work on tomato, but evidence is emerging that ripening in other fruit species may also be under epigenetic control. We discuss how epigenetic differences may provide new targets for breeding and crop improvement.
Collapse
Affiliation(s)
- Philippe Gallusci
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux Villenave d’Ornon, France
- *Correspondence: Philippe Gallusci,
| | - Charlie Hodgman
- School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Emeline Teyssier
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux Villenave d’Ornon, France
| | - Graham B. Seymour
- School of Biosciences, University of Nottingham Sutton Bonington, UK
| |
Collapse
|
24
|
Tricker PJ. Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin. FRONTIERS IN PLANT SCIENCE 2015; 6:699. [PMID: 26442015 PMCID: PMC4561384 DOI: 10.3389/fpls.2015.00699] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/21/2015] [Indexed: 05/06/2023]
Abstract
The transgenerational inheritance of stress-induced epigenetic modifications is still controversial. Despite several examples of defense "priming" and induced genetic rearrangements, the involvement and persistence of transgenerational epigenetic modifications is not known to be general. Here I argue that non-transmission of epigenetic marks through meiosis may be regarded as an epigenetic modification in itself, and that we should understand the implications for plant evolution in the context of both selection for and selection against transgenerational epigenetic memory. Recent data suggest that both epigenetic inheritance and resetting are mechanistically directed and targeted. Stress-induced epigenetic modifications may buffer against DNA sequence-based evolution to maintain plasticity, or may form part of plasticity's adaptive potential. To date we have tended to concentrate on the question of whether and for how long epigenetic memory persists. I argue that we should now re-direct our question to investigate the differences between where it persists and where it does not, to understand the higher order evolutionary methods in play and their contribution.
Collapse
Affiliation(s)
- Penny J. Tricker
- *Correspondence: Penny J. Tricker, Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Hartley Grove, Urrbrae, SA 5064, Australia,
| |
Collapse
|