1
|
Chen J, Xu X, Liu W, Feng Z, Chen Q, Zhou Y, Sun M, Gan L, Zhou T, Xuan Y. Plasmodesmata Function and Callose Deposition in Plant Disease Defense. PLANTS (BASEL, SWITZERLAND) 2024; 13:2242. [PMID: 39204678 PMCID: PMC11359699 DOI: 10.3390/plants13162242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Callose, found in the cell walls of higher plants such as β-1,3-glucan with β-1,6 branches, is pivotal for both plant development and responses to biotic and abiotic stressors. Plasmodesmata (PD), membranous channels linking the cytoplasm, plasma membrane, and endoplasmic reticulum of adjacent cells, facilitate molecular transport, crucial for developmental and physiological processes. The regulation of both the structural and transport functions of PD is intricate. The accumulation of callose in the PD neck is particularly significant for the regulation of PD permeability. This callose deposition, occurring at a specific site of pathogenic incursion, decelerates the invasion and proliferation of pathogens by reducing the PD pore size. Scholarly investigations over the past two decades have illuminated pathogen-induced callose deposition and the ensuing PD regulation. This gradual understanding reveals the complex regulatory interactions governing defense-related callose accumulation and protein-mediated PD regulation, underscoring its role in plant defense. This review systematically outlines callose accumulation mechanisms and enzymatic regulation in plant defense and discusses PD's varied participation against viral, fungal, and bacterial infestations. It scrutinizes callose-induced structural changes in PD, highlighting their implications for plant immunity. This review emphasizes dynamic callose calibration in PD constrictions and elucidates the implications and potential challenges of this intricate defense mechanism, integral to the plant's immune system.
Collapse
Affiliation(s)
- Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Xiaofeng Xu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China;
| | - Wei Liu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Ziyang Feng
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Quan Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - You Zhou
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Miao Sun
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Liping Gan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Tiange Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhu Xuan
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China;
| |
Collapse
|
2
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Michalak KM, Wojciechowska N, Marzec-Schmidt K, Bagniewska-Zadworna A. Conserved autophagy and diverse cell wall composition: unifying features of vascular tissues in evolutionarily distinct plants. ANNALS OF BOTANY 2024; 133:559-572. [PMID: 38324309 PMCID: PMC11037490 DOI: 10.1093/aob/mcae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND AND AIMS The formation of multifunctional vascular tissues represents a significant advancement in plant evolution. Differentiation of conductive cells is specific, involving two main pathways, namely protoplast clearance and cell wall modification. In xylogenesis, autophagy is a crucial process for complete protoplast elimination in tracheary elements, whose cell wall also undergoes strong changes. Knowledge pertaining to living sieve elements, which lose most of their protoplast during phloemogenesis, remains limited. We hypothesized that autophagy plays a crucial role, not only in complete cytoplasmic clearance in xylem but also in partial degradation in phloem. Cell wall elaborations of mature sieve elements are not so extensive. These analyses performed on evolutionarily diverse model species potentially make it possible to understand phloemogenesis to an equal extent to xylogenesis. METHODS We investigated the distribution of ATG8 protein, which is an autophagy marker, and cell wall components in the roots of ferns, gymnosperms and angiosperms (monocots, dicot herbaceous plants and trees). Furthermore, we conducted a bioinformatic analysis of complete data on ATG8 isoforms for Ceratopteris richardii. KEY RESULTS The presence of ATG8 protein was confirmed in both tracheary elements and sieve elements; however, the composition of cell wall components varied considerably among vascular tissues in the selected plants. Arabinogalactan proteins and β-1,4-galactan were detected in the roots of all studied species, suggesting their potential importance in phloem formation or function. In contrast, no evolutionary pattern was observed for xyloglucan, arabinan or homogalacturonan. CONCLUSIONS Our findings indicate that the involvement of autophagy in plants is universal during the development of tracheary elements that are dead at maturity and sieve elements that remain alive. Given the conserved nature of autophagy and its function in protoplast degradation for uninterrupted flow, autophagy might have played a vital role in the development of increasingly complex biological organizations, including the formation of vascular tissues. However, different cell wall compositions of xylem and phloem in different species might indicate diverse functionality and potential for substance transport, which is crucial in plant evolution.
Collapse
Affiliation(s)
- Kornel M Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
4
|
Hsieh YSY, Kao MR, Tucker MR. The knowns and unknowns of callose biosynthesis in terrestrial plants. Carbohydr Res 2024; 538:109103. [PMID: 38555659 DOI: 10.1016/j.carres.2024.109103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Callose, a linear (1,3)-β-glucan, is an indispensable carbohydrate polymer required for plant growth and development. Advances in biochemical, genetic, and genomic tools, along with specific antibodies, have significantly enhanced our understanding of callose biosynthesis. As additional components of the callose synthase machinery emerge, the elucidation of molecular biosynthetic mechanisms is expected to follow. Short-term objectives involve defining the stoichiometry and turnover rates of callose synthase subunits. Long-term goals include generating recombinant callose synthases to elucidate their biochemical properties and molecular mechanisms, potentially culminating in the determination of callose synthase three-dimensional structure. This review delves into the structures and intricate molecular processes underlying callose biosynthesis, emphasizing regulatory elements and assembly mechanisms.
Collapse
Affiliation(s)
- Yves S Y Hsieh
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91, Stockholm, Sweden; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan.
| | - Mu-Rong Kao
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91, Stockholm, Sweden; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia.
| |
Collapse
|
5
|
Domozych DS, LoRicco JG. The extracellular matrix of green algae. PLANT PHYSIOLOGY 2023; 194:15-32. [PMID: 37399237 PMCID: PMC10762512 DOI: 10.1093/plphys/kiad384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Green algae display a wide range of extracellular matrix (ECM) components that include various types of cell walls (CW), scales, crystalline glycoprotein coverings, hydrophobic compounds, and complex gels or mucilage. Recently, new information derived from genomic/transcriptomic screening, advanced biochemical analyses, immunocytochemical studies, and ecophysiology has significantly enhanced and refined our understanding of the green algal ECM. In the later diverging charophyte group of green algae, the CW and other ECM components provide insight into the evolution of plants and the ways the ECM modulates during environmental stress. Chlorophytes produce diverse ECM components, many of which have been exploited for various uses in medicine, food, and biofuel production. This review highlights major advances in ECM studies of green algae.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | | |
Collapse
|
6
|
Gan P, Li P, Zhang X, Li H, Ma S, Zong D, He C. Comparative Transcriptomic and Metabolomic Analyses of Differences in Trunk Spiral Grain in Pinus yunnanensis. Int J Mol Sci 2023; 24:14658. [PMID: 37834105 PMCID: PMC10572851 DOI: 10.3390/ijms241914658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Having a spiral grain is considered to be one of the most important wood properties influencing wood quality. Here, transcriptome profiles and metabolome data were analyzed in the straight grain and twist grain of Pinus yunnanensis. A total of 6644 differential expression genes were found between the straight type and the twist type. A total of 126 differentially accumulated metabolites were detected. There were 24 common differential pathways identified from the transcriptome and metabolome, and these pathways were mainly annotated in ABC transporters, arginine and proline metabolism, flavonoid biosynthesis, isoquinoline alkaloid biosynthesis, linoleic acid metabolism, phenylpropanoid, tryptophan metabolism, etc. A weighted gene coexpression network analysis showed that the lightblue4 module was significantly correlated with 2'-deoxyuridine and that transcription factors (basic leucine zipper (bZIP), homeodomain leucine zipper (HD-ZIP), basic helix-loop-helix (bHLH), p-coumarate 3-hydroxylase (C3H), and N-acetylcysteine (NAC)) play important roles in regulating 2'-deoxyuridine, which may be involved in the formation of spiral grains. Meanwhile, the signal transduction of hormones may be related to spiral grain, as previously reported. ARF7 and MKK4_5, as indoleacetic acid (IAA)- and ethylene (ET)-related receptors, may explain the contribution of plant hormones in spiral grain. This study provided useful information on spiral grain in P. yunnanensis by transcriptome and metabolome analyses and could lay the foundation for future molecular breeding.
Collapse
Affiliation(s)
- Peihua Gan
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Peiling Li
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xiaolin Zhang
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Hailin Li
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Shaojie Ma
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Dan Zong
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China
| | - Chengzhong He
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
7
|
Zexer N, Kumar S, Elbaum R. Silica deposition in plants: scaffolding the mineralization. ANNALS OF BOTANY 2023; 131:897-908. [PMID: 37094329 PMCID: PMC10332400 DOI: 10.1093/aob/mcad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Silicon and aluminium oxides make the bulk of agricultural soils. Plants absorb dissolved silicon as silicic acid into their bodies through their roots. The silicic acid moves with transpiration to target tissues in the plant body, where it polymerizes into biogenic silica. Mostly, the mineral forms on a matrix of cell wall polymers to create a composite material. Historically, silica deposition (silicification) was supposed to occur once water evaporated from the plant surface, leaving behind an increased concentration of silicic acid within plant tissues. However, recent publications indicate that certain cell wall polymers and proteins initiate and control the extent of plant silicification. SCOPE Here we review recent publications on the polymers that scaffold the formation of biogenic plant silica, and propose a paradigm shift from spontaneous polymerization of silicic acid to dedicated active metabolic processes that control both the location and the extent of the mineralization. CONCLUSION Protein activity concentrates silicic acid beyond its saturation level. Polymeric structures at the cell wall stabilize the supersaturated silicic acid and allow its flow with the transpiration stream, or bind it and allow its initial condensation. Silica nucleation and further polymerization are enabled on a polymeric scaffold, which is embedded within the mineral. Deposition is terminated once free silicic acid is consumed or the chemical moieties for its binding are saturated.
Collapse
Affiliation(s)
- Nerya Zexer
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Santosh Kumar
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Zuarinagar 403726, Goa, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
| | - Rivka Elbaum
- R. H. Smith Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
8
|
Paulmann MK, Wegner L, Gershenzon J, Furch ACU, Kunert G. Pea Aphid ( Acyrthosiphon pisum) Host Races Reduce Heat-Induced Forisome Dispersion in Vicia faba and Trifolium pratense. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091888. [PMID: 37176952 PMCID: PMC10181200 DOI: 10.3390/plants12091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Although phloem-feeding insects such as aphids can cause significant damage to plants, relatively little is known about early plant defenses against these insects. As a first line of defense, legumes can stop the phloem mass flow through a conformational change in phloem proteins known as forisomes in response to Ca2+ influx. However, specialized phloem-feeding insects might be able to suppress the conformational change of forisomes and thereby prevent sieve element occlusion. To investigate this possibility, we triggered forisome dispersion through application of a local heat stimulus to the leaf tips of pea (Pisum sativum), clover (Trifolium pratense) and broad bean (Vicia faba) plants infested with different pea aphid (Acyrthosiphon pisum) host races and monitored forisome responses. Pea aphids were able to suppress forisome dispersion, but this depended on the infesting aphid host race, the plant species, and the age of the plant. Differences in the ability of aphids to suppress forisome dispersion may be explained by differences in the composition and quantity of the aphid saliva injected into the plant. Various mechanisms of how pea aphids might suppress forisome dispersion are discussed.
Collapse
Affiliation(s)
- Maria K Paulmann
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany
- Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich Schiller University Jena, Dornburger Straße 159, D-07743 Jena, Germany
| | - Linus Wegner
- Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich Schiller University Jena, Dornburger Straße 159, D-07743 Jena, Germany
- Institute of Botany, Justus Liebig University, Heinrich-Buff-Ring 38, 35292 Giessen, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Alexandra C U Furch
- Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich Schiller University Jena, Dornburger Straße 159, D-07743 Jena, Germany
| | - Grit Kunert
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| |
Collapse
|
9
|
Sangi S, Olimpio GV, Coelho FS, Alexandrino CR, Da Cunha M, Grativol C. Flagellin and mannitol modulate callose biosynthesis and deposition in soybean seedlings. PHYSIOLOGIA PLANTARUM 2023; 175:e13877. [PMID: 36811487 DOI: 10.1111/ppl.13877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Callose is a polymer deposited on the cell wall and is necessary for plant growth and development. Callose is synthesized by genes from the glucan synthase-like family (GSL) and dynamically responds to various types of stress. Callose can inhibit pathogenic infection, in the case of biotic stresses, and maintain cell turgor and stiffen the plant cell wall in abiotic stresses. Here, we report the identification of 23 GSL genes (GmGSL) in the soybean genome. We performed phylogenetic analyses, gene structure prediction, duplication patterns, and expression profiles on several RNA-Seq libraries. Our analyses show that WGD/Segmental duplication contributed to expanding this gene family in soybean. Next, we analyzed the callose responses in soybean under abiotic and biotic stresses. The data show that callose is induced by both osmotic stress and flagellin 22 (flg22) and is related to the activity of β-1,3-glucanases. By using RT-qPCR, we evaluated the expression of GSL genes during the treatment of soybean roots with mannitol and flg22. The GmGSL23 gene was upregulated in seedlings treated with osmotic stress or flg22, showing the essential role of this gene in the soybean defense response to pathogenic organisms and osmotic stress. Our results provide an important understanding of the role of callose deposition and regulation of GSL genes in response to osmotic stress and flg22 infection in soybean seedlings.
Collapse
Affiliation(s)
- Sara Sangi
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Geovanna Vitória Olimpio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Fernanda Silva Coelho
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Camilla R Alexandrino
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Maura Da Cunha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Clícia Grativol
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
10
|
German L, Yeshvekar R, Benitez‐Alfonso Y. Callose metabolism and the regulation of cell walls and plasmodesmata during plant mutualistic and pathogenic interactions. PLANT, CELL & ENVIRONMENT 2023; 46:391-404. [PMID: 36478232 PMCID: PMC10107507 DOI: 10.1111/pce.14510] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Cell walls are essential for plant growth and development, providing support and protection from external environments. Callose is a glucan that accumulates in specialized cell wall microdomains including around intercellular pores called plasmodesmata. Despite representing a small percentage of the cell wall (~0.3% in the model plant Arabidopsis thaliana), callose accumulation regulates important biological processes such as phloem and pollen development, cell division, organ formation, responses to pathogenic invasion and to changes in nutrients and toxic metals in the soil. Callose accumulation modifies cell wall properties and restricts plasmodesmata aperture, affecting the transport of signaling proteins and RNA molecules that regulate plant developmental and environmental responses. Although the importance of callose, at and outside plasmodesmata cell walls, is widely recognized, the underlying mechanisms controlling changes in its synthesis and degradation are still unresolved. In this review, we explore the most recent literature addressing callose metabolism with a focus on the molecular factors affecting callose accumulation in response to mutualistic symbionts and pathogenic elicitors. We discuss commonalities in the signaling pathways, identify research gaps and highlight opportunities to target callose in the improvement of plant responses to beneficial versus pathogenic microbes.
Collapse
Affiliation(s)
- Liam German
- Centre for Plant Sciences, School of BiologyUniversity of LeedsLeedsUK
| | - Richa Yeshvekar
- Centre for Plant Sciences, School of BiologyUniversity of LeedsLeedsUK
| | | |
Collapse
|
11
|
Zhong W, Zheng C, Dong L, Kang L, Yang F. The maize callose synthase SLM1 is critical for a normal growth by controlling the vascular development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:2. [PMID: 37312868 PMCID: PMC10248632 DOI: 10.1007/s11032-022-01350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 06/15/2023]
Abstract
Callose, mainly deposited at the cell plate and in the newly formed cell wall at a very low level, is critical for cell activity and growth in plants. The genetic control and function of callose synthases, responsible for the synthesis of callose, are largely unknown in maize. In this study, we cloned a maize callose synthase, SLM1 (Seedling Lethal Mutant1) encoding for a GLUCAN SYNTHASE-LIKE (GSL) gene, from a seedling lethal mutant. Three different point mutations confirmed the key role of SLM1 to maintain maize normal growth. SLM1 was specifically expressed in immature leaf vascular with an enrichment in phloem of developing vasculature. Consistently, slm1 had severe defects in vasculature and leaf development, and terminated growth about 2 weeks after germination. Thus, SLM1 is a key gene to maintain normal growth by controlling leaf vascular development and cell activities. Loss of SLM1 function interrupted severely the important signaling pathways in which cell cyclin and histone related genes are involved. Our study reveals the critical function of a maize GSL gene and also its downstream signaling to maintain a normal growth of maize. Supplementary information The online version contains supplementary material available at 10.1007/s11032-022-01350-4.
Collapse
Affiliation(s)
- Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Chang Zheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Liang Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Lu Kang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
12
|
Kim SJ, Brandizzi F. Microscopy and Immunocytochemistry-Based Methods to Study Cell Wall Biosynthetic Enzymes in the Golgi. Methods Mol Biol 2022; 2557:39-51. [PMID: 36512208 DOI: 10.1007/978-1-0716-2639-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Golgi apparatus has essential roles in all eukaryotic cells, and its importance in plants is further exemplified by a critical role in building a cellulosic cell wall. The Golgi apparatus houses numerous cell wall-synthesizing or cell wall-modifying enzymes to generate the complex cell wall structure. However, several putative cell wall biosynthetic candidates await characterization, which requires verification of the subcellular localization and enzymatic products. Here, we describe detailed methods to analyze the localization of proteins that are transiently produced in tobacco leaves or stably produced in transgenic plants, by confocal microscopy using fluorescent-tagged proteins along with known Golgi markers or the trafficking inhibitor brefeldin A. We also detail a procedure to analyze the enzymatic products through antibody-based immunoblotting after cell wall enrichment.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.,MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA. .,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA. .,MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
13
|
Janas AB, Marciniuk J, Szeląg Z, Musiał K. New facts about callose events in the young ovules of some sexual and apomictic species of the Asteraceae family. PROTOPLASMA 2022; 259:1553-1565. [PMID: 35304670 DOI: 10.1007/s00709-022-01755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Callose (β-1,3-glucan) is one of the cell wall polymers that plays an important role in many biological processes in plants, including reproductive development. In angiosperms, timely deposition and degradation of callose during sporogenesis accompanies the transition of cells from somatic to generative identity. However, knowledge on the regulation of callose biosynthesis at specific sites of the megasporocyte wall remains limited and the data on its distribution are not conclusive. Establishing the callose deposition pattern in a large number of species can contribute to full understanding of its function in reproductive development. Previous studies focused on callose events in sexual species and only a few concerned apomicts. The main goal of our research was to establish and compare the pattern of callose deposition during early sexual and diplosporous processes in the ovules of some Hieracium, Pilosella and Taraxacum (Asteraceae) species; aniline blue staining technique was used for this purpose. Our findings indicate that callose deposition accompanies both meiotic and diplosporous development of the megaspore mother cell. This suggests that it has similar regulatory functions in intercellular communication regardless of the mode of reproduction. Interestingly, callose deposition followed a different pattern in the studied sexual and diplosporous species compared to most angiosperms as it usually began at the micropylar pole of the megasporocyte. Here, it was only in sexually reproducing H. transylvanicum that callose first appeared at the chalazal pole of the megasporocyte. The present paper additionally discusses the occurrence of aposporous initial cells with callose-rich walls in the ovules of diploid species.
Collapse
Affiliation(s)
- Agnieszka B Janas
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Cracow, Poland.
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Cracow, Poland.
| | - Jolanta Marciniuk
- Faculty of Exact and Natural Science, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110, Siedlce, Poland
| | - Zbigniew Szeląg
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Cracow, Poland
| | - Krystyna Musiał
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Cracow, Poland
| |
Collapse
|
14
|
Pfeifer L, Mueller KK, Classen B. The cell wall of hornworts and liverworts: innovations in early land plant evolution? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4454-4472. [PMID: 35470398 DOI: 10.1093/jxb/erac157] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
An important step for plant diversification was the transition from freshwater to terrestrial habitats. The bryophytes and all vascular plants share a common ancestor that was probably the first to adapt to life on land. A polysaccharide-rich cell wall was necessary to cope with newly faced environmental conditions. Therefore, some pre-requisites for terrestrial life have to be shared in the lineages of modern bryophytes and vascular plants. This review focuses on hornwort and liverwort cell walls and aims to provide an overview on shared and divergent polysaccharide features between these two groups of bryophytes and vascular plants. Analytical, immunocytochemical, and bioinformatic data were analysed. The major classes of polysaccharides-cellulose, hemicelluloses, and pectins-seem to be present but have diversified structurally during evolution. Some polysaccharide groups show structural characteristics which separate hornworts from the other bryophytes or are too poorly studied in detail to be able to draw absolute conclusions. Hydroxyproline-rich glycoprotein backbones are found in hornworts and liverworts, and show differences in, for example, the occurrence of glycosylphosphatidylinositol (GPI)-anchored arabinogalactan-proteins, while glycosylation is practically unstudied. Overall, the data are an appeal to researchers in the field to gain more knowledge on cell wall structures in order to understand the changes with regard to bryophyte evolution.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| | - Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| |
Collapse
|
15
|
Zhang J, Liu N, Yan A, Sun T, Sun X, Yao G, Xiao D, Li W, Hou C, Yang C, Wang D. Callose deposited at soybean sieve element inhibits long-distance transport of Soybean mosaic virus. AMB Express 2022; 12:66. [PMID: 35660979 PMCID: PMC9167352 DOI: 10.1186/s13568-022-01402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
The function of callose and its deposition characteristics at phloem in the resistance to the long-distance transportation of Soybean mosaic virus (SMV) through phloem was studied. Two different methods of SMV inoculation were used in the study, one was direct friction of the virus on seedling leaves and the other was based on grafting scion and rootstock to create different resistance and sensitivity combinations. Veins, petioles of inoculated leaves and rootstock stems were stained with callose specific dye. Results from fluorescence microscope observation, pharmacological test, and PCR detection of SMV coat protein gene (SMV-CP) showed the role of callose in long-distance transportation of SMV through phloem during infection of soybean seedlings. When the inhibitor of callose synthesis 2-deoxy-D-glucose (2-DDG) was used, the accumulation of callose fluorescence could hardly be detected in the resistant rootstocks. These results indicate that callose deposition in phloem restricts the long-distance transport of SMV, and that the accumulation of callose in phloem is a main contributing factor for resistance to this virus in soybean.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/ Hebei Key Laboratory of Plant Physiology and Molecular Pathology/College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
| | - Na Liu
- State Key Laboratory of North China Crop Improvement and Regulation/ Hebei Key Laboratory of Plant Physiology and Molecular Pathology/College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
| | - Aihua Yan
- State Key Laboratory of North China Crop Improvement and Regulation/ Hebei Key Laboratory of Plant Physiology and Molecular Pathology/College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
| | - Tianjie Sun
- State Key Laboratory of North China Crop Improvement and Regulation/ Hebei Key Laboratory of Plant Physiology and Molecular Pathology/College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
| | - Xizhe Sun
- State Key Laboratory of North China Crop Improvement and Regulation/ Hebei Key Laboratory of Plant Physiology and Molecular Pathology/College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
| | - Guibin Yao
- State Key Laboratory of North China Crop Improvement and Regulation/ Hebei Key Laboratory of Plant Physiology and Molecular Pathology/College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
| | - Dongqiang Xiao
- State Key Laboratory of North China Crop Improvement and Regulation/ Hebei Key Laboratory of Plant Physiology and Molecular Pathology/College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation/ Hebei Key Laboratory of Plant Physiology and Molecular Pathology/College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
| | - Chunyan Hou
- State Key Laboratory of North China Crop Improvement and Regulation/ Hebei Key Laboratory of Plant Physiology and Molecular Pathology/College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
| | - Chunyan Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035 China
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation/ Hebei Key Laboratory of Plant Physiology and Molecular Pathology/College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
| |
Collapse
|
16
|
Wang Y, Zhao K, Chen Y, Wei Q, Chen X, Wan H, Sun C. Species-Specific Gene Expansion of the Cellulose synthase Gene Superfamily in the Orchidaceae Family and Functional Divergence of Mannan Synthesis-Related Genes in Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2022; 13:777332. [PMID: 35720557 PMCID: PMC9204230 DOI: 10.3389/fpls.2022.777332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Plant Cellulose synthase genes constitute a supergene family that includes the Cellulose synthase (CesA) family and nine Cellulose synthase-like (Csl) families, the members of which are widely involved in the biosynthesis of cellulose and hemicellulose. However, little is known about the Cellulose synthase superfamily in the family Orchidaceae, one of the largest families of angiosperms. In the present study, we identified and systematically analyzed the CesA/Csl family members in three fully sequenced Orchidaceae species, i.e., Dendrobium officinale, Phalaenopsis equestris, and Apostasia shenzhenica. A total of 125 Cellulose synthase superfamily genes were identified in the three orchid species and classified into one CesA family and six Csl families: CslA, CslC, CslD, CslE, CslG, and CslH according to phylogenetic analysis involving nine representative plant species. We found species-specific expansion of certain gene families, such as the CslAs in D. officinale (19 members). The CesA/Csl families exhibited sequence divergence and conservation in terms of gene structure, phylogeny, and deduced protein sequence, indicating multiple origins via different evolutionary processes. The distribution of the DofCesA/DofCsl genes was investigated, and 14 tandemly duplicated genes were detected, implying that the expansion of DofCesA/DofCsl genes may have originated via gene duplication. Furthermore, the expression profiles of the DofCesA/DofCsl genes were investigated using transcriptome sequencing and quantitative Real-time PCR (qRT-PCR) analysis, which revealed functional divergence in different tissues and during different developmental stages of D. officinale. Three DofCesAs were highly expressed in the flower, whereas DofCslD and DofCslC family genes exhibited low expression levels in all tissues and at all developmental stages. The 19 DofCslAs were differentially expressed in the D. officinale stems at different developmental stages, among which six DofCslAs were expressed at low levels or not at all. Notably, two DofCslAs (DofCslA14 and DofCslA15) showed significantly high expression in the stems of D. officinale, indicating a vital role in mannan synthesis. These results indicate the functional redundancy and specialization of DofCslAs with respect to polysaccharide accumulation. In conclusion, our results provide insights into the evolution, structure, and expression patterns of CesA/Csl genes and provide a foundation for further gene functional analysis in Orchidaceae and other plant species.
Collapse
Affiliation(s)
- Yunzhu Wang
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kunkun Zhao
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Chen
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingzhen Wei
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoyang Chen
- Seed Management Terminal of Zhejiang, Hangzhou, China
| | - Hongjian Wan
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chongbo Sun
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
17
|
Guo S, Zhou G, Wang J, Lu X, Zhao H, Zhang M, Guo X, Zhang Y. High-Throughput Phenotyping Accelerates the Dissection of the Phenotypic Variation and Genetic Architecture of Shank Vascular Bundles in Maize (Zea mays L.). PLANTS 2022; 11:plants11101339. [PMID: 35631765 PMCID: PMC9145235 DOI: 10.3390/plants11101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
Abstract
The vascular bundle of the shank is an important ‘flow’ organ for transforming maize biological yield to grain yield, and its microscopic phenotypic characteristics and genetic analysis are of great significance for promoting the breeding of new varieties with high yield and good quality. In this study, shank CT images were obtained using the standard process for stem micro-CT data acquisition at resolutions up to 13.5 μm. Moreover, five categories and 36 phenotypic traits of the shank including related to the cross-section, epidermis zone, periphery zone, inner zone and vascular bundle were analyzed through an automatic CT image process pipeline based on the functional zones. Next, we analyzed the phenotypic variations in vascular bundles at the base of the shank among a group of 202 inbred lines based on comprehensive phenotypic information for two environments. It was found that the number of vascular bundles in the inner zone (IZ_VB_N) and the area of the inner zone (IZ_A) varied the most among the different subgroups. Combined with genome-wide association studies (GWAS), 806 significant single nucleotide polymorphisms (SNPs) were identified, and 1245 unique candidate genes for 30 key traits were detected, including the total area of vascular bundles (VB_A), the total number of vascular bundles (VB_N), the density of the vascular bundles (VB_D), etc. These candidate genes encode proteins involved in lignin, cellulose synthesis, transcription factors, material transportation and plant development. The results presented here will improve the understanding of the phenotypic traits of maize shank and provide an important phenotypic basis for high-throughput identification of vascular bundle functional genes of maize shank and promoting the breeding of new varieties with high yield and good quality.
Collapse
Affiliation(s)
- Shangjing Guo
- College of Agronomy, Liaocheng University, Liaocheng 252059, China; (S.G.); (G.Z.)
| | - Guoliang Zhou
- College of Agronomy, Liaocheng University, Liaocheng 252059, China; (S.G.); (G.Z.)
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Jinglu Wang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Xianju Lu
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Huan Zhao
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Minggang Zhang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
- Correspondence: (X.G.); (Y.Z.)
| | - Ying Zhang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
- Correspondence: (X.G.); (Y.Z.)
| |
Collapse
|
18
|
Xu H, Giannetti A, Sugiyama Y, Zheng W, Schneider R, Watanabe Y, Oda Y, Persson S. Secondary cell wall patterning-connecting the dots, pits and helices. Open Biol 2022; 12:210208. [PMID: 35506204 PMCID: PMC9065968 DOI: 10.1098/rsob.210208] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/07/2022] [Indexed: 01/04/2023] Open
Abstract
All plant cells are encased in primary cell walls that determine plant morphology, but also protect the cells against the environment. Certain cells also produce a secondary wall that supports mechanically demanding processes, such as maintaining plant body stature and water transport inside plants. Both these walls are primarily composed of polysaccharides that are arranged in certain patterns to support cell functions. A key requisite for patterned cell walls is the arrangement of cortical microtubules that may direct the delivery of wall polymers and/or cell wall producing enzymes to certain plasma membrane locations. Microtubules also steer the synthesis of cellulose-the load-bearing structure in cell walls-at the plasma membrane. The organization and behaviour of the microtubule array are thus of fundamental importance to cell wall patterns. These aspects are controlled by the coordinated effort of small GTPases that probably coordinate a Turing's reaction-diffusion mechanism to drive microtubule patterns. Here, we give an overview on how wall patterns form in the water-transporting xylem vessels of plants. We discuss systems that have been used to dissect mechanisms that underpin the xylem wall patterns, emphasizing the VND6 and VND7 inducible systems, and outline challenges that lay ahead in this field.
Collapse
Affiliation(s)
- Huizhen Xu
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alessandro Giannetti
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Yuki Sugiyama
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Wenna Zheng
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - René Schneider
- Institute of Biochemistry and Biology, Plant Physiology Department, University of Potsdam, 14476 Potsdam, Germany
| | - Yoichiro Watanabe
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yoshihisa Oda
- Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Staffan Persson
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
20
|
Qin L, Liu L, Tu J, Yang G, Wang S, Quilichini TD, Gao P, Wang H, Peng G, Blancaflor EB, Datla R, Xiang D, Wilson KE, Wei Y. The ARP2/3 complex, acting cooperatively with Class I formins, modulates penetration resistance in Arabidopsis against powdery mildew invasion. THE PLANT CELL 2021; 33:3151-3175. [PMID: 34181022 PMCID: PMC8462814 DOI: 10.1093/plcell/koab170] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/20/2021] [Indexed: 05/19/2023]
Abstract
The actin cytoskeleton regulates an array of diverse cellular activities that support the establishment of plant-microbe interactions and plays a critical role in the execution of plant immunity. However, molecular and cellular mechanisms regulating the assembly and rearrangement of actin filaments (AFs) at plant-pathogen interaction sites remain largely elusive. Here, using live-cell imaging, we show that one of the earliest cellular responses in Arabidopsis thaliana upon powdery mildew attack is the formation of patch-like AF structures beneath fungal invasion sites. The AFs constituting actin patches undergo rapid turnover, which is regulated by the actin-related protein (ARP)2/3 complex and its activator, the WAVE/SCAR regulatory complex (W/SRC). The focal accumulation of phosphatidylinositol-4,5-bisphosphate at fungal penetration sites appears to be a crucial upstream modulator of the W/SRC-ARP2/3 pathway-mediated actin patch formation. Knockout of W/SRC-ARP2/3 pathway subunits partially compromised penetration resistance with impaired endocytic recycling of the defense-associated t-SNARE protein PEN1 and its deposition into apoplastic papillae. Simultaneously knocking out ARP3 and knocking down the Class I formin (AtFH1) abolished actin patch formation, severely impaired the deposition of cell wall appositions, and promoted powdery mildew entry into host cells. Our results demonstrate that the ARP2/3 complex and formins, two actin-nucleating systems, act cooperatively and contribute to Arabidopsis penetration resistance to fungal invasion.
Collapse
Affiliation(s)
- Li Qin
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Lijiang Liu
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China
| | - Jiangying Tu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China
| | - Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | | | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 0W9, Canada
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | | | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 0W9, Canada
| | - Daoquan Xiang
- National Research Council Canada, Saskatoon, SK, S7N 0W9, Canada
| | - Kenneth E. Wilson
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Author for correspondence:
| |
Collapse
|
21
|
Xu L, Xiao L, Xiao Y, Peng D, Xiao X, Huang W, Gheysen G, Wang G. Plasmodesmata play pivotal role in sucrose supply to Meloidogyne graminicola-caused giant cells in rice. MOLECULAR PLANT PATHOLOGY 2021; 22:539-550. [PMID: 33723908 PMCID: PMC8035636 DOI: 10.1111/mpp.13042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 05/20/2023]
Abstract
On infection, plant-parasitic nematodes establish feeding sites in roots from which they take up carbohydrates among other nutrients. Knowledge on how carbohydrates are supplied to the nematodes' feeding sites is limited. Here, gene expression analyses showed that RNA levels of OsSWEET11 to OsSWEET15 were extremely low in both Meloidogyne graminicola (Mg)-caused galls and noninoculated roots. All the rice sucrose transporter genes, OsSUT1 to OsSUT5, were either down-regulated in Mg-caused galls compared with noninoculated rice roots or had very low transcript abundance. OsSUT1 was the only gene up-regulated in galls, at 14 days postinoculation (dpi), after being highly down-regulated at 3 and 7 dpi. OsSUT4 was down-regulated at 3 dpi. No noticeable OsSUTs promoter activities were detected in Mg-caused galls of pOsSUT1 to -5::GUS rice lines. Loading experiments with carboxyfluorescein diacetate (CFDA) demonstrated that symplastic connections exist between phloem and Mg-caused giant cells (GCs). According to data from OsGNS5- and OsGSL2-overexpressing rice plants that had decreased and increased callose deposition, respectively, callose negatively affected Mg parasitism and sucrose supply to Mg-caused GCs. Our results suggest that plasmodesmata-mediated sucrose transport plays a pivotal role in sucrose supply from rice root phloem to Mg-caused GCs, and OsSWEET11 to -15 and OsSUTs are not major players in it, although further functional analysis is needed for OsSUT1 and OsSUT4.
Collapse
Affiliation(s)
- Li‐he Xu
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Li‐ying Xiao
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yan‐nong Xiao
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - De‐liang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural ScienceBeijingChina
| | - Xue‐qiong Xiao
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wen‐kun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural ScienceBeijingChina
| | - Godelieve Gheysen
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Gao‐feng Wang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
22
|
Oh SA, Park HJ, Kim MH, Park SK. Analysis of sticky generative cell mutants reveals that suppression of callose deposition in the generative cell is necessary for generative cell internalization and differentiation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:228-244. [PMID: 33458909 DOI: 10.1111/tpj.15162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
In flowering plants, double fertilization between male and female gametophytes, which are separated by distance, largely depends on the unique pattern of the male gametophyte (pollen): two non-motile sperm cells suspended within a tube-producing vegetative cell. A morphological screen to elucidate the genetic control governing the strategic patterning of pollen has led to the isolation of a sticky generative cell (sgc) mutant that dehisces abnormal pollen with the generative cell immobilized at the pollen wall. Analyses revealed that the sgc mutation is specifically detrimental to pollen development, causing ectopic callose deposition that impedes the timely internalization and differentiation of the generative cell. We found that the SGC gene encodes the highly conserved domain of unknown function 707 (DUF707) gene that is broadly expressed but is germline specific during pollen development. Additionally, transgenic plants co-expressing fluorescently fused SGC protein and known organelle markers showed that SGC localizes in the endoplasmic reticulum, Golgi apparatus and vacuoles in pollen. A yeast two-hybrid screen with an SGC bait identified a thaumatin-like protein that we named GCTLP1, some homologs of which bind and/or digest β-1,3-glucans, the main constituent of callose. GCTLP1 is expressed in a germline-specific manner and colocalizes with SGC during pollen development, indicating that GCTLP1 is a putative SGC interactor. Collectively, our results show that SGC suppresses callose deposition in the nascent generative cell, thereby allowing the generative cell to fully internalize into the vegetative cell and correctly differentiate as the germline progenitor, with the potential involvement of the GCTLP1 protein, during pollen development in Arabidopsis.
Collapse
Affiliation(s)
- Sung-Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyo-Jin Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Myung-Hee Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Soon-Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
23
|
Kashyap A, Planas-Marquès M, Capellades M, Valls M, Coll NS. Blocking intruders: inducible physico-chemical barriers against plant vascular wilt pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:184-198. [PMID: 32976552 PMCID: PMC7853604 DOI: 10.1093/jxb/eraa444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/16/2020] [Indexed: 05/20/2023]
Abstract
Xylem vascular wilt pathogens cause devastating diseases in plants. Proliferation of these pathogens in the xylem causes massive disruption of water and mineral transport, resulting in severe wilting and death of the infected plants. Upon reaching the xylem vascular tissue, these pathogens multiply profusely, spreading vertically within the xylem sap, and horizontally between vessels and to the surrounding tissues. Plant resistance to these pathogens is very complex. One of the most effective defense responses in resistant plants is the formation of physico-chemical barriers in the xylem tissue. Vertical spread within the vessel lumen is restricted by structural barriers, namely, tyloses and gels. Horizontal spread to the apoplast and surrounding healthy vessels and tissues is prevented by vascular coating of the colonized vessels with lignin and suberin. Both vertical and horizontal barriers compartmentalize the pathogen at the infection site and contribute to their elimination. Induction of these defenses are tightly coordinated, both temporally and spatially, to avoid detrimental consequences such as cavitation and embolism. We discuss current knowledge on mechanisms underlying plant-inducible structural barriers against major xylem-colonizing pathogens. This knowledge may be applied to engineer metabolic pathways of vascular coating compounds in specific cells, to produce plants resistant towards xylem colonizers.
Collapse
Affiliation(s)
- Anurag Kashyap
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
| | - Marc Planas-Marquès
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
| | | | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Genetics Department, Universitat de Barcelona, Barcelona, Spain
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
| |
Collapse
|
24
|
Schneider R, Klooster KV, Picard KL, van der Gucht J, Demura T, Janson M, Sampathkumar A, Deinum EE, Ketelaar T, Persson S. Long-term single-cell imaging and simulations of microtubules reveal principles behind wall patterning during proto-xylem development. Nat Commun 2021; 12:669. [PMID: 33510146 PMCID: PMC7843992 DOI: 10.1038/s41467-021-20894-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/22/2020] [Indexed: 01/23/2023] Open
Abstract
Plants are the tallest organisms on Earth; a feature sustained by solute-transporting xylem vessels in the plant vasculature. The xylem vessels are supported by strong cell walls that are assembled in intricate patterns. Cortical microtubules direct wall deposition and need to rapidly re-organize during xylem cell development. Here, we establish long-term live-cell imaging of single Arabidopsis cells undergoing proto-xylem trans-differentiation, resulting in spiral wall patterns, to understand microtubule re-organization. We find that the re-organization requires local microtubule de-stabilization in band-interspersing gaps. Using microtubule simulations, we recapitulate the process in silico and predict that spatio-temporal control of microtubule nucleation is critical for pattern formation, which we confirm in vivo. By combining simulations and live-cell imaging we further explain how the xylem wall-deficient and microtubule-severing KATANIN contributes to microtubule and wall patterning. Hence, by combining quantitative microscopy and modelling we devise a framework to understand how microtubule re-organization supports wall patterning. Plant cell wall formation is directed by cortical microtubules, which produce complex patterns needed to support xylem vessels. Here, the authors perform live-cell imaging and simulations of Arabidopsis cells during proto-xylem differentiation to show how local microtubule dynamics control pattern formation.
Collapse
Affiliation(s)
- René Schneider
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.,Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Kris Van't Klooster
- Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands.,Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Kelsey L Picard
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.,School of Natural Sciences, University of Tasmania, Hobart, 7001, TAS, Australia
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Marcel Janson
- Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Eva E Deinum
- Mathematical and Statistical Methods (Biometris), Wageningen University, Wageningen, The Netherlands.
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands.
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia. .,Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark. .,Copenhagen Plant Science Center, University of Copenhagen, 1871, Frederiksberg C, Denmark. .,Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
25
|
Tribble CM, Martínez-Gómez J, Alzate-Guarín F, Rothfels CJ, Specht CD. Comparative transcriptomics of a monocotyledonous geophyte reveals shared molecular mechanisms of underground storage organ formation. Evol Dev 2021; 23:155-173. [PMID: 33465278 DOI: 10.1111/ede.12369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 11/27/2022]
Abstract
Many species from across the vascular plant tree-of-life have modified standard plant tissues into tubers, bulbs, corms, and other underground storage organs (USOs), unique innovations which allow these plants to retreat underground. Our ability to understand the developmental and evolutionary forces that shape these morphologies is limited by a lack of studies on certain USOs and plant clades. We take a comparative transcriptomics approach to characterizing the molecular mechanisms of tuberous root formation in Bomarea multiflora (Alstroemeriaceae) and compare these mechanisms to those identified in other USOs across diverse plant lineages; B. multiflora fills a key gap in our understanding of USO molecular development as the first monocot with tuberous roots to be the focus of this kind of research. We sequenced transcriptomes from the growing tip of four tissue types (aerial shoot, rhizome, fibrous root, and root tuber) of three individuals of B. multiflora. We identified differentially expressed isoforms between tuberous and non-tuberous roots and tested the expression of a priori candidate genes implicated in underground storage in other taxa. We identify 271 genes that are differentially expressed in root tubers versus non-tuberous roots, including genes implicated in cell wall modification, defense response, and starch biosynthesis. We also identify a phosphatidylethanolamine-binding protein, which has been implicated in tuberization signalling in other taxa and, through gene-tree analysis, place this copy in a phylogenetic context. These findings suggest that some similar molecular processes underlie the formation of USOs across flowering plants despite the long evolutionary distances among taxa and non-homologous morphologies (e.g., bulbs vs. tubers). (Plant development, tuberous roots, comparative transcriptomics, geophytes).
Collapse
Affiliation(s)
- Carrie M Tribble
- Department of Integrative Biology and, University Herbarium, University of California, Berkeley, California, USA
| | - Jesús Martínez-Gómez
- Department of Integrative Biology and, University Herbarium, University of California, Berkeley, California, USA.,School of Integrative Plant Sciences, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, New York, USA
| | - Fernando Alzate-Guarín
- Grupo de Estudios Botánicos (GEOBOTA) and Herbario Universidad de Antioquia (HUA), Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Carl J Rothfels
- Department of Integrative Biology and, University Herbarium, University of California, Berkeley, California, USA
| | - Chelsea D Specht
- School of Integrative Plant Sciences, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, New York, USA
| |
Collapse
|
26
|
Paulmann MK, Zimmermann MR, Wegner L, van Bel AJE, Kunert G, Furch ACU. Species-Specific and Distance-Dependent Dispersive Behaviour of Forisomes in Different Legume Species. Int J Mol Sci 2021; 22:E492. [PMID: 33419062 PMCID: PMC7825422 DOI: 10.3390/ijms22020492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 01/12/2023] Open
Abstract
Forisomes are giant fusiform protein complexes composed of sieve element occlusion (SEO) protein monomers, exclusively found in sieve elements (SEs) of legumes. Forisomes block the phloem mass flow by a Ca2+-induced conformational change (swelling and rounding). We studied the forisome reactivity in four different legume species-Medicago sativa, Pisum sativum, Trifolium pratense and Vicia faba. Depending on the species, we found direct relationships between SE diameter, forisome surface area and distance from the leaf tip, all indicative of a developmentally tuned regulation of SE diameter and forisome size. Heat-induced forisome dispersion occurred later with increasing distance from the stimulus site. T. pratense and V. faba dispersion occurred faster for forisomes with a smaller surface area. Near the stimulus site, electro potential waves (EPWs)-overlapping action (APs), and variation potentials (VPs)-were linked with high full-dispersion rates of forisomes. Distance-associated reduction of forisome reactivity was assigned to the disintegration of EPWs into APs, VPs and system potentials (SPs). Overall, APs and SPs alone were unable to induce forisome dispersion and only VPs above a critical threshold were capable of inducing forisome reactions.
Collapse
Affiliation(s)
- Maria K. Paulmann
- Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany; (M.K.P.); (M.R.Z.); (L.W.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany;
| | - Matthias R. Zimmermann
- Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany; (M.K.P.); (M.R.Z.); (L.W.)
| | - Linus Wegner
- Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany; (M.K.P.); (M.R.Z.); (L.W.)
| | - Aart J. E. van Bel
- Interdisciplinary Research Centre, Institute of Phytopathology, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany;
| | - Grit Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany;
| | - Alexandra C. U. Furch
- Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany; (M.K.P.); (M.R.Z.); (L.W.)
| |
Collapse
|
27
|
Wang H, Cao S, Li T, Zhang L, Yao J, Xia X, Zhang R. Classification and expression analysis of cucumber ( Cucumis sativus L.) callose synthase ( CalS) family genes and localization of CsCalS4, a protein involved in pollen development. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2022.2038670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Hongyun Wang
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Shoujun Cao
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Tao Li
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Lili Zhang
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Jiangang Yao
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Xiubo Xia
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Ruiqing Zhang
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| |
Collapse
|
28
|
Specificity Influences in (1→3)-β-d-Glucan-Supported Diagnosis of Invasive Fungal Disease. J Fungi (Basel) 2020; 7:jof7010014. [PMID: 33383818 PMCID: PMC7824349 DOI: 10.3390/jof7010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
(1→3)-β-glucan (BDG) testing as an adjunct in the diagnosis of invasive fungal disease (IFD) has been in use for nearly three decades. While BDG has a very high negative predictive value in this setting, diagnostic false positives may occur, limiting specificity and positive predictive value. Although results may be diagnostically false positive, they are analytically correct, due to the presence of BDG in the circulation. This review surveys the non-IFD causes of elevated circulating BDG. These are in the main, iatrogenic patient contamination through the use of BDG-containing medical devices and parenterally-delivered materials as well as translocation of intestinal luminal BDG due to mucosal barrier injury. Additionally, infection with Nocardia sp. may also contribute to elevated circulating BDG. Knowledge of the factors which may contribute to such non-IFD-related test results can improve the planning and interpretation of BDG assays and permit investigational strategies, such as serial sampling and BDG clearance evaluation, to assess the likelihood of contamination and improve patient care.
Collapse
|
29
|
Wang L, Hart BE, Khan GA, Cruz ER, Persson S, Wallace IS. Associations between phytohormones and cellulose biosynthesis in land plants. ANNALS OF BOTANY 2020; 126:807-824. [PMID: 32619216 PMCID: PMC7539351 DOI: 10.1093/aob/mcaa121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/01/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Phytohormones are small molecules that regulate virtually every aspect of plant growth and development, from basic cellular processes, such as cell expansion and division, to whole plant environmental responses. While the phytohormone levels and distribution thus tell the plant how to adjust itself, the corresponding growth alterations are actuated by cell wall modification/synthesis and internal turgor. Plant cell walls are complex polysaccharide-rich extracellular matrixes that surround all plant cells. Among the cell wall components, cellulose is typically the major polysaccharide, and is the load-bearing structure of the walls. Hence, the cell wall distribution of cellulose, which is synthesized by large Cellulose Synthase protein complexes at the cell surface, directs plant growth. SCOPE Here, we review the relationships between key phytohormone classes and cellulose deposition in plant systems. We present the core signalling pathways associated with each phytohormone and discuss the current understanding of how these signalling pathways impact cellulose biosynthesis with a particular focus on transcriptional and post-translational regulation. Because cortical microtubules underlying the plasma membrane significantly impact the trajectories of Cellulose Synthase Complexes, we also discuss the current understanding of how phytohormone signalling impacts the cortical microtubule array. CONCLUSION Given the importance of cellulose deposition and phytohormone signalling in plant growth and development, one would expect that there is substantial cross-talk between these processes; however, mechanisms for many of these relationships remain unclear and should be considered as the target of future studies.
Collapse
Affiliation(s)
- Liu Wang
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Bret E Hart
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | | | - Edward R Cruz
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
- Department of Chemistry, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
30
|
Gavrin A, Rey T, Torode TA, Toulotte J, Chatterjee A, Kaplan JL, Evangelisti E, Takagi H, Charoensawan V, Rengel D, Journet EP, Debellé F, de Carvalho-Niebel F, Terauchi R, Braybrook S, Schornack S. Developmental Modulation of Root Cell Wall Architecture Confers Resistance to an Oomycete Pathogen. Curr Biol 2020; 30:4165-4176.e5. [PMID: 32888486 PMCID: PMC7658807 DOI: 10.1016/j.cub.2020.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
The cell wall is the primary interface between plant cells and their immediate environment and must balance multiple functionalities, including the regulation of growth, the entry of beneficial microbes, and protection against pathogens. Here, we demonstrate how API, a SCAR2 protein component of the SCAR/WAVE complex, controls the root cell wall architecture important for pathogenic oomycete and symbiotic bacterial interactions in legumes. A mutation in API results in root resistance to the pathogen Phytophthora palmivora and colonization defects by symbiotic rhizobia. Although api mutant plants do not exhibit significant overall growth and development defects, their root cells display delayed actin and endomembrane trafficking dynamics and selectively secrete less of the cell wall polysaccharide xyloglucan. Changes associated with a loss of API establish a cell wall architecture with altered biochemical properties that hinder P. palmivora infection progress. Thus, developmental stage-dependent modifications of the cell wall, driven by SCAR/WAVE, are important in balancing cell wall developmental functions and microbial invasion. The SCAR protein API controls actin and endomembrane trafficking dynamics SCAR proteins of several plant species can support symbiosis and pathogen infection A mutation in API affects specific biochemical properties of plant cell walls An altered wall architecture results in root resistance to Phytophthora palmivora
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Thomas Rey
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Thomas A Torode
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Justine Toulotte
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Abhishek Chatterjee
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Jonathan Louis Kaplan
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Hiroki Takagi
- Iwate Biotechnology Institute, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Varodom Charoensawan
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Biochemistry, Faculty of Science, and Integrative Computational BioScience (ICBS) Center, Mahidol University, Bangkok 10400, Thailand
| | - David Rengel
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France; GeT-PlaGe, Genotoul, INRA US1426, Castanet-Tolosan Cedex, France
| | - Etienne-Pascal Journet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France; AGIR, Université de Toulouse, INRA, ENSFEA, Castanet-Tolosan 31326, France
| | - Frédéric Debellé
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France
| | | | - Ryohei Terauchi
- Iwate Biotechnology Institute, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Siobhan Braybrook
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Molecular, Cell, and Developmental Biology, 610 Charles E Young Drive South, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.
| |
Collapse
|
31
|
Santillán Martínez MI, Bracuto V, Koseoglou E, Appiano M, Jacobsen E, Visser RGF, Wolters AMA, Bai Y. CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC PLANT BIOLOGY 2020; 20:284. [PMID: 32560695 PMCID: PMC7304142 DOI: 10.1186/s12870-020-02497-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 06/15/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND The development of CRISPR/Cas9 technology has facilitated targeted mutagenesis in an efficient and precise way. Previously, RNAi silencing of the susceptibility (S) gene PowderyMildewResistance 4 (PMR4) in tomato has been shown to enhance resistance against the powdery mildew pathogen Oidium neolycopersici (On). RESULTS To study whether full knock-out of the tomato PMR4 gene would result in a higher level of resistance than in the RNAi-silenced transgenic plants we generated tomato PMR4 CRISPR mutants. We used a CRISPR/Cas9 construct containing four single-guide RNAs (sgRNAs) targeting the tomato PMR4 gene to increase the possibility of large deletions in the mutants. After PCR-based selection and sequencing of transformants, we identified five different mutation events, including deletions from 4 to 900-bp, a 1-bp insertion and a 892-bp inversion. These mutants all showed reduced susceptibility to On based on visual scoring of disease symptoms and quantification of relative fungal biomass. Histological observations revealed a significantly higher occurrence of hypersensitive response-like cell death at sites of fungal infection in the pmr4 mutants compared to wild-type plants. Both haustorial formation and hyphal growth were diminished but not completely inhibited in the mutants. CONCLUSION CRISPR/Cas-9 targeted mutagenesis of the tomato PMR4 gene resulted in mutants with reduced but not complete loss of susceptibility to the PM pathogen On. Our study demonstrates the efficiency and versatility of the CRISPR/Cas9 system as a powerful tool to study and characterize S-genes by generating different types of mutations.
Collapse
Affiliation(s)
- Miguel I Santillán Martínez
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Valentina Bracuto
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Eleni Koseoglou
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Michela Appiano
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Evert Jacobsen
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Anne-Marie A Wolters
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands.
| |
Collapse
|
32
|
Bacete L, Hamann T. The Role of Mechanoperception in Plant Cell Wall Integrity Maintenance. PLANTS (BASEL, SWITZERLAND) 2020; 9:E574. [PMID: 32369932 PMCID: PMC7285163 DOI: 10.3390/plants9050574] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
The plant cell walls surrounding all plant cells are highly dynamic structures, which change their composition and organization in response to chemical and physical stimuli originating both in the environment and in plants themselves. They are intricately involved in all interactions between plants and their environment while also providing adaptive structural support during plant growth and development. A key mechanism contributing to these adaptive changes is the cell wall integrity (CWI) maintenance mechanism. It monitors and maintains the functional integrity of cell walls by initiating adaptive changes in cellular and cell wall metabolism. Despite its importance, both our understanding of its mode of action and knowledge regarding the molecular components that form it are limited. Intriguingly, the available evidence implicates mechanosensing in the mechanism. Here, we provide an overview of the knowledge available regarding the molecular mechanisms involved in and discuss how mechanoperception and signal transduction may contribute to plant CWI maintenance.
Collapse
Affiliation(s)
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway;
| |
Collapse
|
33
|
Plasmodesmata Conductivity Regulation: A Mechanistic Model. PLANTS 2019; 8:plants8120595. [PMID: 31842374 PMCID: PMC6963776 DOI: 10.3390/plants8120595] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 01/16/2023]
Abstract
Plant cells form a multicellular symplast via cytoplasmic bridges called plasmodesmata (Pd) and the endoplasmic reticulum (ER) that crosses almost all plant tissues. The Pd proteome is mainly represented by secreted Pd-associated proteins (PdAPs), the repertoire of which quickly adapts to environmental conditions and responds to biotic and abiotic stresses. Although the important role of Pd in stress-induced reactions is universally recognized, the mechanisms of Pd control are still not fully understood. The negative role of callose in Pd permeability has been convincingly confirmed experimentally, yet the roles of cytoskeletal elements and many PdAPs remain unclear. Here, we discuss the contribution of each protein component to Pd control. Based on known data, we offer mechanistic models of mature leaf Pd regulation in response to stressful effects.
Collapse
|
34
|
Park S, Song B, Shen W, Ding SY. A mutation in the catalytic domain of cellulose synthase 6 halts its transport to the Golgi apparatus. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6071-6083. [PMID: 31559423 DOI: 10.1093/jxb/erz369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/20/2019] [Indexed: 05/20/2023]
Abstract
Cellulose microfibrils, which form the mechanical framework of the plant cell wall, are synthesized by the cellulose synthase complex in the plasma membrane. Here, we introduced point mutations into the catalytic domain of cellulose synthase 6 (CESA6) in Arabidopsis to produce enhanced yellow fluorescent protein (EYFP)-tagged CESA6D395N, CESA6Q823E, and CESA6D395N+Q823E, which were exogenously produced in a cesa6 null mutant, prc1-1. Comparison of these mutants in terms of plant phenotype, cellulose content, cellulose synthase complex dynamics, and organization of cellulose microfibrils showed that prc1-1 expressing EYFP:CESA6D395N or CESA6D395N+Q823E was nearly the same as prc1-1, whereas prc1-1 expressing EYFP:CESA6Q823E was almost identical to wild type and prc1-1 expressing EYFP:WT CESA6, indicating that CESA6D395N and CESA6D395N+Q823E do not function in cellulose synthesis, while CESA6Q823E is still functionally active. Total internal reflection fluorescence microscopy and confocal microscopy were used to monitor the subcellular localization of these proteins. We found that EYFP:CESA6D395N and EYFP:CESA6D395N+Q823E were absent from subcellular regions containing the Golgi and the plasma membrane, and they appeared to be retained in the endoplasmic reticulum. By contrast, EYFP:CESA6Q823E had a normal localization pattern, like that of wild-type EYFP:CESA6. Our results demonstrate that the D395N mutation in CESA6 interrupts its normal transport to the Golgi and its eventual participation in cellulose synthase complex assembly.
Collapse
Affiliation(s)
- Sungjin Park
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, USA
- Great Lakes Bioenergy Center, Michigan State University, 612 Wilson Road, East Lansing, MI, USA
| | - Bo Song
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, USA
| | - Wei Shen
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, USA
- Great Lakes Bioenergy Center, Michigan State University, 612 Wilson Road, East Lansing, MI, USA
| | - Shi-You Ding
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, USA
- Great Lakes Bioenergy Center, Michigan State University, 612 Wilson Road, East Lansing, MI, USA
| |
Collapse
|
35
|
Hu H, Zhang R, Tang Y, Peng C, Wu L, Feng S, Chen P, Wang Y, Du X, Peng L. Cotton CSLD3 restores cell elongation and cell wall integrity mainly by enhancing primary cellulose production in the Arabidopsis cesa6 mutant. PLANT MOLECULAR BIOLOGY 2019; 101:389-401. [PMID: 31432304 DOI: 10.1007/s11103-019-00910-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Overexpression of cotton cellulose synthase like D3 (GhCSLD3) gene partially rescued growth defect of atcesa6 mutant with restored cell elongation and cell wall integrity mainly by enhancing primary cellulose production. Among cellulose synthase like (CSL) family proteins, CSLDs share the highest sequence similarity to cellulose synthase (CESA) proteins. Although CSLD proteins have been implicated to participate in the synthesis of carbohydrate-based polymers (cellulose, pectins and hemicelluloses), and therefore plant cell wall formation, the exact biochemical function of CSLD proteins remains controversial and the function of the remaining CSLD genes in other species have not been determined. In this study, we attempted to illustrate the function of CSLD proteins by overexpressing Arabidopsis AtCSLD2, -3, -5 and cotton GhCSLD3 genes in the atcesa6 mutant, which has a background that is defective for primary cell wall cellulose synthesis in Arabidopsis. We found that GhCSLD3 overexpression partially rescued the growth defect of the atcesa6 mutant during early vegetative growth. Despite the atceas6 mutant having significantly reduced cellulose contents, the defected cell walls and lower dry mass, GhCSLD3 overexpression largely restored cell wall integrity (CWI) and improved the biomass yield. Our result suggests that overexpression of the GhCSLD protein enhances primary cell wall synthesis and compensates for the loss of CESAs, which is required for cellulose production, therefore rescuing defects in cell elongation and CWI.
Collapse
Affiliation(s)
- Huizhen Hu
- State Key Laboratory of Biocatalysis & Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Ran Zhang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwei Tang
- State Key Laboratory of Biocatalysis & Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Chenglang Peng
- State Key Laboratory of Biocatalysis & Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Leiming Wu
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengqiu Feng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Chen
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuezhu Du
- State Key Laboratory of Biocatalysis & Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, China.
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
36
|
Faik A, Held M. Review: Plant cell wall biochemical omics: The high-throughput biochemistry for polysaccharide biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:49-56. [PMID: 31300141 DOI: 10.1016/j.plantsci.2019.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Progress in the functional biochemical analysis of plant glycosyltransferases (GTs) has been slow because plant GTs are generally membrane proteins, operate as part of larger, multimeric complexes, and utilize a vast complexity of substrate acceptors. Therefore, the field would benefit from development of adequate high throughput expression as well as product detection and characterization techniques. Here we review current approaches to tackle such obstacles and suggest a new path forward: nucleic acid programmable protein arrays (NAPPA) with liquid sample desorption ionization (LS-DESI-MS) mass spectrometry. NAPPA utilizes in vitro transcription and translation to produce epitope-tagged fusion proteins from cloned GT cDNAs. LS-DESI is a soft ionization technique that allows rapid and sensitive MS-based product characterization in situ. Coupling both approaches provides the opportunity to examine individual GT functions as well as protein-protein interactions. Furthermore, advances in automated oligosaccharide synthesis and lipid nanodisc technology should allow testing of plant GT activity in presence of numerous substrate acceptors and lipid environments in a high throughput fashion. Thus, NAPPA-DESI-MS has great potential to make headway in biochemical characterization of the large number of plant GTs.
Collapse
Affiliation(s)
- Ahmed Faik
- Environmental and Plant Biology Department, Athens 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens 45701, USA.
| | - Michael Held
- Chemistry and Biochemistry Department, Athens 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens 45701, USA
| |
Collapse
|
37
|
Heidari P, Ahmadizadeh M, Izanlo F, Nussbaumer T. In silico study of the CESA and CSL gene family in Arabidopsis thaliana and Oryza sativa: Focus on post-translation modifications. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.plgene.2019.100189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Ekanayake G, LaMontagne ED, Heese A. Never Walk Alone: Clathrin-Coated Vesicle (CCV) Components in Plant Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:387-409. [PMID: 31386597 DOI: 10.1146/annurev-phyto-080417-045841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
At the host-pathogen interface, the protein composition of the plasma membrane (PM) has important implications for how a plant cell perceives and responds to invading microbial pathogens. A plant's ability to modulate its PM composition is critical for regulating the strength, duration, and integration of immune responses. One mechanism by which plant cells reprogram their cell surface is vesicular trafficking, including secretion and endocytosis. These trafficking processes add or remove cargo proteins (such as pattern-recognition receptors, transporters, and other proteins with immune functions) to or from the PM via small, membrane-bound vesicles. Clathrin-coated vesicles (CCVs) that form at the PM and trans-Golgi network/early endosomes have emerged as the prominent vesicle type in the regulation of plant immune responses. In this review, we discuss the roles of the CCV core, adaptors, and accessory components in plant defense signaling and immunity against various microbial pathogens.
Collapse
Affiliation(s)
- Gayani Ekanayake
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Erica D LaMontagne
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| |
Collapse
|
39
|
Nascimento LC, Yanagui K, Jose J, Camargo ELO, Grassi MCB, Cunha CP, Bressiani JA, Carvalho GMA, Carvalho CR, Prado PF, Mieczkowski P, Pereira GAG, Carazzolle MF. Unraveling the complex genome of Saccharum spontaneum using Polyploid Gene Assembler. DNA Res 2019; 26:205-216. [PMID: 30768175 PMCID: PMC6589550 DOI: 10.1093/dnares/dsz001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/21/2019] [Indexed: 12/01/2022] Open
Abstract
The Polyploid Gene Assembler (PGA), developed and tested in this study, represents a new strategy to perform gene-space assembly from complex genomes using low coverage DNA sequencing. The pipeline integrates reference-assisted loci and de novo assembly strategies to construct high-quality sequences focused on gene content. Pipeline validation was conducted with wheat (Triticum aestivum), a hexaploid species, using barley (Hordeum vulgare) as reference, that resulted in the identification of more than 90% of genes and several new genes. Moreover, PGA was used to assemble gene content in Saccharum spontaneum species, a parental lineage for hybrid sugarcane cultivars. Saccharum spontaneum gene sequence obtained was used to reference-guided transcriptome analysis of six different tissues. A total of 39,234 genes were identified, 60.4% clustered into known grass gene families. Thirty-seven gene families were expanded when compared with other grasses, three of them highlighted by the number of gene copies potentially involved in initial development and stress response. In addition, 3,108 promoters (many showing tissue specificity) were identified in this work. In summary, PGA can reconstruct high-quality gene sequences from polyploid genomes, as shown for wheat and S. spontaneum species, and it is more efficient than conventional genome assemblers using low coverage DNA sequencing.
Collapse
Affiliation(s)
- Leandro Costa Nascimento
- Laboratório de Genômica e bioEnergia (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.,Laboratório Central de Tecnologias de Alto Desempenho (LaCTAD), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Karina Yanagui
- Laboratório de Genômica e bioEnergia (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Juliana Jose
- Laboratório de Genômica e bioEnergia (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Eduardo L O Camargo
- Laboratório de Genômica e bioEnergia (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.,Biocelere Agroindustrial Ltda, GranBio Investimentos S.A., Campinas, SP, Brazil
| | - Maria Carolina B Grassi
- Laboratório de Genômica e bioEnergia (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Camila P Cunha
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisas em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | | | - Guilherme M A Carvalho
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Carlos Roberto Carvalho
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Paula F Prado
- Laboratório de Genômica e bioEnergia (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Piotr Mieczkowski
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gonçalo A G Pereira
- Laboratório de Genômica e bioEnergia (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo F Carazzolle
- Laboratório de Genômica e bioEnergia (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
40
|
Schneider R, Sampathkumar A, Persson S. Quantification of Cytoskeletal Dynamics in Time-Lapse Recordings. ACTA ACUST UNITED AC 2019; 4:e20091. [PMID: 31091014 DOI: 10.1002/cppb.20091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cytoskeleton is key to many essential processes in a plant cell, e.g., growth, division, and defense. Contrary to what "skeleton" implies, the cytoskeleton is highly dynamic, and is able to re-organize itself continuously. The advent of live-cell microscopy and the development of genetically encoded fluorophores enabled detailed observation of the organization and dynamics of the cytoskeleton. Despite the biological importance of the cytoskeletal dynamics, quantitative analyses remain laborious endeavors that only a handful of research teams regularly conduct. With this protocol, we provide a standardized step-by-step guide to analyze the dynamics of microtubules. We provide example data and code for post-processing in Fiji that enables researchers to modify and adapt the routine to their needs. More such tools are needed to quantitatively assess the cytoskeleton and thus to better understand cell biology. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- René Schneider
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
41
|
Peng X, Liu H, Chen P, Tang F, Hu Y, Wang F, Pi Z, Zhao M, Chen N, Chen H, Zhang X, Yan X, Liu M, Fu X, Zhao G, Yao P, Wang L, Dai H, Li X, Xiong W, Xu W, Zheng H, Yu H, Shen S. A Chromosome-Scale Genome Assembly of Paper Mulberry (Broussonetia papyrifera) Provides New Insights into Its Forage and Papermaking Usage. MOLECULAR PLANT 2019; 12:661-677. [PMID: 30822525 DOI: 10.1016/j.molp.2019.01.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 05/21/2023]
Abstract
Paper mulberry (Broussonetia papyrifera) is a well-known woody tree historically used for Cai Lun papermaking, one of the four great inventions of ancient China. More recently, Paper mulberry has also been used as forage to address the shortage of feedstuff because of its digestible crude fiber and high protein contents. In this study, we obtained a chromosome-scale genome assembly for Paper mulberry using integrated approaches, including Illumina and PacBio sequencing platform as well as Hi-C, optical, and genetic maps. The assembled Paper mulberry genome consists of 386.83 Mb, which is close to the estimated size, and 99.25% (383.93 Mb) of the assembly was assigned to 13 pseudochromosomes. Comparative genomic analysis revealed the expansion and contraction in the flavonoid and lignin biosynthetic gene families, respectively, accounting for the enhanced flavonoid and decreased lignin biosynthesis in Paper mulberry. Moreover, the increased ratio of syringyl-lignin to guaiacyl-lignin in Paper mulberry underscores its suitability for use in medicine, forage, papermaking, and barkcloth making. We also identified the root-associated microbiota of Paper mulberry and found that Pseudomonas and Rhizobia were enriched in its roots and may provide the source of nitrogen for its stems and leaves via symbiotic nitrogen fixation. Collectively, these results suggest that Paper mulberry might have undergone adaptive evolution and recruited nitrogen-fixing microbes to promote growth by enhancing flavonoid production and altering lignin monomer composition. Our study provides significant insights into genetic basis of the usefulness of Paper mulberry in papermaking and barkcloth making, and as forage. These insights will facilitate further domestication and selection as well as industrial utilization of Paper mulberry worldwide.
Collapse
Affiliation(s)
- Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Hui Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Peilin Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Feng Tang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Yanmin Hu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Fenfen Wang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Zhi Pi
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Meiling Zhao
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Naizhi Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Hui Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Xueqing Yan
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Xiaojun Fu
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Guofeng Zhao
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Pu Yao
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Lili Wang
- Biomarker Technologies Corporation, Beijing 101300, China
| | - He Dai
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Xuming Li
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Wei Xiong
- Quick Green Bio-Tec Co., Ltd., Dalian 116600, China
| | - Wencai Xu
- Beijing Jonathan Science and Technology Development Co., Ltd., Beijing 101314, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Haiyan Yu
- Biomarker Technologies Corporation, Beijing 101300, China.
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; ChuangGou Science & Technology Co. Ltd., Beijing 100049, China.
| |
Collapse
|
42
|
Lampugnani ER, Flores-Sandoval E, Tan QW, Mutwil M, Bowman JL, Persson S. Cellulose Synthesis - Central Components and Their Evolutionary Relationships. TRENDS IN PLANT SCIENCE 2019; 24:402-412. [PMID: 30905522 DOI: 10.1016/j.tplants.2019.02.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 05/20/2023]
Abstract
Cellulose is an essential morphogenic polysaccharide that is central to the stability of plant cell walls and provides an important raw material for a range of plant-based fiber and fuel industries. The past decade has seen a substantial rise in the identification of cellulose synthesis-related components and in our understanding of how these components function. Much of this research has been conducted in Arabidopsis thaliana (arabidopsis); however, it has become increasingly evident that many of the components and their functions are conserved. We provide here an overview of cellulose synthesis 'core' components. The evolution and coexpression patterns of these components provide important insight into how cellulose synthesis evolved and the potential for the components to work as functional units during cellulose production.
Collapse
Affiliation(s)
- Edwin R Lampugnani
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
43
|
Gao SM, Yang MH, Zhang F, Fan LJ, Zhou Y. The strong competitive role of 2n pollen in several polyploidy hybridizations in Rosa hybrida. BMC PLANT BIOLOGY 2019; 19:127. [PMID: 30947683 PMCID: PMC6449914 DOI: 10.1186/s12870-019-1696-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 02/26/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND 2n pollen play a strong competitive role in hybridization and breeding of multiploids in Rosa hybrida. The ploidy inheritable characteristic of 'Orange Fire' × 'Old Blush' were analyzed. RESULT The results of the cytological observations indicated that 2n pollen developed from the defeated cytoplasmic division or nuclear division in the meiosis metaphase II of PMC (pollen mother cell) in 'Old Blush'. The natural generation rate of the 2n pollen in 'Old Blush' (2x) was about 1.39 in percentage of all male gametes, whereas the tetraploids in the F1 offspring possessed a high rate, i.e., 44.00%. The temporal and spatial characteristics of 'Old Blush' pollen germination on the stigma and growth in pistil of 'Orange Fire' and 'DEE' were observed, and the results suggested that the germination rate of 2n pollen on the stigma was not superior to that of 1n pollen, but that the proportion of 2n pollen increased to 30.90 and 37.20%, respectively, while it traversed the stigma and entered into style. The callose plug in the 2n pollen tube was significantly thinner than that of 1n pollen tube. And each trait involved in our experiment probably is very important for F1 morphological phenotypes. CONCLUSION We conclude that 2n pollen are involved in hybridization and have a competitive advantage while it traversed the stigma and entered into style. The callose plug in the 2n pollen tube was may have strongly influenced the competitive process in R. hybrida.
Collapse
Affiliation(s)
- Shu-min Gao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083 China
| | - Mu-han Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083 China
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Institute of Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102 China
| | - Fan Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083 China
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Institute of Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102 China
| | - Li-juan Fan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083 China
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Institute of Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102 China
| | - Yan Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083 China
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Institute of Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102 China
| |
Collapse
|
44
|
Marzec-Schmidt K, Ludwików A, Wojciechowska N, Kasprowicz-Maluśki A, Mucha J, Bagniewska-Zadworna A. Xylem Cell Wall Formation in Pioneer Roots and Stems of Populus trichocarpa (Torr. & Gray). FRONTIERS IN PLANT SCIENCE 2019; 10:1419. [PMID: 31781142 PMCID: PMC6861220 DOI: 10.3389/fpls.2019.01419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/14/2019] [Indexed: 05/12/2023]
Abstract
Regulation of gene expression, as determined by the genetics of the tree species, is a major factor in determining wood quality. Therefore, the identification of genes that play a role in xylogenesis is extremely important for understanding the mechanisms shaping the plant phenotype. Efforts to develop new varieties characterized by higher yield and better wood quality will greatly benefit from recognizing and understanding the complex transcriptional network underlying wood development. The present study provides a detailed comparative description of the changes that occur in genes transcription and the biosynthesis of cell-wall-related compounds during xylogenesis in Populus trichocarpa pioneer roots and stems. Even though results of microarray analysis indicated that only approximately 10% of the differentially expressed genes were common to both organs, many fundamental mechanisms were similar; e.g. the pattern of expression of genes involved in the biosynthesis of cell wall proteins, polysaccharides, and lignins. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) shows that the composition of monosaccharides was also very similar, with an increasing amount of xylose building secondary cell wall hemicellulose and pectins, especially in the stems. While hemicellulose degradation was typical for stems, possibly due to the intensive level of cell wall lignification. Notably, the main component of lignins in roots were guiacyl units, while syringyl units were dominant in stems, where fibers are especially needed for support. Our study is the first comprehensive analysis, at the structural and molecular level, of xylogenesis in under- and aboveground tree parts, and clearly reveals the great complexity of molecular mechanisms underlying cell wall formation and modification during xylogenesis in different plant organs.
Collapse
Affiliation(s)
- Katarzyna Marzec-Schmidt
- Department of General Botany, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
- *Correspondence: Katarzyna Marzec-Schmidt, Agnieszka Bagniewska-Zadworna,
| | - Agnieszka Ludwików
- Department of Biotechnology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Wojciechowska
- Department of General Botany, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Anna Kasprowicz-Maluśki
- Department of Molecular and Cellular Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Mucha
- Laboratory of Ecology, Institute of Dendrology, Polish Academy of Science, Kórnik, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
- *Correspondence: Katarzyna Marzec-Schmidt, Agnieszka Bagniewska-Zadworna,
| |
Collapse
|
45
|
Li P, Day B. Battlefield Cytoskeleton: Turning the Tide on Plant Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:25-34. [PMID: 30355064 PMCID: PMC6326859 DOI: 10.1094/mpmi-07-18-0195-fi] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The plant immune system comprises a complex network of signaling processes, regulated not only by classically defined immune components (e.g., resistance genes) but also by a suite of developmental, environmental, abiotic, and biotic-associated factors. In total, it is the sum of these interactions-the connectivity to a seemingly endless array of environments-that ensures proper activation, and control, of a system that is responsible for cell surveillance and response to threats presented by invading pests and pathogens. Over the past decade, the field of plant pathology has witnessed the discovery of numerous points of convergence between immunity, growth, and development, as well as overlap with seemingly disparate processes such as those that underpin plant response to changes in the environment. Toward defining how immune signaling is regulated, recent studies have focused on dissecting the mechanisms that underpin receptor-ligand interactions, phospho-regulation of signaling cascades, and the modulation of host gene expression during infection. As one of the major regulators of these immune signaling cascades, the plant cytoskeleton is the stage from which immune-associated processes are mobilized and oriented and, in this role, it controls the movement of the organelles, proteins, and chemical signals that support plant defense signaling. In short, the cytoskeleton is the battlefield from which pathogens and plants volley virulence and resistance, transforming resistance to susceptibility. Herein, we discuss the role of the eukaryotic cytoskeleton as a platform for the function of the plant immune system.
Collapse
Affiliation(s)
- Pai Li
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University Plant Resilience Institute, East Lansing, MI 48824, USA
| |
Collapse
|
46
|
Armentia A, Martín‐Armentia S, Álvarez‐Nogal R, Armentia BM, Gayoso MJ, Fernández‐González D. Germination of pollen grains in the oesophagus of individuals with eosinophilic oesophagitis. Clin Exp Allergy 2018; 49:471-473. [DOI: 10.1111/cea.13312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/26/2018] [Accepted: 09/05/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Alicia Armentia
- Allergy Unit Hospital Universitario Río Hortega Valladolid Spain
| | | | | | | | | | - Delia Fernández‐González
- Biodiversity and Environmental Management University of León León Spain
- Institute of Atmospheric Sciences and Climate National Research Council Bologna Italy
| |
Collapse
|
47
|
Wu SW, Kumar R, Iswanto ABB, Kim JY. Callose balancing at plasmodesmata. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5325-5339. [PMID: 30165704 DOI: 10.1093/jxb/ery317] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/20/2018] [Indexed: 05/19/2023]
Abstract
In plants, communication and molecular exchanges between different cells and tissues are dependent on the apoplastic and symplastic pathways. Symplastic molecular exchanges take place through the plasmodesmata, which connect the cytoplasm of neighboring cells in a highly controlled manner. Callose, a β-1,3-glucan polysaccharide, is a plasmodesmal marker molecule that is deposited in cell walls near the neck zone of plasmodesmata and controls their permeability. During cell differentiation and plant development, and in response to diverse stresses, the level of callose in plasmodesmata is highly regulated by two antagonistic enzymes, callose synthase or glucan synthase-like and β-1,3-glucanase. The diverse modes of regulation by callose synthase and β-1,3-glucanase have been uncovered in the past decades through biochemical, molecular, genetic, and omics methods. This review highlights recent findings regarding the function of plasmodesmal callose and the molecular players involved in callose metabolism, and provides new insight into the mechanisms maintaining plasmodesmal callose homeostasis.
Collapse
Affiliation(s)
- Shu-Wei Wu
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Ritesh Kumar
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science (CK1 program), Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
48
|
Song X, Xu L, Yu J, Tian P, Hu X, Wang Q, Pan Y. Genome-wide characterization of the cellulose synthase gene superfamily in Solanum lycopersicum. Gene 2018; 688:71-83. [PMID: 30453073 DOI: 10.1016/j.gene.2018.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
The cellulose synthase gene superfamily, which includes the cellulose synthase (CesA) and cellulose synthase-like (Csl) gene families, plays a vital role in the biosynthesis of cellulose and hemicellulose in plants. However, these genes have not been extensively studied in tomato (Solanum lycopersicum), a model for Solanaceae plants and for fleshy fruit development. Here, we identified and systematically analyzed 38 CesA/Csl family members that contained cellulose synthase domain regions, and categorized their encoded proteins into 6 subfamilies (CesA, CslA, CslB, CslD, CslE, and CslG) based on phylogenetic analysis. Most CesA/Csl genes from tomato are closely related to those from Arabidopsis, but the families have distinct features regarding gene structure, chromosome distribution and localization, phylogeny, and deduced protein sequence, indicating that they arose via different evolutionary process. Furthermore, expression analysis of CesA/Csl genes in different tissues at various developmental stages showed that most CesAs were constitutively expressed with differential expression levels in various organs; three CslD genes were expressed specifically in flowers, and four CesA and five Csl putative genes were preferentially expressed in fruits. Our results provide insight into the general characteristics of the CesA/Csl genes in tomato, and lay the foundation for further functional studies of CesA/Csl genes in tomato and other Solanaceae species.
Collapse
Affiliation(s)
- Xiaomei Song
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Li Xu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jingwen Yu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Ping Tian
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xin Hu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Qijun Wang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Yu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
49
|
He M, Lan M, Zhang B, Zhou Y, Wang Y, Zhu L, Yuan M, Fu Y. Rab-H1b is essential for trafficking of cellulose synthase and for hypocotyl growth in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1051-1069. [PMID: 29975455 DOI: 10.1111/jipb.12694] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/03/2018] [Indexed: 05/26/2023]
Abstract
Cell-wall deposition of cellulose microfibrils is essential for plant growth and development. In plant cells, cellulose synthesis is accomplished by cellulose synthase complexes located in the plasma membrane. Trafficking of the complex between endomembrane compartments and the plasma membrane is vital for cellulose biosynthesis; however, the mechanism for this process is not well understood. We here report that, in Arabidopsis thaliana, Rab-H1b, a Golgi-localized small GTPase, participates in the trafficking of CELLULOSE SYNTHASE 6 (CESA6) to the plasma membrane. Loss of Rab-H1b function resulted in altered distribution and motility of CESA6 in the plasma membrane and reduced cellulose content. Seedlings with this defect exhibited short, fragile etiolated hypocotyls. Exocytosis of CESA6 was impaired in rab-h1b cells, and endocytosis in mutant cells was significantly reduced as well. We further observed accumulation of vesicles around an abnormal Golgi apparatus having an increased number of cisternae in rab-h1b cells, suggesting a defect in cisternal homeostasis caused by Rab-H1b loss function. Our findings link Rab GTPases to cellulose biosynthesis, during hypocotyl growth, and suggest Rab-H1b is crucial for modulating the trafficking of cellulose synthase complexes between endomembrane compartments and the plasma membrane and for maintaining Golgi organization and morphology.
Collapse
Affiliation(s)
- Ming He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Miao Lan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | - Youqun Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
50
|
Abou-Saleh RH, Hernandez-Gomez MC, Amsbury S, Paniagua C, Bourdon M, Miyashima S, Helariutta Y, Fuller M, Budtova T, Connell SD, Ries ME, Benitez-Alfonso Y. Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures. Nat Commun 2018; 9:4538. [PMID: 30382102 PMCID: PMC6208431 DOI: 10.1038/s41467-018-06820-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 09/21/2018] [Indexed: 01/28/2023] Open
Abstract
The properties of (1,3)-β-glucans (i.e., callose) remain largely unknown despite their importance in plant development and defence. Here we use mixtures of (1,3)-β-glucan and cellulose, in ionic liquid solution and hydrogels, as proxies to understand the physico-mechanical properties of callose. We show that after callose addition the stiffness of cellulose hydrogels is reduced at a greater extent than predicted from the ideal mixing rule (i.e., the weighted average of the individual components’ properties). In contrast, yield behaviour after the elastic limit is more ductile in cellulose-callose hydrogels compared with sudden failure in 100% cellulose hydrogels. The viscoelastic behaviour and the diffusion of the ions in mixed ionic liquid solutions strongly indicate interactions between the polymers. Fourier-transform infrared analysis suggests that these interactions impact cellulose organisation in hydrogels and cell walls. We conclude that polymer interactions alter the properties of callose-cellulose mixtures beyond what it is expected by ideal mixing. Despite their importance in plant development and defence the properties of (1,3)-β-glucan remain largely unknown. Here, the authors find that addition of (1,3)-β-glucans increases the flexibility of cellulose and its resilience to high strain, an effect originating in molecular level interactions.
Collapse
Affiliation(s)
- Radwa H Abou-Saleh
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, LS2 9JT, UK.,Faculty of Science, Biophysics Division, Department of Physics, Mansoura University, Mansoura, Egypt
| | | | - Sam Amsbury
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Candelas Paniagua
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthieu Bourdon
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Shunsuke Miyashima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Ykä Helariutta
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Martin Fuller
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Tatiana Budtova
- MINES ParisTech, Centre for Material Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904, Sophia Antipolis, France
| | - Simon D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael E Ries
- Soft Matter Physics Research Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | | |
Collapse
|