1
|
Zhong Y, He J, Luo F, Gui J, Sun J, Li L. The cellular and molecular processes of lenticel development during tree stem growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:699-711. [PMID: 39240190 DOI: 10.1111/tpj.17015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
The lenticel is a channel-like structure that facilitates oxygen, carbon dioxide, and water vapor exchange on secondary growth tissue, such as a tree stem. Although the structure of lenticel has been described, there is limited understanding regarding the impact of this secondary structure on secondary growth as well as the cellular and metabolic processes underlying its formation. The study reveals the essential role of the lenticel in the process of tree secondary growth and the cellular and metabolic processes that take place during its formation. Under the stomata, lenticel development occurs when cells divide and differentiate into a structure of disconnected cells with air spaces between them. During lenticel formation, specific metabolic pathways and wax biosynthesis are activated. The SERK (somatic embryogenesis receptor kinase) gene controls lenticel density, and serk1serk3serk5 triple mutants enhance lenticel initiation. The findings shed light on the cellular and metabolic processes involved in lenticel formation, laying the groundwork for further mechanistic elucidation of their development, function, and genetic regulation in trees.
Collapse
Affiliation(s)
- Yu Zhong
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajia He
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Luo
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinshan Gui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jiayan Sun
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Laigeng Li
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
2
|
Lalica MAK, Tomescu AMF. Plant periderm as a continuum in structural organisation: a tracheophyte-wide survey and hypotheses on evolution. Biol Rev Camb Philos Soc 2024; 99:1196-1217. [PMID: 38361444 DOI: 10.1111/brv.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Periderm is a well-known structural feature with vital roles in protection of inner plant tissues and wound healing. Despite its importance to plant survival, knowledge of periderm occurrences outside the seed plants is limited and the evolutionary origins of periderm remain poorly explored. Here, we review the current knowledge of the taxonomic distribution of periderm in its two main forms - canonical periderm (periderm formed as a typical ontogenetic stage) and wound periderm (periderm produced as a self-repair mechanism) - with a focus on major plant lineages, living and extinct. We supplement the published occurrences with data based on our own observations and experiments. This updated body of data reveals that the distribution of wound periderm is more widespread taxonomically than previously recognized and some living and extinct groups are capable of producing wound periderm, despite canonical periderm being absent from their normal developmental program. A critical review of canonical and wound periderms in extant and fossil lineages indicates that not all periderms are created equal. Their organisation is widely variable and the differences can be characterised in terms of variations in three structural features: (i) the consistency in orientation of periclinal walls within individual files of periderm cells; (ii) the lateral coordination of periclinal walls between adjacent cell files; and (iii) whether a cambial layer and conspicuous layering of inward and outward derivatives can be distinguished. Using a new system of scoring periderm structure based on these criteria, we characterise the level of organisation of canonical and wound periderms in different lineages. Looking at periderms through the lens provided by their level of organisation reveals that the traditional image of periderm as a single generalised feature, is best viewed as a continuum of structural configurations that are all predicated by the same basic process (periclinal divisions), but can fall anywhere between very loosely organized (diffuse periclinal growth) to very tightly coordinated (organized periclinal growth). Overall, wound periderms in both seed plants and seed-free plants have lower degrees of organisation than canonical periderms, which may be due to their initiation in response to inherently disruptive traumatic events. Wound and canonical periderms of seed plants have higher degrees of organisation than those of seed-free plants, possibly due to co-option of the programs responsible for organizing their vascular cambial growth. Given the importance of wound periderm to plant survival, its widespread taxonomic distribution, and its early occurrence in the fossil record, we hypothesise that wound periderm may have had a single origin in euphyllophytes and canonical periderm may have originated separately in different lineages by co-option of the basic regulatory toolkit of wound periderm formation. In one evolutionary scenario, wound periderm regulators activated initially by tissue tearing due to tensional stresses elicited by woody growth underwent heterochronic change that switched their activation trigger from tissue tearing to the tensional stresses that precede it, with corresponding changes in the signalling that triggered the regulatory cascade of periderm development from tearing-induced signals to signalling induced by tension in cells.
Collapse
Affiliation(s)
- Madison A K Lalica
- Department of Biological Sciences, California State Polytechnic University Humboldt, Arcata, CA, USA
| | - Alexandru M F Tomescu
- Department of Biological Sciences, California State Polytechnic University Humboldt, Arcata, CA, USA
| |
Collapse
|
3
|
Keyl A, Kwas V, Lewandowska M, Herrfurth C, Kunst L, Feussner I. AtMYB41 acts as a dual-function transcription factor that regulates the formation of lipids in an organ- and development-dependent manner. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:568-582. [PMID: 38634447 DOI: 10.1111/plb.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
The plant cuticle controls non-stomatal water loss and can serve as a barrier against biotic agents, whereas the heteropolymer suberin and its associated waxes are deposited constitutively at specific cell wall locations. While several transcription factors controlling cuticle formation have been identified, those involved in the transcriptional regulation of suberin biosynthesis remain poorly characterized. The major goal of this study was to further analyse the function of the R2R3-Myeloblastosis (MYB) transcription factor AtMYB41 in formation of the cuticle, suberin, and suberin-associated waxes throughout plant development. For functional analysis, the organ-specific expression pattern of AtMYB41 was analysed and Atmyb41ge alleles were generated using the CRISPR/Cas9 system. These were investigated for root growth and water permeability upon stress. In addition, the fatty acid, wax, cutin, and suberin monomer composition of different organs was evaluated by gas chromatography. The characterization of Atmyb41ge mutants revealed that AtMYB41 negatively regulates the production of cuticular lipids and fatty acid biosynthesis in leaves and seeds, respectively. Remarkably, biochemical analyses indicate that AtMYB41 also positively regulates the formation of cuticular waxes in stems of Arabidopsis thaliana. Overall, these results suggest that the AtMYB41 acts as a negative regulator of cuticle and fatty acid biosynthesis in leaves and seeds, respectively, but also as a positive regulator of wax production in A. thaliana stems.
Collapse
Affiliation(s)
- A Keyl
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - V Kwas
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - M Lewandowska
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - C Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - L Kunst
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - I Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| |
Collapse
|
4
|
Yan F, Wei T, Yang C, Yang Y, Luo Z, Jiang Y. Combined Analysis of Untargeted Metabolomics and Transcriptomics Revealed Seed Germination and Seedling Establishment in Zelkova schneideriana. Genes (Basel) 2024; 15:488. [PMID: 38674422 PMCID: PMC11050531 DOI: 10.3390/genes15040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Zelkova schneideriana Hand.-Mazz is a valuable ornamental tree and timber source, whose seedling breeding and large-scale cultivation are restricted by low seed germination and seedling rates. The regulatory mechanisms underlying seed germination and seedling establishment in Z. schneideriana remain unknown. This study conducted metabolomic and transcriptomic analyses of seed germination and seedling establishment in Z. schneideriana. Regular expression of genes and metabolite levels has been observed in plant hormone signal transduction, starch and sucrose metabolism, linoleic acid metabolism, and phenylpropanoid biosynthesis. The reduction in abscisic acid during seed germination may lead to seed release from dormancy. After the seed is released from dormancy, the metabolic levels of auxin, cytokinins, brassinolide, and various sugars are elevated, and they are consumed in large quantities during the seedling establishment stage. Linoleic acid metabolism is gradually activated during seedling establishment. Transcriptome analysis showed that a large number of genes in different metabolic pathways are upregulated during plant establishment, and material metabolism may be accelerated during seedling establishment. Genes regulating carbohydrate metabolism are altered during seed germination and seedling establishment, which may have altered the efficiency of carbohydrate utilization. In addition, the syntheses of lignin monomers and cellulose have different characteristics at different stages. These results provide new insights into the complex mechanisms underlying seed germination and seedling establishment in Z. schneideriana and other woody plants.
Collapse
Affiliation(s)
- Fengxia Yan
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, China; (F.Y.); (Y.Y.); (Y.J.)
| | - Tangmei Wei
- Xingyi Forestry Bureau, Qianxinan Prefecture Guizhou, Guiyang 562400, China;
| | - Chao Yang
- Institute for Forest Resources and Environment, Guizhou University, Guiyang 550025, China;
| | - Yanbing Yang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, China; (F.Y.); (Y.Y.); (Y.J.)
| | - Zaiqi Luo
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, China; (F.Y.); (Y.Y.); (Y.J.)
| | - Yunli Jiang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, China; (F.Y.); (Y.Y.); (Y.J.)
| |
Collapse
|
5
|
Villarino G, Dahlberg-Wright S, Zhang L, Schaedel M, Wang L, Miller K, Bartlett J, Vu AMD, Busch W. PAT (Periderm Assessment Toolkit): A Quantitative and Large-Scale Screening Method for Periderm Measurements. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0156. [PMID: 38560381 PMCID: PMC10981931 DOI: 10.34133/plantphenomics.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/10/2024] [Indexed: 04/04/2024]
Abstract
The periderm is a vital protective tissue found in the roots, stems, and woody elements of diverse plant species. It plays an important function in these plants by assuming the role of the epidermis as the outermost layer. Despite its critical role for protecting plants from environmental stresses and pathogens, research on root periderm development has been limited due to its late formation during root development, its presence only in mature root regions, and its impermeability. One of the most straightforward measurements for comparing periderm formation between different genotypes and treatments is periderm (phellem) length. We have developed PAT (Periderm Assessment Toolkit), a high-throughput user-friendly pipeline that integrates an efficient staining protocol, automated imaging, and a deep-learning-based image analysis approach to accurately detect and measure periderm length in the roots of Arabidopsis thaliana. The reliability and reproducibility of our method was evaluated using a diverse set of 20 Arabidopsis natural accessions. Our automated measurements exhibited a strong correlation with human-expert-generated measurements, achieving a 94% efficiency in periderm length quantification. This robust PAT pipeline streamlines large-scale periderm measurements, thereby being able to facilitate comprehensive genetic studies and screens. Although PAT proves highly effective with automated digital microscopes in Arabidopsis roots, its application may pose challenges with nonautomated microscopy. Although the workflow and principles could be adapted for other plant species, additional optimization would be necessary. While we show that periderm length can be used to distinguish a mutant impaired in periderm development from wild type, we also find it is a plastic trait. Therefore, care must be taken to include sufficient repeats and controls, to minimize variation, and to ensure comparability of periderm length measurements between different genotypes and growth conditions.
Collapse
Affiliation(s)
- Gonzalo Villarino
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Signe Dahlberg-Wright
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ling Zhang
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marianne Schaedel
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lin Wang
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Karyssa Miller
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jack Bartlett
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Albert Martin Dang Vu
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
6
|
Binenbaum J, Wulff N, Camut L, Kiradjiev K, Anfang M, Tal I, Vasuki H, Zhang Y, Sakvarelidze-Achard L, Davière JM, Ripper D, Carrera E, Manasherova E, Ben Yaakov S, Lazary S, Hua C, Novak V, Crocoll C, Weinstain R, Cohen H, Ragni L, Aharoni A, Band LR, Achard P, Nour-Eldin HH, Shani E. Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis. NATURE PLANTS 2023; 9:785-802. [PMID: 37024660 PMCID: PMC7615257 DOI: 10.1038/s41477-023-01391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Abstract
The plant hormone gibberellin (GA) regulates multiple developmental processes. It accumulates in the root elongating endodermis, but how it moves into this cell file and the significance of this accumulation are unclear. Here we identify three NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER (NPF) transporters required for GA and abscisic acid (ABA) translocation. We demonstrate that NPF2.14 is a subcellular GA/ABA transporter, presumably the first to be identified in plants, facilitating GA and ABA accumulation in the root endodermis to regulate suberization. Further, NPF2.12 and NPF2.13, closely related proteins, are plasma membrane-localized GA and ABA importers that facilitate shoot-to-root GA12 translocation, regulating endodermal hormone accumulation. This work reveals that GA is required for root suberization and that GA and ABA can act non-antagonistically. We demonstrate how the clade of transporters mediates hormone flow with cell-file-specific vacuolar storage at the phloem unloading zone, and slow release of hormone to induce suberin formation in the maturation zone.
Collapse
Affiliation(s)
- Jenia Binenbaum
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Nikolai Wulff
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lucie Camut
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Kristian Kiradjiev
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Iris Tal
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Himabindu Vasuki
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yuqin Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Lali Sakvarelidze-Achard
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Dagmar Ripper
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Shir Ben Yaakov
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Shani Lazary
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Chengyao Hua
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Vlastimil Novak
- Plant Nutrients and Food Quality Research Group, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Christoph Crocoll
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Laura Ragni
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Leah R Band
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK.
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| | - Patrick Achard
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| | - Hussam Hassan Nour-Eldin
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Zhao S, Wang W, Chen X, Gao Y, Wu X, Ding M, Duo L. Graphene oxide affected root growth, anatomy, and nutrient uptake in alfalfa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114483. [PMID: 36586166 DOI: 10.1016/j.ecoenv.2022.114483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The increasing application of carbon nanomaterials has resulted in their inevitable release into the environment. Their toxic effects on plant roots require careful investigation. In the present study, alfalfa (Medicago sativa L.) was exposed to graphene oxide (GO) at levels of 0.2 %, 0.4 %, and 0.6 % (w/w) in potting soil. This study aims to better understand the impact of GO on the root growth, structure, and physiology of alfalfa in the soil matrix. The results demonstrated that GO significantly affected the development and structure of alfalfa roots, and the effect varied with GO level. The highest level of GO (0.6 %) reduced the root length, diameter, volume, dry weight, number of lateral roots, and root activity by 36.1 %, 31.3 %, 60.0 %, 89.6 %, 55.8 %, and 72.3 % (p < 0.05), respectively, and the vascular cylinder diameter, periderm thickness, vessel diameter, and phellem thickness decreased by 51.5 %, 50.7 %, 80.9 %, and 49.1 % (p < 0.05), respectively. These observations might be associated with GO-induced oxidative stress, which was indicated by the activity of antioxidant enzymes. Furthermore, high GO levels (0.4 % and 0.6 %) inhibited the uptake of N, P, K, Mg, Zn, Fe, Mo, Si, and B in roots. Our findings indicate that GO at high levels has a negative impact on root growth and development by inducing oxidative stress, structural impairment, and nutritional imbalance. Careful soil GO management should be emphasized.
Collapse
Affiliation(s)
- Shulan Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wei Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Xuejiao Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yingyue Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Xiao Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Mengjia Ding
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Lian Duo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
8
|
Mani M, Mathiyazhagan C, Dey A, Faisal M, Alatar AA, Alok A, Shekhawat MS. Micro-morpho-anatomical transitions at various stages of in vitro development of Crinum malabaricum Lekhak and Yadav: A critically endangered medicinal plant. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:142-151. [PMID: 36040406 DOI: 10.1111/plb.13464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Crinum malabaricum Lekhak & Yadav is a recently discovered and critically endangered aquatic bulbous plant of the family Amaryllidaceae. It gained attention as a wild source of the acetylcholinesterase inhibiting alkaloid 'galanthamine' used to treat Alzheimer and Parkinson diseases. The bulbs of this plant contain the highest amount of galanthamine among Crinum species. In vitro regeneration systems were developed to produce quality uniform plantlets of C. malabaricum. Bright field light microscopy was used to analyse micro-morpho-anatomical developments taking place in the leaves and roots during in vitro, ex vitro and in vivo transitions of plantlets. Leaves and roots of plants raised in vitro possessed a higher degree of microscopic structural anomalies, such as underdeveloped epicuticular wax deposition, immature and non-functional stomata, more aquiferous parenchyma with a reduced lumen. Roots developed in vitro were characterized by extremely large, uneven cortical cells and reduced intercellular spaces. The vascular tissues were under-developed and only primary vascular tissues were observed. As a result of ex vitro acclimation, there was a significant acceleration in the improvement of tissue systems in leaves and roots. Such plantlets can tolerate elevated temperatures and light under in vivo conditions. Thus, the microscopic evaluation of the structural trajectory in different stages of plantlet development provides an understanding of the acclimation process and structural adaptations, which could help enhance survival of in vitro raised plantlets under ex vitro and in vivo conditions.
Collapse
Affiliation(s)
- M Mani
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
- Department of Botany, Siddha Clinical Research Unit, Central Council for Research in Siddha, Palayamkottai, Tamil Nadu, India
| | - C Mathiyazhagan
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - A Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - M Faisal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A A Alatar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A Alok
- Department of Plant Pathology, University of Minnesota, Twin cities, Saint Paul, USA
| | - M S Shekhawat
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| |
Collapse
|
9
|
Teixeira RT. Cork Development: What Lies Within. PLANTS (BASEL, SWITZERLAND) 2022; 11:2671. [PMID: 36297695 PMCID: PMC9611905 DOI: 10.3390/plants11202671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The cork layer present in all dicotyledonous plant species with radial growth is the result of the phellogen activity, a secondary meristem that produces phellem (cork) to the outside and phelloderm inwards. These three different tissues form the periderm, an efficient protective tissue working as a barrier against external factors such as environmental aggressions and pathogen attacks. The protective function offered by cork cells is mainly due to the abundance of suberin in their cell walls. Chemically, suberin is a complex aliphatic network of long chain fatty acids and alcohols with glycerol together with aromatic units. In most woody species growing in temperate climates, the first periderm is replaced by a new functional periderm upon a few years after being formed. One exception to this bark development can be found in cork oak (Quercus suber) which display a single periderm that grows continuously. Quercus suber stands by its thick cork layer development with continuous seasonal growth. Cork raw material has been exploited by man for centuries, especially in Portugal and Spain. Nowadays, its applications have widened vastly, from the most known product, stoppers, to purses or insulating materials used in so many industries, such as construction and car production. Research on how cork develops, and the effect environmental factors on cork oak trees is extremely important to maintain production of good-quality cork, and, by maintaining cork oak stands wealthy, we are preserving a very important ecosystem both by its biodiversity and its vital social and economic role in areas already showing a population declination.
Collapse
Affiliation(s)
- Rita Teresa Teixeira
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
10
|
Zhang X, Lyu J, Chen WY, Chen D, Yan J, Yin S. Quantifying the capacity of tree branches for retaining airborne submicron particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119873. [PMID: 35926735 DOI: 10.1016/j.envpol.2022.119873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Human health risks brought by fine atmospheric particles raise scholarly and policy awareness about the role of urban trees as bio-filters of air pollution. While a large number of empirical studies have focused on the characteristics of vegetation leaves and their effects on atmospheric particle retention, the dry deposition of particles on branches, which plays a significant role in capturing and retaining particles during the defoliation period and contributes substantially to total removal of atmospheric particles, is under-investigated. To fill in this knowledge gap, this case study examined the dry deposition velocities (Vd) of submicron particulate matters (PM1) on the branches of six common deciduous species in Shanghai (China) using laboratory experiments. And the association between Vd and key branch anatomical traits (including surface roughness, perimeter, rind width proportion, lenticel density, peeling, and groove/ridge characteristics) was explored. It was found that surface roughness would increase Vd, as a rougher surface significantly increases turbulence, which is conducive to particle diffusion. By contrast, peeling, branch perimeter, and lenticel density would decrease Vd. Peeling represents the exfoliated remains on the branch surfaces which may flutter considerably with airflow, leading to particle resuspension and low Vd. When branch perimeter increases, the boundary layer of branches thickens and a wake area appears, increasing the difficulty of particles to reach branch surface, and reducing Vd. While lenticels can increase the roughness of branch surface, their pointy shape would uplift airflow and cause a leeward wake area, lowering Vd. This finely wrought study contributes to a better understanding of branch dry deposition during leaf-off seasons and potential of deciduous trees serving as nature-based air filters all year round in urban environments.
Collapse
Affiliation(s)
- Xuyi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Junyao Lyu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Key Laboratory for Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai 200240, China
| | - Wendy Y Chen
- Department of Geography, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Dele Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Jingli Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Key Laboratory for Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai 200240, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
11
|
Wang YZ, Dai MS, Cai DY, Shi ZB. Solving the regulation puzzle of periderm development using advances in fruit skin. FRONTIERS IN PLANT SCIENCE 2022; 13:1006153. [PMID: 36247566 PMCID: PMC9558172 DOI: 10.3389/fpls.2022.1006153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Periderm protects enlarged organs of most dicots and gymnosperms as a barrier to water loss and disease invasion during their secondary growth. Its development undergoes a complex process with genetically controlled and environmental stress-induced characters. Different development of periderm makes the full and partial russet of fruit skin, which diverges in inheritance with qualitative and quantitative characters, respectively, in pear pome. In addition to its specific genetics, fruit periderm has similar development and structure as that of stem and other organs, making it an appropriate material for periderm research. Recently, progress in histochemical as well as transcriptome and proteome analyses, and quantitative trait locus (QTL) mapping have revealed the regulatory molecular mechanism in the periderm based on the identification of switch genes. In this review, we concentrate on the periderm development, propose the conservation of periderm regulation between fruit and other plant organs based on their morphological and molecular characteristics, and summarize a regulatory network with the elicitors and repressors for the tissue development. Spontaneous programmed-cell death (PCD) or environmental stress produces the original signal that triggers the development of periderm. Spatio-temporal specific PCD produced by PyPPCD1 gene and its homologs can play a key role in the coordinated regulation of cell death related tissue development.
Collapse
Affiliation(s)
| | | | | | - Ze-bin Shi
- *Correspondence: Yue-zhi Wang, ; Ze-bin Shi,
| |
Collapse
|
12
|
Boursiac Y, Pradal C, Bauget F, Lucas M, Delivorias S, Godin C, Maurel C. Phenotyping and modeling of root hydraulic architecture reveal critical determinants of axial water transport. PLANT PHYSIOLOGY 2022; 190:1289-1306. [PMID: 35708646 PMCID: PMC9516777 DOI: 10.1093/plphys/kiac281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/15/2022] [Indexed: 05/26/2023]
Abstract
Water uptake by roots is a key adaptation of plants to aerial life. Water uptake depends on root system architecture (RSA) and tissue hydraulic properties that, together, shape the root hydraulic architecture. This work investigates how the interplay between conductivities along radial (e.g. aquaporins) and axial (e.g. xylem vessels) pathways determines the water transport properties of highly branched RSAs as found in adult Arabidopsis (Arabidopsis thaliana) plants. A hydraulic model named HydroRoot was developed, based on multi-scale tree graph representations of RSAs. Root water flow was measured by the pressure chamber technique after successive cuts of a same root system from the tip toward the base. HydroRoot model inversion in corresponding RSAs allowed us to concomitantly determine radial and axial conductivities, providing evidence that the latter is often overestimated by classical evaluation based on the Hagen-Poiseuille law. Organizing principles of Arabidopsis primary and lateral root growth and branching were determined and used to apply the HydroRoot model to an extended set of simulated RSAs. Sensitivity analyses revealed that water transport can be co-limited by radial and axial conductances throughout the whole RSA. The number of roots that can be sectioned (intercepted) at a given distance from the base was defined as an accessible and informative indicator of RSA. The overall set of experimental and theoretical procedures was applied to plants mutated in ESKIMO1 and previously shown to have xylem collapse. This approach will be instrumental to dissect the root water transport phenotype of plants with intricate alterations in root growth or transport functions.
Collapse
Affiliation(s)
| | | | | | | | - Stathis Delivorias
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | | | | |
Collapse
|
13
|
Liu X, Wang P, An Y, Wang CM, Hao Y, Zhou Y, Zhou Q, Wang P. Endodermal apoplastic barriers are linked to osmotic tolerance in meso-xerophytic grass Elymus sibiricus. FRONTIERS IN PLANT SCIENCE 2022; 13:1007494. [PMID: 36212320 PMCID: PMC9539332 DOI: 10.3389/fpls.2022.1007494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Drought is the most serious adversity faced by agriculture and animal husbandry industries. One strategy that plants use to adapt to water deficits is modifying the root growth and architecture. Root endodermis has cell walls reinforced with apoplastic barriers formed by the Casparian strip (CS) and suberin lamellae (SL) deposits, regulates radial nutrient transport and protects the vascular cylinder from abiotic threats. Elymus sibiricus is an economically important meso-xerophytic forage grass, characterized by high nutritional quality and strong environmental adaptability. The purpose of this study was to evaluate the drought tolerance of E. sibiricus genotypes and investigate the root structural adaptation mechanism of drought-tolerant genotypes' responding to drought. Specifically, a drought tolerant (DT) and drought sensitive (DS) genotype were screened out from 52 E. sibiricus genotypes. DT showed less apoplastic bypass flow of water and solutes than DS under control conditions, as determined with a hydraulic conductivity measurement system and an apoplastic fluorescent tracer, specifically PTS trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS). In addition, DT accumulated less Na, Mg, Mn, and Zn and more Ni, Cu, and Al than DS, regardless of osmotic stress. Further study showed more suberin deposition in DT than in DS, which could be induced by osmotic stress in both. Accordingly, the CS and SL were deposited closer to the root tip in DT than in DS. However, osmotic stress induced their deposition closer to the root tips in DS, while likely increasing the thickness of the CS and SL in DT. The stronger and earlier formation of endodermal barriers may determine the radial transport pathways of water and solutes, and contribute to balance growth and drought response in E. sibiricus. These results could help us better understand how altered endodermal apoplastic barriers in roots regulate water and mineral nutrient transport in plants that have adapted to drought environments. Moreover, the current findings will aid in improving future breeding programs to develop drought-tolerant grass or crop cultivars.
Collapse
Affiliation(s)
- Xin Liu
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Yongping An
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Chun-Mei Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanbo Hao
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Yue Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Pei Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| |
Collapse
|
14
|
Serra O, Geldner N. The making of suberin. THE NEW PHYTOLOGIST 2022; 235:848-866. [PMID: 35510799 PMCID: PMC9994434 DOI: 10.1111/nph.18202] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 05/27/2023]
Abstract
Outer protective barriers of animals use a variety of bio-polymers, based on either proteins (e.g. collagens), or modified sugars (e.g. chitin). Plants, however, have come up with a particular solution, based on the polymerisation of lipid-like precursors, giving rise to cutin and suberin. Suberin is a structural lipophilic polyester of fatty acids, glycerol and some aromatics found in cell walls of phellem, endodermis, exodermis, wound tissues, abscission zones, bundle sheath and other tissues. It deposits as a hydrophobic layer between the (ligno)cellulosic primary cell wall and plasma membrane. Suberin is highly protective against biotic and abiotic stresses, shows great developmental plasticity and its chemically recalcitrant nature might assist the sequestration of atmospheric carbon by plants. The aim of this review is to integrate the rapidly accelerating genetic and cell biological discoveries of recent years with the important chemical and structural contributions obtained from very diverse organisms and tissue layers. We critically discuss the order and localisation of the enzymatic machinery synthesising the presumed substrates for export and apoplastic polymerisation. We attempt to explain observed suberin linkages by diverse enzyme activities and discuss the spatiotemporal relationship of suberin with lignin and ferulates, necessary to produce a functional suberised cell wall.
Collapse
Affiliation(s)
- Olga Serra
- Laboratori del SuroDepartment of BiologyUniversity of GironaCampus MontiliviGirona17003Spain
| | - Niko Geldner
- Department of Plant Molecular BiologyUniversity of LausanneUNIL‐Sorge, Biophore BuildingLausanne1015Switzerland
| |
Collapse
|
15
|
Carluccio AV, David LC, Claußen J, Sulley M, Adeoti SR, Abdulsalam T, Gerth S, Zeeman SC, Gisel A, Stavolone L. Set up from the beginning: The origin and early development of cassava storage roots. PLANT, CELL & ENVIRONMENT 2022; 45:1779-1795. [PMID: 35229892 PMCID: PMC9314696 DOI: 10.1111/pce.14300] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 05/19/2023]
Abstract
Despite the importance of storage root (SR) organs for cassava and the other root crops yield, their developmental origin is poorly understood. Here we use multiple approaches to shed light on the initial stages of root development demonstrating that SR and fibrous roots (FR) follow different rhizogenic processes. Transcriptome analysis carried out on roots collected before, during and after root bulking highlighted early and specific activation of a number of functions essential for root swelling and identified root-specific genes able to effectively discriminate emerging FR and SR. Starch and sugars start to accumulate at a higher rate in SR before they swell but only after parenchyma tissue has been produced. Finally, using non-destructive computed tomography measurements, we show that SR (but not FR) contain, since their emergence from the stem, an inner channel structure in continuity with the stem secondary xylem, indicating that SR derive from a distinct rhizogenic process compared with FR.
Collapse
Affiliation(s)
- Anna Vittoria Carluccio
- International Institute of Tropical AgricultureIbadanNigeria
- Institute for Sustainable Plant Protection, CNRBariItaly
| | - Laure C. David
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
| | - Joelle Claußen
- Fraunhofer‐Institut für Integrierte Schaltungen IISFürthGermany
| | - Marco Sulley
- International Institute of Tropical AgricultureIbadanNigeria
| | | | | | - Stefan Gerth
- Fraunhofer‐Institut für Integrierte Schaltungen IISFürthGermany
| | - Samuel C. Zeeman
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
| | - Andreas Gisel
- International Institute of Tropical AgricultureIbadanNigeria
- Institute for Biomedical Technologies, CNRBariItaly
| | - Livia Stavolone
- International Institute of Tropical AgricultureIbadanNigeria
- Institute for Sustainable Plant Protection, CNRBariItaly
| |
Collapse
|
16
|
Leal AR, Barros PM, Parizot B, Sapeta H, Vangheluwe N, Andersen TG, Beeckman T, Oliveira MM. Translational profile of developing phellem cells in Arabidopsis thaliana roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:899-915. [PMID: 35106861 DOI: 10.1111/tpj.15691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 12/20/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The phellem is a specialized boundary tissue providing the first line of defense against abiotic and biotic stresses in organs undergoing secondary growth. Phellem cells undergo several differentiation steps, which include cell wall suberization, cell expansion, and programmed cell death. Yet, the molecular players acting particularly in phellem cell differentiation remain poorly described, particularly in the widely used model plant Arabidopsis thaliana. Using specific marker lines we followed the onset and progression of phellem differentiation in A. thaliana roots and further targeted the translatome of newly developed phellem cells using translating ribosome affinity purification followed by mRNA sequencing (TRAP-SEQ). We showed that phellem suberization is initiated early after phellogen (cork cambium) division. The specific translational landscape was organized in three main domains related to energy production, synthesis and transport of cell wall components, and response to stimulus. Novel players in phellem differentiation related to suberin monomer transport and assembly as well as novel transcription regulators were identified. This strategy provided an unprecedented resolution of the translatome of developing phellem cells, giving a detailed and specific view on the molecular mechanisms acting on cell differentiation in periderm tissues of the model plant Arabidopsis.
Collapse
Affiliation(s)
- Ana Rita Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157, Oeiras, Portugal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Pedro Miguel Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157, Oeiras, Portugal
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Helena Sapeta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157, Oeiras, Portugal
| | - Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Tonni Grube Andersen
- Department of Plant Molecular Biology, Biophore, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
17
|
Zhang Y, Umeda M, Kakimoto T. Pericycle cell division competence underlies various developmental programs. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:29-36. [PMID: 35800961 PMCID: PMC9200087 DOI: 10.5511/plantbiotechnology.21.1202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/02/2021] [Indexed: 05/08/2023]
Abstract
Pericycle cells possess proliferative activity long after leaving the root apical meristem. Depending on the developmental stage and external stimuli, pericycle cell division leads to the production of lateral roots, vascular cambium and periderm, and callus. Therefore, pericycle cell division competence underlies root branching and secondary growth, as well as plant regeneration capacity. In this review, we first briefly present an overview of the molecular pathways of the four developmental programs originated, exclusively or partly, from pericycle cells. Then, we provide a review of up-to-date knowledge in the mechanisms determining pericycle cells' competence to undergo cell division. Furthermore, we discuss directions of future research to further our understanding of the pericycle's characteristics and functions.
Collapse
Affiliation(s)
- Ye Zhang
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
- E-mail: Tel: +81-743-72-5592 Fax: +81-743-72-5599
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Tatsuo Kakimoto
- Department of Biology, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
18
|
Turley EK, Etchells JP. Laying it on thick: a study in secondary growth. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:665-679. [PMID: 34655214 PMCID: PMC8793872 DOI: 10.1093/jxb/erab455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 05/12/2023]
Abstract
The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world's biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors from which conductive xylem and phloem are derived. The cambium is a somewhat unusual stem cell population in two respects, making it an interesting subject for developmental research. Firstly, it arises post-germination, and thus represents a model for understanding stem cell initiation beyond embryogenesis. Secondly, xylem and phloem differentiate on opposing sides of cambial stem cells, making them bifacial in nature. Recent discoveries in Arabidopsis thaliana have provided insight into the molecular mechanisms that regulate the initiation, patterning, and maintenance of the cambium. In this review, the roles of intercellular signalling via mobile transcription factors, peptide-receptor modules, and phytohormones are described. Crosstalk between these regulatory pathways is becoming increasingly apparent, yet the underlying mechanisms are not fully understood. Future study of the interaction between multiple independently identified regulators, as well as the functions of their orthologues in trees, will deepen our understanding of radial growth in plants.
Collapse
Affiliation(s)
- Emma K Turley
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - J Peter Etchells
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Correspondence:
| |
Collapse
|
19
|
Wang Y, Dai M, Wu X, Zhang S, Shi Z, Cai D, Miao L. An ARF1-binding factor triggering programmed cell death and periderm development in pear russet fruit skin. HORTICULTURE RESEARCH 2022; 9:uhab061. [PMID: 35043172 PMCID: PMC8947239 DOI: 10.1093/hr/uhab061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
Plants have a cuticular membrane (CM) and periderm membrane (PM), which act as barriers to terrestrial stresses. The CM covers primary organs with a continuous hydrophobic layer of waxes embedded in cutin, while the PM stacks with suberized cells outermost to the secondary tissues. The formation of native periderm is regulated by a postembryonic meristem phellogen that produces suberized phellem (cork) outwardly. However, the mechanism controlling phellogen differentiation to phellem remains to be clarified. Here, map-based cloning in a pear F1 population with segregation for periderm development in fruit skin facilitated the identification of an aspartic acid repeat deletion in Pyrus Periderm Programmed Cell Death 1.1 (PyPPCD1.1) that triggers phellogen activity for cork formation in pear russet fruit skin. PyPPCD1.1 showed preferential expression in pear fruit skin, and the encoded protein shares a structural similarity to that of the viral capsid proteins. Asp deletion in PyPPCD1.1 weakened its nuclear localization but increased its accumulation in the chloroplast. Both PyPPCD1.1 and its recessive allele directly interact with ADP-ribosylation factor 1 (ARF1). PyPPCD1.1 triggered PCD in an ARF1-dependent manner. Thus, this study identified the switch gene for PCD and periderm development and provided a new molecular regulatory mechanism underlying the development of this trait.
Collapse
Affiliation(s)
- Yuezhi Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Shiqiao Road No. 139, Hangzhou, Zhejiang Province, 310021, China
| | - Meisong Dai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Shiqiao Road No. 139, Hangzhou, Zhejiang Province, 310021, China
| | - Xinyi Wu
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road No. 298, Hangzhou, Zhejiang Province, 310021, China
| | - Shujun Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Shiqiao Road No. 139, Hangzhou, Zhejiang Province, 310021, China
| | - Zebin Shi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Shiqiao Road No. 139, Hangzhou, Zhejiang Province, 310021, China
| | - Danying Cai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Shiqiao Road No. 139, Hangzhou, Zhejiang Province, 310021, China
| | - Lixiang Miao
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Shiqiao Road No. 139, Hangzhou, Zhejiang Province, 310021, China
| |
Collapse
|
20
|
Calvo‐Polanco M, Ribeyre Z, Dauzat M, Reyt G, Hidalgo‐Shrestha C, Diehl P, Frenger M, Simonneau T, Muller B, Salt DE, Franke RB, Maurel C, Boursiac Y. Physiological roles of Casparian strips and suberin in the transport of water and solutes. THE NEW PHYTOLOGIST 2021; 232:2295-2307. [PMID: 34617285 PMCID: PMC9298204 DOI: 10.1111/nph.17765] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/02/2021] [Indexed: 05/09/2023]
Abstract
The formation of Casparian strips (CS) and the deposition of suberin at the endodermis of plant roots are thought to limit the apoplastic transport of water and ions. We investigated the specific role of each of these apoplastic barriers in the control of hydro-mineral transport by roots and the consequences on shoot growth. A collection of Arabidopsis thaliana mutants defective in suberin deposition and/or CS development was characterized under standard conditions using a hydroponic system and the Phenopsis platform. Mutants altered in suberin deposition had enhanced root hydraulic conductivity, indicating a restrictive role for this compound in water transport. In contrast, defective CS directly increased solute leakage and indirectly reduced root hydraulic conductivity. Defective CS also led to a reduction in rosette growth, which was partly dependent on the hydro-mineral status of the plant. Ectopic suberin was shown to partially compensate for defective CS phenotypes. Altogether, our work shows that the functionality of the root apoplastic diffusion barriers greatly influences the plant physiology, and that their integrity is tightly surveyed.
Collapse
Affiliation(s)
- Monica Calvo‐Polanco
- BPMPUniv MontpellierCNRSINRAEInstitut Agro34060MontpellierFrance
- Excellence Unit AGRIENVIRONMENTCIALEUniversity of Salamanca37185SalamancaSpain
| | - Zoe Ribeyre
- LEPSEUniv MontpellierINRAEInstitut Agro34060MontpellierFrance
| | - Myriam Dauzat
- LEPSEUniv MontpellierINRAEInstitut Agro34060MontpellierFrance
| | - Guilhem Reyt
- Future Food Beacon of Excellence and the School of BiosciencesUniversity of NottinghamNottinghamLE12 5RDUK
| | | | - Patrick Diehl
- Institute of Cellular and Molecular BotanyUniversity of Bonn53115BonnGermany
| | - Marc Frenger
- Institute of Cellular and Molecular BotanyUniversity of Bonn53115BonnGermany
| | | | - Bertrand Muller
- LEPSEUniv MontpellierINRAEInstitut Agro34060MontpellierFrance
| | - David E. Salt
- Future Food Beacon of Excellence and the School of BiosciencesUniversity of NottinghamNottinghamLE12 5RDUK
| | - Rochus B. Franke
- Institute of Cellular and Molecular BotanyUniversity of Bonn53115BonnGermany
| | | | - Yann Boursiac
- BPMPUniv MontpellierCNRSINRAEInstitut Agro34060MontpellierFrance
| |
Collapse
|
21
|
Karlova R, Boer D, Hayes S, Testerink C. Root plasticity under abiotic stress. PLANT PHYSIOLOGY 2021; 187:1057-1070. [PMID: 34734279 PMCID: PMC8566202 DOI: 10.1093/plphys/kiab392] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/25/2021] [Indexed: 05/08/2023]
Abstract
Abiotic stresses increasingly threaten existing ecological and agricultural systems across the globe. Plant roots perceive these stresses in the soil and adapt their architecture accordingly. This review provides insights into recent discoveries showing the importance of root system architecture (RSA) and plasticity for the survival and development of plants under heat, cold, drought, salt, and flooding stress. In addition, we review the molecular regulation and hormonal pathways involved in controlling RSA plasticity, main root growth, branching and lateral root growth, root hair development, and formation of adventitious roots. Several stresses affect root anatomy by causing aerenchyma formation, lignin and suberin deposition, and Casparian strip modulation. Roots can also actively grow toward favorable soil conditions and avoid environments detrimental to their development. Recent advances in understanding the cellular mechanisms behind these different root tropisms are discussed. Understanding root plasticity will be instrumental for the development of crops that are resilient in the face of abiotic stress.
Collapse
Affiliation(s)
- Rumyana Karlova
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Damian Boer
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Scott Hayes
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Author for communication:
| |
Collapse
|
22
|
Root Suberin Plays Important Roles in Reducing Water Loss and Sodium Uptake in Arabidopsis thaliana. Metabolites 2021; 11:metabo11110735. [PMID: 34822393 PMCID: PMC8618449 DOI: 10.3390/metabo11110735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Suberin is a cell-wall-associated hetero-polymer deposited in specific plant tissues. The precise role of its composition and lamellae structure in protecting plants against abiotic stresses is unclear. In Arabidopsis thaliana, we tested the biochemical and physiological responses to water deficiency and NaCl treatment in mutants that are differentially affected in suberin composition and lamellae structure. Chronic drought stress increased suberin and suberin-associated waxes in wild-type plants. Suberin-deficient mutants were not more susceptible than the wild-type to the chronic drought stress imposed in this study. Nonetheless, the cyp86a1-1 cyp86b1-1 mutant, which had a severely altered suberin composition and lamellae structure, exhibited increased water loss through the root periderm. Cyp86a1-1 cyp86b1-1 also recorded lower relative water content in leaves. The abcg2-1 abcg6-1 abcg20-1 mutant, which has altered suberin composition and lamellae, was very sensitive to NaCl treatment. Furthermore, cyp86a1-1 cyp86b1-1 recorded a significant drop in the leaf K/Na ratio, indicating salt sensitivity. The far1-2 far4-1 far5-1 mutant, which did not show structural defects in the suberin lamellae, had similar responses to drought and NaCl treatments as the wild-type. Our results provide evidence that the suberin amount and lamellae structure are key features in the barrier function of suberin in reducing water loss and reducing sodium uptake through roots for better performance under drought and salt stresses.
Collapse
|
23
|
Fiorillo A, Fogliano V, Marra M, Camoni L. Borate and phosphite treatments of potato plants ( Solanum tuberosum L.) as a proof of concept to reinforce the cell wall structure and reduce starch digestibility. Food Funct 2021; 12:9372-9379. [PMID: 34606543 DOI: 10.1039/d1fo00801c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potatoes are one of the main sources of carbohydrates in human diet, however they have a high glycaemic index (GI). Hence, developing new agricultural and industrial strategies to produce low GI potatoes represents a health priority to prevent obesity and related diseases. In this work, we investigated whether treatments of potato plants with elicitors of plant defence responses can lead to a reduction of tuber starch availability and digestibility, through the induction of cell wall remodelling and stiffening. Treatments with phosphites (KPhi) and borate were performed, as they are known to activate plant defence responses that cause modifications in the architecture and composition of the plant cell wall. Data of suberin autofluorescence demonstrated that potato plants grown in a nutrition medium supplemented with KPhi and borate produced tubers with a thicker periderm, while pectin staining demonstrated that KPhi treatment induced a reinforcement of the wall of storage parenchyma cells. Both compounds elicited the production of H2O2, which is usually involved in cell-wall remodelling and stiffening reactions while only KPhi caused an increase of the total content of phenolic compounds. A two-phase digestion in vitro assay showed that treatment with KPhi determined a significant decrease of the starch hydrolysis rate in potato tubers. This work highlights the ability of cell wall architecture in modulating starch accessibility to digestive enzymes, paving the way for new agronomic practices to produce low GI index potatoes.
Collapse
Affiliation(s)
- Anna Fiorillo
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy.
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University and Research, Wageningen 6708WG, Netherlands
| | - Mauro Marra
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy.
| | - Lorenzo Camoni
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy.
| |
Collapse
|
24
|
Boher P, Soler M, Fernández-Piñán S, Torrent X, Müller SY, Kelly KA, Serra O, Figueras M. Silencing of StRIK in potato suggests a role in periderm related to RNA processing and stress. BMC PLANT BIOLOGY 2021; 21:409. [PMID: 34493224 PMCID: PMC8424952 DOI: 10.1186/s12870-021-03141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The periderm is a protective barrier crucial for land plant survival, but little is known about genetic factors involved in its development and regulation. Using a transcriptomic approach in the cork oak (Q. suber) periderm, we previously identified an RS2-INTERACTING KH PROTEIN (RIK) homologue of unknown function containing a K homology (KH)-domain RNA-binding protein, as a regulatory candidate gene in the periderm. RESULTS To gain insight into the function of RIK in the periderm, potato (S. tuberosum) tuber periderm was used as a model: the full-length coding sequence of RIK, hereafter referred to as StRIK, was isolated, the transcript profile analyzed and gene silencing in potato performed to analyze the silencing effects on periderm anatomy and transcriptome. The StRIK transcript accumulated in all vegetative tissues studied, including periderm and other suberized tissues such as root and also in wounded tissues. Downregulation of StRIK in potato by RNA interference (StRIK-RNAi) did not show any obvious effects on tuber periderm anatomy but, unlike Wild type, transgenic plants flowered. Global transcript profiling of the StRIK-RNAi periderm did show altered expression of genes associated with RNA metabolism, stress and signaling, mirroring the biological processes found enriched within the in silico co-expression network of the Arabidopsis orthologue. CONCLUSIONS The ubiquitous expression of StRIK transcript, the flower associated phenotype and the differential expression of StRIK-RNAi periderm point out to a general regulatory role of StRIK in diverse plant developmental processes. The transcriptome analysis suggests that StRIK might play roles in RNA maturation and stress response in the periderm.
Collapse
Affiliation(s)
- Pau Boher
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Marçal Soler
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Sandra Fernández-Piñán
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Xènia Torrent
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Sebastian Y. Müller
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA UK
| | - Krystyna A. Kelly
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA UK
| | - Olga Serra
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Mercè Figueras
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| |
Collapse
|
25
|
Rüscher D, Corral JM, Carluccio AV, Klemens PAW, Gisel A, Stavolone L, Neuhaus HE, Ludewig F, Sonnewald U, Zierer W. Auxin signaling and vascular cambium formation enable storage metabolism in cassava tuberous roots. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3688-3703. [PMID: 33712830 PMCID: PMC8096603 DOI: 10.1093/jxb/erab106] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/04/2021] [Indexed: 05/10/2023]
Abstract
Cassava storage roots are among the most important root crops worldwide, and represent one of the most consumed staple foods in sub-Saharan Africa. The vegetatively propagated tropical shrub can form many starchy tuberous roots from its stem. These storage roots are formed through the activation of secondary root growth processes. However, the underlying genetic regulation of storage root development is largely unknown. Here we report distinct structural and transcriptional changes occurring during the early phases of storage root development. A pronounced increase in auxin-related transcripts and the transcriptional activation of secondary growth factors, as well as a decrease in gibberellin-related transcripts were observed during the early stages of secondary root growth. This was accompanied by increased cell wall biosynthesis, most notably increased during the initial xylem expansion within the root vasculature. Starch storage metabolism was activated only after the formation of the vascular cambium. The formation of non-lignified xylem parenchyma cells and the activation of starch storage metabolism coincided with increased expression of the KNOX/BEL genes KNAT1, PENNYWISE, and POUND-FOOLISH, indicating their importance for proper xylem parenchyma function.
Collapse
Affiliation(s)
- David Rüscher
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - José María Corral
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Anna Vittoria Carluccio
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - Patrick A W Klemens
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Andreas Gisel
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Biomedical Technologies, CNR, Bari, Italy
| | - Livia Stavolone
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - H Ekkehard Neuhaus
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Frank Ludewig
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
- Present address: KWS Saat SE, Grimsehlstraße 31, D-37574 Einbeck, Germany
| | - Uwe Sonnewald
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Wolfgang Zierer
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
- Correspondence:
| |
Collapse
|
26
|
Manokari M, Priyadharshini S, Shekhawat MS. Micro-Structural Stability of Micropropagated Plants of Vitex negundo L. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-9. [PMID: 33858540 DOI: 10.1017/s1431927621000283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Micropropagation techniques allow producing large numbers of clones of genetically identical plants. However, there is evidence of disorders in internal structures due to sophisticated in vitro conditions. Such variations are responsible for the mortality of plantlets in the field and cause huge loss to the tissue culture industry. Anatomical evaluation at different growth conditions allows for understanding structural repair of in vitro raised plantlets. Therefore, the present study was aimed to identify the structural changes that occurred in micropropagated plants of Vitex negundo under heterotrophic, photomixotrophic, and photoautotrophic conditions. To achieve this, structural variations were analyzed in the plantlets obtained from in vitro, greenhouse and field transferred stages using light microscopy. Underdeveloped dermal tissues, palisade cells, intercellular spaces, mechanical tissues, vascular bundles, and ground tissues were observed with the plants growing under in vitro conditions. The self-repairing of structural disorders and transitions in vegetative anatomy was observed during hardening under the greenhouse environment. Field transferred plantlets were characterized by well-developed internal anatomy. These findings showed that the micropropagated plantlets of V. negundo were well-adapted through a series of self-repairing the in vitro induced structural abnormalities at the subsequent stages of plant development.
Collapse
Affiliation(s)
- M Manokari
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry605008, India
- Siddha Clinical Research Unit, Central Council for Research in Siddha, Palayamkottai600106, Tamil Nadu, India
| | - S Priyadharshini
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry605008, India
| | - Mahipal S Shekhawat
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry605008, India
| |
Collapse
|
27
|
Sheldrake AR. The production of auxin by dying cells. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2288-2300. [PMID: 33460445 DOI: 10.1093/jxb/erab009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/13/2021] [Indexed: 05/12/2023]
Abstract
In this review, I discuss the possibility that dying cells produce much of the auxin in vascular plants. The natural auxin, indole-3-acetic acid (IAA), is derived from tryptophan by a two-step pathway via indole pyruvic acid. The first enzymes in the pathway, tryptophan aminotransferases, have a low affinity for tryptophan and break it down only when tryptophan levels rise far above normal intracellular concentrations. Such increases occur when tryptophan is released from proteins by hydrolytic enzymes as cells autolyse and die. Many sites of auxin production are in and around dying cells: in differentiating tracheary elements; in root cap cells; in nutritive tissues that break down in developing flowers and seeds; in senescent leaves; and in wounds. Living cells also produce auxin, such as those transformed genetically by the crown gall pathogen. IAA may first have served as an exogenous indicator of the presence of nutrient-rich decomposing organic matter, stimulating the production of rhizoids in bryophytes. As cell death was internalized in bryophytes and in vascular plants, IAA may have taken on a new role as an endogenous hormone.
Collapse
|
28
|
Andersen TG, Molina D, Kilian J, Franke RB, Ragni L, Geldner N. Tissue-Autonomous Phenylpropanoid Production Is Essential for Establishment of Root Barriers. Curr Biol 2021; 31:965-977.e5. [DOI: 10.1016/j.cub.2020.11.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023]
|
29
|
Dong BZ, Zhu XQ, Fan J, Guo LY. The Cutinase Bdo_10846 Play an Important Role in the Virulence of Botryosphaeria dothidea and in Inducing the Wart Symptom on Apple Plant. Int J Mol Sci 2021; 22:ijms22041910. [PMID: 33673023 PMCID: PMC7918748 DOI: 10.3390/ijms22041910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/28/2022] Open
Abstract
Botryosphaeria dothidea is a pathogen with worldwide distribution, infecting hundreds of species of economically important woody plants. It infects and causes various symptoms on apple plants, including wart and canker on branches, twigs, and stems. However, the mechanism of warts formation is unclear. In this study, we investigated the mechanism of wart formation by observing the transection ultrastructure of the inoculated cortical tissues at various time points of the infection process and detecting the expression of genes related to the pathogen pathogenicity and plant defense response. Results revealed that wart induced by B. dothidea consisted of proliferous of phelloderm cells, the newly formed secondary phellem, and the suberized phelloderm cells surrounding the invading mycelia. The qRT-PCR analysis revealed the significant upregulation of apple pathogenesis-related and suberification-related genes and a pathogen cutinase gene Bdo_10846. The Bdo_10846 knockout transformants showed reduced cutinase activity and decreased virulence. Transient expression of Bdo_10846 in Nicotiana benthamiana induced ROS burst, callose formation, the resistance of N. benthamiana to Botrytis cinerea, and significant upregulation of the plant pathogenesis-related and suberification-related genes. Additionally, the enzyme activity is essential for the induction. Virus-induced gene silencing demonstrated that the NbBAK1 and NbSOBIR1 expression were required for the Bdo_10846 induced defense response in N. benthamiana. These results revealed the mechanism of wart formation induced by B. dothidea invasion and the important roles of the cutinase Bdo_10846 in pathogen virulence and in inducing plant immunity.
Collapse
|
30
|
Liu YL, Zheng HL. Physiological and Proteomic Analyses of Two Acanthus Species to Tidal Flooding Stress. Int J Mol Sci 2021; 22:ijms22031055. [PMID: 33494455 PMCID: PMC7865619 DOI: 10.3390/ijms22031055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
The mangrove plant Acanthus ilicifolius and its relative, Acanthus mollis, have been previously proved to possess diverse pharmacological effects. Therefore, evaluating the differentially expressed proteins of these species under tidal flooding stress is essential to fully exploit and benefit from their medicinal values. The roots of A. ilicifolius and A. mollis were exposed to 6 h of flooding stress per day for 10 days. The dry weight, hydrogen peroxide (H2O2) content, anatomical characteristics, carbon and energy levels, and two-dimensional electrophoresis coupled with MALDI-TOF/TOF MS technology were used to reveal the divergent flooding resistant strategies. A. ilicifolius performed better under tidal flooding stress, which was reflected in the integrity of the morphological structure, more efficient use of carbon and energy, and a higher percentage of up-regulated proteins associated with carbon and energy metabolism. A. mollis could not survive in flooding conditions for a long time, as revealed by disrupting cell structures of the roots, less efficient use of carbon and energy, and a higher percentage of down-regulated proteins associated with carbon and energy metabolism. Energy provision and flux balance played a role in the flooding tolerance of A. ilicifolius and A. mollis.
Collapse
|
31
|
Madritsch S, Bomers S, Posekany A, Burg A, Birke R, Emerstorfer F, Turetschek R, Otte S, Eigner H, Sehr EM. Integrative transcriptomics reveals genotypic impact on sugar beet storability. PLANT MOLECULAR BIOLOGY 2020; 104:359-378. [PMID: 32754876 PMCID: PMC7593311 DOI: 10.1007/s11103-020-01041-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
An integrative comparative transcriptomic approach on six sugar beet varieties showing different amount of sucrose loss during storage revealed genotype-specific main driver genes and pathways characterizing storability. Sugar beet is next to sugar cane one of the most important sugar crops accounting for about 15% of the sucrose produced worldwide. Since its processing is increasingly centralized, storage of beet roots over an extended time has become necessary. Sucrose loss during storage is a major concern for the sugar industry because the accumulation of invert sugar and byproducts severely affect sucrose manufacturing. This loss is mainly due to ongoing respiration, but changes in cell wall composition and pathogen infestation also contribute. While some varieties can cope better during storage, the underlying molecular mechanisms are currently undiscovered. We applied integrative transcriptomics on six varieties exhibiting different levels of sucrose loss during storage. Already prior to storage, well storable varieties were characterized by a higher number of parenchyma cells, a smaller cell area, and a thinner periderm. Supporting these findings, transcriptomics identified changes in genes involved in cell wall modifications. After 13 weeks of storage, over 900 differentially expressed genes were detected between well and badly storable varieties, mainly in the category of defense response but also in carbohydrate metabolism and the phenylpropanoid pathway. These findings were confirmed by gene co-expression network analysis where hub genes were identified as main drivers of invert sugar accumulation and sucrose loss. Our data provide insight into transcriptional changes in sugar beet roots during storage resulting in the characterization of key pathways and hub genes that might be further used as markers to improve pathogen resistance and storage properties.
Collapse
Affiliation(s)
- Silvia Madritsch
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Svenja Bomers
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria
| | - Alexandra Posekany
- University of Technology Vienna, Research Unit of Computational Statistics, Vienna, Austria
| | - Agnes Burg
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria
| | - Rebekka Birke
- AGRANA Research & Innovation Center GmbH, Tulln, Austria
| | | | | | - Sandra Otte
- Strube Research GmbH & Co. KG, Söllingen, Germany
| | - Herbert Eigner
- AGRANA Research & Innovation Center GmbH, Tulln, Austria
| | - Eva M Sehr
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria.
| |
Collapse
|
32
|
Xiao W, Molina D, Wunderling A, Ripper D, Vermeer JEM, Ragni L. Pluripotent Pericycle Cells Trigger Different Growth Outputs by Integrating Developmental Cues into Distinct Regulatory Modules. Curr Biol 2020; 30:4384-4398.e5. [PMID: 32916110 DOI: 10.1016/j.cub.2020.08.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/22/2020] [Accepted: 08/14/2020] [Indexed: 01/24/2023]
Abstract
During post-embryonic development, the pericycle specifies the stem cells that give rise to both lateral roots (LRs) and the periderm, a suberized barrier that protects the plant against biotic and abiotic stresses. Comparable auxin-mediated signaling hubs regulate meristem establishment in many developmental contexts; however, it is unknown how specific outputs are achieved. Using the Arabidopsis root as a model, we show that while LR formation is the main auxin-induced program after de-etiolation, plants with age become competent to form a periderm in response to auxin. The establishment of the vascular cambium acts as the developmental switch required to trigger auxin-mediated periderm initiation. Moreover, distinct auxin signaling components and targets control LR versus periderm formation. Among the periderm-specific-promoting transcription factors, WUSCHEL-RELATED HOMEOBOX 4 (WOX4) and KNAT1/BREVIPEDICELLUS (BP) stand out as their specific overexpression in the periderm results in an increased number of periderm layers, a trait of agronomical importance in breeding programs targeting stress tolerance. These findings reveal that specificity in pericycle stem cell fate is achieved by the integration of developmental cues into distinct regulatory modules.
Collapse
Affiliation(s)
- Wei Xiao
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - David Molina
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Anna Wunderling
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Dagmar Ripper
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Joop E M Vermeer
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Laura Ragni
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| |
Collapse
|
33
|
Sonnewald U, Fernie AR, Gruissem W, Schläpfer P, Anjanappa RB, Chang SH, Ludewig F, Rascher U, Muller O, van Doorn AM, Rabbi IY, Zierer W. The Cassava Source-Sink project: opportunities and challenges for crop improvement by metabolic engineering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1655-1665. [PMID: 32502321 DOI: 10.1111/tpj.14865] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Cassava (Manihot esculenta Crantz) is one of the important staple foods in Sub-Saharan Africa. It produces starchy storage roots that provide food and income for several hundred million people, mainly in tropical agriculture zones. Increasing cassava storage root and starch yield is one of the major breeding targets with respect to securing the future food supply for the growing population of Sub-Saharan Africa. The Cassava Source-Sink (CASS) project aims to increase cassava storage root and starch yield by strategically integrating approaches from different disciplines. We present our perspective and progress on cassava as an applied research organism and provide insight into the CASS strategy, which can serve as a blueprint for the improvement of other root and tuber crops. Extensive profiling of different field-grown cassava genotypes generates information for leaf, phloem, and root metabolic and physiological processes that are relevant for biotechnological improvements. A multi-national pipeline for genetic engineering of cassava plants covers all steps from gene discovery, cloning, transformation, molecular and biochemical characterization, confined field trials, and phenotyping of the seasonal dynamics of shoot traits under field conditions. Together, the CASS project generates comprehensive data to facilitate conventional breeding strategies for high-yielding cassava genotypes. It also builds the foundation for genome-scale metabolic modelling aiming to predict targets and bottlenecks in metabolic pathways. This information is used to engineer cassava genotypes with improved source-sink relations and increased yield potential.
Collapse
Affiliation(s)
- Uwe Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, Erlangen, 91058, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, ETH Zurich, Universitaetstrasse 2, Zurich, 8092, Switzerland
- Advanced Plant Biotechnology Center, Institute of Biotechnology, National Chung Hsing University, Xingda Road, South District, Taichung City, 402, Taiwan
| | - Pascal Schläpfer
- Department of Biology, Plant Biotechnology, ETH Zurich, Universitaetstrasse 2, Zurich, 8092, Switzerland
| | - Ravi B Anjanappa
- Department of Biology, Plant Biotechnology, ETH Zurich, Universitaetstrasse 2, Zurich, 8092, Switzerland
| | - Shu-Heng Chang
- Advanced Plant Biotechnology Center, Institute of Biotechnology, National Chung Hsing University, Xingda Road, South District, Taichung City, 402, Taiwan
| | - Frank Ludewig
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, Erlangen, 91058, Germany
| | - Uwe Rascher
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Leo-Brandt-Str, Jülich, 52425, Germany
| | - Onno Muller
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Leo-Brandt-Str, Jülich, 52425, Germany
| | - Anna M van Doorn
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Leo-Brandt-Str, Jülich, 52425, Germany
| | - Ismail Y Rabbi
- International Institue for Tropical Agriculture, Oyo Road, Ibadan, Oyo State, 200001, Nigeria
| | - Wolfgang Zierer
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, Erlangen, 91058, Germany
| |
Collapse
|