1
|
Fan B, Liang X, Li Y, Li M, Yu T, Qin Y, Li B, An T, Wang G. Biosynthesis and metabolic engineering of natural sweeteners. AMB Express 2025; 15:50. [PMID: 40100508 PMCID: PMC11920521 DOI: 10.1186/s13568-025-01864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
Natural sweeteners have attracted widespread attention because they are eco-friendly, healthy, low in calories, and tasty. The demand for natural sweeteners is increasing together with the popularity of green, low-carbon, sustainable development. With the development of synthetic biology, microbial cell factories have emerged as an effective method to produce large amounts of natural sweeteners. This technology has significantly progressed in recent years. This review summarizes the pathways and the enzymes related to the biosynthesis of natural sweeteners, such as mogrosides, steviol glycosides, glycyrrhizin, glycyrrhetinic acid, phlorizin, trilobatin, erythritol, sorbitol, mannitol, thaumatin, monellin, and brazzein. Moreover, it focuses on the research about the microbial production of these natural sweeteners using synthetic biology methods, aiming to provide a reference for future research on the production of natural sweeteners.
Collapse
Affiliation(s)
- Bengui Fan
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Yichi Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Tongle Yu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Yuan Qin
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Bohan Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
2
|
Wang Y, Zheng J, Wen F, Tu B, Cui L. Novel gnd_v2 Fusion Tag and Engineered TEV Protease Enable Efficient Production of Brazzein. J Microbiol Biotechnol 2024; 34:2310-2320. [PMID: 39300970 PMCID: PMC11637865 DOI: 10.4014/jmb.2407.07047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Protein solubility and purification challenges often hinder the large-scale production of valuable proteins like brazzein, a potent sweet protein with significant health benefits and commercial potential. This study introduces two novel tools to overcome protein expression and purification bottlenecks: a gnd_v2 fusion tag and an engineered Tobacco Etch Virus (TEV) protease. The gnd_v2 tag, derived from 6-phosphogluconate dehydrogenase, was engineered to improve the soluble expression of brazzein. This tag increased brazzein's solubility by four times compared to the wild-type gnd tag, marking a significant advancement in efficient brazzein production. To address the challenge of cleaving the fusion tag, we engineered a TEV protease variant with high efficiency, particularly at the glutamine residue at brazzein's P1' site - a known difficulty for wild-type TEV proteases. We achieved streamlined production of pure, functional brazzein by integrating this tailored protease cleavage with an ultrafiltration-based purification protocol. Notably, the purified brazzein demonstrated a sweetness potency approximately 2500 times that of sucrose, highlighting its potential as a high-intensity natural sweetener. While this study focused on brazzein, the gnd_v2 tag shows promise for enhancing the solubility of other challenging proteins. More broadly, this work presents a versatile toolset for the scalable production of diverse functional proteins, with significant implications for industrial applications in food and pharmaceutical domains.
Collapse
Affiliation(s)
- Yu Wang
- CCZU-JITRI joint Bio-X Lab, School of Pharmacy & School of Biological and Food Engineering, Changzhou University, 213164, Changzhou, Jiangsu Province, P.R. China
| | - Jiayao Zheng
- CCZU-JITRI joint Bio-X Lab, School of Pharmacy & School of Biological and Food Engineering, Changzhou University, 213164, Changzhou, Jiangsu Province, P.R. China
| | - Fan Wen
- CCZU-JITRI joint Bio-X Lab, School of Pharmacy & School of Biological and Food Engineering, Changzhou University, 213164, Changzhou, Jiangsu Province, P.R. China
| | - Bowen Tu
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, 213000, Changzhou, Jiangsu Province, P.R. China
| | - Lun Cui
- CCZU-JITRI joint Bio-X Lab, School of Pharmacy & School of Biological and Food Engineering, Changzhou University, 213164, Changzhou, Jiangsu Province, P.R. China
| |
Collapse
|
3
|
Jin SB, Kim HA, Shin JA, Jung NH, Park SY, Hong S, Kong KH. Recombinant expression and tryptophan-assisted analysis of human sweet taste receptor T1R3's extracellular domain in sweetener interaction studies. Prep Biochem Biotechnol 2024; 54:1196-1203. [PMID: 38578840 DOI: 10.1080/10826068.2024.2336985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The human palate can discern multiple tastes; however, it predominantly perceives five fundamental flavors: sweetness, saltiness, sourness, bitterness, and umami. Sweetness is primarily mediated through the sweet taste receptor, a membrane-bound heterodimeric structure comprising T1R2-T1R3. However, unraveling the structural and mechanistic intricacies of the sweet taste receptor has proven challenging. This study aimed to address this knowledge gap by expressing an extracellular N-terminal domain encompassing the cysteine-rich domain of human hT1R3 (hT1R3-TMD) in Escherichia coli. The expressed protein was obtained as inclusion bodies, purified by metal affinity chromatography, and refolded using the dilution-refolding method. Through rigorous analysis, we confirmed the successful refolding of hT1R3-TMD and elucidated its structural characteristics using circular dichroism spectroscopy. Notably, the refolded protein was found to exist as either a monomer or a dimer, depending on its concentration. A tryptophan fluorescence quenching assay revealed that the dissociation constants for sucrose, sucralose, and brazzein were >9500 μM, 2380 μM and 14.3 μM, respectively. Our findings highlight the utility of this E. coli expression system for producing functional hT1R3-TMD for investigations and demonstrate the efficacy of the tryptophan fluorescence quenching assay in revealing complex interactions between sweet taste receptors and various sweeteners.
Collapse
Affiliation(s)
- Soo-Bin Jin
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Hyun-A Kim
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Ji-Ae Shin
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Na-Hee Jung
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Seo-Young Park
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Sungguan Hong
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Kwang-Hoon Kong
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| |
Collapse
|
4
|
Liao L, Shen X, Shen Z, Du G, Li J, Zhang G. CRISPR/Cas9-Based Genome Editing for Protein Expression and Secretion in Kluyveromyces lactis. ACS Synth Biol 2024; 13:2105-2114. [PMID: 38871652 DOI: 10.1021/acssynbio.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The budding yeast Kluyveromyces lactis has emerged as a promising microbial chassis in industrial biotechnology. However, a lack of efficient molecular genetic manipulation tools and strategies has hindered the development of K. lactis as a biomanufacturing platform. In this study, we developed and applied a CRISPR/Cas9-based genome editing method to K. lactis. Single-gene editing efficiency was increased to 80% by disrupting the nonhomologous end-joining-related gene KU80 and performing a series of process optimizations. Subsequently, the CRISPR/Cas9 system was explored based on different sgRNA delivery modes for simultaneous multigene editing. With the aid of the color indicator, the editing efficiencies of two and three genes reached 73.3 and 36%, respectively, in the KlΔKU80 strain. Furthermore, the CRISPR/Cas9 system was used for multisite integration to enhance lactase production and combinatorial knockout of TMED10 and HSP90 to characterize the extracellular secretion of lactase in K. lactis. Generally, genome editing is a powerful tool for constructing K. lactis cell factories for protein and chemical production.
Collapse
Affiliation(s)
- Lingtong Liao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiuru Shen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhiyu Shen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guoqiang Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
O’Riordan N, Jurić V, O’Neill SK, Roche AP, Young PW. A Yeast Modular Cloning (MoClo) Toolkit Expansion for Optimization of Heterologous Protein Secretion and Surface Display in Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:1246-1258. [PMID: 38483353 PMCID: PMC11036508 DOI: 10.1021/acssynbio.3c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/20/2024]
Abstract
Saccharomyces cerevisiae is an attractive host for the expression of secreted proteins in a biotechnology context. Unfortunately, many heterologous proteins fail to enter, or efficiently progress through, the secretory pathway, resulting in poor yields. Similarly, yeast surface display has become a widely used technique in protein engineering but achieving sufficient levels of surface expression of recombinant proteins is often challenging. Signal peptides (SPs) and translational fusion partners (TFPs) can be used to direct heterologous proteins through the yeast secretory pathway, however, selection of the optimal secretion promoting sequence is largely a process of trial and error. The yeast modular cloning (MoClo) toolkit utilizes type IIS restriction enzymes to facilitate an efficient assembly of expression vectors from standardized parts. We have expanded this toolkit to enable the efficient incorporation of a panel of 16 well-characterized SPs and TFPs and five surface display anchor proteins into S. cerevisiae expression cassettes. The secretion promoting signals are validated by using five different proteins of interest. Comparison of intracellular and secreted protein levels reveals the optimal secretion promoting sequence for each individual protein. Large, protein of interest-specific variations in secretion efficiency are observed. SP sequences are also used with the five surface display anchors, and the combination of SP and anchor protein proves critical for efficient surface display. These observations highlight the value of the described panel of MoClo compatible parts to allow facile screening of SPs and TFPs and anchor proteins for optimal secretion and/or surface display of a given protein of interest in S. cerevisiae.
Collapse
Affiliation(s)
- Nicola
M. O’Riordan
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
| | - Vanja Jurić
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Sarah K. O’Neill
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
| | - Aoife P. Roche
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
| | - Paul W. Young
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
6
|
Saraiva A, Carrascosa C, Ramos F, Raheem D, Pedreiro S, Vega A, Raposo A. Brazzein and Monellin: Chemical Analysis, Food Industry Applications, Safety and Quality Control, Nutritional Profile and Health Impacts. Foods 2023; 12:foods12101943. [PMID: 37238762 DOI: 10.3390/foods12101943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Recently, customers have been keener to buy products manufactured using all-natural ingredients with positive health properties, but without losing flavor. In this regard, the objective of the current study is to review the consumption of brazzein and monellin, their nutritional profiles and health effects, and their potential applications in the food industry. This poses challenges with sustainability and important quality and safety indicators, as well as the chemical processes used to determine them. To better understand the utilization of brazzein and monellin, the chemical analysis of these two natural sweet proteins was also reviewed by placing particular emphasis on their extraction methods, purification and structural characterization. Protein engineering is considered a means to improve the thermal stability of brazzein and monellin to enhance their application in food processing, especially where high temperatures are applied. When the quality and safety of these sweet proteins are well-investigated and the approval from safety authorities is secured, the market for brazzein and monellin as food ingredient substitutes for free sugar will be guaranteed in the future. Ultimately, the review on these two natural peptide sweeteners increases the body of knowledge on alleviating problems of obesity, diabetes and other non-communicable diseases.
Collapse
Affiliation(s)
- Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Fernando Ramos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Dele Raheem
- Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland
| | - Sónia Pedreiro
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Angelo Vega
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| |
Collapse
|
7
|
Qiu Y, Lei P, Wang R, Sun L, Luo Z, Li S, Xu H. Kluyveromyces as promising yeast cell factories for industrial bioproduction: From bio-functional design to applications. Biotechnol Adv 2023; 64:108125. [PMID: 36870581 DOI: 10.1016/j.biotechadv.2023.108125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
As the two most widely used Kluyveromyces yeast, Kluyveromyces marxianus and K. lactis have gained increasing attention as microbial chassis in biocatalysts, biomanufacturing and the utilization of low-cost raw materials owing to their high suitability to these applications. However, due to slow progress in the development of molecular genetic manipulation tools and synthetic biology strategies, Kluyveromyces yeast cell factories as biological manufacturing platforms have not been fully developed. In this review, we provide a comprehensive overview of the attractive characteristics and applications of Kluyveromyces cell factories, with special emphasis on the development of molecular genetic manipulation tools and systems engineering strategies for synthetic biology. In addition, future avenues in the development of Kluyveromyces cell factories for the utilization of simple carbon compounds as substrates, the dynamic regulation of metabolic pathways, and for rapid directed evolution of robust strains are proposed. We expect that more synthetic systems, synthetic biology tools and metabolic engineering strategies will adapt to and optimize for Kluyveromyces cell factories to achieve green biofabrication of multiple products with higher efficiency.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengshan Luo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
8
|
Dupuis JH, Cheung LKY, Newman L, Dee DR, Yada RY. Precision cellular agriculture: The future role of recombinantly expressed protein as food. Compr Rev Food Sci Food Saf 2023; 22:882-912. [PMID: 36546356 DOI: 10.1111/1541-4337.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Cellular agriculture is a rapidly emerging field, within which cultured meat has attracted the majority of media attention in recent years. An equally promising area of cellular agriculture, and one that has produced far more actual food ingredients that have been incorporated into commercially available products, is the use of cellular hosts to produce soluble proteins, herein referred to as precision cellular agriculture (PCAg). In PCAg, specific animal- or plant-sourced proteins are expressed recombinantly in unicellular hosts-the majority of which are yeast-and harvested for food use. The numerous advantages of PCAg over traditional agriculture, including a smaller carbon footprint and more consistent products, have led to extensive research on its utility. This review is the first to survey proteins currently being expressed using PCAg for food purposes. A growing number of viable expression hosts and recent advances for increased protein yields and process optimization have led to its application for producing milk, egg, and muscle proteins; plant hemoglobin; sweet-tasting plant proteins; and ice-binding proteins. Current knowledge gaps present research opportunities for optimizing expression hosts, tailoring posttranslational modifications, and expanding the scope of proteins produced. Considerations for the expansion of PCAg and its implications on food regulation, society, ethics, and the environment are also discussed. Considering the current trajectory of PCAg, food proteins from any biological source can likely be expressed recombinantly and used as purified food ingredients to create novel and tailored food products.
Collapse
Affiliation(s)
- John H Dupuis
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lennie K Y Cheung
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lenore Newman
- Food and Agriculture Institute, University of the Fraser Valley, Abbotsford, British Columbia, Canada
| | - Derek R Dee
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rickey Y Yada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Bilal M, Ji L, Xu S, Zhang Y, Iqbal HMN, Cheng H. Bioprospecting and biotechnological insights into sweet-tasting proteins by microbial hosts-a review. Bioengineered 2022; 13:9815-9828. [PMID: 35435127 PMCID: PMC9161876 DOI: 10.1080/21655979.2022.2061147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Owing to various undesirable health effects of sugar overconsumption, joint efforts are being made by industrial sectors and regulatory authorities to reduce sugar consumption practices, worldwide. Artificial sweeteners are considered potential substitutes in several products, e.g., sugar alcohols (polyols), high-fructose corn syrup, powdered drink mixes, and other beverages. Nevertheless, their long-standing health effects continue to be debatable. Consequently, growing interest has been shifted in producing non-caloric sweetenersfrom renewable resources to meet consumers' dietary requirements. Except for the lysozyme protein, various sweet proteins including thaumatin, mabinlin, brazzein, monellin, miraculin, pentadin, and curculin have been identified in tropical plants. Given the high cost and challenging extortion of natural resources, producing these sweet proteins using engineered microbial hosts, such as Yarrowia lipolytica, Pichia pastoris, Hansenula polymorpha, Candida boidinii, Arxula adeninivorans, Pichia methanolica, Saccharomyces cerevisiae, and Kluyveromyces lactis represents an appealing choice. Engineering techniques can be applied for large-scale biosynthesis of proteins, which can be used in biopharmaceutical, food, diagnostic, and medicine industries. Nevertheless, extensive work needs to be undertaken to address technical challenges in microbial production of sweet-tasting proteins in bulk. This review spotlights historical aspects, physicochemical properties (taste, safety, stability, solubility, and cost), and recombinant biosynthesis of sweet proteins. Moreover, future opportunities for process improvement based on metabolic engineering strategies are also discussed.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Liyun Ji
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Hairong Cheng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- CONTACT Hairong Cheng Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
CHOI HE, LEE JI, JO SY, CHAE YC, LEE JH, SUN HJ, KO K, HONG S, KONG KH. Functional expression of the sweet-tasting protein brazzein in transgenic tobacco. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.40521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Binati RL, Salvetti E, Bzducha-Wróbel A, Bašinskienė L, Čižeikienė D, Bolzonella D, Felis GE. Non-conventional yeasts for food and additives production in a circular economy perspective. FEMS Yeast Res 2021; 21:6380488. [PMID: 34601574 DOI: 10.1093/femsyr/foab052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Yeast species have been spontaneously participating in food production for millennia, but the scope of applications was greatly expanded since their key role in beer and wine fermentations was clearly acknowledged. The workhorse for industry and scientific research has always been Saccharomyces cerevisiae. It occupies the largest share of the dynamic yeast market, that could further increase thanks to the better exploitation of other yeast species. Food-related 'non-conventional' yeasts (NCY) represent a treasure trove for bioprospecting, with their huge untapped potential related to a great diversity of metabolic capabilities linked to niche adaptations. They are at the crossroad of bioprocesses and biorefineries, characterized by low biosafety risk and produce food and additives, being also able to contribute to production of building blocks and energy recovered from the generated waste and by-products. Considering that the usual pattern for bioprocess development focuses on single strains or species, in this review we suggest that bioprospecting at the genus level could be very promising. Candida, Starmerella, Kluyveromyces and Lachancea were briefly reviewed as case studies, showing that a taxonomy- and genome-based rationale could open multiple possibilities to unlock the biotechnological potential of NCY bioresources.
Collapse
Affiliation(s)
- Renato L Binati
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona (VR), Italy
| | - Elisa Salvetti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona (VR), Italy
| | - Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c St., 02-776 Warsaw, Poland
| | - Loreta Bašinskienė
- Department of Food Science and Technology, Kaunas University of Technology, Radvilėnų St. 19A, 44249 Kaunas, Lithuania
| | - Dalia Čižeikienė
- Department of Food Science and Technology, Kaunas University of Technology, Radvilėnų St. 19A, 44249 Kaunas, Lithuania
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona (VR), Italy
| | - Giovanna E Felis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona (VR), Italy
| |
Collapse
|
12
|
Park SW, Kang BH, Lee HM, Lee SJ, Kim HS, Choi HW, Park TJ, Kong KH. Efficient brazzein production in yeast (Kluyveromyces lactis) using a chemically defined medium. Bioprocess Biosyst Eng 2021; 44:913-925. [PMID: 33502625 DOI: 10.1007/s00449-020-02499-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
The sweet-tasting protein brazzein offers considerable potential as a functional sweetener with antioxidant, anti-inflammatory, and anti-allergic properties. Here, we optimized a chemically defined medium to produce secretory recombinant brazzein in Kluyveromyces lactis, with applications in mass production. Compositions of defined media were investigated for two phases of fermentation: the first phase for cell growth, and the second for maximum brazzein secretory production. Secretory brazzein expressed in the optimized defined medium exhibited higher purity than in the complex medium; purification was by ultrafiltration using a molecular weight cutoff, yielding approximately 107 mg L-1. Moreover, the total media cost in this defined medium system was approximately 11% of that in the optimized complex medium to generate equal amounts of brazzein. Therefore, the K. lactis expression system is useful for mass-producing recombinant brazzein with high purity and yield at low production cost and indicates a promising potential for applications in the food industry.
Collapse
Affiliation(s)
- Se-Woong Park
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Byung-Ha Kang
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Hyeong-Min Lee
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Sung-Jun Lee
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Han-Seul Kim
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Hye-Won Choi
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Kwang-Hoon Kong
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
13
|
Liu B, Jiang H, Wang H, Yang L. Removal of the N-terminal methionine improves the sweetness of the recombinant expressed sweet-tasting protein brazzein and its mutants in Escherichia coli. J Food Biochem 2020; 45:e13354. [PMID: 32614080 DOI: 10.1111/jfbc.13354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 11/28/2022]
Abstract
The sweet-tasting protein brazzein is the smallest sweet protein with high sweet potency. Overexpression of this protein in a heterogenous host is an essential way for its production in food industry. In this study, the gene of minor form brazzein was cloned into the pET-SUMO vector with optimized codon usage and expressed in E. coli BL21-CodonPlus (DE3)-RIL. The recombinant protein in absence of the N-terminal methionine displayed a sweetness threshold about 1.5 μg/ml, which is the sweetest brazzein protein reported up to now. The unexpected sweet potency of the protein was validated by a series of mutants (7Val → Arg, 9Glu → Lys and 9Glu → Asp), in which E9K exhibited about 50% enhancement of sweetness than the wild type. The superior sweetness of recombinant brazzein and its sweeter mutants suggest their potential applications in food and beverages. PRACTICAL APPLICATIONS: The sweet-tasting proteins are natural, low-, or non-caloric and nutritive, showing to be promising replacers of sugars and artificial sweeteners, and can be used as sweet additives in the fields of food, medicine, and biotechnology. In the present study, we report that the recombinant brazzein protein expressed in E. coli exhibits superior and improved sweetness than those previously reported. Furthermore, sweeter mutants were obtained with the expression procedure. The superior sweetness of recombinant brazzein and its sweeter mutants suggest their potential applications in food, beverages, and other fields.
Collapse
Affiliation(s)
- Bo Liu
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hua Jiang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haiyong Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Liu Yang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
14
|
Kazemi-Nasab A, Shahpiri A. Expression of Brazzein, a Small Sweet-Tasting Protein in Saccharomyces cerevisiae: An Introduction for Production of Sweet Yeasts. Protein Pept Lett 2020; 27:945-952. [PMID: 32228415 DOI: 10.2174/0929866527666200331134431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The replacement of carbohydrate sweeteners with protein sweeteners from plants has attracted the interest of researchers because these proteins don't trigger the insulin response and are more nutritive for consumption in food. Brazzein (Braz) is a small and heat- stable sweet protein that has been originally derived from African plant Pentadiplandra brazzeana. In the present work the solubility, sweetness and yield of recombinant forms of Braz in two expression hosts, E. coli and S. cerevisiae were comprised. METHODS The codon-optimized gene of Braz was cloned in expression vectors pET28a and pET41a and GPD. The resulted vectors pET28a-Braz and pEt41a-Braz were transformed into Escherichia coli strain Rosetta (DE3) and the vector GPD-Braz was transformd to S. cerevisiae. The expression of Braz in different systems was analyzed by SDS-PAGE and western blotting. RESULTS The results verified the heterologous expression of Braz in S. cerevisiae carrying GPDBraz. Also the expression of Braz as carboxy-terminal extensions of His-tag and Glutathione-STransferase (GST) were verified in transgenic E. coli containing pET28a-Braz and pET41a-Braz, respectively. CONCLUSION Although the yield of GST-Braz was higher than His-Braz and Braz expressed in S. cerevisiae, but the higher solubility, sweetness, safety (GRAS) are important advantages of the use of S. cerevisiae as expression host for production of Braz. Therefore the result of present work opens new insights for providing the new sweet yeasts that can be used as food additives.
Collapse
Affiliation(s)
- Akram Kazemi-Nasab
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Azar Shahpiri
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
15
|
Kim H, Kang J, Hong S, Jo S, Noh H, Kang BH, Park S, Seo YJ, Kong KH, Hong S. 3M-Brazzein as a Natural Sugar Substitute Attenuates Obesity, Metabolic Disorder, and Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2183-2192. [PMID: 31984741 DOI: 10.1021/acs.jafc.0c00317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Obesity is a global chronic disease linked to various diseases. Increased consumption of added sugars, especially in beverages, is a key contributor to the obesity epidemic. It is essential to reduce or replace sugar intake with low-calorie sweeteners. Here, a natural sweet protein, 3M-brazzein, was investigated as a possible sugar substitute. Mice were exposed to 3M-brazzein or 10% sucrose of equivalent sweetness, in drinking water to mimic human obesity development over 15 weeks. Consumption of 3M-brazzein in liquid form did not cause adiposity hypertrophy, resulting in 33.1 ± 0.4 g body weight and 0.90 ± 0.2 mm fat accumulation, which were 35.9 ± 0.7 g (p = 0.0094) and 1.53 ± 0.067 mm (p = 0.0031), respectively, for sucrose supplement. Additionally, 3M-brazzein did not disrupt glucose homeostasis or affect insulin resistance and inflammation. Due to its naturally low-calorie content, 3M-brazzein could also be a potential sugar substitute that reduces adiposity.
Collapse
Affiliation(s)
- Hansaem Kim
- Department of Chemistry, College of Natural Sciences , Chung-Ang University , Seoul 06974 , South Korea
| | - Jaeyong Kang
- Department of Chemistry, College of Natural Sciences , Chung-Ang University , Seoul 06974 , South Korea
| | - Seungwoo Hong
- Department of Chemistry, College of Natural Sciences , Chung-Ang University , Seoul 06974 , South Korea
| | - Seonyeong Jo
- Department of Chemistry, College of Natural Sciences , Chung-Ang University , Seoul 06974 , South Korea
| | - Hyangsoon Noh
- Department of Chemistry, College of Natural Sciences , Chung-Ang University , Seoul 06974 , South Korea
| | - Byung-Ha Kang
- Department of Chemistry, College of Natural Sciences , Chung-Ang University , Seoul 06974 , South Korea
| | - Suhyun Park
- School of Electrical and Electronics Engineering , Chung-Ang University , Seoul 06974 , South Korea
| | - Young-Jin Seo
- Department of Life Science, College of Natural Sciences , Chung-Ang University , Seoul 06974 , South Korea
| | - Kwang-Hoon Kong
- Department of Chemistry, College of Natural Sciences , Chung-Ang University , Seoul 06974 , South Korea
| | - Sungguan Hong
- Department of Chemistry, College of Natural Sciences , Chung-Ang University , Seoul 06974 , South Korea
| |
Collapse
|
16
|
Jafarian V, Bagheri K, Zarei J, Karami S, Ghanavatian P. Improved expression of recombinant sweet-tasting brazzein using codon optimization and host change as new strategies. FOOD BIOTECHNOL 2020. [DOI: 10.1080/08905436.2019.1711113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Vahab Jafarian
- Department of Biology, Faculty of science, University of Zanjan, Zanjan, Iran
| | - Khadijeh Bagheri
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Jabraeil Zarei
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Shima Karami
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Parisa Ghanavatian
- Department of Biology, Faculty of science, University of Zanjan, Zanjan, Iran
| |
Collapse
|
17
|
Hung CY, Cheng LH, Yeh CM. Functional expression of recombinant sweet-tasting protein brazzein by Escherichia coli and Bacillus licheniformis. FOOD BIOTECHNOL 2019. [DOI: 10.1080/08905436.2019.1618323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Chien-Ya Hung
- Department of Management and Utilization, Fengshan Tropical Horticultural Experiment Branch, Taiwan Agricultural Research Institute, Kaohsiung, Taiwan
| | - Lee-Hao Cheng
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chuan-Mei Yeh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
18
|
Lee HM, Park SW, Lee SJ, Kong KH. Optimized production and quantification of the tryptophan-deficient sweet-tasting protein brazzein in Kluyveromyces lactis. Prep Biochem Biotechnol 2019; 49:790-799. [PMID: 31140364 DOI: 10.1080/10826068.2019.1621892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The sweet-tasting protein brazzein is a candidate sugar substitute owing to its sweet, sugar-like taste and good stability. To commercialize brazzein as a sweetener, optimization of fermentation and purification procedure is necessary. Here, we report the expression conditions of brazzein in the yeast Kluyveromices lactis and purification method for maximum yield. Transformed K. lactis was cultured in YPGlu (pH 7.0) at 25 °C and induced by adding glucose:galactose at a weight ratio of 1:2 (%/%) during the stationary phase, which increased brazzein expression 2.5 fold compared to the previous conditions. Cultures were subjected to heat treatment at 80 °C for 1 h, and brazzein containing supernatant was purified using carboxymethyl-sepharose cation exchange chromatography using 50 mM NaCl in 50 mM sodium acetate buffer (pH 4.0) as a wash buffer and 400 mM NaCl (pH 7.0) for elution. The yield of purified brazzein under these conditions was 2.0-fold higher than that from previous purification methods. We also determined that the NanoOrange assay was a suitable method for quantifying tryptophan-deficient brazzein. Thus, it is possible to obtain pure recombinant brazzein with high yield in K. lactis using our optimized expression, purification, and quantification protocols, which has potential applications in the food industry.
Collapse
Affiliation(s)
- Hyung-Min Lee
- a Biomolecular Chemistry Laboratory, Department of Chemistry, College of Natural Sciences, Chung-Ang University , Seoul , Korea
| | - Se-Woong Park
- a Biomolecular Chemistry Laboratory, Department of Chemistry, College of Natural Sciences, Chung-Ang University , Seoul , Korea
| | - Sung-Jun Lee
- a Biomolecular Chemistry Laboratory, Department of Chemistry, College of Natural Sciences, Chung-Ang University , Seoul , Korea
| | - Kwang-Hoon Kong
- a Biomolecular Chemistry Laboratory, Department of Chemistry, College of Natural Sciences, Chung-Ang University , Seoul , Korea
| |
Collapse
|
19
|
Joseph JA, Akkermans S, Nimmegeers P, Van Impe JFM. Bioproduction of the Recombinant Sweet Protein Thaumatin: Current State of the Art and Perspectives. Front Microbiol 2019; 10:695. [PMID: 31024485 PMCID: PMC6463758 DOI: 10.3389/fmicb.2019.00695] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
There is currently a worldwide trend to reduce sugar consumption. This trend is mostly met by the use of artificial non-nutritive sweeteners. However, these sweeteners have also been proven to have adverse health effects such as dizziness, headaches, gastrointestinal issues, and mood changes for aspartame. One of the solutions lies in the commercialization of sweet proteins, which are not associated with adverse health effects. Of these proteins, thaumatin is one of the most studied and most promising alternatives for sugars and artificial sweeteners. Since the natural production of these proteins is often too expensive, biochemical production methods are currently under investigation. With these methods, recombinant DNA technology is used for the production of sweet proteins in a host organism. The most promising host known today is the methylotrophic yeast, Pichia pastoris. This yeast has a tightly regulated methanol-induced promotor, allowing a good control over the recombinant protein production. Great efforts have been undertaken for improving the yields and purities of thaumatin productions, but a further optimization is still desired. This review focuses on (i) the motivation for using and producing sweet proteins, (ii) the properties and history of thaumatin, (iii) the production of recombinant sweet proteins, and (iv) future possibilities for process optimization based on a systems biology approach.
Collapse
Affiliation(s)
- Jewel Ann Joseph
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
- Optimization in Engineering Center-of-Excellence, KU Leuven, Leuven, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
- Optimization in Engineering Center-of-Excellence, KU Leuven, Leuven, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
| | - Philippe Nimmegeers
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
- Optimization in Engineering Center-of-Excellence, KU Leuven, Leuven, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
| | - Jan F. M. Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
- Optimization in Engineering Center-of-Excellence, KU Leuven, Leuven, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
| |
Collapse
|
20
|
Chung JH, Kong JN, Choi HE, Kong KH. Antioxidant, anti-inflammatory, and anti-allergic activities of the sweet-tasting protein brazzein. Food Chem 2018; 267:163-169. [DOI: 10.1016/j.foodchem.2017.06.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 06/14/2017] [Indexed: 11/30/2022]
|
21
|
Stressler T, Reichenberger K, Glück C, Leptihn S, Pfannstiel J, Swietalski P, Kuhn A, Seitl I, Fischer L. A natural variant of arylsulfatase from Kluyveromyces lactis shows no formylglycine modification and has no enzyme activity. Appl Microbiol Biotechnol 2018; 102:2709-2721. [PMID: 29450617 DOI: 10.1007/s00253-018-8828-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
Abstract
Kluyveromyces lactis is a common fungal microorganism used for the production of enzyme preparations such as β-galactosidases (native) or chymosin (recombinant). It is generally important that enzyme preparations have no unwanted side activities. In the case of β-galactosidase preparations produced from K. lactis, an unwanted side activity could be the presence of arylsulfatase (EC 3.1.6.1). Due to the action of arylsulfatase, an unpleasant "cowshed-like" off-flavor would occur in the final product. The best choice to avoid this is to use a yeast strain without this activity. Interestingly, we found that certain natural K. lactis strains express arylsulfatases, which only differ in one amino acid at position 139. The result of this difference is that K. lactis DSM 70799 (expressing R139 variant) shows no arylsulfatase activity, unlike K. lactis GG799 (expressing S139 variant). After recombinant production of both variants in Escherichia coli, the R139 variant remains inactive, whereas the S139 variant showed full activity. Mass spectrometric analyses showed that the important posttranslational modification of C56 to formylglycine was not found in the R139 variant. By contrast, the C56 residue of the S139 variant was modified. We further investigated the packing and secondary structure of the arylsulfatase variants using optical spectroscopy, including fluorescence and circular dichroism. We found out that the inactive R139 variant exhibits a different structure regarding folding and packing compared to the active S139 variant. The importance of the amino acid residue 139 was documented further by the construction of 18 more variants, whereof only ten showed activity but always reduced compared to the native S139 variant.
Collapse
Affiliation(s)
- Timo Stressler
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany.
| | - Katrin Reichenberger
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Claudia Glück
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Sebastian Leptihn
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, August-von-Hartmann-Str. 3, 70599, Stuttgart, Germany
| | - Paul Swietalski
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Andreas Kuhn
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Ines Seitl
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Lutz Fischer
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| |
Collapse
|
22
|
Löbs AK, Schwartz C, Wheeldon I. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications. Synth Syst Biotechnol 2017; 2:198-207. [PMID: 29318200 PMCID: PMC5655347 DOI: 10.1016/j.synbio.2017.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/26/2022] Open
Abstract
Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisiae is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.
Collapse
Affiliation(s)
- Ann-Kathrin Löbs
- Department of Chemical and Environmental Engineering, UC Riverside, Riverside, USA
| | - Cory Schwartz
- Department of Chemical and Environmental Engineering, UC Riverside, Riverside, USA
| | - Ian Wheeldon
- Department of Chemical and Environmental Engineering, UC Riverside, Riverside, USA
| |
Collapse
|
23
|
Kim MC, Kim DH, Yun CR, Chung JH, Kim HS, Choi HE, Kong KH. Refined single-interval adjustment matrix yes-no task for estimating the absolute thresholds of sweet-tasting molecules. J SENS STUD 2017. [DOI: 10.1111/joss.12250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Myung-Chul Kim
- Laboratory of Biomolecular Chemistry, Department of Chemistry; College of Natural Sciences, Chung-Ang University; Seoul Korea
| | - Da-Hye Kim
- Laboratory of Biomolecular Chemistry, Department of Chemistry; College of Natural Sciences, Chung-Ang University; Seoul Korea
| | - Cho-Rong Yun
- Laboratory of Biomolecular Chemistry, Department of Chemistry; College of Natural Sciences, Chung-Ang University; Seoul Korea
| | - Ju-Hee Chung
- Laboratory of Biomolecular Chemistry, Department of Chemistry; College of Natural Sciences, Chung-Ang University; Seoul Korea
| | - Hyun-Soo Kim
- Laboratory of Biomolecular Chemistry, Department of Chemistry; College of Natural Sciences, Chung-Ang University; Seoul Korea
| | - Hyo-Eun Choi
- Laboratory of Biomolecular Chemistry, Department of Chemistry; College of Natural Sciences, Chung-Ang University; Seoul Korea
| | - Kwang-Hoon Kong
- Laboratory of Biomolecular Chemistry, Department of Chemistry; College of Natural Sciences, Chung-Ang University; Seoul Korea
| |
Collapse
|
24
|
Yun CR, Kong JN, Chung JH, Kim MC, Kong KH. Improved Secretory Production of the Sweet-Tasting Protein, Brazzein, in Kluyveromyces lactis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6312-6316. [PMID: 27465609 DOI: 10.1021/acs.jafc.6b02446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Brazzein is an intensely sweet protein with high stability over a wide range of pH values and temperatures, due to its four disulfide bridges. Recombinant brazzein production through secretory expression in Kluyveromyces lactis is reported, but is inefficient due to incorrect disulfide formation, which is crucial for achieving the final protein structure and stability. Protein disulfide bond formation requires protein disulfide isomerase (PDI) and Ero1p. Here, we overexpressed KlPDI in K. lactis or treated the cells with dithiothreitol to overexpress KlERO1 and improve brazzein secretion. KlPDI and KlERO1 overexpression independently increased brazzein secretion in K. lactis by 1.7-2.2- and 1.3-1.6-fold, respectively. Simultaneous overexpression of KlPDI and KlERO1 accelerated des-pE1M-brazzein secretion by approximately 2.6-fold compared to the previous system. Moreover, intracellular misfolded/unfolded recombinant des-pE1M-brazzein was significantly decreased. In conclusion, increased KlPDI and KlERO1 expression favors brazzein secretion, suggesting that correct protein folding may be crucial to brazzein secretion in K. lactis.
Collapse
Affiliation(s)
- Cho-Rong Yun
- Laboratory of Biomolecular Chemistry, Department of Chemistry, College of Natural Sciences, Chung-Ang University , 221 Huksuk-Dong, Dongjak-Ku, Seoul 156-756, Korea
| | - Ji-Na Kong
- Department of Neuroscience and Regenerative Medicine, Medical College of George, Augusta University , Augusta, Georgia 30912, United States
| | - Ju-Hee Chung
- Laboratory of Biomolecular Chemistry, Department of Chemistry, College of Natural Sciences, Chung-Ang University , 221 Huksuk-Dong, Dongjak-Ku, Seoul 156-756, Korea
| | - Myung-Chul Kim
- Laboratory of Biomolecular Chemistry, Department of Chemistry, College of Natural Sciences, Chung-Ang University , 221 Huksuk-Dong, Dongjak-Ku, Seoul 156-756, Korea
| | - Kwang-Hoon Kong
- Laboratory of Biomolecular Chemistry, Department of Chemistry, College of Natural Sciences, Chung-Ang University , 221 Huksuk-Dong, Dongjak-Ku, Seoul 156-756, Korea
| |
Collapse
|
25
|
Spohner SC, Schaum V, Quitmann H, Czermak P. Kluyveromyces lactis: An emerging tool in biotechnology. J Biotechnol 2016; 222:104-16. [DOI: 10.1016/j.jbiotec.2016.02.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 02/04/2023]
|