1
|
Park JM, Kim YJ. [Effect of Ghrelin on Memory Impairment in a Rat Model of Vascular Dementia]. J Korean Acad Nurs 2019; 49:317-328. [PMID: 31266928 DOI: 10.4040/jkan.2019.49.3.317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 11/09/2022]
Abstract
PURPOSE The purpose of this study was to identify the effect of ghrelin on memory impairment in a rat model of vascular dementia induced by chronic cerebral hypoperfusion. METHODS Randomized controlled groups and the posttest design were used. We established the representative animal model of vascular dementia caused by bilateral common carotid artery occlusion and administered 80 μg/kg ghrelin intraperitoneally for 4 weeks. First, behavioral studies were performed to evaluate spatial memory. Second, we used molecular biology techniques to determine whether ghrelin ameliorates the damage to the structure and function of the white matter and hippocampus, which are crucial to learning and memory. RESULTS Ghrelin improved the spatial memory impairment in the Y-maze and Morris water maze test. In the white matter, demyelination and atrophy of the corpus callosum were significantly decreased in the ghrelin-treated group. In the hippocampus, ghrelin increased the length of hippocampal microvessels and reduced the microvessels pathology. Further, we confirmed angiogenesis enhancement through the fact that ghrelin treatment increased vascular endothelial growth factor (VEGF)-related protein levels, which are the most powerful mediators of angiogenesis in the hippocampus. CONCLUSION We found that ghrelin affected the damaged myelin sheaths and microvessels by increasing angiogenesis, which then led to neuroprotection and improved memory function. We suggest that further studies continue to accumulate evidence of the effect of ghrelin. Further, we believe that the development of therapeutic interventions that increase ghrelin may contribute to memory improvement in patients with vascular dementia.
Collapse
Affiliation(s)
- Jong Min Park
- College of Nursing Science, Kyung Hee University, Seoul, Korea
| | - Youn Jung Kim
- College of Nursing Science, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
2
|
Maugham ML, Seim I, Thomas PB, Crisp GJ, Shah ET, Herington AC, Gregory LS, Nelson CC, Jeffery PL, Chopin LK. Limited short-term effects on human prostate cancer xenograft growth and epidermal growth factor receptor gene expression by the ghrelin receptor antagonist [D-Lys 3]-GHRP-6. Endocrine 2019; 64:393-405. [PMID: 30390209 DOI: 10.1007/s12020-018-1796-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE The ghrelin axis regulates many physiological functions (including appetite, metabolism, and energy balance) and plays a role in disease processes. As ghrelin stimulates prostate cancer proliferation, the ghrelin receptor antagonist [D-Lys3]-GHRP-6 is a potential treatment for castrate-resistant prostate cancer and for preventing the metabolic consequences of androgen-targeted therapies. We therefore explored the effect of [D-Lys3]-GHRP-6 on PC3 prostate cancer xenograft growth. METHODS NOD/SCID mice with PC3 prostate cancer xenografts were administered 20 nmoles/mouse [D-Lys3]-GHRP-6 daily by intraperitoneal injection for 14 days and tumour volume and weight were measured. RNA sequencing of tumours was conducted to investigate expression changes following [D-Lys3]-GHRP-6 treatment. A second experiment, extending treatment time to 18 days and including a higher dose of [D-Lys3]-GHRP-6 (200 nmoles/mouse/day), was undertaken to ensure repeatability. RESULTS We demonstrate here that daily intraperitoneal injection of 20 nmoles/mouse [D-Lys3]-GHRP-6 reduces PC3 prostate cancer xenograft tumour volume and weight in NOD/SCID mice at two weeks post treatment initiation. RNA-sequencing revealed reduced expression of epidermal growth factor receptor (EGFR) in these tumours. Further experiments demonstrated that the effects of [D-Lys3]-GHRP-6 are transitory and lost after 18 days of treatment. CONCLUSIONS We show that [D-Lys3]-GHRP-6 has transitory effects on prostate xenograft tumours in mice, which rapidly develop an apparent resistance to the antagonist. Although further studies on [D-Lys3]-GHRP-6 are warranted, we suggest that daily treatment with the antagonist is not a suitable treatment for advanced prostate cancer.
Collapse
Affiliation(s)
- Michelle L Maugham
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Translational Research Institute and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Comparative and Endocrine Biology Laboratory, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Skeletal Biology and Forensic Anthropology Research Laboratory, Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Inge Seim
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Translational Research Institute and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Comparative and Endocrine Biology Laboratory, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Patrick B Thomas
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Translational Research Institute and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Comparative and Endocrine Biology Laboratory, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gabrielle J Crisp
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Translational Research Institute and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Comparative and Endocrine Biology Laboratory, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Esha T Shah
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Translational Research Institute and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Comparative and Endocrine Biology Laboratory, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Adrian C Herington
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Translational Research Institute and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Laura S Gregory
- Skeletal Biology and Forensic Anthropology Research Laboratory, Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Penny L Jeffery
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Translational Research Institute and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Comparative and Endocrine Biology Laboratory, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lisa K Chopin
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Translational Research Institute and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.
- Comparative and Endocrine Biology Laboratory, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Wang W, Chen ZX, Guo DY, Tao YX. Regulation of prostate cancer by hormone-responsive G protein-coupled receptors. Pharmacol Ther 2018; 191:135-147. [PMID: 29909235 DOI: 10.1016/j.pharmthera.2018.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/01/2018] [Indexed: 11/27/2022]
Abstract
Regulation of prostate cancer by androgen and androgen receptor (AR), and blockade of AR signaling by AR antagonists and steroidogenic enzyme inhibitors have been extensively studied. G protein-coupled receptors (GPCRs) are a family of membrane receptors that regulate almost all physiological processes. Nearly 40% of FDA-approved drugs in the market target GPCRs. A variety of GPCRs that mediate reproductive function have been demonstrated to be involved in the regulation of prostate cancer. These GPCRs include gonadotropin-releasing hormone receptor, luteinizing hormone receptor, follicle-stimulating hormone receptor, relaxin receptor, ghrelin receptor, and kisspeptin receptor. We highlight here GPCR regulation of prostate cancer by these GPCRs. Further therapeutic approaches targeting these GPCRs for the treatment of prostate cancer are summarized.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Zhao-Xia Chen
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China.
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
4
|
Zeferino CP, Wells KD, Moura ASAM, Rottinghaus GE, Ledoux DR. Changes in renal gene expression associated with induced ochratoxicosis in chickens: activation and deactivation of transcripts after varying durations of exposure. Poult Sci 2017; 96:1855-1865. [DOI: 10.3382/ps/pew419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022] Open
|
5
|
Luo QQ, Zhou YF, Chen MYJ, Liu L, Ma J, Zhang MW, Zhang FL, Ke Y, Qian ZM. Fasting up-regulates ferroportin 1 expression via a Ghrelin/GHSR/MAPK signaling pathway. J Cell Physiol 2017; 233:30-37. [PMID: 28338217 DOI: 10.1002/jcp.25931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/22/2017] [Indexed: 01/18/2023]
Abstract
The significant positive correlation between ghrelin and iron and hepcidin levels in the plasma of children with iron deficiency anemia prompted us to hypothesize that ghrelin may affect iron metabolism. Here, we investigated the effects of fasting or ghrelin on the expression of hepcidin, ferroportin 1 (Fpn1), transferrin receptor 1 (TfR1), ferritin light chain (Ft-L) proteins, and ghrelin, and also hormone secretagogue receptor 1 alpha (GHSR1α) and ghrelin O-acyltransferase (GOAT) mRNAs in the spleen and/or macrophage. We demonstrated that fasting induces a significant increase in the expression of ghrelin, GHSR1α, GOAT, and hepcidin mRNAs, as well as Ft-L and Fpn1 but not TfR1 proteins in the spleens of mice in vivo. Similar to the effects of fasting on the spleen, ghrelin induced a significant increase in the expression of Ft-L and Fpn1 but not TfR1 proteins in macrophages in vitro. In addition, ghrelin was found to induce a significant enhancement in phosphorylation of ERK as well as translocation of pERK from the cytosol to nuclei. Furthermore, the increased pERK and Fpn1 induced by ghrelin was demonstrated to be preventable by pre-treatment with either GHSR1α antagonist or pERK inhibitor. Our findings support the hypothesis that fasting upregulates Fpn1 expression, probably via a ghrelin/GHSR/MAPK signaling pathway.
Collapse
Affiliation(s)
- Qian-Qian Luo
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China.,Pharmacological Evaluation and Research Center, Shanghai Institute of PharmaceuticalIndustry, Shanghai, China.,Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong, China
| | - Yu-Fu Zhou
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Mesona Yung-Jin Chen
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Li Liu
- Pharmacological Evaluation and Research Center, Shanghai Institute of PharmaceuticalIndustry, Shanghai, China
| | - Juan Ma
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Meng-Wan Zhang
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Fa-Li Zhang
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Ya Ke
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Zhong-Ming Qian
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
6
|
Li J, Zhang M, Wang M, Wang Z, Liu Y, Zhang W, Wang N. GHSR deficiency suppresses neointimal formation in injured mouse arteries. Biochem Biophys Res Commun 2016; 479:125-131. [PMID: 27404127 DOI: 10.1016/j.bbrc.2016.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 01/25/2023]
Abstract
Growth hormone secretagogue receptor (GHSR) is involved in appetite regulation and energy homeostasis. In the present study, we examined the role of GHSR in neointimal formation following vascular injury. In the mouse model of femoral artery wire injury, we found that vessel intima-to-media ratio was significantly reduced in GHSR deficiency (GHSR-/-) mice compared with that in wild-type mice. Immunohistochemical staining showed that the smooth muscle cell (SMCs) in the neointima were significantly decreased in the injured arteries of GHSR-/- mice which was associated with decreased SMC proliferation and migration. Furthermore, immunoblotting demonstrated that, in cultured rat aortic SMCs, small interfering RNA-mediated GHSR knockdown suppressed the activation of Akt and ERK1/2 signaling pathway. These findings suggested a novel role of GHSR in neointimal formation likely via promoting the proliferation and migration of SMCs involving Akt and ERK1/2 signaling. Therefore, GHSR may be a potential therapeutic target in restenosis and vascular remodeling.
Collapse
Affiliation(s)
- Jing Li
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Man Zhang
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mo Wang
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhipeng Wang
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yahan Liu
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Weizhen Zhang
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Nanping Wang
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China; The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
7
|
Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide. Biochem Biophys Res Commun 2016; 474:83-90. [PMID: 27103436 DOI: 10.1016/j.bbrc.2016.04.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/14/2022]
Abstract
Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI.
Collapse
|
8
|
Mao Y, Wang J, Yu F, Cheng J, Li H, Guo C, Fan X. Ghrelin reduces liver impairment in a model of concanavalin A-induced acute hepatitis in mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5385-96. [PMID: 26451091 PMCID: PMC4592035 DOI: 10.2147/dddt.s89096] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background and aims Ghrelin is a 28-amino-acid gut hormone that was first discovered as a potent growth hormone secretagogue. Recently, it has been shown to exert a strong anti-inflammatory effect. The purpose of the study reported here was to explore the effect and mechanism of ghrelin on concanavalin (Con) A-induced acute hepatitis. Methods Balb/C mice were divided into four groups: normal control (NC) (mice injected with vehicle [saline]); Con A (25 mg/kg); Con A + 10 μg/kg ghrelin; and Con A + 50 μg/kg ghrelin (1 hour before Con A injection). Pro-inflammatory cytokine levels were detected. Protein levels of phosphoinositide 3-kinase (PI3K); phosphorylated Akt (p-Akt); caspase 3, 8, and 9; and microtubule-associated protein 1 light chain 3 (LC3) were also detected. Perifosine (25 mM) (an Akt inhibitor) was used to investigate whether the protective effect of ghrelin was interrupted by an Akt inhibitor. Protein levels of p-AKT; Bcl-2; Bax; and caspase 3, 8, and 9 were also detected. Results Aspartate aminotransferase, alanine aminotransferase, and pathological damage were significantly ameliorated by ghrelin pretreatment in Con A-induced hepatitis. Inflammatory cytokines were significantly reduced by ghrelin pretreatment. Bcl-2; Bax; and caspase 3, 8, and 9 expression were also clearly affected by ghrelin pretreatment, compared with the Con A-treated group. However, the Akt kinase inhibitor reversed the decrease of Bax and caspase 3, 8, 9, and reduced the protein level of p-Akt and Bcl-2. Ghrelin activated the PI3K/Akt/Bcl-2 pathway and inhibited activation of autophagy. Conclusion Our results demonstrate that ghrelin attenuates Con A-induced acute immune hepatitis by activating the PI3K/Akt pathway and inhibiting the process of autophagy, which might be related to inhibition of inflammatory cytokine release, and prevention of hepatocyte apoptosis. These effects could be interrupted by an Akt kinase inhibitor.
Collapse
Affiliation(s)
- Yuqing Mao
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jianbo Wang
- Department of Gastroenterology and Hepatology, The Central Hospital of Lishui City, Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Fujun Yu
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jian Cheng
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Huanqing Li
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology and Hepatology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, People's Republic of China
| | - Xiaoming Fan
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Yu AP, Pei XM, Sin TK, Yip SP, Yung BY, Chan LW, Wong CS, Siu PM. [D-Lys3]-GHRP-6 exhibits pro-autophagic effects on skeletal muscle. Mol Cell Endocrinol 2015; 401:155-64. [PMID: 25450862 DOI: 10.1016/j.mce.2014.09.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 01/07/2023]
Abstract
[D-Lys3]-GHRP-6 is regarded as a highly selective growth-hormone secretagogue receptor (GHSR) antagonist and has been widely used to investigate the dependency of GHSR-1a signalling mediated by acylated ghrelin. However, [D-Lys3]-GHRP-6 has been reported to influence other cellular processes which are unrelated to GHSR-1a. This study aimed to examine the effects of [D-Lys3]-GHRP-6 on autophagic and apoptotic cellular signalling in skeletal muscle. [D-Lys3]-GHRP-6 enhanced the autophagic signalling demonstrated by the increases in protein abundances of beclin-1 and LC3 II-to-LC3 1 ratio in both normal muscle and doxorubicin-injured muscle. [D-Lys3]-GHRP-6 reduced the activation of muscle apoptosis induced by doxorubicin. No histological abnormalities were observed in the [D-Lys3]-GHRP-6-treated muscle. Intriguingly, the doxorubicin-induced increase in centronucleated muscle fibres was not observed in muscle treated with [D-Lys3]-GHRP-6, suggesting the myoprotective effects of [D-Lys3]-GHRP-6 against doxorubicin injury. The [D-Lys3]-GHRP-6-induced activation of autophagy was found to be abolished by the co-treatment of CXCR4 antagonist, suggesting that the pro-autophagic effects of [D-Lys3]-GHRP-6 might be mediated through CXCR4. In conclusion, [D-Lys3]-GHRP-6 exhibits pro-autophagic effects on skeletal muscle under both normal and doxorubicin-injured conditions.
Collapse
Affiliation(s)
- Angus P Yu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiao M Pei
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Thomas K Sin
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Shea P Yip
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Benjamin Y Yung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lawrence W Chan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Cesar S Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Parco M Siu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
10
|
Lee JH, Patel K, Tae HJ, Lustig A, Kim JW, Mattson MP, Taub DD. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways. FEBS Lett 2014; 588:4708-19. [PMID: 25447526 DOI: 10.1016/j.febslet.2014.10.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 12/13/2022]
Abstract
Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levels and impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo.
Collapse
Affiliation(s)
- Jun Ho Lee
- Laboratory of Molecular Biology and Immunology, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, United States; Department of Biochemistry and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul 136-701, Republic of Korea
| | - Kalpesh Patel
- Laboratory of Molecular Biology and Immunology, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, United States
| | - Hyun Jin Tae
- Laboratory of Cardiovascular Science, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, United States
| | - Ana Lustig
- Laboratory of Molecular Biology and Immunology, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, United States
| | - Jie Wan Kim
- Laboratory of Molecular Biology and Immunology, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, United States
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, United States.
| | - Dennis D Taub
- Laboratory of Molecular Biology and Immunology, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, United States; Center of Translational Studies, Medical Services, Veteran Affairs Medical Center, Washington, DC 20422, United States.
| |
Collapse
|
11
|
Heldsinger A, Grabauskas G, Wu X, Zhou S, Lu Y, Song I, Owyang C. Ghrelin induces leptin resistance by activation of suppressor of cytokine signaling 3 expression in male rats: implications in satiety regulation. Endocrinology 2014; 155:3956-69. [PMID: 25060362 PMCID: PMC4164930 DOI: 10.1210/en.2013-2095] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The anorexigenic adipocyte-derived hormone leptin and the orexigenic hormone ghrelin act in opposition to regulate feeding behavior via the vagal afferent pathways. The mechanisms by which ghrelin exerts its inhibitory effects on leptin are unknown. We hypothesized that ghrelin activates the exchange protein activated by cAMP (Epac), inducing increased SOCS3 expression, which negatively affects leptin signal transduction and neuronal firing in nodose ganglia (NG) neurons. We showed that 91 ± 3% of leptin receptor (LRb) -bearing neurons contained ghrelin receptors (GHS-R1a) and that ghrelin significantly inhibited leptin-stimulated STAT3 phosphorylation in rat NG neurons. Studies of the signaling cascades used by ghrelin showed that ghrelin caused a significant increase in Epac and suppressor of cytokine signaling 3 (SOCS3) expression in cultured rat NG neurons. Transient transfection of cultured NG neurons to silence SOCS3 and Epac genes reversed the inhibitory effects of ghrelin on leptin-stimulated STAT3 phosphorylation. Patch-clamp studies and recordings of single neuronal discharges of vagal primary afferent neurons showed that ghrelin markedly inhibited leptin-stimulated neuronal firing, an action abolished by silencing SOCS3 expression in NG. Plasma ghrelin levels increased significantly during fasting. This was accompanied by enhanced SOCS3 expression in the NG and prevented by treatment with a ghrelin antagonist. Feeding studies showed that silencing SOCS3 expression in the NG reduced food intake evoked by endogenous leptin. We conclude that ghrelin exerts its inhibitory effects on leptin-stimulated neuronal firing by increasing SOCS3 expression. The SOCS3 signaling pathway plays a pivotal role in ghrelin's inhibitory effect on STAT3 phosphorylation, neuronal firing, and feeding behavior.
Collapse
Affiliation(s)
- Andrea Heldsinger
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48019
| | | | | | | | | | | | | |
Collapse
|
12
|
Yu AP, Pei XM, Sin TK, Yip SP, Yung BY, Chan LW, Wong CS, Siu PM. Acylated and unacylated ghrelin inhibit doxorubicin-induced apoptosis in skeletal muscle. Acta Physiol (Oxf) 2014; 211:201-13. [PMID: 24581239 DOI: 10.1111/apha.12263] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 01/28/2014] [Accepted: 02/24/2014] [Indexed: 12/28/2022]
Abstract
AIM Doxorubicin, a potent chemotherapeutic drug, has been demonstrated previously as an inducer of apoptosis in muscle cells. Extensive induction of apoptosis may cause excessive loss of muscle cells and subsequent functional decline in skeletal muscle. This study examined the effects of acylated ghrelin, a potential agent for treating cancer cachexia, on inhibiting apoptotic signalling in doxorubicin-treated skeletal muscle. Unacylated ghrelin, a form of ghrelin that does not bind to GHSR-1a, is also employed in this study to examine the GHSR-1a signalling dependency of the effects of ghrelin. METHODS Adult C57BL/6 mice were randomly assigned to saline control (CON), doxorubicin (DOX), doxorubicin with treatment of acylated ghrelin (DOX+Acylated Ghrelin) and doxorubicin with treatment of unacylated ghrelin (DOX+Unacylated Ghrelin). Mice in all groups that involved DOX were intraperitoneally injected with 15 mg of doxorubicin per kg body weight, whereas mice in CON group received saline as placebo. Gastrocnemius muscle tissues were harvested after the experimental period for analysis. RESULTS The elevation of apoptotic DNA fragmentation and number of TUNEL-positive nuclei were accompanied with the upregulation of Bax in muscle after exposure to doxorubicin, but all these changes were neither seen in the muscle treated with acylated ghrelin nor unacylated ghrelin after doxorubicin exposure. Protein abundances of autophagic markers including LC3 II-to-LC3 I ratio, Atg12-5 complex, Atg5 and Beclin-1 were not altered by doxorubicin but were upregulated by the treatment of either acylated or unacyated ghrelin. Histological analysis revealed that the amount of centronucleated myofibres was elevated in doxorubicin-treated muscle while muscle of others groups showed normal histology. CONCLUSIONS Collectively, our data demonstrated that acylated ghrelin administration suppresses the doxorubicin-induced activation of apoptosis and enhances the cellular signalling of autophagy. The treatment of unacylated ghrelin has similar effects as acylated ghrelin on apoptotic and autophagic signalling, suggesting that the effects of ghrelin are probably mediated through a signalling pathway that is independent of GHSR-1a. These findings were consistent with the hypothesis that acylated ghrelin inhibits doxorubicin-induced upregulation of apoptosis in skeletal muscle while treatment of unacylated ghrelin can achieve similar effects as the treatment of acylated ghrelin. The inhibition of apoptosis and enhancement of autophagy induced by acylated and unacylated ghrelin might exert myoprotective effects on doxorubicin-induced toxicity in skeletal muscle.
Collapse
Affiliation(s)
- A. P. Yu
- Department of Health Technology and Informatics; The Hong Kong Polytechnic University; Hong Kong China
| | - X. M. Pei
- Department of Health Technology and Informatics; The Hong Kong Polytechnic University; Hong Kong China
| | - T. K. Sin
- Department of Health Technology and Informatics; The Hong Kong Polytechnic University; Hong Kong China
| | - S. P. Yip
- Department of Health Technology and Informatics; The Hong Kong Polytechnic University; Hong Kong China
| | - B. Y. Yung
- Department of Health Technology and Informatics; The Hong Kong Polytechnic University; Hong Kong China
| | - L. W. Chan
- Department of Health Technology and Informatics; The Hong Kong Polytechnic University; Hong Kong China
| | - C. S. Wong
- Department of Health Technology and Informatics; The Hong Kong Polytechnic University; Hong Kong China
| | - P. M. Siu
- Department of Health Technology and Informatics; The Hong Kong Polytechnic University; Hong Kong China
| |
Collapse
|
13
|
Azevedo-Pinto S, Pereira-Silva P, Rocha-Sousa A. Ghrelin in ocular pathophysiology: from the anterior to the posterior segment. Peptides 2013; 47:12-9. [PMID: 23816797 DOI: 10.1016/j.peptides.2013.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 12/15/2022]
Abstract
Ghrelin is a 28 amino acid acylated peptide produced in several organs that binds the growth hormone secretagogues receptor type 1a (GHSR-1a). It acts over a wide range of systems, e.g. the endocrine, cardiovascular, musculoskeletal and immune systems and the eye. The aim of this work is to review the physiologic and pathologic implications of the ghrelin-GHSR-1a in the eye. A systematic revision of studies published between 2000 and 2013 in English, Spanish or Portuguese in MEDLINE, EMBASE and Scopus was performed. Search words used included: ghrelin, GHSR-1a, ocular production, iris muscular kinetics, ciliary body, glaucoma, retinopathy and uvea. The production of ghrelin by the ocular tissue has been detected both in the anterior and posterior segments, as well as the presence of GHSR-1a. This peptide promotes the relaxation of the iris sphincter and dilator muscles, being this effect independent from GHSR-1a and dependent on prostaglandins release in the first case and dependent on GHSR-1a in the second. Regarding ocular pathology, ghrelin levels in the aqueous humor appear to be decreased in individuals with glaucoma. Moreover, ghrelin has been shown to decrease the intraocular pressure in animal models of ocular hypertension through GHSR-1a. In the posterior segment, the ghrelin-GHSR-1a system interferes with the development of oxygen-induced retinopathy, being protective in the vaso-obliterative phase and deleterious in the vaso-proliferative stage of the disease. Thus, the ghrelin-GHSR-1a system presents as a possible local regulatory mechanism in the eye, with pathophysiological implications, constituting a target for future clinical and therapeutic research and interventions.
Collapse
Affiliation(s)
- Sara Azevedo-Pinto
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal
| | | | | |
Collapse
|
14
|
Abstract
Percutaneous coronary intervention is a revolutionary treatment for ischemic heart disease, but in-stent restenosis (ISR) remains a clinical challenge. Inflammation, smooth muscle proliferation, endothelial function impairment, and local thrombosis have been identified as the main mechanisms for ISR. Considering the multifactorial mechanisms of ISR, a novel therapeutic agent with multiple bioactivities is required. Ghrelin is a novel gut-brain peptide predominantly produced by the stomach, and has been shown to play a role in various cardiovascular activities, such as increasing myocardial contractility, improving cardiac output, and inhibiting ventricular remodeling, as well as attenuating cardiac ischemia-reperfusion injury. Recent studies have demonstrated that ghrelin effectively inhibits vascular inflammation and vascular smooth muscle cell proliferation, repairs endothelial cells, promotes vascular endothelial function, inhibits platelet aggregation, and exerts antithrombotic effects. These findings suggest that ghrelin may be an innovative therapeutic candidate for the prevention and treatment of ISR.
Collapse
Affiliation(s)
- Z W Shu
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | | | | | | |
Collapse
|
15
|
Chopin LK, Seim I, Walpole CM, Herington AC. The ghrelin axis--does it have an appetite for cancer progression? Endocr Rev 2012; 33:849-91. [PMID: 22826465 DOI: 10.1210/er.2011-1007] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ghrelin, the endogenous ligand for the GH secretagogue receptor (GHSR), is a peptide hormone with diverse physiological roles. Ghrelin regulates GH release, appetite and feeding, gut motility, and energy balance and also has roles in the cardiovascular, immune, and reproductive systems. Ghrelin and the GHSR are expressed in a wide range of normal and tumor tissues, and a fluorescein-labeled, truncated form of ghrelin is showing promise as a biomarker for prostate cancer. Plasma ghrelin levels are generally inversely related to body mass index and are unlikely to be useful as a biomarker for cancer, but may be useful as a marker for cancer cachexia. Some single nucleotide polymorphisms in the ghrelin and GHSR genes have shown associations with cancer risk; however, larger studies are required. Ghrelin regulates processes associated with cancer, including cell proliferation, apoptosis, cell migration, cell invasion, inflammation, and angiogenesis; however, the role of ghrelin in cancer is currently unclear. Ghrelin has predominantly antiinflammatory effects and may play a role in protecting against cancer-related inflammation. Ghrelin and its analogs show promise as treatments for cancer-related cachexia. Further studies using in vivo models are required to determine whether ghrelin has a role in cancer progression.
Collapse
Affiliation(s)
- Lisa K Chopin
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Queensland University of Technology and Australian Prostate Cancer Research Centre-Queensland, Brisbane, Queensland 4001, Australia.
| | | | | | | |
Collapse
|
16
|
Zhang R, Yang G, Wang Q, Guo F, Wang H. Acylated ghrelin protects hippocampal neurons in pilocarpine-induced seizures of immature rats by inhibiting cell apoptosis. Mol Biol Rep 2012; 40:51-8. [DOI: 10.1007/s11033-012-1993-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 10/01/2012] [Indexed: 01/26/2023]
|
17
|
Milewski L, Wójtowicz K, Roszkowski PI, Barcz E, Ziarkiewicz-Wróblewska B, Kamiński P, Malejczyk J. Expression of ghrelin and its receptors in ovarian endometrioma. Gynecol Endocrinol 2012; 28:310-3. [PMID: 22087538 DOI: 10.3109/09513590.2011.631628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is a common gynaecological disorder manifesting by implantation and growth of endometrial tissue outside the uterine cavity. The evidence accumulates that endometriosis may be associated with abrogated regulation of energy balance. Ghrelin is one of the most important orexigenic factor which may also play a role in regulation of inflammatory and angiogenic reactions. The present study was aimed at investigating expression profile of ghrelin and its receptors (GHSR1α and GHSR1β) in endometriotic lesions. The study included ovarian cysts and peritoneal fluid specimens obtained laparoscopically from 20 women with revised American Fertility Society stage III or IV endometriosis. Expression of specific mRNAs was assessed by reverse transcription-polymerase chain reaction. Expression of ghrelin and GHSR1α protein was studied by immunohistochemical staining with specific antibodies. Ghrelin and its receptors mRNA expression was found in all tested specimens. Specific mRNAs for these factors were also expressed in the peritoneal leukocytes. Immunohistochemical staining revealed expression of ghrelin and GHSR1α both in glandular endometrioid epithelium and in some stromal cells, particularly in some fibroblasts, blood vessels and infiltrating leukocytes. Co-localization of ghrelin and its receptors strongly suggests that this neuropeptide may affect development and growth of endometriotic lesions and may influence local inflammatory and angiogenic response.
Collapse
Affiliation(s)
- Lukasz Milewski
- Department of Histology and Embryology, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
18
|
Baatar D, Patel K, Taub DD. The effects of ghrelin on inflammation and the immune system. Mol Cell Endocrinol 2011; 340:44-58. [PMID: 21565248 DOI: 10.1016/j.mce.2011.04.019] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/15/2011] [Accepted: 04/22/2011] [Indexed: 12/25/2022]
Abstract
A number of hormones and metabolic mediators signal the brain of changes in the body's energy status and when an imbalance occurs; the brain coordinates the appropriate changes in energy intake and utilization via the control of appetite and food consumption. Under conditions of chronic inflammation and immune activation, there is often a significant loss of body mass and appetite suggesting the presence of shared ligands and signaling pathways mediating "crosstalk" between the immune and neuroendocrine systems. Ghrelin, the endogenous ligand for growth hormone secretagogue receptor (GHS-R), is produced primarily by cells in the stomach and serves as a potent circulating orexigenic hormone controlling food intake, energy expenditure, adiposity and GH secretion. The functional roles of ghrelin and other growth hormone secretagogues (GHS) within the immune system and under states of inflammatory stress and injury are only now coming to light. A number of reports over the past decade have described ghrelin to be a potent anti-inflammatory mediator both in vitro and in vivo and a promising therapeutic agent in the treatment of inflammatory diseases and injury. Moreover, ghrelin has also been shown to promote lymphocyte development in the primary lymphoid organs (bone marrow and thymus) and to ablate age-associated thymic involution. In the current report, we review the literature supporting a role for ghrelin as an anti-inflammatory agent and immunoregulatory hormone/cytokine and its potential use in the treatment of inflammatory diseases and injury.
Collapse
Affiliation(s)
- Dolgor Baatar
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Biomedical Research Center, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
19
|
Sangiao-Alvarellos S, Helmling S, Vázquez MJ, Klussmann S, Cordido F. Ghrelin neutralization during fasting-refeeding cycle impairs the recuperation of body weight and alters hepatic energy metabolism. Mol Cell Endocrinol 2011; 335:177-88. [PMID: 21241769 DOI: 10.1016/j.mce.2011.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 01/09/2011] [Accepted: 01/11/2011] [Indexed: 02/05/2023]
Abstract
Ghrelin, a hormone whose levels increase during food deprivation, plays a pivotal role in the regulation of food intake, energy metabolism and storage, as well as in insulin sensitivity. Here, we investigated the effects of acyl-ghrelin neutralization with the acyl-ghrelin-binding compound NOX-B11(2) during the fasting-refeeding cycle. Our data demonstrate that ghrelin neutralization with NOX-B11(2) impairs recuperation of lost body weight after food deprivation. Analysis of enzymes involved in glucose and lipid metabolism in liver of fed, fasted and refed rats revealed that neutralization of acyl-ghrelin resulted in minor decreases in the enzymes of glycolytic and lipogenic pathways during fasting. However, during refeeding these enzymes as well as glycogen levels recovered more slowly when acyl-ghrelin was blocked. The high levels of ghrelin in response to food deprivation may contribute to an adequate decrease in hepatic glycolytic and lipogenic enzymes and aid in the recovery of body weight and energetic reserves once food becomes available after the fasting period.
Collapse
Affiliation(s)
- Susana Sangiao-Alvarellos
- Department of Medicine, School of Health Science, University of A Coruña, Campus de Oza, s/n, 15006, A Coruña, Spain.
| | | | | | | | | |
Collapse
|
20
|
Chen L, Xing T, Wang M, Miao Y, Tang M, Chen J, Li G, Ruan DY. Local infusion of ghrelin enhanced hippocampal synaptic plasticity and spatial memory through activation of phosphoinositide 3-kinase in the dentate gyrus of adult rats. Eur J Neurosci 2011; 33:266-75. [DOI: 10.1111/j.1460-9568.2010.07491.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Effects and mechanisms of ghrelin on cardiac microvascular endothelial cells in rats. Cell Biol Int 2010; 35:135-40. [DOI: 10.1042/cbi20100139] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Transitional change in rat fetal cell proliferation in response to ghrelin and des-acyl ghrelin during the last stage of pregnancy. Biochem Biophys Res Commun 2010; 393:455-60. [DOI: 10.1016/j.bbrc.2010.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 02/05/2010] [Indexed: 11/17/2022]
|
23
|
Seim I, Amorim L, Walpole C, Carter S, Chopin LK, Herington AC. Ghrelin gene-related peptides: Multifunctional endocrine / autocrine modulators in health and disease. Clin Exp Pharmacol Physiol 2010; 37:125-31. [DOI: 10.1111/j.1440-1681.2009.05241.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
A concerted kinase interplay identifies PPARgamma as a molecular target of ghrelin signaling in macrophages. PLoS One 2009; 4:e7728. [PMID: 19888469 PMCID: PMC2766837 DOI: 10.1371/journal.pone.0007728] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 10/14/2009] [Indexed: 02/08/2023] Open
Abstract
The peroxisome proliferator-activator receptor PPARγ plays an essential role in vascular biology, modulating macrophage function and atherosclerosis progression. Recently, we have described the beneficial effect of combined activation of the ghrelin/GHS-R1a receptor and the scavenger receptor CD36 to induce macrophage cholesterol release through transcriptional activation of PPARγ. Although the interplay between CD36 and PPARγ in atherogenesis is well recognized, the contribution of the ghrelin receptor to regulate PPARγ remains unknown. Here, we demonstrate that ghrelin triggers PPARγ activation through a concerted signaling cascade involving Erk1/2 and Akt kinases, resulting in enhanced expression of downstream effectors LXRα and ABC sterol transporters in human macrophages. These effects were associated with enhanced PPARγ phosphorylation independently of the inhibitory conserved serine-84. Src tyrosine kinase Fyn was identified as being recruited to GHS-R1a in response to ghrelin, but failure of activated Fyn to enhance PPARγ Ser-84 specific phosphorylation relied on the concomitant recruitment of docking protein Dok-1, which prevented optimal activation of the Erk1/2 pathway. Also, substitution of Ser-84 preserved the ghrelin-induced PPARγ activity and responsiveness to Src inhibition, supporting a mechanism independent of Ser-84 in PPARγ response to ghrelin. Consistent with this, we found that ghrelin promoted the PI3-K/Akt pathway in a Gαq-dependent manner, resulting in Akt recruitment to PPARγ, enhanced PPARγ phosphorylation and activation independently of Ser-84, and increased expression of LXRα and ABCA1/G1. Collectively, these results illustrate a complex interplay involving Fyn/Dok-1/Erk and Gαq/PI3-K/Akt pathways to transduce in a concerted manner responsiveness of PPARγ to ghrelin in macrophages.
Collapse
|
25
|
|
26
|
Dong XY, Xu J, Tang SQ, Li HY, Jiang QY, Zou XT. Ghrelin and its biological effects on pigs. Peptides 2009; 30:1203-11. [PMID: 19463757 DOI: 10.1016/j.peptides.2009.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/01/2009] [Accepted: 03/02/2009] [Indexed: 12/23/2022]
Abstract
Ghrelin is a 28 amino acid peptide, which produces its marked effects through binding to the endogenous ligand of the growth hormone secretagogue receptor (GHS-R). Based on the contemporary literatures, it was shown that ghrelin was involved in a series of biological functions including regulation of food intake, body weight, gastrointestinal (GI) motility, hormone secretion, glucose release, cardiovascular functions, enzyme release, cell proliferation and reproduction in pigs through binding to GHS-R 1a or unidentified receptors. It was also observed that ghrelin induced adipocyte and hepatocyte proliferation of primary cultured piglet. In this paper, recent research on ghrelin structure, distribution, GHS-R receptor, biological functions and its regulatory mechanisms for pigs are presented.
Collapse
Affiliation(s)
- Xiao-Ying Dong
- College of Yingdong Bioengineering, Shaoguan University, Zhenjiang District, Shaoguan, Guangdong, China
| | | | | | | | | | | |
Collapse
|
27
|
Inhibitory Effect of Ghrelin on Nicotine-induced VCAM-1 Expression in Human Umbilical Vein Endothelial Cells. J Cardiovasc Pharmacol 2009; 53:241-5. [DOI: 10.1097/fjc.0b013e31819c74dc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|