1
|
Jiang C, Storey KB, Yang H, Sun L. Aestivation in Nature: Physiological Strategies and Evolutionary Adaptations in Hypometabolic States. Int J Mol Sci 2023; 24:14093. [PMID: 37762394 PMCID: PMC10531719 DOI: 10.3390/ijms241814093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Aestivation is considered to be one of the "purest" hypometabolic states in nature, as it involves aerobic dormancy that can be induced and sustained without complex factors. Animals that undergo aestivation to protect themselves from environmental stressors such as high temperatures, droughts, and food shortages. However, this shift in body metabolism presents new challenges for survival, including oxidative stress upon awakening from aestivation, accumulation of toxic metabolites, changes in energy sources, adjustments to immune status, muscle atrophy due to prolonged immobility, and degeneration of internal organs due to prolonged food deprivation. In this review, we summarize the physiological and metabolic strategies, key regulatory factors, and networks utilized by aestivating animals to address the aforementioned components of aestivation. Furthermore, we present a comprehensive overview of the advancements made in aestivation research across major species, including amphibians, fish, reptiles, annelids, mollusks, and echinoderms, categorized according to their respective evolutionary positions. This approach offers a distinct perspective for comparative analysis, facilitating an understanding of the shared traits and unique features of aestivation across different groups of organisms.
Collapse
Affiliation(s)
- Chunxi Jiang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Phetsanthad A, Vu NQ, Yu Q, Buchberger AR, Chen Z, Keller C, Li L. Recent advances in mass spectrometry analysis of neuropeptides. MASS SPECTROMETRY REVIEWS 2023; 42:706-750. [PMID: 34558119 PMCID: PMC9067165 DOI: 10.1002/mas.21734] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 05/08/2023]
Abstract
Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
3
|
Nandy G, Aditya G. Temperature dependent variations of life history traits of the land snail Allopeas gracile (Hutton, 1834) (Gastropoda: Subulinidae). J Therm Biol 2022; 108:103297. [DOI: 10.1016/j.jtherbio.2022.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
|
4
|
Analysis of rhodopsin G protein-coupled receptor orthologs reveals semiochemical peptides for parasite (Schistosoma mansoni) and host (Biomphalaria glabrata) interplay. Sci Rep 2022; 12:8243. [PMID: 35581232 PMCID: PMC9114394 DOI: 10.1038/s41598-022-11996-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Schistosomiasis is a medically significant disease caused by helminth parasites of the genus Schistosoma. The schistosome life cycle requires chemically mediated interactions with an intermediate (aquatic snail) and definitive (human) host. Blocking parasite development within the snail stage requires improved understanding of the interactions between the snail host and the Schistosoma water-borne free-living form (miracidium). Innovations in snail genomics and aquatic chemical communication provide an ideal opportunity to explore snail-parasite coevolution at the molecular level. Rhodopsin G protein-coupled receptors (GPCRs) are of particular interest in studying how trematode parasites navigate towards their snail hosts. The potential role of GPCRs in parasites makes them candidate targets for new antihelminthics that disrupt the intermediate host life-cycle stages, thus preventing subsequent human infections. A genomic-bioinformatic approach was used to identify GPCR orthologs between the snail Biomphalaria glabrata and miracidia of its obligate parasite Schistosoma mansoni. We show that 8 S. mansoni rhodopsin GPCRs expressed within the miracidial stage share overall amino acid similarity with 8 different B. glabrata rhodopsin GPCRs, particularly within transmembrane domains, suggesting conserved structural features. These GPCRs include an orphan peptide receptor as well as several with strong sequence homologies with rhabdomeric opsin receptors, a serotonin receptor, a sulfakinin (SK) receptor, an allatostatin-A (buccalin) receptor and an FMRFamide receptor. Buccalin and FMRFa peptides were identified in water conditioned by B. glabrata, and we show synthetic buccalin and FMRFa can stimulate significant rates of change of direction and turn-back responses in S. mansoni miracidia. Ortholog GPCRs were identified in S. mansoni miracidia and B. glabrata. These GPCRs may detect similar ligands, including snail-derived odorants that could facilitate miracidial host finding. These results lay the foundation for future research elucidating the mechanisms by which GPCRs mediate host finding which can lead to the potential development of novel anti-schistosome interventions.
Collapse
|
5
|
Klein AH, Ballard KR, Storey KB, Motti CA, Zhao M, Cummins SF. Multi-omics investigations within the Phylum Mollusca, Class Gastropoda: from ecological application to breakthrough phylogenomic studies. Brief Funct Genomics 2020; 18:377-394. [PMID: 31609407 DOI: 10.1093/bfgp/elz017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Gastropods are the largest and most diverse class of mollusc and include species that are well studied within the areas of taxonomy, aquaculture, biomineralization, ecology, microbiome and health. Gastropod research has been expanding since the mid-2000s, largely due to large-scale data integration from next-generation sequencing and mass spectrometry in which transcripts, proteins and metabolites can be readily explored systematically. Correspondingly, the huge data added a great deal of complexity for data organization, visualization and interpretation. Here, we reviewed the recent advances involving gastropod omics ('gastropodomics') research from hundreds of publications and online genomics databases. By summarizing the current publicly available data, we present an insight for the design of useful data integrating tools and strategies for comparative omics studies in the future. Additionally, we discuss the future of omics applications in aquaculture, natural pharmaceutical biodiscovery and pest management, as well as to monitor the impact of environmental stressors.
Collapse
Affiliation(s)
- Anne H Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kaylene R Ballard
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville Queensland 4810, Australia
| | - Min Zhao
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| |
Collapse
|
6
|
Zhao M, Wang T, Stewart MJ, Bose U, Suwansa-ard S, Storey KB, Cummins SF. eSnail: A transcriptome-based molecular resource of the central nervous system for terrestrial gastropods. Mol Ecol Resour 2017; 18:147-158. [DOI: 10.1111/1755-0998.12722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Min Zhao
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - Tianfang Wang
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - Michael J. Stewart
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - Utpal Bose
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - Saowaros Suwansa-ard
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - Kenneth B. Storey
- Department of Biology; Institute of Biochemistry; Carleton University; Ottawa ON Canada
| | - Scott F. Cummins
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| |
Collapse
|
7
|
Wang T, Zhao M, Liang D, Bose U, Kaur S, McManus DP, Cummins SF. Changes in the neuropeptide content of Biomphalaria ganglia nervous system following Schistosoma infection. Parasit Vectors 2017; 10:275. [PMID: 28578678 PMCID: PMC5455113 DOI: 10.1186/s13071-017-2218-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/24/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molluscs, including snails, are prone to parasite infection, which can lead to massive physiological and behavioural changes, yet many of the molecular components involved remain unresolved. Central to this point is the neural system that in snails consists of several ganglia that regulate the animals' physiology and behaviour patterns. The availability of a genomic resource for the freshwater snail Biomphalaria glabrata provides a mean towards the high throughput analysis of changes in the central nervous system (CNS) following infection with Schistosoma miracidia. RESULTS In this study, we performed a proteomic analysis of the B. glabrata CNS at pre-patent infection, providing a list of proteins that were further used within a protein-protein interaction (PPI) framework against S. mansoni proteins. A hub with most connections for both non-infected and infected Biomphalaria includes leucine aminopeptidase 2 (LAP2), which interacts with numerous miracidia proteins that together belong to the immunoglobulin family of cell adhesion related molecules. We additionally reveal the presence of at least 165 neuropeptides derived from the precursors of buccalin, enterin, FMRF, FVRI, pedal peptide 1, 2, 3 and 4, RYamide, RFamide, pleurin and others. Many of these were present at significantly reduced levels in the snail's CNS post-infection, such as the egg laying hormone, a neuropeptide required to initiate egg laying in gastropod molluscs. CONCLUSIONS Our analysis demonstrates that LAP2 may be a key component that regulates parasite infection physiology, as well as establishing that parasite-induced reproductive castration may be facilitated by significant reductions in reproduction-associated neuropeptides. This work helps in our understanding of molluscan neuropeptides and further stimulates advances in parasite-host interactions.
Collapse
Affiliation(s)
- Tianfang Wang
- Genecology Research Centre, Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
| | - Min Zhao
- Genecology Research Centre, Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
| | - Di Liang
- Genecology Research Centre, Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
| | - Utpal Bose
- Genecology Research Centre, Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
| | - Satwant Kaur
- Institute of Environment, Health and Societies, Brunel University London, Kingston Lane, London, UB8 3PH UK
| | - Donald P. McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006 Australia
| | - Scott F. Cummins
- Genecology Research Centre, Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
| |
Collapse
|
8
|
Roberts RE, Motti CA, Baughman KW, Satoh N, Hall MR, Cummins SF. Identification of putative olfactory G-protein coupled receptors in Crown-of-Thorns starfish, Acanthaster planci. BMC Genomics 2017; 18:400. [PMID: 28535807 PMCID: PMC5442662 DOI: 10.1186/s12864-017-3793-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/14/2017] [Indexed: 12/03/2022] Open
Abstract
Background In marine organisms, and in particular for benthic invertebrates including echinoderms, olfaction is a dominant sense with chemosensation being a critical signalling process. Until recently natural product chemistry was the primary investigative approach to elucidate the nature of chemical signals but advances in genomics and transcriptomics over the last decade have facilitated breakthroughs in understanding not only the chemistry but also the molecular mechanisms underpinning chemosensation in aquatic environments. Integration of these approaches has the potential to reveal the fundamental elements influencing community structure of benthic ecosystems as chemical signalling modulates intra- and inter-species interactions. Such knowledge also offers avenues for potential development of novel biological control methods for pest species such as the predatory Crown-of-Thorns starfish (COTS), Acanthaster planci which are the primary biological cause of coral cover loss in the Indo-Pacific. Results In this study, we have analysed the COTS sensory organs through histological and electron microscopy. We then investigated key elements of the COTS molecular olfactory toolkit, the putative olfactory rhodopsin-like G protein-protein receptors (GPCRs) within its genome and olfactory organ transcriptomes. Many of the identified Acanthaster planci olfactory receptors (ApORs) genes were found to cluster within the COTS genome, indicating rapid evolution and replication from an ancestral olfactory GPCR sequence. Tube feet and terminal sensory tentacles contain the highest proportion of ApORs. In situ hybridisation confirmed the presence of four ApORs, ApOR15, 18, 25 and 43 within COTS sensory organs, however expression of these genes was not specific to the adhesive epidermis, but also within the nerve plexus of tube feet stems and within the myomesothelium. G alpha subunit proteins were also identified in the sensory organs, and we report the spatial localisation of Gαi within the tube foot and sensory tentacle. Conclusions We have identified putative COTS olfactory receptors that localise to sensory organs. These results provide a basis for future studies that may enable the development of a biological control not only for COTS, but also other native pest or invasive starfish. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3793-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca E Roberts
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, QLD, 4810, Australia
| | - Kenneth W Baughman
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Michael R Hall
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, QLD, 4810, Australia
| | - Scott F Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia.
| |
Collapse
|
9
|
Ni G, Wang Y, Cummins S, Walton S, Mounsey K, Liu X, Wei MQ, Wang T. Inhibitory mechanism of peptides with a repeating hydrophobic and hydrophilic residue pattern on interleukin-10. Hum Vaccin Immunother 2016; 13:518-527. [PMID: 27686406 DOI: 10.1080/21645515.2016.1238537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Interleukin 10 (IL-10) is a cytokine that is able to downregulate inflammation. Its overexpression is directly associated with the difficulty in the clearance of chronic viral infections, such as chronic hepatitis B, hepatitis C and HIV infection, and infection-related cancer. IL-10 signaling blockade has been proposed as a promising way of clearing chronic viral infection and preventing tumor growth in animal models. Recently, we have reported that peptides with a helical repeating pattern of hydrophobic and hydrophilic residues are able to inhibit IL-10 significantly both in vitro and in vivo. 1 In this work, we seek to further study the inhibiting mechanism of these peptides using sequence-modified peptides. As evidenced by both experimental and molecular dynamics simulation in concert the N-terminal hydrophobic peptide constructed with repeating hydrophobic and hydrophilic pattern of residues is more likely to inhibit IL10. In addition, the sequence length and the ability of protonation are also important for inhibition activity.
Collapse
Affiliation(s)
- Guoying Ni
- a Genecology Research Centre , University of the Sunshine Coast , Maroochydore , DC , Australia.,b School of Medical Science, Griffith Health Institute , Griffith University , Gold Coast , Australia
| | - Yuejian Wang
- c Cancer Research Institute, Foshan First People's Hospital , Foshan , Guangdong , China
| | - Scott Cummins
- a Genecology Research Centre , University of the Sunshine Coast , Maroochydore , DC , Australia
| | - Shelley Walton
- d Inflammation and Healing Research Cluster, School of Health and Sport Sciences , University of Sunshine Coast , Maroochydore , DC , Australia
| | - Kate Mounsey
- d Inflammation and Healing Research Cluster, School of Health and Sport Sciences , University of Sunshine Coast , Maroochydore , DC , Australia
| | - Xiaosong Liu
- c Cancer Research Institute, Foshan First People's Hospital , Foshan , Guangdong , China.,d Inflammation and Healing Research Cluster, School of Health and Sport Sciences , University of Sunshine Coast , Maroochydore , DC , Australia
| | - Ming Q Wei
- b School of Medical Science, Griffith Health Institute , Griffith University , Gold Coast , Australia
| | - Tianfang Wang
- a Genecology Research Centre , University of the Sunshine Coast , Maroochydore , DC , Australia
| |
Collapse
|
10
|
Kotsakiozi P, Parmakelis A, Konstantakis A, Valakos ED. Climatic conditions driving a part of changes in the biochemical composition in land snails: Insights from the endangered Codringtonia (Gastropoda: Pulmonata). Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Wang T, Zhao M, Rotgans BA, Strong A, Liang D, Ni G, Limpanont Y, Ramasoota P, McManus DP, Cummins SF. Proteomic Analysis of the Schistosoma mansoni Miracidium. PLoS One 2016; 11:e0147247. [PMID: 26799066 PMCID: PMC4723143 DOI: 10.1371/journal.pone.0147247] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/03/2016] [Indexed: 01/22/2023] Open
Abstract
Despite extensive control efforts, schistosomiasis continues to be a major public health problem in developing nations in the tropics and sub-tropics. The miracidium, along with the cercaria, both of which are water-borne and free-living, are the only two stages in the life-cycle of Schistosoma mansoni which are involved in host invasion. Miracidia penetrate intermediate host snails and develop into sporocysts, which lead to cercariae that can infect humans. Infection of the snail host by the miracidium represents an ideal point at which to interrupt the parasite’s life-cycle. This research focuses on an analysis of the miracidium proteome, including those proteins that are secreted. We have identified a repertoire of proteins in the S. mansoni miracidium at 2 hours post-hatch, including proteases, venom allergen-like proteins, receptors and HSP70, which might play roles in snail-parasite interplay. Proteins involved in energy production and conservation were prevalent, as were proteins predicted to be associated with defence. This study also provides a strong foundation for further understanding the roles that neurohormones play in host-seeking by schistosomes, with the potential for development of novel anthelmintics that interfere with its various life-cycle stages.
Collapse
Affiliation(s)
- Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Min Zhao
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Bronwyn A. Rotgans
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - April Strong
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Di Liang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Guoying Ni
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
- School of Medical Science, Griffith Health Institute, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Yanin Limpanont
- Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pongrama Ramasoota
- Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Donald P. McManus
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Scott F. Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
- * E-mail:
| |
Collapse
|