1
|
Qiao JW, Wu BJ, Wang WQ, Yuan CX, Su S, Zhang ZF, Fan YL, Liu TX. The ATP-binding cassette transporter subfamily G member 4 mediates cuticular hydrocarbon transport to regulate drought tolerance in Acyrthosiphon pisum. Int J Biol Macromol 2024; 278:134605. [PMID: 39127281 DOI: 10.1016/j.ijbiomac.2024.134605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
ABC transporters are a highly conserved membrane protein class that promote the transport of substances across membranes. Under drought conditions, insects primarily regulate the content of cuticular hydrocarbon (CHC) to retain water and prevent evaporative loss. Involvement of ABC transporter protein G (ABCG) subfamily genes in insect CHC transport has been relatively understudied. In this study, we demonstrated that ABCG4 gene in Acyrthosiphon pisum (ApABCG4) is involved in CHC transport and affects drought tolerance by regulating CHC accumulation. ApABCG4 is strongly expressed in the abdominal cuticle and embryonic stages of A. pisum. Effective silencing of ApABCG4 was achieved using RNAi, and the silencing duration was analyzed. ApABCG4 silencing resulted in a significant decrease in the total and component contents of the CHC and cuticular waxy coatings of A. pisum. Nevertheless, the internal hydrocarbon content remained unchanged. The lack of cuticular hydrocarbons significantly reduced the drought tolerance of A. pisum, shortening its survival time under drought stress. Drought stress caused significant upregulation of ApABCG4. Molecular docking showed that ApABCG4 has a high binding affinity for nine n-alkanes of CHC through electrostatic interactions. These results indicate that ApABCG4 is a novel RNAi target with key applications in aphid biological control.
Collapse
Affiliation(s)
- Jian-Wen Qiao
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Bing-Jin Wu
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Wen-Qiang Wang
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Cai-Xia Yuan
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Sha Su
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhan-Feng Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, P.R. China; College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Yong-Liang Fan
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, P.R. China; College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Tong-Xian Liu
- Institute of Entomology and Institute of Plant Health and Medicine, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
2
|
Wang L, Guo S, Wen B, Deng Z, Ding Q, Li X. Characterization of ATP-binding cassette transporters associated with emamectin benzoate tolerance: from the model insect Drosophila melanogaster to the agricultural pest Spodoptera frugiperda. PEST MANAGEMENT SCIENCE 2024. [PMID: 39324440 DOI: 10.1002/ps.8437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Multiple families of detoxification genes, including the increasingly recognized family of ATP-binding cassette (ABC) transporters, work together to influence the toxicity of synthetic insecticides and thus their resistance. Effective management of insecticide resistance requires identification of all toxicity-affecting members from each family of toxicity-related genes. RESULTS Here, we used emamectin benzoate (EB), ABC transporters and Spodoptera frugiperda as a working case to test whether the strategy of 'from the model insect Drosophila melanogaster to agricultural pests' can identify all or most ABC transporter members related to EB tolerance in S. frugiperda. After confirming the involvement of ABC transporters in the toxicity of EB against fruit fly with the ABC inhibitor verapamil, four ABC transporter genes (DmCG3327, DmCG11147, DmCG4822, and DmCG7627) were found to be involved in EB tolerance using RNA interference-based family-wide functional screening. A combination of phylogenic analysis and a reciprocal TBLASTN search identified five S. frugiperda ABC transporter members as homologs (SfABCC4, SfABCG1, and SfABCG23) or one-way best hits (SfABCG4 and SfABCG20) of the four fly ABC genes. Real-time quantitative polymerase chain reaction (qPCR) analysis found that all five S. frugiperda ABC transporter genes were inducible by EB, and expressed in all the developmental stages and larval tissues, but with significant quantitative differences among stages and tissues. A cytotoxicity assay of ABC-overexpressing Sf9 cell lines showed that all the five S. frugiperda ABC transporter genes made Sf9 cells tolerant to EB. CONCLUSIONS This study not only identifies nine ABC transporter genes related to EB tolerance from D. melanogaster (four genes) and S. frugiperda (five genes), but also demonstrates the utility and effectiveness of the 'model to pests' strategy to identify most toxicity-affecting members from a given family of toxicity-related genes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lixiang Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shaoyi Guo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Bin Wen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongyuan Deng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Qian Ding
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Rosli MAF, Syed Jaafar SN, Azizan KA, Yaakop S, Aizat WM. Omics approaches to unravel insecticide resistance mechanism in Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). PeerJ 2024; 12:e17843. [PMID: 39247549 PMCID: PMC11380842 DOI: 10.7717/peerj.17843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/10/2024] [Indexed: 09/10/2024] Open
Abstract
Bemisia tabaci (Gennadius) whitefly (BtWf) is an invasive pest that has already spread worldwide and caused major crop losses. Numerous strategies have been implemented to control their infestation, including the use of insecticides. However, prolonged insecticide exposures have evolved BtWf to resist these chemicals. Such resistance mechanism is known to be regulated at the molecular level and systems biology omics approaches could shed some light on understanding this regulation wholistically. In this review, we discuss the use of various omics techniques (genomics, transcriptomics, proteomics, and metabolomics) to unravel the mechanism of insecticide resistance in BtWf. We summarize key genes, enzymes, and metabolic regulation that are associated with the resistance mechanism and review their impact on BtWf resistance. Evidently, key enzymes involved in the detoxification system such as cytochrome P450 (CYP), glutathione S-transferases (GST), carboxylesterases (COE), UDP-glucuronosyltransferases (UGT), and ATP binding cassette transporters (ABC) family played key roles in the resistance. These genes/proteins can then serve as the foundation for other targeted techniques, such as gene silencing techniques using RNA interference and CRISPR. In the future, such techniques will be useful to knock down detoxifying genes and crucial neutralizing enzymes involved in the resistance mechanism, which could lead to solutions for coping against BtWf infestation.
Collapse
Affiliation(s)
| | - Sharifah Nabihah Syed Jaafar
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kamalrul Azlan Azizan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Salmah Yaakop
- Centre for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
4
|
Singamshetty S, Selvapandian U, Selvamani SB, Talya Chandrashekara S, Pathak J, Agarwal A, Thiruvengadam V, Ramasamy GG, Sushil SN, Kamanur M, Nara N, Mohan M. Transcriptome mining and expression analysis of ABC transporter genes in a monophagous herbivore, Leucinodes orbonalis (Crambidae: Lepidoptera). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101316. [PMID: 39216277 DOI: 10.1016/j.cbd.2024.101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Insecticide resistance is a global concern and requires immediate attention to manage dreadful insect pests. One of the resistance mechanisms adopted by insects is through ATP-binding cassette (ABC) transporter proteins. These proteins rapidly transport and eliminate the insecticidal molecules across the lipid membranes (Phase III detoxification mechanism). In the present study, we investigated the potential role of ABC transporter genes in imparting insecticide resistance in field-collected insecticide resistant larvae of eggplant shoot and fruit borer (Leucinodes orbonalis; Crambidae: Lepidoptera). Dose-mortality bioassays against five insecticidal molecules revealed moderate to high levels of insecticide resistance (32.2. to 134.1-fold). Thirty-one genes encoding ABC transporter proteins were mined from the transcriptome resources of L. orbonalis. They were classified under eight sub-families (ABCA to ABCH). Phylogenetic analysis indicated ABCG is the most divergent, composed of nine genes as compared to many other insects. Transcriptome analysis of the insecticide resistant and susceptible strains of L. orbonalis revealed differential expression of 13 ABC transporter genes. The altered expression of these genes was further validated using qRT-PCR. The knockdown studies indicated the involvement of ABCD1 and ABCG2 genes in chlorantraniliprole resistance in the insecticide-resistant strain of L. orbonalis. This study unveils the additional mechanisms employed by L. orbonalis in resisting insecticide toxicity through accelerated excretion mode. These ABCD and ABCG family genes could be candidate targets in developing genome-assisted pest management strategies in the future.
Collapse
Affiliation(s)
- Santoshkumar Singamshetty
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India; University of Agricultural Sciences, GKVK, Bengaluru 560 065, India
| | - Upasna Selvapandian
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India
| | - Selva Babu Selvamani
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India. https://twitter.com/MithranSelva
| | - Suman Talya Chandrashekara
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India; University of Agricultural Sciences, GKVK, Bengaluru 560 065, India
| | - Jyoti Pathak
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India. https://twitter.com/pjyoti29
| | - Aditi Agarwal
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India
| | | | | | - Satya Nand Sushil
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India
| | - Muralimohan Kamanur
- University of Agricultural Sciences, GKVK, Bengaluru 560 065, India. https://twitter.com/MMohan97227933
| | - Nagesha Nara
- University of Agricultural Sciences, GKVK, Bengaluru 560 065, India
| | - Muthugounder Mohan
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India.
| |
Collapse
|
5
|
Yang J, Xu X, Wu J, Champer J, Xie M. Involvement of miR-8510a-3p in response to Cry1Ac protoxin by regulating PxABCG3 in Plutella xylostella. Int J Biol Macromol 2024; 263:130271. [PMID: 38373570 DOI: 10.1016/j.ijbiomac.2024.130271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Overuse of insecticides has accelerated the evolution of insecticide resistance and created serious environmental concerns worldwide, thus incentivizing development of alternative methods. Bacillus thuringiensis (Bt) is an insecticidal bacterium that has been developed as a biopesticide to successfully control multiple species of pests. It operates by secreting several insect toxins such as Cry1Ac. However, metabolic resistance based on ATP-binding cassette (ABC) transporters may play a crucial role in the development of metabolic resistance to Bt. Here, we characterized an ABCG gene from the agricultural pest Plutella xylostella (PxABCG3) and found that it was highly expressed in a Cry1Ac-resistant strain, up-regulated after Cry1Ac protoxin treatment. Binding miR-8510a-3p to the coding sequence (CDS) of PxABCG3 was then confirmed by a luciferase reporter assay and RNA immunoprecipitation. miR-8510a-3p agomir delivery markedly reduced PxABCG3 expression in vivo and consequently decreased the tolerance of P. xylostella to Cry1Ac, while reduction of miR-8510a-3p significantly increased PxABCG3 expression, accompanied by an increased tolerance to Cry1Ac. Our results suggest that miR-8510a-3p could potentially be used as a novel molecular target against P. xylostella or other lepidopterans, providing novel insights into developing effective and environmentally friendly pesticides.
Collapse
Affiliation(s)
- Jie Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Xuejiao Xu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiaqi Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jackson Champer
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Miao Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Wang P, Li H, Meng J, Liu Q, Wang X, Wang B, Liu B, Wang C, Sun W, Pan B. Activation of CncC pathway by ROS burst regulates ABC transporter responsible for beta-cypermethrin resistance in Dermanyssus gallinae (Acari:Dermanyssidae). Vet Parasitol 2024; 327:110121. [PMID: 38286058 DOI: 10.1016/j.vetpar.2024.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 01/31/2024]
Abstract
The drug resistance of poultry red mites to chemical acaricides is a global issue in the control of the mites, which presents an ongoing threat to the poultry industry. Though the increased production of detoxification enzymes has been frequently implicated in resistance development, the overexpression mechanism of acaricide-resistant related genes in mites remains unclear. In the present study, it was observed that the transcription factor Cap 'n' Collar isoform-C (CncC) and its partner small muscle aponeurosis fibromatosis (Maf) were highly expressed in resistant strains compared to sensitive strains under the stress of beta-cypermethrin. When the CncC/Maf pathway genes were down-regulated by RNA interference (RNAi), the expression of the ABC transporter genes was down-regulated, leading to a significant increase in the sensitivity of resistant strains to beta-cypermethrin, suggesting that CncC/Maf played a crucial role in mediating the resistance of D.gallinae to beta-cypermethrin by regulating ABC transporters. Furthermore, it was observed that the content of H2O2 and the activities of peroxidase (POD) and catalase (CAT) enzymes were significantly higher in resistant strains after beta-cypermethrin stress, indicating that beta-cypermethrin activates reactive oxygen species (ROS). In ROS scavenger assays, it was found that the expression of CncC/Maf significantly decreased, along with a decrease in the ABC transporter genes. The present study showed that beta-cypermethrin seemed to trigger the outbreak of ROS, subsequently activated the CncC/Maf pathway, as a result induced the ABC transporter-mediated resistance to the drug, shedding more light on the resistance mechanisms of D.gallinae to pyrethroids.
Collapse
Affiliation(s)
- Penglong Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Huan Li
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Jiali Meng
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Qi Liu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Xu Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Bohan Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Boxing Liu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Chuanwen Wang
- College of Veterinary Medicine, Hebei Agricultural University, No. 289 Lingyusi Street, Baoding 071001, Hebei, China
| | - Weiwei Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| |
Collapse
|
7
|
Mahalle RM, Sun W, Posos-Parra OA, Jung S, Mota-Sanchez D, Pittendrigh BR, Seong KM. Identification of differentially expressed miRNAs associated with diamide detoxification pathways in Spodoptera frugiperda. Sci Rep 2024; 14:4308. [PMID: 38383681 PMCID: PMC10881993 DOI: 10.1038/s41598-024-54771-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
The fall armyworm (FAW) Spodoptera frugiperda is a severe economic pest of multiple crops globally. Control of this pest is often achieved using insecticides; however, over time, S. frugiperda has developed resistance to new mode of action compounds, including diamides. Previous studies have indicated diamide resistance is a complex developmental process involving multiple detoxification genes. Still, the mechanism underlying the possible involvement of microRNAs in post-transcriptional regulation of resistance has not yet been elucidated. In this study, a global screen of microRNAs (miRNAs) revealed 109 known and 63 novel miRNAs. Nine miRNAs (four known and five novel) were differentially expressed between insecticide-resistant and -susceptible strains. Gene Ontology analysis predicted putative target transcripts of the differentially expressed miRNAs encoding significant genes belonging to detoxification pathways. Additionally, miRNAs are involved in response to diamide exposure, indicating they are probably associated with the detoxification pathway. Thus, this study provides comprehensive evidence for the link between repressed miRNA expression and induced target transcripts that possibly mediate diamide resistance through post-transcriptional regulation. These findings highlight important clues for further research to unravel the roles and mechanisms of miRNAs in conferring diamide resistance.
Collapse
Affiliation(s)
- Rashmi Manohar Mahalle
- Institute of Agricultural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Weilin Sun
- Department of Entomology, Center for Urban and Industrial Pest Management, Purdue University, West Lafayette, IN, USA
| | - Omar A Posos-Parra
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Sunghoon Jung
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon, Republic of Korea
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - David Mota-Sanchez
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Barry R Pittendrigh
- Department of Entomology, Center for Urban and Industrial Pest Management, Purdue University, West Lafayette, IN, USA
| | - Keon Mook Seong
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Li B, Duan Y, Du Z, Wang X, Liu S, Feng Z, Tian L, Song F, Yang H, Cai W, Lin Z, Li H. Natural selection and genetic diversity maintenance in a parasitic wasp during continuous biological control application. Nat Commun 2024; 15:1379. [PMID: 38355730 PMCID: PMC10866907 DOI: 10.1038/s41467-024-45631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Aphidius gifuensis is a parasitoid wasp and primary endoparasitoid enemy of the peach potato aphid, Myzus persicae. Artificially reared, captive wasps of this species have been extensively and effectively used to control populations of aphids and limit crop loss. However, the consequences of large-scale releasing of captive A. gifuensis, such as genetic erosion and reduced fitness in wild populations of this species, remains unclear. Here, we sequence the genomes of 542 A. gifuensis individuals collected across China, including 265 wild and 277 human-intervened samples. Population genetic analyses on wild individuals recovered Yunnan populations as the ancestral group with the most complex genetic structure. We also find genetic signature of environmental adaptation during the dispersal of wild populations from Yunnan to other regions. While comparative genomic analyses of captive wasps revealed a decrease in genetic diversity during long-term rearing, population genomic analyses revealed signatures of natural selection by several biotic (host plants) or abiotic (climate) factors, which support maintenance of the gene pool of wild populations in spite of the introduction of captive wasps. Therefore, the impact of large-scale release is reduced. Our study suggests that A. gifuensis is a good system for exploring the genetic and evolutionary effects of mass rearing and release on species commonly used as biocontrol agents.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhenyong Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xuan Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shanlin Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zengbei Feng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | | | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhonglong Lin
- Yunnan Tobacco Company of China National Tobacco Corporation, Kunming, 650011, China.
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Lv Y, Pan Y, Li J, Ding Y, Yu Z, Yan K, Shang Q. The C2H2 zinc finger transcription factor CF2-II regulates multi-insecticide resistance-related gut-predominant ABC transporters in Aphis gossypii Glover. Int J Biol Macromol 2023; 253:126765. [PMID: 37683749 DOI: 10.1016/j.ijbiomac.2023.126765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Clarifying the molecular mechanisms of cotton aphid resistance to various insecticides is crucial for the long-term safe application of insecticides in chemical control. ATP-binding cassette (ABC) transporters mediate the membrane transport of various substrates (including exogenous substances). Experiments confirmed that ABCB5, ABCF2, and MRP12 contributed to high levels of resistance to spirotetramat, cyantraniliprole, thiamethoxam or imidacloprid. Binding sites of the C2H2 zinc finger transcription factor CF2-II was predicted to be located in the promoters of ABCB5, ABCF2, and MRP12. The expression levels of ABCB5, ABCF2, and MRP12 were significantly upregulated after silencing CF2-II. The results of dual-luciferase reporter assays demonstrated a negative regulatory relationship between CF2-II and ABC transporter promoters. Furthermore, yeast one-hybrid (Y1H) and electrophoresis mobility shift assays (EMSAs) revealed that CF2-II inhibited the expression of ABC transporter genes through interaction with binding sites [ABCF2.p (-1149/-1140) or MRP12.p (-1189/-1181)]. The above results indicated that ABCB5, ABCF2, and MRP12 were negatively regulated by the transcription factor CF2-II, which will help us further understand the mechanism of transcriptional adaption of multi-insecticides resistant related ABC transporters in response to xenobiotics.
Collapse
Affiliation(s)
- Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Zihan Yu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
10
|
Wang L, He W, Lu JM, Sun J, Jiang SD, Wang JJ, Wei DD. Characterization and transcriptional expression of ABCG genes in Bactrocera dorsalis: Insights into their roles in fecundity and insecticidal stress response. Int J Biol Macromol 2023; 253:126836. [PMID: 37714235 DOI: 10.1016/j.ijbiomac.2023.126836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
The ATP-binding cassette (ABC) transporters are essential for regulating various physiological processes and insecticide resistance across different living organisms. ABCG subfamily genes have diverse functions in insects, but little is known about the function of ABCGs in a serious agricultural pest, Bactrocera dorsalis. In this study, 15 BdABCG genes were identified, and BdABCG6 and BdABCG11 were highly expressed in the pupal and adult stages, especially during the transition period from pupae to adults. Silencing of these two genes resulted in a significant reduction of egg production in B. dorsalis, confirming their importance in reproduction. Analysis of tissue expression patterns showed that most genes, including BdABCG1, 3, 8, and 14, exhibited tissue-specificity, with significantly higher expression levels observed in the intestine, Malpighian tubule, and fat body compared to other tissues. Meanwhile, the induction of malathion and avermectin can significantly upregulate the expression of the above four genes. Furthermore, knockdown of BdABCG3 by RNAi significantly increased the mortality of B. dorsalis upon exposure to avermectin, which suggested that BdABCG3 is involved in the transport or metabolism of avermectin in B. dorsalis. Overall, our work provides valuable insights into the function of BdABCGs involved in the reproduction and detoxification system of B. dorsalis.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Wang He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jin-Ming Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jun Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Shi-Die Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
11
|
Xu J, Zheng J, Zhang R, Wang H, Du J, Li J, Zhou D, Sun Y, Shen B. Identification and functional analysis of ABC transporter genes related to deltamethrin resistance in Culex pipiens pallens. PEST MANAGEMENT SCIENCE 2023; 79:3642-3655. [PMID: 37183172 DOI: 10.1002/ps.7539] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Pathogens that reproduce or develop in mosquitoes can transmit several diseases, endanger human health, and overwhelm health systems. Synthetic pyrethroids are the most widely used insecticides against adult mosquitoes, but their widespread use has led to resistance. The adenosine triphosphate (ATP)-binding cassette (ABC) transporters are involved in the resistance monitoring of insects, but their role and underlying mechanisms in insecticide resistance have not been fully elucidated. In the present study, we identified ABC transporter genes in Culex pipiens and investigated their role in the development of insecticide resistance. RESULTS We identified 63 ABC transporter genes in Cx. pipiens and classified them as per the ABC transporter subfamilies. We also performed phylogenetic analysis. The knockdown rate of the mosquitoes orally fed with the ABC transporter inhibitor verapamil increased after deltamethrin treatment compared with that of the control group. Several genes from the ABCB, ABCC, and ABCG subfamilies were highly expressed in resistant mosquitoes. Immunofluorescence analysis revealed that ABCG6032427 was expressed in the head, chest, abdomen, wings, and legs, and the expression was the highest in the legs. Subsequently, knockdown of ABCG6032427 using RNA interference (RNAi) increased the sensitivity of the mosquitoes to deltamethrin, and scanning and transmission electron microscopy revealed that ABCG6032427 knockdown reduced cuticle thickness and the cuticle became loose and irregular. CONCLUSIONS ABCG6032427 may modulate cuticle thickness and structure, thus play an important role in the development of deltamethrin resistance in mosquitoes. Thus, it could be a potential target for deltamethrin resistance management in Cx. pipiens. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingwei Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Junnan Zheng
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Ruimin Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Huan Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - JiaJia Du
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jinze Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Campbell LI, Nwezeobi J, van Brunschot SL, Kaweesi T, Seal SE, Swamy RAR, Namuddu A, Maslen GL, Mugerwa H, Armean IM, Haggerty L, Martin FJ, Malka O, Santos-Garcia D, Juravel K, Morin S, Stephens ME, Muhindira PV, Kersey PJ, Maruthi MN, Omongo CA, Navas-Castillo J, Fiallo-Olivé E, Mohammed IU, Wang HL, Onyeka J, Alicai T, Colvin J. Comparative evolutionary analyses of eight whitefly Bemisia tabaci sensu lato genomes: cryptic species, agricultural pests and plant-virus vectors. BMC Genomics 2023; 24:408. [PMID: 37468834 DOI: 10.1186/s12864-023-09474-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The group of > 40 cryptic whitefly species called Bemisia tabaci sensu lato are amongst the world's worst agricultural pests and plant-virus vectors. Outbreaks of B. tabaci s.l. and the associated plant-virus diseases continue to contribute to global food insecurity and social instability, particularly in sub-Saharan Africa and Asia. Published B. tabaci s.l. genomes have limited use for studying African cassava B. tabaci SSA1 species, due to the high genetic divergences between them. Genomic annotations presented here were performed using the 'Ensembl gene annotation system', to ensure that comparative analyses and conclusions reflect biological differences, as opposed to arising from different methodologies underpinning transcript model identification. RESULTS We present here six new B. tabaci s.l. genomes from Africa and Asia, and two re-annotated previously published genomes, to provide evolutionary insights into these globally distributed pests. Genome sizes ranged between 616-658 Mb and exhibited some of the highest coverage of transposable elements reported within Arthropoda. Many fewer total protein coding genes (PCG) were recovered compared to the previously published B. tabaci s.l. genomes and structural annotations generated via the uniform methodology strongly supported a repertoire of between 12.8-13.2 × 103 PCG. An integrative systematics approach incorporating phylogenomic analysis of nuclear and mitochondrial markers supported a monophyletic Aleyrodidae and the basal positioning of B. tabaci Uganda-1 to the sub-Saharan group of species. Reciprocal cross-mating data and the co-cladogenesis pattern of the primary obligate endosymbiont 'Candidatus Portiera aleyrodidarum' from 11 Bemisia genomes further supported the phylogenetic reconstruction to show that African cassava B. tabaci populations consist of just three biological species. We include comparative analyses of gene families related to detoxification, sugar metabolism, vector competency and evaluate the presence and function of horizontally transferred genes, essential for understanding the evolution and unique biology of constituent B. tabaci. s.l species. CONCLUSIONS These genomic resources have provided new and critical insights into the genetics underlying B. tabaci s.l. biology. They also provide a rich foundation for post-genomic research, including the selection of candidate gene-targets for innovative whitefly and virus-control strategies.
Collapse
Affiliation(s)
- Lahcen I Campbell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Joachim Nwezeobi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, UK.
| | - Sharon L van Brunschot
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- CSIRO Health and Biosecurity, Dutton Park, QLD, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tadeo Kaweesi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Rwebitaba Zonal Agricultural Research and Development Institute, Fort Portal, Uganda
| | - Susan E Seal
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | - Rekha A R Swamy
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | - Annet Namuddu
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- National Crops Resources Research Institute, Kampala, Uganda
| | - Gareth L Maslen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Imperial College London, South Kensington, London, UK
| | - Habibu Mugerwa
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Department of Entomology, University of Georgia, Griffin, GA, USA
| | - Irina M Armean
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Osnat Malka
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos-Garcia
- CNRS, Laboratory of Biometry and Evolutionary Biology UMR 5558, University of Lyon, Villeurbanne, France
- Center for Biology and Management of Populations, INRAe UMR1062, Montferrier-sur-Lez, France
| | - Ksenia Juravel
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Paul Visendi Muhindira
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Paul J Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Royal Botanic Gardens, Kew, London, UK
| | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | | | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical Y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Málaga, Algarrobo-Costa, Spain
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical Y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Málaga, Algarrobo-Costa, Spain
| | | | - Hua-Ling Wang
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Joseph Onyeka
- National Root Crops Research Institute (NRCRI), Umudike, Nigeria
| | - Titus Alicai
- National Crops Resources Research Institute, Kampala, Uganda
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| |
Collapse
|
13
|
Ács A, Komáromy A, Kovács AW, Fodor I, Somogyvári D, Győri J, Farkas A. Temperature related toxicity features of acute acetamiprid and thiacloprid exposure in Daphnia magna and implications on reproductive performance. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109601. [PMID: 36906245 DOI: 10.1016/j.cbpc.2023.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
This study investigated the potential for elevated temperature to alter the toxicity of acetamiprid (ACE) and thiacloprid (Thia) in the ecotoxicity model Daphnia magna. The modulation of CYP450 monooxygenases (ECOD), ABC transporter activity (MXR) and incident cellular reactive oxygen species (ROS) overproduction was screened in premature daphnids following acute (48 h) exposure to sublethal concentrations of ACE and Thia (0.1-, 1.0 μM) at standard 21 °C and elevated 26 °C temperatures. Delayed outcomes of acute exposures were further evaluated based on the reproduction performance of daphnids monitored over 14 days of recovery. Exposures to ACE and Thia at 21o C elicited moderate induction of ECOD activity, pronounced inhibition of MXR activity and severe ROS overproduction in daphnids. In the high thermal regime, treatments resulted in significantly lower induction of ECOD activity and inhibition of MXR activity, suggesting a suppressed metabolism of neonicotinoids and less impaired membrane transport activity in daphnids. Elevated temperature on its own, caused a three-fold rise in ROS levels in control daphnids, while ROS overproduction upon neonicotinoid exposure was less accentuated. Acute exposures to ACE and Thia caused significant decreases also in the reproduction of daphnids, indicating delayed outcomes even at environmentally relevant concentrations. Both the cellular alterations in exposed daphnids and decreases in their reproductive output post exposures evidenced closely similar toxicity patterns and potentials for the two neonicotinoids. While elevated temperature elicited only a shift in baseline cellular alterations evoked by neonicotinoids, it significantly worsened the reproductive performance of daphnids following neonicotinoid exposures.
Collapse
Affiliation(s)
- András Ács
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - András Komáromy
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Attila W Kovács
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - István Fodor
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Dávid Somogyvári
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - János Győri
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Anna Farkas
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary.
| |
Collapse
|
14
|
Bhende RS, Dafale NA. Insights into the ubiquity, persistence and microbial intervention of imidacloprid. Arch Microbiol 2023; 205:215. [PMID: 37129684 DOI: 10.1007/s00203-023-03516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Imidacloprid, a neonicotinoid pesticide, is employed to increase crop productivity. Meanwhile, its indiscriminate application severely affects the non-target organisms and the environment. As an eco-friendly and economically workable option, the microbial intervention has garnered much attention. This review concisely outlines the toxicity, long-term environmental repercussions, degradation kinetics, biochemical pathways, and interplay of genes implicated in imidacloprid remediation. The studies have highlighted imidacloprid residue persistence in the environment for up to 3000 days. In view of high persistence, effective intervention is highly required. Bacteria-mediated degradation has been established as a viable approach with Bacillus spp. being among the most efficient at 30 ℃ and pH 7. Further, a comparative metagenomic investigation reveals dominant neonicotinoid degradation genes in agriculture compared to forest soils with distinctive microbial communities. Functional metabolism of carbohydrates, amino acids, fatty acids, and lipids demonstrated a significantly superior relative abundance in forest soil, implying its quality and fertility. The CPM, CYP4C71v2, CYP4C72, and CYP6AY3v2 genes that synthesize cyt p450 monooxygenase enzyme play a leading role in imidacloprid degradation. In the future, a systems biology approach incorporating integrated kinetics should be utilized to come up with innovative strategies for moderating the adverse effects of imidacloprid on the environment.
Collapse
Affiliation(s)
- Rahul S Bhende
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India.
| |
Collapse
|
15
|
Gautam P, Pandey AK, Gupta A, Dubey SK. Microcosm-omics centric investigation reveals elevated bacterial degradation of imidacloprid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121402. [PMID: 36889658 DOI: 10.1016/j.envpol.2023.121402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Imidacloprid, a broad-spectrum insecticide, is widely used against aphids and other sucking insects. As a result, its toxic effect is becoming apparent in non-targeted organisms. In-situ bioremediation of residual insecticide from the environment utilizing efficient microbes would be helpful in reducing its load. In the present work, in-depth genomics, proteomics, bioinformatics, and metabolomics analyses were employed to reveal the potential of Sphingobacterium sp. InxBP1 for in-situ degradation of imidacloprid. The microcosm study revealed ∼79% degradation with first-order kinetics (k = 0.0726 day-1). Genes capable of mediating oxidative degradation of imidacloprid and subsequent decarboxylation of intermediates were identified in the bacterial genome. Proteome analysis demonstrated significant overexpression of the enzymes coded by these genes. Bioinformatic analysis revealed significant affinity and binding of the identified enzymes for their respective substrates (the degradation pathway intermediates). The nitronate monooxygenase (K7A41 01745), amidohydrolase (K7A41 03835 and K7A41 07535), FAD-dependent monooxygenase (K7A41 12,275), and ABC transporter enzymes (K7A41 05325, and K7A41 05605) were found to be effective in facilitating the transport and intracellular degradation of imidacloprid. The metabolomic study identified the pathway intermediates and validated the proposed mechanism and functional role of the identified enzymes in degradation. Thus, the present investigation provides an efficient imidacloprid degrading bacterial species as evidenced by its genetic attributes which can be utilized or further improved to develop technologies for in-situ remediation.
Collapse
Affiliation(s)
- Pallavi Gautam
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, India
| | - Ankush Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
16
|
Wang A, Yang Y, Zhou Y, Zhang Y, Xue C, Zhao Y, Zhao M, Zhang J. A microRNA, PC-5p-30_205949, regulates triflumezopyrim susceptibility in Laodelphax striatellus (Fallén) by targeting CYP419A1 and ABCG23. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105413. [PMID: 37105639 DOI: 10.1016/j.pestbp.2023.105413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
MicroRNAs (miRNAs) are known to be important post-transcriptional regulators of gene expression and have been shown to be associated with insecticide resistance in insects. In this research, we show that a miRNA, PC-5p-30_205949, is involved in triflumezopyrim susceptibility via regulating expressive abundance of cytochrome P450 CYP419A1 and ATP-binding cassette transporters ABCG23 in the small brown planthopper (SBPH), Laodelphax striatellus (Fallén). Triflumezopyrim treatment significantly reduced the abundance of PC-5p-30_205949, feeding of agomir-PC-5p-30_205949 significantly increased the sensitivity of SBPH to triflumezopyrim, and its spatiotemporal expression profiles showed that PC-5p-30_205949 were expressed at all developmental stages and were highly expressed in head tissue. By software prediction and dual luciferase reporter assay, the target genes of PC-5p-30_205949 were identified as two detoxification metabolism genes CYP419A1 and ABCG23. The relative expressions of CYP419A1 and ABCG23 were significantly up-regulated after 24 h, 48 h and 72 h with triflumezopyrim exposure. CYP419A1 was highly expressed in the 4th-instar nymphs and male adults, with the highest expression level in fat body. ABCG23 was highly expressed in female adults, and had the highest expression in head. Furthermore, silencing of CYP419A1 and ABCG23 by RNA interference significantly increased the mortality of SBPH to triflumezopyrim, and molecular docking showed that CYP419A1 and ABCG23 could stably bind to triflumezopyrim with binding free energies of -171.5622 and - 103.3402 kcal mol-1, respectively. These results suggest that SBPH has a strategy to enhance the resistance to triflumezopyrim by attenuating the expression of PC-5P-30_205949, thereby activating the detoxification metabolic pathway by targeting CYP419A1 and ABCG23.
Collapse
Affiliation(s)
- Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China; Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Yuanxue Yang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China; Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Yun Zhou
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yun Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China; Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Chao Xue
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongxin Zhao
- Shandong Province Yuncheng County Agricultural and Rural Bureau, Yuncheng, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China; Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China; Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China.
| |
Collapse
|
17
|
Gautam P, Pandey AK, Dubey SK. Multi-omics approach reveals elevated potential of bacteria for biodegradation of imidacloprid. ENVIRONMENTAL RESEARCH 2023; 221:115271. [PMID: 36640933 DOI: 10.1016/j.envres.2023.115271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The residual imidacloprid, a widely used insecticide is causing serious environmental concerns. Knowledge of its biodegradation will help in assessing its residual mass in soil. In view of this, a soil microcosm-based study was performed to test the biodegradation potential of Agrobacterium sp. InxBP2. It achieved ∼88% degradation in 20 days and followed the pseudo-first-order kinetics (k = 0.0511 day-1 and t1/2=7 days). Whole genome sequencing of Agrobacterium sp. InxBP2 revealed a genome size of 5.44 Mbp with 5179 genes. Imidacloprid degrading genes at loci K7A42_07110 (ABC transporter substrate-binding protein), K7A42_07270 (amidohydrolase family protein), K7A42_07385 (ABC transporter ATP-binding protein), K7A42_16,845 (nitronate monooxygenase family protein), and K7A42_20,660 (FAD-dependent monooxygenase) having sequence and functional similarity with known counterparts were identified. Molecular docking of proteins encoded by identified genes with their respective degradation pathway intermediates exhibited significant binding energies (-6.56 to -4.14 kcal/mol). Molecular dynamic simulation discovered consistent interactions and binding depicting high stability of docked complexes. Proteome analysis revealed differential protein expression in imidacloprid treated versus untreated samples which corroborated with the in-silico findings. Further, the detection of metabolites proved the bacterial degradation of imidacloprid. Thus, results provided a mechanistic link between imidacloprid and associated degradative genes/enzymes of Agrobacterium sp. InxBP2. These findings will be of immense significance in carrying out the lifecycle analysis and formulating strategies for the bioremediation of soils contaminated with insecticides like imidacloprid.
Collapse
Affiliation(s)
- Pallavi Gautam
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
18
|
Chen D, Yan R, Xu Z, Qian J, Yu Y, Zhu S, Wu H, Zhu G, Chen M. Silencing of dre4 Contributes to Mortality of Phyllotreta striolata. INSECTS 2022; 13:insects13111072. [PMID: 36421975 PMCID: PMC9696999 DOI: 10.3390/insects13111072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 06/01/2023]
Abstract
The striped flea beetle, Phyllotreta striolata, is one of the most destructive pests of Cruciferae crops worldwide. RNA interference (RNAi) is a promising alternative strategy for pest biological control, which overcomes the weakness of synthetic insecticides, such as pest resistance, food safety problems and toxicity to non-target insects. The homolog of Spt16/FACT, dre4 plays a critical role in the process of gene transcription, DNA repair, and DNA replication; however, the effects of dre4 silencing in P. striolata remain elusive. In this study, we cloned and characterized the full-length dre4 from P. striolata and silenced Psdre4 through microinjection and oral delivery; it was found that the silencing of dre4 contributed to the high mortality of P. striolata in both bioassays. Moreover, 1166 differentially regulated genes were identified after Psdre4 interference by RNA-seq analysis, which might have been responsible for the lethality. The GO analysis indicated that the differentially regulated genes were classified into three GO functional categories, including biological process, cellular component, and molecular function. The KEGG analysis revealed that these differentially regulated genes are related to apoptosis, autophagy, steroid hormone biosynthesis, cytochrome P450 and other signaling pathways. Our results suggest that Psdre4 is a fatal RNAi target and has significant potential for the development of RNA pesticides for P. striolata management.
Collapse
Affiliation(s)
- Dongping Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310030, China
| | - Ru Yan
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310030, China
| | - Zhanyi Xu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310030, China
| | - Jiali Qian
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310030, China
| | - Yinfang Yu
- Research and Development Center, NeoAgro Co., Ltd., Hangzhou 310022, China
| | - Shunshun Zhu
- Research and Development Center, NeoAgro Co., Ltd., Hangzhou 310022, China
| | - Huiming Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310030, China
| | - Mengli Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
19
|
Cheng LY, Hou DY, Sun QZ, Yu SJ, Li SC, Liu HQ, Cong L, Ran C. Biochemical and Molecular Analysis of Field Resistance to Spirodiclofen in Panonychus citri (McGregor). INSECTS 2022; 13:1011. [PMID: 36354837 PMCID: PMC9696244 DOI: 10.3390/insects13111011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Spirodiclofen is one of the most widely used acaricides in China. The citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae), is one of the most destructive citrus pests worldwide and has developed a high resistance to spirodiclofen. However, the molecular mechanism of spirodiclofen resistance in P. citri is still unknown. In this study, we identified a field spirodiclofen-resistant strain (DL-SC) that showed 712-fold resistance to spirodiclofen by egg bioassay compared to the susceptible strain. Target-site resistance was not detected as non-synonymous mutations were not found by amplification and sequencing of the ACCase gene of resistant and susceptible strains; in addition, the mRNA expression levels of ACCase were similar in both resistant and susceptible strains. The activity of detoxifying enzymes P450s and CCEs in the resistant strain was significantly higher than in the susceptible strain. The transcriptome expression data showed 19 xenobiotic metabolisms genes that were upregulated. Stage-specific expression profiling revealed that the most prominent upregulated gene, CYP385C10, in transcriptome data was significantly higher in resistant strains in all stages. Furthermore, functional analysis by RNAi indicated that the mortality caused by spirodiclofen was significantly increased by silencing the P450 gene CYP385C10. The current results suggest that overexpression of the P450 gene, CYP385C10, may be involved in spirodiclofen resistance in P. citri.
Collapse
Affiliation(s)
- Lu-Yan Cheng
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Dong-Yuan Hou
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Qin-Zhe Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Shi-Jiang Yu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Si-Chen Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Hao-Qiang Liu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Lin Cong
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Chun Ran
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing 400712, China
| |
Collapse
|
20
|
Lv Y, Li J, Yan K, Ding Y, Gao X, Bi R, Zhang H, Pan Y, Shang Q. Functional characterization of ABC transporters mediates multiple neonicotinoid resistance in a field population of Aphis gossypii Glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105264. [PMID: 36464369 DOI: 10.1016/j.pestbp.2022.105264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
The ATP-binding cassette (ABC) transporters C and G subfamilies have been reported to be involved in insecticide detoxification, with most studies showing increased gene transcript levels in response to insecticide exposure. Our previous studies have suggested that ABCC and G transporters participate in cyantraniliprole and thiamethoxam resistance of Aphis gossypii. In this study, we focused on the potential roles of the ABCC and G transporters of an A. gossypii field population (SDR) in neonicotinoid detoxification. The results of leaf dip bioassays showed 629.17- and 346.82-fold greater resistance to thiamethoxam and imidacloprid in the SDR strain, respectively, than in the susceptible strain (SS). Verapamil, an ABC inhibitor, was used for synergism bioassays, and the results showed synergistic effects with thiamethoxam, with synergistic ratios (SRs) of 2.07 and 6.68 in the SS and SDR strains, respectively. In addition to thiamethoxam, verapamil increased imidacloprid toxicity by 1.68- and 1.62-fold in the SS and SDR strains respectively. Then, the expression levels of several ABCC and G transporters were analyzed in different treatments. We found that the transcript levels of AgABCG4, AgABCG17, AgABCG26, AgMRP8 and AgMRP12 were higher in the SDR strain than in the SS strain. The mRNA expression of AgABCG4, AgABCG7, AgABCG13, AgABCG17, AgABCG26, AgMRP8 and AgMRP12 in the SDR strain was increased after thiamethoxam and imidacloprid exposure. The results of transgenic Drosophila melanogaster bioassays suggested that overexpression of AgABCG4, AgABCG7, AgABCG13, AgABCG17, AgABCG26, AgMRP8 and AgMRP12 in transgenic flies was sufficient to confer thiamethoxam and imidacloprid resistance, and AgABCG4, AgABCG7, AgABCG13, AgABCG26 and AgMRP12 may be related to α-cypermethrin cross-resistance with weak effects. In addition, the knockdown of AgABCG4, AgABCG13, AgABCG26, AgMRP8 and AgMRP12, and the knockdown of AgABCG7 and AgABCG26 increased thiamethoxam and imidacloprid mortality in the SDR strain, respectively. Our results suggest that changes in the expression levels of ABCC and G transporters may contribute to neonicotinoid detoxification in the SDR strain, and provide a foundation for clarify the potential roles of ABCC and G transporters in insecticide resistance.
Collapse
Affiliation(s)
- Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Rui Bi
- College of Plant Science, Jilin Agricultural University, Changchun 130118, PR China
| | - Hang Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
21
|
Liu L, Hong B, Wei JW, Wu YT, Song LW, Wang SS. Transcriptional response and functional analysis of ATP-binding cassette transporters to tannic acid in pea aphid, Acyrthosiphon pisum (Harris). Int J Biol Macromol 2022; 220:250-257. [PMID: 35981673 DOI: 10.1016/j.ijbiomac.2022.08.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022]
Abstract
Although tannins are widely distributed in broad beans and alfalfa, the pea aphid (Acyrthosiphon pisum) can still destroy them. The ATP binding cassette (ABC) transporters participate in the metabolism of plant secondary metabolites and pesticides in insects. However, whether ABC transporter genes play a role in the metabolism of tannins in the pea aphid is unclear. Here, we found that verapamil (an ABC transporter inhibitor) significantly increased the mortality of tannic acid to pea aphid, which indicated that ABC transporter gene was related to the metabolism of tannic acid by pea aphid. Then, we identified 54 putative ABC transporter genes from the genome database of A. pisum. These genes were divided into eight subfamilies, ApABCA to ApABCH, of which subfamily G has the largest number of genes with 19, followed by the subfamily C with 14. RT-qPCR results show that the expression levels of ApABCA2, ApABCC7, ApABCG2, and ApABCG3 were highly expressed in the first instar, while those of ApABCA3, ApABCG6, ApABCG7, ApABCH3, and ApABCH4 were highly expressed in adults. Furthermore, transcription levels of many ABC transporter genes were induced by tannic acid. Especially, ApABCG17 and ApABCH2 were obviously induced after being exposed to tannic acid. Meanwhile, knockdown of ApABCG17 by RNA interference resulted in increased sensitivity of pea aphid to tannic acid. These results suggest that ApABCG17 may be involved in tannic acid metabolism in pea aphid. This study will help us to understand the mechanism of tannic acid metabolism in pea aphid, and provides a basis for further research on the physiological function of ABC transporter genes in pea aphid.
Collapse
Affiliation(s)
- Lei Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Bo Hong
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Jiang-Wen Wei
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Yi-Ting Wu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Li-Wen Song
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China.
| | - Sen-Shan Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China.
| |
Collapse
|
22
|
Lv Y, Yan K, Gao X, Chen X, Li J, Ding Y, Zhang H, Pan Y, Shang Q. Functional Inquiry into ATP-Binding Cassette Transporter Genes Contributing to Spirotetramat Resistance in Aphis gossypii Glover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13132-13142. [PMID: 36194468 DOI: 10.1021/acs.jafc.2c04263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ATP-binding cassette (ABC) transporters regulate the efflux of a broad spectrum of substrates to extracellular transporting, which play an important role in the detoxification process in arthropods. Here, we described a comprehensive approach to explore the involvement of ABC transporters in spirotetramat resistance in cotton aphids. In this study, synergism bioassays showed 17.05% and 35.42% increases in the toxicity to spirotetramat with the ABC inhibitor verapamil in adult and 3rd instar nymph aphids of the SR strain, respectively. In a competitive assay based on the microinjection of a fluorescent ABC transporter substrate, verapamil (a general ABC inhibitor) and spirotetramat significantly inhibited the elimination of Texas Red. Based on transcriptome data of midguts of spirotetramat-susceptible (SS) and -resistant (SR) strains, the expression levels of ABCB4, ABCB5, ABCF2, MRP11, and MRP12 were significantly upregulated in the SR strain midgut compared to that of the SS strain. Gene functional analysis based on ectopic expression and RNA interference (RNAi) proved that ABCB4, ABCB5, ABCF2, MRP11, and MRP12 were involved in the tolerance of cotton aphids to spirotetramat. Moreover, the upregulated ABCF2, ABCB4, and ABCB5 in the midgut of the SR strain contributed more to the resistance of spirotetramat in in vitro functional analysis. In summary, these results demonstrate that candidate ABC transporter genes in the midgut tissue were involved in spirotetramat resistance, which will help reveal the relationship between ABC transporters and the development of spirotetramat resistance in field populations.
Collapse
Affiliation(s)
- Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Hang Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
23
|
Li Z, Mao K, Jin R, Cai T, Qin Y, Zhang Y, He S, Ma K, Wan H, Ren X, Li J. miRNA novel_268 targeting NlABCG3 is involved in nitenpyram and clothianidin resistance in Nilaparvata lugens. Int J Biol Macromol 2022; 217:615-623. [PMID: 35853504 DOI: 10.1016/j.ijbiomac.2022.07.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 07/12/2022] [Indexed: 12/19/2022]
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most destructive pests that seriously threatens the high-quality and safe production of rice. However, due to the unscientific use of chemical insecticides, N. lugens has developed varying levels of resistance to insecticides, including nitenpyram and clothianidin. The ATP-binding cassette (ABC) transporter plays a nonnegligible role in phase III of the detoxification process, which may play an important role in insecticide resistance. In the present study, NlABCG3 was significantly overexpressed in both the NR and CR populations compared with susceptible populations. Silencing NlABCG3 significantly increased the susceptibility of BPH to nitenpyram and clothianidin. In addition, RNAi-mediated knockdown of three key genes in the miRNA biogenesis pathway altered the level of NlABCG3. Subsequently, the luciferase reporter assays demonstrated that novel_268 binds to the NlABCG3 coding region and downregulates its expression. Furthermore, injection of miRNA inhibitors or mimics of novel_268 significantly altered the susceptibility of N. lugens to nitenpyram and clothianidin. These results suggest that miRNA novel_268 targeting NlABCG3 is involved in nitenpyram and clothianidin resistance in N. lugens. These findings may help to enhance our knowledge of the transcriptional regulation of the ABC transporter that mediate insecticide resistance in N. lugens.
Collapse
Affiliation(s)
- Zhao Li
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, 40 Nongkenan Road, Hefei 230031, PR China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kaikai Mao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ruoheng Jin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tingwei Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yao Qin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunhua Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xuexiang Ren
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, 40 Nongkenan Road, Hefei 230031, PR China.
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
24
|
Yang Y, Duan A, Zhang C, Zhang Y, Wang A, Xue C, Wang H, Zhao M, Zhang J. Overexpression of ATP-binding cassette transporters ABCG10, ABCH3 and ABCH4 in Aphis craccivora (Koch) facilitates its tolerance to imidacloprid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105170. [PMID: 35973758 DOI: 10.1016/j.pestbp.2022.105170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Aphis craccivora (Koch), a globally pest that causes significant threat to the legumes, has developed different degrees of resistance to a variety of insecticides. The ATP-binding cassette (ABC) transporters comprise a multifunctional transporter protein superfamily which play important roles in the transport and detoxification of xenobiotic compounds in insects. However, whether ABC transporters take part in the tolerance of imidacloprid in A. craccivora is still unknown. In order to investigate the functions of ABC transporters in the imidacloprid tolerance, fifty- eight ABC transporters were identified in the transcriptome and genome of A. craccivora and the toxicity of imidacloprid against A. craccivora was significantly increased after application the inhibitors of verapamil and Ko143. The relative expression levels of ABCG5, ABCG6, ABCG10, ABCH3, ABCH4, ABCH8 and ABCH10 were significantly up-regulated in response to imidacloprid treatment with LC15, LC50 and LC85 concentrations, and the expression patterns of these seven ABC transporters were further analyzed at different developmental stages and in different tissues of A. craccivora by quantitative real-time PCR (RT-qPCR). Furthermore, knockdown of ABCG10, ABCH3 and ABCH4 significantly increased the mortality of A. craccivora to imidacloprid. Our results reveal the key functions of ABC transporters in the tolerance of imidacloprid and provide valuable information regarding the development of improved management strategies in A. craccivora.
Collapse
Affiliation(s)
- Yuanxue Yang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ailing Duan
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Cong Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yun Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chao Xue
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hongyan Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China,.
| |
Collapse
|
25
|
Yang Y, Wang A, Wang M, Zhang Y, Zhang J, Zhao M. ATP-binding cassette transporters ABCF2 and ABCG9 regulate rice black-streaked dwarf virus infection in its insect vector, Laodelphax striatellus (Fallén). BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:327-334. [PMID: 35543297 DOI: 10.1017/s0007485321000869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The majority of plant viral disease is transmitted and spread by insect vectors in the field. The small brown planthopper, Laodelphax striatellus (Fallén), is the only efficient vector for rice black-streaked dwarf virus (RBSDV), a devastating plant virus that infects multiple grain crops, including rice, maize, and wheat. Adenosine triphosphate (ATP)-binding cassette (ABC) transporters participate in various biological processes. However, little is known about whether ABC transporters affect virus infection in insects. In this study, RBSDV accumulation was significantly reduced in L. striatellus after treatment with verapamil, an effective inhibitor of ABC transporters. Thirty-four ABC transporter genes were identified in L. striatellus and expression analysis showed that LsABCF2 and LsABCG9 were significantly upregulated and downregulated, respectively, after RBSDV infection. LsABCF2 and LsABCG9 were expressed during all developmental stages, and LsABCG9 was highly expressed in the midgut of L. striatellus. Knockdown of LsABCF2 promoted RBSDV accumulation, while knockdown of LsABCG9 suppressed RBSDV accumulation in L. striatellus. Our data showed that L. striatellus might upregulate the expression of LsABCF2 and downregulate LsABCG9 expression to suppress RBSDV infection. These results will contribute to understanding the effects of ABC transporters on virus transmission and provide theoretical basis for virus management in the field.
Collapse
Affiliation(s)
- Yuanxue Yang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Man Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yun Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
26
|
Guan D, Yang X, Jiang H, Zhang N, Wu Z, Jiang C, Shen Q, Qian K, Wang J, Meng X. Identification and Validation of ATP-Binding Cassette Transporters Involved in the Detoxification of Abamectin in Rice Stem Borer, Chilo suppressalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4611-4619. [PMID: 35410476 DOI: 10.1021/acs.jafc.2c00414] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chilo suppressalis has developed high levels of resistance to abamectin in many areas of China, while the underline resistance mechanisms are largely unclear. ATP-binding cassette (ABC) transporters function in transporting a large diversity of substrates including insecticides and play important roles in the detoxification metabolism of insects. In this study, synergism bioassay revealed that the ABC transporters were involved in the detoxification of C. suppressalis to abamectin. Six ABC transporter genes were upregulated in C. suppressalis after abamectin exposure, among which five genes CsABCC8, CsABCE1, CsABCF1, CsABCF2, and CsABCH1 were induced in the detoxification-related tissues. In addition, the five ABC transporters were recombinantly expressed in Sf9 cells, and the cytotoxicity assay showed that the viabilities of cells expressing CsABCC8 or CsABCH1 were significantly increased when compared with the viabilities of cells expressing EGFP after abamectin, chlorantraniliprole, cyantraniliprole, fipronil, and chlorpyrifos treatment, respectively. Overexpression of CsABCE1 significantly increased the viabilities of cells to abamectin, chlorantraniliprole, deltamethrin, and indoxacarb exposure, respectively. These results suggested that CsABCC8, CsABCE1, and CsABCH1 might participate in the detoxification and transport of abamectin and several other classes of insecticides in C. suppressalis. Our study provides valuable insights into the transport-related detoxification mechanisms in C. suppressalis and other insects.
Collapse
Affiliation(s)
- Daojie Guan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xuemei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhaolu Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Chengyun Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qinwen Shen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
27
|
Sun Y, Tao S, Zhang W, Jiang B, Dai HY, Liu BS, Zhang YJ, Kong XD, Zhao J, Bai LX. Transcriptome profile analysis reveals the emamectin benzoate-induced genes associated with olfaction and metabolic detoxification in Spodoptera exigua Hübner (Lepidoptera: noctuidae). ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2052190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yang Sun
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, People’s Republic of China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Simin Tao
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, People’s Republic of China
| | - Wen Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, People’s Republic of China
| | - Bin Jiang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, People’s Republic of China
| | - Han-Yang Dai
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Bao-Sheng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Yong-Jun Zhang
- Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xiang-dong Kong
- Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Li-Xin Bai
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| |
Collapse
|
28
|
Ju D, Dewer Y, Zhang S, Hu C, Li P, Yang X. Genome-wide identification, characterization, and expression profiling of ATP-binding cassette (ABC) transporter genes potentially associated with abamectin detoxification in Cydia pomonella. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113152. [PMID: 34983008 DOI: 10.1016/j.ecoenv.2021.113152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/07/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The codling moth Cydia pomonella L. (Lepidoptera: Tortricidae) is one of the most notorious pests of pome fruits and walnuts worldwide, which has developed resistance to almost all classes of insecticides, including abamectin (ABM). ATP-binding cassette (ABC) transporters are thought to play a vital roles in insecticide detoxification by reducing the toxic concentrations of insecticides in an organism tissues. Despite the tremendous progress in understanding the detoxification mechanisms at the molecular level, the physiological functions of ABC transporters in insects have been poorly investigated. In this study, we found that the ABC inhibitor verapamil synergized significantly the toxicity of ABM, suggesting a potential role of ABC in detoxification. A total of 54 ABC genes were identified in the third-instar larvae of C. pomonella after treatment with sublethal doses (LD10 and LD30) of ABM. The expression profile of these genes in ABM-treated larvae at different time points (24, 48, 72 hr) using transcriptomic analysis (RNA-seq) was also investigated. The results showed that the expression of about 30 ABC genes was significantly co-upregulated after treatment. Several specific genes were up-regulated at 48 hr after treatment of larvae with LD10 ABM. Among these up-regulated genes, we found that the relative expression level of the CPOM19553 was 29.7-fold and 16.0-fold higher when larvae were exposed to ABM at the LD10 and LD30 doses compared to control, respectively. Unlike other ABC genes, only CPOM08323 exhibited significant expression levels in the head and cuticle of the third-instar larvae of C. pomonella exposed to the two sublethal doses of ABM, with no expression was observed in the detoxification tissues such as midgut and Malpighian tubule. This study suggests that these up-regulated genes may be involved in ABM resistance in C. pomonella. Our findings will provide an additional information required for further analysis of ABC transporter genes associated with xenobiotic metabolism in C. pomonella.
Collapse
Affiliation(s)
- Di Ju
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki 12618, Giza, Egypt
| | - Shipan Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Chao Hu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Peirong Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China.
| |
Collapse
|
29
|
Gao Q, Lin Y, Wang X, Jing D, Wang Z, He K, Bai S, Zhang Y, Zhang T. Knockout of ABC Transporter ABCG4 Gene Confers Resistance to Cry1 Proteins in Ostrinia furnacalis. Toxins (Basel) 2022; 14:toxins14010052. [PMID: 35051029 PMCID: PMC8780026 DOI: 10.3390/toxins14010052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/16/2022] Open
Abstract
Ostrinia furnacalis is an important borer on maize. Long-term and large-scale planting of transgenic corn has led O. furnacalis evolving resistance and reducing the control effect. Recently, high levels of resistance to Bt Cry1 toxins have been reported to be genetically linked to the mutation or down-regulation of ABC transporter subfamily G gene ABCG4 in O. furnacalis. In order to further determine the relationship between ABCG4 gene and the resistance to Cry1 toxins in O. furnacalis, the novel CRISPR/Cas9 genome engineering system was utilized to successfully construct ABCG4-KO knockout homozygous strain. Bioassay results indicated that an ABCG4-KO strain had a higher resistance to Cry1 proteins compared with a susceptible strain (ACB-BtS). The result indicates that the ABCG4 gene may act as a receptor of the Bt Cry1 toxin in O. furnacalis. Furthermore, the development time was significantly changed in the early stage ABCG4-KO larvae, and the population parameters were also significantly changed. In summary, our CRISPR/Cas9-mediated genome editing study presents evidence that ABCG4 gene is a functional receptor for Bt Cry1 toxins, laying the foundation for further clarification of the Bt resistance mechanism.
Collapse
Affiliation(s)
- Qing Gao
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Yaling Lin
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
- College of Plant Protection, Gansu Agriculture University, Lanzhou 730070, China
| | - Xiuping Wang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
- Correspondence: (X.W.); (T.Z.)
| | - Dapeng Jing
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Zhenying Wang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Kanglai He
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Shuxiong Bai
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Yongjun Zhang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Tiantao Zhang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
- Correspondence: (X.W.); (T.Z.)
| |
Collapse
|
30
|
Ding CY, Ma YM, Li B, Wang Y, Zhao L, Peng JN, Li MY, Liu S, Li SG. Identification and Functional Analysis of Differentially Expressed Genes in Myzus persicae (Hemiptera: Aphididae) in Response to Trans-anethole. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:6484926. [PMID: 34958664 PMCID: PMC8711753 DOI: 10.1093/jisesa/ieab094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 06/14/2023]
Abstract
Plant essential oils, with high bioactivity and biodegradability, provide promising alternatives to synthetic pesticides for pest control. Trans-anethole is the major component of essential oil from star anise, Illicium verum Hook. The compound has a strong contact toxicity against the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), which is a major insect pest of many vegetables and crops. However, little information is known about how M. persicae responds to trans-anethole at the molecular level. We conducted a comparative transcriptome analysis of M. persicae in response to a LD50 dose of trans-anethole. A total of 559 differentially expressed genes were detected in the treated individuals, with 318 genes up-regulated, and 241 genes down-regulated. Gene ontology (GO) analysis revealed that these genes were classified into different biological processes and pathways. We also found that genes encoding ATP-binding cassette (ABC) transporters, DnaJ, and cuticle proteins were dramatically up-regulated in response to trans-anethole. To study the function of these genes, we performed RNA interference (RNAi) analysis. Knockdown of an ABC transporter gene (ABCG4) and a DnaJ gene (DnaJC1) resulted in a significantly increased mortality rate in M. persicae following trans-anethole exposure, indicating the involvement of these two genes in the toxicity response to trans-anethole. The findings provide new insights into the mechanisms of M. persicae in coping with plant essential oils.
Collapse
Affiliation(s)
- Chao-Yang Ding
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yu-Meng Ma
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bin Li
- Department of Science and Technology, Sichuan Provincial Branch of China National Tobacco Corporation, Chengdu 610041, China
| | - Yun Wang
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Le Zhao
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | | | - Mao-Ye Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Su Liu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shi-Guang Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
31
|
Zhang Y, Xu G, Jiang Y, Ma C, Yang G. Sublethal Effects of Imidacloprid on Fecundity, Apoptosis and Virus Transmission in the Small Brown Planthopper Laodelphax striatellus. INSECTS 2021; 12:insects12121131. [PMID: 34940219 PMCID: PMC8706141 DOI: 10.3390/insects12121131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Laodelphax striatellus damages plants directly through sucking plant sap and indirectly as a vector of rice stripe virus (RSV), resulting in serious losses of rice yield. It is one of the most destructive insects of rice in East Asia. Insecticides are primarily used for pest management, but the sublethal concentrations of insecticides may benefit several insects. The present research attempted to explore the effects of sublethal concentrations of imidacloprid on the fecundity, apoptosis and RSV transmission in the viruliferous SBPH. The results showed that the fecundity of SBPH was significantly increased after treatment with the LC10 dose of imidacloprid, while the LC30 dose of imidacloprid reduced the fecundity compared with the control. To further investigate the underlying mechanism of increased fecundity after exposure to the LC10 dose of imidacloprid, we examined the expression levels of vitellogenin (Vg), Vg receptor (VgR) and caspases in the ovaries of SBPH, and observed the apoptosis by terminal deoxynucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick end labeling (TUNEL). qRT-PCR results indicated that the expression levels of Vg, VgR and four caspase genes were all significantly increased by the LC10 dose of imidacloprid, and TUNEL assays suggested that the frequency of apoptosis was significantly higher in the SBPH treated by the LC10 dose of imidacloprid, suggesting a potential correlation between the increased fecundity and the apoptosis of SBPH ovarioles. Additionally, the expression levels of RNA3 and capsid protein (CP) were both increased significantly by the LC10 dose of imidacloprid, whereas were decreased by the LC30 dose of imidacloprid compared to the control. Therefore, this study clarifies the mechanisms of sublethal effects of imidacloprid on viruliferous SBPH and could be used to optimize pest control strategies.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
| | - Gang Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
- Correspondence: (G.X.); (G.Y.)
| | - Yu Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
| | - Chao Ma
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
| | - Guoqing Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (G.X.); (G.Y.)
| |
Collapse
|
32
|
Guo L, Li C, Coupland G, Liang P, Chu D. Up-regulation of calmodulin involved in the stress response to cyantraniliprole in the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). INSECT SCIENCE 2021; 28:1745-1755. [PMID: 33200870 DOI: 10.1111/1744-7917.12887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Cyantraniliprole is the first diamide insecticide to have cross-spectrum activity against a broad range of insect orders. The insecticide, like other diamides, selectively acts on ryanodine receptor, destroys Ca2+ homeostasis, and ultimately causes insect death. Although expression regulations of genes associated with calcium signaling pathways are known to be involved in the response to diamides, little is known regarding the function of calmodulin (CaM), a typical Ca2+ sensor central in regulating Ca2+ homeostasis, in the stress response of insects to the insecticide. In this study, we cloned and identified the full-length complementary DNA of CaM in the whitefly, Bemisia tabaci (Gennadius), named BtCaM. Quantitative real-time reverse transcription polymerase chain reaction-based analyses showed that the messenger RNA level of BtCaM was rapidly induced from 1.51- to 2.43-fold by cyantraniliprole during 24 h. Knockdown of BtCaM by RNA interference increased the toxicity of cyantraniliprole in whiteflies by 42.85%. In contrast, BtCaM expression in Sf9 cells significantly increased the cells' tolerance to cyantraniliprole as much as 2.91-fold. In addition, the expression of BtCaM in Sf9 cells suppressed the rapid increase of intracellular Ca2+ after exposure to cyantraniliprole, and the maximum amplitude in the Sf9-BtCaM cells was only 34.9% of that in control cells (Sf9-PIZ/V5). These results demonstrate that overexpression of BtCaM is involved in the stress response of B. tabaci to cyantraniliprole through regulation of Ca2+ concentration. As CaM is one of the most evolutionarily conserved Ca2+ sensors in insects, outcomes of this study may provide the first details of a universal insect response to diamide insecticides.
Collapse
Affiliation(s)
- Lei Guo
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shangdong, 266109, China
| | - Changyou Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shangdong, 266109, China
| | - Grey Coupland
- Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Pei Liang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dong Chu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shangdong, 266109, China
| |
Collapse
|
33
|
Amezian D, Nauen R, Le Goff G. Comparative analysis of the detoxification gene inventory of four major Spodoptera pest species in response to xenobiotics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 138:103646. [PMID: 34469782 DOI: 10.1016/j.ibmb.2021.103646] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 05/21/2023]
Abstract
The genus Spodoptera (Lepidoptera: Noctuidae) comprises some of the most polyphagous and destructive agricultural pests worldwide. The success of many species of this genus is due to their striking abilities to adapt to a broad range of host plants. Superfamilies of detoxification genes play a crucial role in the adaption to overcome plant defense mechanisms mediated by numerous secondary metabolites and toxins. Over the past decade, a substantial amount of expression data in Spodoptera larvae was produced for those genes in response to xenobiotics such as plant secondary metabolites, but also insecticide exposure. However, this information is scattered throughout the literature and in most cases does not allow to clearly identify candidate genes involved in host-plant adaptation and insecticide resistance. In the present review, we analyzed and compiled information on close to 600 pairs of inducers (xenobiotics) and induced genes from four main Spodoptera species: S. exigua, S. frugiperda, S. littoralis and S. litura. The cytochrome P450 monooxygenases (P450s; encoded by CYP genes) were the most upregulated detoxification genes across the literature for all four species. Most of the data was provided from studies on S. litura, followed by S. exigua, S. frugiperda and S. littoralis. We examined whether these detoxification genes were reported for larval survival under xenobiotic challenge in forward and reverse genetic studies. We further analyzed whether biochemical assays were carried out showing the ability of corresponding enzymes and transporters to breakdown and excrete xenobiotics, respectively. This revealed a clear disparity between species and the lack of genetic and biochemical information in S. frugiperda. Finally, we discussed the biological importance of detoxification genes for this genus and propose a workflow to study the involvement of these enzymes in an ecological and agricultural context.
Collapse
Affiliation(s)
- Dries Amezian
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789, Monheim, Germany.
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France.
| |
Collapse
|
34
|
Nitnavare RB, Bhattacharya J, Singh S, Kour A, Hawkesford MJ, Arora N. Next Generation dsRNA-Based Insect Control: Success So Far and Challenges. FRONTIERS IN PLANT SCIENCE 2021; 12:673576. [PMID: 34733295 PMCID: PMC8558349 DOI: 10.3389/fpls.2021.673576] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/22/2021] [Indexed: 06/02/2023]
Abstract
RNA interference (RNAi) is a method of gene silencing where dsRNA is digested into small interfering RNA (siRNA) in the presence of enzymes. These siRNAs then target homologous mRNA sequences aided by the RNA-induced silencing complex (RISC). The mechanism of dsRNA uptake has been well studied and established across many living organisms including insects. In insects, RNAi is a novel and potential tool to develop future pest management means targeting various classes of insects including dipterans, coleopterans, hemipterans, lepidopterans, hymenopterans and isopterans. However, the extent of RNAi in individual class varies due to underlying mechanisms. The present review focuses on three major insect classes viz hemipterans, lepidopterans and coleopterans and the rationale behind this lies in the fact that studies pertaining to RNAi has been extensively performed in these groups. Additionally, these classes harbour major agriculturally important pest species which require due attention. Interestingly, all the three classes exhibit varying levels of RNAi efficiencies with the coleopterans exhibiting maximum response, while hemipterans are relatively inefficient. Lepidopterans on the other hand, show minimum response to RNAi. This has been attributed to many facts and few important being endosomal escape, high activity dsRNA-specific nucleases, and highly alkaline gut environment which renders the dsRNA unstable. Various methods have been established to ensure safe delivery of dsRNA into the biological system of the insect. The most common method for dsRNA administration is supplementing the diet of insects via spraying onto leaves and other commonly eaten parts of the plant. This method is environment-friendly and superior to the hazardous effects of pesticides. Another method involves submergence of root systems in dsRNA solutions and subsequent uptake by the phloem. Additionally, more recent techniques are nanoparticle- and Agrobacterium-mediated delivery systems. However, due to the novelty of these biotechnological methods and recalcitrant nature of certain crops, further optimization is required. This review emphasizes on RNAi developments in agriculturally important insect species and the major hurdles for efficient RNAi in these groups. The review also discusses in detail the development of new techniques to enhance RNAi efficiency using liposomes and nanoparticles, transplastomics, microbial-mediated delivery and chemical methods.
Collapse
Affiliation(s)
- Rahul B. Nitnavare
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Department of Plant Science, Rothamsted Research, Harpenden, United Kingdom
| | - Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Satnam Singh
- Punjab Agricultural University (PAU), Regional Research Station, Faridkot, India
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Amardeep Kour
- Punjab Agricultural University (PAU), Regional Research Station, Bathinda, India
| | | | - Naveen Arora
- Department of Genetics and Plant Breeding, Punjab Agricultural University (PAU), Ludhiana, India
| |
Collapse
|
35
|
Wang L, Zhu J, Cui L, Wang Q, Huang W, Ji X, Yang Q, Rui C. Overexpression of ATP-binding cassette transporters associated with sulfoxaflor resistance in Aphis gossypii glover. PEST MANAGEMENT SCIENCE 2021; 77:4064-4072. [PMID: 33899308 DOI: 10.1002/ps.6431] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Sulfoxaflor is a new insecticide for controlling against Aphis gossypii in the field. ATP-binding cassette (ABC) transporters belong to a large superfamily of proteins and play an important role in the detoxification process. However, the potential role of ABC transporters in sulfoxaflor resistance in A. gossypii is unknown. RESULTS In this study, an ABC transporter inhibitor, verapamil, dramatically increased the toxicity of sulfoxaflor in the resistant population with a synergistic ratio of 8.55. However, verapamil did not synergize sulfoxaflor toxicity in the susceptible population. The contents of ABC transporters were significantly increased in the Sul-R population. Based on RT-qPCR analysis, 10 of 23 ABC transcripts, ABCA1, ABCA2, ABCB1, ABCB5, ABCD1, ABCG7, ABCG16, ABCG26, ABCG27, and MRP7, were up-regulated in the Sul-R population compared to the Sus population. Meanwhile, inductive effects of ABCA1, ABCD1, ABCG7 and ABCG26 by sulfoxaflor were found in A. gossypii. Furthermore, knockdown of ABCA1 and ABCD1 using RNAi significantly increased the sulfoxaflor sensitivity in Sul-R aphids. CONCLUSION These results suggested that ABC transporters, especially the ABCA1 and ABCD1 genes, might be related with sulfoxaflor resistance in A. gossypii. This study will promote further work to validate the functional roles of these ABCs in sulfoxaflor resistance and might be helpful for the management of sulfoxaflor-resistant A. gossypii.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Junshu Zhu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qinqin Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Weiling Huang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xuejiao Ji
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qingjie Yang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changhui Rui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
36
|
Shan J, Sun X, Li R, Zhu B, Liang P, Gao X. Identification of ABCG transporter genes associated with chlorantraniliprole resistance in Plutella xylostella (L.). PEST MANAGEMENT SCIENCE 2021; 77:3491-3499. [PMID: 33837648 DOI: 10.1002/ps.6402] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plutella xylostella (L.) is a serious worldwide pest that feeds on cruciferous plants and has evolved resistance to different classes of insecticides used for its control, including chlorantraniliprole. ATP-binding cassette (ABC) transporters, constituting the largest transport family in organisms, are involved in phase III of the detoxification process and may play important roles in insecticide resistance. RESULTS A total of 15 ABC transporter transcripts from subfamily G were identified in P. xylostella based on the latest DBM genome. Synergism studies showed that treatment with verapamil, a potent inhibitor of ABC transporters, significantly increased the toxicity of chlorantraniliprole against larvae of two chlorantraniliprole-resistant P. xylostella populations (NIL and BL). ABCG2, ABCG5, ABCG6, ABCG9, ABCG11, ABCG14 and ABCG15 were significantly overexpressed in NIL and BL compared with the susceptible population (SS), and ABCG1, ABCG6, ABCG8, ABCG9, ABCG14 and ABCG15 were significantly upregulated after treatment with the LC50 of chlorantraniliprole in SS. Subsequently, ABCG6, ABCG9 and ABCG14, which were overexpressed in both NIL and BL and could be induced in SS, were chosen for functional study. RNAi-mediated knockdown of each of the three ABCGs significantly increased the sensitivity of larvae to chlorantraniliprole. These results confirmed that overexpression of ABCG6, ABCG9 and ABCG14 may contribute to chlorantraniliprole resistance in P. xylostella. CONCLUSION Overexpression of some genes in the ABCG subfamily is involved in P. xylostella resistance to chlorantraniliprole. These results may help to establish a foundation for further studies investigating the role played by ABC transporters in chlorantraniliprole resistance in P. xylostella or other insect pests. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinqiong Shan
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Xi Sun
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Ran Li
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
37
|
Wang L, Zhu J, Cui L, Wang Q, Huang W, Yang Q, Ji X, Rui C. Overexpression of Multiple UDP-Glycosyltransferase Genes Involved in Sulfoxaflor Resistance in Aphis gossypii Glover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5198-5205. [PMID: 33877846 DOI: 10.1021/acs.jafc.1c00638] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
UDP-glycosyltransferases (UGTs) are major phase II enzymes involved in the metabolic detoxification of xenobiotics. In this study, two UGT-inhibitors, 5-nitrouracil and sulfinpyrazone, significantly increased sulfoxaflor toxicity against sulfoxaflor-resistant (Sul-R) Aphis gossypii, whereas there were no synergistic effects in susceptible (Sus) A. gossypii. The activity of UGTs in the Sul-R strain was significantly higher (1.35-fold) than that in the Sus strain. Further, gene expression determination demonstrated that 11 of 23 UGT genes were significantly upregulated (1.40- to 5.46-fold) in the Sul-R strain, among which the expression levels of UGT350A2, UGT351A4, UGT350B2, UGT342C2, and UGT343C2 could be induced by sulfoxaflor. Additionally, knockdown of UGT350A2, UGT351A4, UGT350B2, and UGT343C2 using RNA interference (RNAi) significantly increased sensitivity (1.57- to 1.76-fold) to sulfoxaflor in the Sul-R strain. These results suggested that UGTs might be involved in sulfoxaflor resistance in A. gossypii. These findings will facilitate further work to validate the functional roles of these UGT genes in sulfoxaflor resistance.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junshu Zhu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qinqin Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiling Huang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingjie Yang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuejiao Ji
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changhui Rui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
38
|
Identification and Expression Characterization of ATP-Binding Cassette (ABC) Transporter Genes in Melon Fly. INSECTS 2021; 12:insects12030270. [PMID: 33806814 PMCID: PMC8005081 DOI: 10.3390/insects12030270] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary The melon fly, Zeugodacus cucurbitae, is an important agricultural pest. At present, chemical pesticide treatment is the main method for field control, but this promotes pesticide resistance by Z. cucurbitae, because of its frequent use. ABC transporters are involved in detoxification metabolism, but few studies have yet considered their expression in melon fly. In this study, we identified the ABC transporters genes at a genome-wide level in melon fly, and analysed their spatiotemporal expression patterns, as well as changes in expression after insecticides treatments. A total of 49 ABC transporters were identified, and their expression levels varied at different developmental stages and between tissues. After three insecticides treatment, ZcABCB7 and ZcABCC2 were up-regulated. After β-cypermethrin induction, tissues were dissected at 12, 24 and 48 h, and the expression levels of a number of ABC genes were highly expressed within the fat body. From these results, we conclude that ZcABCB7 and ZcABCC2 may be involved in detoxification metabolism, and that the fat body is the main tissue that plays this role. Abstract The ATP-binding cassette (ABC) transporter is a protein superfamily that transports specific substrate molecules across lipid membranes in all living species. In insects, ABC transporter is one of the major transmembrane protein families involved in the development of xenobiotic resistance. Here, we report 49 ABC transporter genes divided into eight subfamilies (ABCA-ABCH), including seven ABCAs, seven ABCBs, 10 ABCCs, two ABCDs, one ABCE, three ABCFs, 16 ABCGs, and three ABCHs according to phylogenetic analysis in Zeugodacus cucurbitae, a highly destructive insect pest of cucurbitaceous and other related crops. The expressions level of 49 ABC transporters throughout various developmental stages and within different tissues were evaluated by quantitative transcriptomic analysis, and their expressions in response to three different insecticides were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). These ABC transporter genes were widely expressed at developmental stages but most highly expressed in tissues of the midgut, fat body and Malpighian tube. When challenged by exposure to three insecticides, abamectin, β-cypermethrin, and dinotefuran, the expressions of ZcABCB7 and ZcABCC2 were significantly up-regulated. ZcABCB1, ZcABCB6, ZcABCB7, ZcABCC2, ZcABCC3, ZcABCC4, ZcABCC5, and ZcABCC7 were significantly up-regulated in the fat body at 24 h after β-cypermethrin exposure. These data suggest that ZcABCB7 and ZcABCC2 might play key roles in xenobiotic metabolism in Z. cucurbitae. Collectively, these data provide a foundation for further analysis of ABCs in Z. cucurbitae.
Collapse
|
39
|
Meng X, Yang X, Wu Z, Shen Q, Miao L, Zheng Y, Qian K, Wang J. Identification and transcriptional response of ATP-binding cassette transporters to chlorantraniliprole in the rice striped stem borer, Chilo suppressalis. PEST MANAGEMENT SCIENCE 2020; 76:3626-3635. [PMID: 32406167 DOI: 10.1002/ps.5897] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/14/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND As the largest transporter gene family in metazoans, ATP-binding cassette (ABC) transporters regulate the efflux of a broad spectrum of substrates from the cytoplasm to the outside of the cell. In arthropods, ABC transporters are involved in phase III of the detoxification process, and play important roles in the metabolism and transport of insecticides. RESULTS We identified 54 ABC transporters from the genome and transcriptome of Chilo suppressalis, one of the most damaging pests of rice in China. The identified ABC transporters were classified into eight subfamilies (ABCA to ABCH) based on NCBI BLAST and phylogenetic analysis. Synergism studies showed that treatment with verapamil, a potent inhibitor of ABC transporters, resulted in significantly increased toxicity of chlorantraniliprole against C. suppressalis larvae. Among the 21 tested ABC genes, three ABC transporter genes including CsABCC8, CsABCG1C and CsABCH1 were significantly upregulated after chlorantraniliprole treatment. CONCLUSION ABC transporters play important roles in the detoxification and transport of chlorantraniliprole in C. suppressalis. The results from our study provide valuable information on C. suppressalis ABC transporters, and are helpful in understanding the roles of ABC transporters in chlorantraniliprole resistance mechanisms in C. suppressalis and other insect pests. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuemei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhaolu Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qinwen Shen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lijun Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yang Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
40
|
Pang S, Lin Z, Zhang Y, Zhang W, Alansary N, Mishra S, Bhatt P, Chen S. Insights into the Toxicity and Degradation Mechanisms of Imidacloprid Via Physicochemical and Microbial Approaches. TOXICS 2020; 8:toxics8030065. [PMID: 32882955 PMCID: PMC7560415 DOI: 10.3390/toxics8030065] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Imidacloprid is a neonicotinoid insecticide that has been widely used to control insect pests in agricultural fields for decades. It shows insecticidal activity mainly by blocking the normal conduction of the central nervous system in insects. However, in recent years, imidacloprid has been reported to be an emerging contaminant in all parts of the world, and has different toxic effects on a variety of non-target organisms, including human beings, due to its large-scale use. Hence, the removal of imidacloprid from the ecosystem has received widespread attention. Different remediation approaches have been studied to eliminate imidacloprid residues from the environment, such as oxidation, hydrolysis, adsorption, ultrasound, illumination, and biodegradation. In nature, microbial degradation is one of the most important processes controlling the fate of and transformation from imidacloprid use, and from an environmental point of view, it is the most promising means, as it is the most effective, least hazardous, and most environmentally friendly. To date, several imidacloprid-degrading microbes, including Bacillus, Pseudoxanthomonas, Mycobacterium, Rhizobium, Rhodococcus, and Stenotrophomonas, have been characterized for biodegradation. In addition, previous studies have found that many insects and microorganisms have developed resistance genes to and degradation enzymes of imidacloprid. Furthermore, the metabolites and degradation pathways of imidacloprid have been reported. However, reviews of the toxicity and degradation mechanisms of imidacloprid are rare. In this review, the toxicity and degradation mechanisms of imidacloprid are summarized in order to provide a theoretical and practical basis for the remediation of imidacloprid-contaminated environments.
Collapse
Affiliation(s)
- Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Nasser Alansary
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-8528-8229
| |
Collapse
|
41
|
Pan Y, Zeng X, Wen S, Gao X, Liu X, Tian F, Shang Q. Multiple ATP-binding cassette transporters genes are involved in thiamethoxam resistance in Aphis gossypii glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104558. [PMID: 32527432 DOI: 10.1016/j.pestbp.2020.104558] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
ATP-binding cassette (ABC) transporters represent the largest known group of efflux pumps, utilizing ATP to translocate a broad spectrum of substrates across lipid membranes, which play an important role in phase III of the detoxification process. The presence of ABC transporters and their potential association with insecticide resistance have not been investigated in Aphis gossypii, one of the most economically important agricultural pests worldwide. In this study, the ABC transporter inhibitor-verapamil significantly increased thiamethoxam toxicity against resistant cotton aphids, suggesting that ABCs are involved in thiamethoxam resistance. ABC transporter genes were identified using the A. gossypii genome database and transcriptome data. A total of 69 ABC transporters were identified and grouped into seven subfamilies (A-G), including 4 ABCAs, 5 ABCBs, 25 ABCCs, 2 ABCDs, 1 ABCE, 4 ABCFs and 30 ABCGs. Of these ABC transporters, 53 were predicted to be functional, 19 were full transporters, 30 were half-transporters and 4 had two NBDs. Subfamilies C and G accounted for 77% (32 and 45%, respectively) of the genes. The transcripts of 20 of 26 ABCs based on the transcriptome were upregulated, and ABCA1, ABCA2, ABCB1, ABCB4, ABCB8, ABCD1, ABCD2, ABCE1, ABCF1, ABCF3, ABCG7, ABCG15, ABCG17, ABCG24, ABCG27, ABCG30, MRP1, MRP7, MRP14 and MRP21 transcripts were significantly increased in the thiamethoxan resistant strain compared to the susceptible strain with qRT-PCR. The suppression of overexpressed ABCs (ABCA2, ABCD1, ABCD2, ABCE1 and ABCG15) significantly increased the thiamethoxam sensitivity of resistant aphids. These results suggest that ABC transporters might be involved in thiamethoxam resistance in A. gossypii and will facilitate further work to validate the functional roles of these ABCs in thiamethoxam resistance. These results are useful for understanding the multiple resistance mechanisms of thiamethoxam and the management of insecticide-resistant cotton aphids.
Collapse
Affiliation(s)
- Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiaochun Zeng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Shuyuan Wen
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Xuemei Liu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
42
|
Liu S, He C, Liang J, Su Q, Hua D, Wang S, Wu Q, Xie W, Zhang Y. Molecular characterization and functional analysis of the Halloween genes and CYP18A1 in Bemisia tabaci MED. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104602. [PMID: 32527436 DOI: 10.1016/j.pestbp.2020.104602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The ecdysteroid hormone 20-hydroxyecdysone (20E), a critical hormone in arthropods, plays an essential role in insect growth, molting and reproduction. A previous study showed that 20E is actually regulated by six P450 genes (five P450 genes belonging to the Halloween family and a CYP18A1 gene) in model insects. However, the role of the six P450 genes in Bemisia tabaci Q (also call Mediterranean, MED), an important pest of field crops, remains unclear. Here, six P450 genes were cloned by RT-PCR, and the phylogenetic tree indicated a close orthologous relationship of these P450 genes between MED and other insects. Spatiotemporal expression profiling revealed that five P450 genes (CYP18A1, CYP306A1, CYP307A2, CYP314A1 and CYP315A1) were expressed at significantly higher levels in the head than in the abdomen and thorax. Four P450 genes (CYP302A1, CYP307A2, CYP314A1 and CYP315A1) were expressed at the highest levels in males, and CYP18A1 was expressed at the highest levels in the 4th nymph stage. The molting process was delayed by approximately 1-3 days after knockdown of these genes at the 4th nymph stage, and the mean proportion of shriveled or dead insects reached 8.3% (CYP18A1), 20.8% (CYP302A1), 7.0% (CYP307A2), 31.8% (CYP306A1), 28.6% (CYP314A1) and 24.1% (CYP315A1). In addition, 20E rescued the negative effect of ds-CYP306A1, ds-CYP314A1 and ds-CYP315A1 on the eclosion rate. We concluded that these Halloween genes and CYP18A1 likely participate in the development of MED, and in particular, CYP306A1 could be used as a putative insecticide target for controlling this piercing-sucking insect.
Collapse
Affiliation(s)
- Shaonan Liu
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Chao He
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jinjin Liang
- College of Plant Protection of Hunan Agricultural University, Changsha 410128, PR China
| | - Qi Su
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Dengke Hua
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
43
|
He C, Liu S, Liang J, Zeng Y, Wang S, Wu Q, Xie W, Zhang Y. Genome-wide identification and analysis of nuclear receptors genes for lethal screening against Bemisia tabaci Q. PEST MANAGEMENT SCIENCE 2020; 76:2040-2048. [PMID: 31943718 DOI: 10.1002/ps.5738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/14/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Nuclear receptors (NRs) play an essential role in diverse biological processes, such as insect metamorphosis. Here, transcriptome analysis and functional studies were used to determine whether NRs are involved in metamorphosis of whitefly Bemisia tabaci Q, a serious pest to crops, and to find some potential insecticide targets. RESULTS Twenty NRs were identified in the Bemisia tabaci Q genome and categorized into the NR0-NR6 subfamilies. The phylogenetic tree of NRs from Bemisia tabaci Q and other representative species was constructed, which provided evolutionary insight into their genetic distances. The results of spatiotemporal gene expression indicated that the majority of NR gene expression was higher in the head than the abdomen and higher in eggs than adults. Further functional analysis using RNA interference (RNAi) showed that NR genes play an important role in Bemisia tabaci Q pupation and eclosion. With respect to high mortality and effects on growth, this was reflected in the unable to become pupa when the third-stage nymph treated with double-stranded RNA (dsRNA) and the developmental time delay (4-7 days) when pupae were treated with dsRNA for the 12 NR genes during molting compared with the development time in the control. CONCLUSION This study provides insight into NR functions during the metamorphosis stages of Bemisia tabaci Q. Several candidate genes could be potential insecticide targets for whitefly pest control due to their important roles in insect development. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao He
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shaonan Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, P. R. China
| | - Jinjin Liang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yang Zeng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
44
|
Li Z, Cai T, Qin Y, Zhang Y, Jin R, Mao K, Liao X, Wan H, Li J. Transcriptional Response of ATP-Binding Cassette (ABC) Transporters to Insecticide in the Brown Planthopper, Nilaparvata lugens (Stål). INSECTS 2020; 11:insects11050280. [PMID: 32370222 PMCID: PMC7291042 DOI: 10.3390/insects11050280] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/23/2023]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is one of the largest groups of proteins and plays a non-negligible role in phase III of the detoxification process, which is highly involved in the response of insects to environmental stress (plant secondary metabolites and insecticides). In the present study, in Nilaparvata lugens, we identified 32 ABC transporters, which are grouped into eight subfamilies (ABCA–H) based on phylogenetic analysis. The temporal and spatial expression profiles suggested that the nymphal stages (1st–5th) and adult males showed similarity, which was different from eggs and adult females, and NlABCA1, NlABCA2, NlABCB6, NlABCD2, NlABCG4, NlABCG12, NlABCG15, and NlABCH1 were highly expressed in the midgut and Malpighian tubules. In addition, ABCG12, which belongs to the ABC transporter G subfamily, was significantly upregulated after exposure to sulfoxaflor, nitenpyram, clothianidin, etofenprox, chlorpyrifos, and isoprocarb. Moreover, verapamil significantly increased the sensitivity of N. lugens to nitenpyram, clothianidin, etofenprox, chlorpyrifos, and isoprocarb. These results provide a basis for further research on ABC transporters involved in detoxification in N. lugens, and for a more comprehensive understanding of the response of N. lugens to environmental stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianhong Li
- Correspondence: ; Tel./Fax: +86-27-8728-6968
| |
Collapse
|
45
|
Wang R, Che W, Wang J, Luo C. Monitoring insecticide resistance and diagnostics of resistance mechanisms in Bemisia tabaci Mediterranean (Q biotype) in China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:117-122. [PMID: 31973847 DOI: 10.1016/j.pestbp.2019.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/23/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Bemisia tabaci is one of notorious agricultural insect pests in China, and the strategies of management largely depend on application of insecticides. In order to assess levels of resistance in field populations of B. tabaci to six insecticides including abamectin, cyantraniliprole, pymetrozine, imidacloprid, chlorpyrifos and bifenthrin, we monitored the susceptibility to all tested insecticides in five field populations across China and the results indicated that field populations of B. tabaci have developed various levels of resistance to each chemical agent. Furthermore, para-type voltage gated sodium channel mutations (L925I and T929V) and acetylcholinesterase ace1 mutation (F331W) were confirmed, and expression levels of CYP6CM1, CYP4C64, GSTd7 and ABCG3 were detected for investigating mechanisms of imidacloprid resistance in the five field-collected populations. The results showed that, in all tested populations, frequencies of F331W were 100%, and the frequencies of the L925I and T929V were in the range of 28.5 to 47.0% and 11.0 to 53.5%, respectively. Moreover, CYP6CM1 and CYP4C64 were significantly overexpressed in two tested populations, respectively, and GSTd7 was significantly overexpressed in one population. No overexpression of ABCG3 was observed in all the populations. Above results provided valuable insight into the current status of insecticide resistance and could be contributed to design strategies of management for B. tabaci.
Collapse
Affiliation(s)
- Ran Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Wunan Che
- Department of Pesticide Sciences, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinda Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Chen Luo
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
46
|
Rösner J, Merzendorfer H. Transcriptional plasticity of different ABC transporter genes from Tribolium castaneum contributes to diflubenzuron resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103282. [PMID: 31740345 DOI: 10.1016/j.ibmb.2019.103282] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The development of insecticide resistance challenges the sustainability of pest control and several studies have shown that ABC transporters contribute to this process. ABC transporters are known to transport a large range of chemically diverse molecules across cellular membranes, and therefore the identification of ABC transporters involved in insecticide resistance is difficult. Here, we describe a comprehensive strategy for the identification of whole sets of ABC transporters involved in insecticide resistance using the pest beetle, Tribolium castaneum (Tc) as a model. We analyzed the expression of ABCA to ABCC genes in different tissues and developmental stages using larvae that were sensitive or resistant to diflubenzuron (DFB). The mRNA levels of several ABC genes expressed in excretory or metabolic tissues such as midgut, Malpighian tubules or fat body were markedly upregulated in response to DFB. Next, we monitored mortality in the presence of the ABC inhibitor verapamil, and found that it causes sensitization to DFB. We furthermore established a competitive assay for the elimination of DFB, based on Texas Red (TR) fluorescence. We monitored TR elimination in larvae that were treated with DFB or different ABC inhibitors, and combinations of them. TR elimination was decreased significantly in the presence of DFB, verapamil and the ABCC inhibitor MK-571. The effect was synergized when DFB and verapamil were both present suggesting that the transport of TR and DFB involves overlapping sets of ABC transporters. Finally, we silenced the expression of DFB-responding ABC genes by RNA interference and then followed the survival rates after DFB exposure. Mortality increased particularly when specific ABCA and ABCC genes were silenced. Taken together, we were able to show that different ABC transporters expressed in metabolic and excretory tissues contribute to the elimination of DFB. Up- or down-regulation of gene expression occurs within a few days already at very low DFB concentrations. These results suggests that transcriptional plasticity of several ABC genes allows adaptation of the efflux capacity in different tissues to eliminate insecticides and/or their metabolites.
Collapse
Affiliation(s)
- Janin Rösner
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068, Siegen, Germany
| | - Hans Merzendorfer
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068, Siegen, Germany.
| |
Collapse
|
47
|
Xia J, Xu H, Yang Z, Pan H, Yang X, Guo Z, Yang F, Guo L, Sun X, Wang S, Wu Q, Xie W, Zhang Y. Genome-Wide Analysis of Carboxylesterases (COEs) in the Whitefly, Bemisia tabaci (Gennadius). Int J Mol Sci 2019; 20:ijms20204973. [PMID: 31600879 PMCID: PMC6829539 DOI: 10.3390/ijms20204973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022] Open
Abstract
The whitefly (Bemisia tabaci), an important invasive pest that causes severe damage to crops worldwide, has developed resistance to a variety of insecticides. Carboxylesterases (COEs) are important multifunctional enzymes involved in the growth, development, and xenobiotic metabolism of insects. However, systematic studies on the COEs of B. tabaci are scarce. Here, 42 putative COEs in different functional categories were identified in the Mediterranean species of B. tabaci (B. tabaci MED) based on a genome database and neighbor-joining phylogeny. The expression patterns of the COEs were affected by the development of B. tabaci. The expression levels of six COEs were positively correlated with the concentration of imidacloprid to which B. tabaci adults were exposed. The mortality of B. tabaci MED adults fed dsBTbe5 (67.5%) and dsBTjhe2 (58.4%) was significantly higher than the adults fed dsEGFP (41.1%) when treated with imidacloprid. Our results provide a basis for functional research on COEs in B. tabaci and provide new insight into the imidacloprid resistance of B. tabaci.
Collapse
Affiliation(s)
- Jixing Xia
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Haifeng Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China.
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Fengshan Yang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Litao Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaodong Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|