1
|
Zhang Z, Wang D, Shan Y, Chen J, Hu H, Song X, Ma X, Ren X, Ma Y. Knockdown of CYP9A9 increases the susceptibility to lufenuron, methoxyfenozide and a mixture of both in Spodoptera exigua. INSECT MOLECULAR BIOLOGY 2023; 32:263-276. [PMID: 36582185 DOI: 10.1111/imb.12829] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/27/2022] [Indexed: 05/15/2023]
Abstract
Lufenuron (LUF) and Methoxyfenozide (MET) as Insect Growth Regulators (IGRs) contribute to the current control of the catastrophic crop pest, Spodoptera exigua (Lepidoptera, Noctuidae). Yet S. exigua has evolved resistance to LUF and MET, which is possibly mediated by cytochrome P450 monooxygenases (P450s), particularly from the CYP3 clade family, as it plays a key role in the detoxification of insecticides. However, a mixture of LUF and MET (MML) (optimal ratio: 6:4) remains highly insecticidal. Here, we analysed the response of S. exigua to sublethal concentrations of LUF, MET, and MML via transcriptomics. Twelve differentially expressed genes (DEGs) encoding CYP3 clade members were observed in transcriptomes and CYP9A9 was significantly upregulated after treatment with LUF, MET, and MML. Further, CYP9A9 was most highly expressed in the midgut of L4 S. exigua larvae. RNAi-mediated knockdown of CYP9A9 reduced the activity of CYP450 and increased the susceptibility of S. exigua larvae to LUF, MET, and MML. Thus, CYP9A9 plays a key role in the detoxification of LUF, MET, and MML in S. exigua. These findings provide new insights into insecticidal actions of IGRs, which can be applied to the establishment of novel pest management strategies.
Collapse
Affiliation(s)
- Zhixian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yongpan Shan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jixiang Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
2
|
Zhang Z, Pei P, Zhang M, Li F, Tang G. Chromosome-level genome assembly of Dastarcus helophoroides provides insights into CYP450 genes expression upon insecticide exposure. PEST MANAGEMENT SCIENCE 2023; 79:1467-1482. [PMID: 36502364 DOI: 10.1002/ps.7319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/26/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Dastarcus helophoroides is an important natural enemy of cerambycids, and is wildly used in biological control of pests. Nevertheless, the absence of complete genomic information limits the investigation of the underlying molecular mechanisms. Here, a chromosome-level of Dastarcus helophoroides genome is assembled using a combination strategy of Illumina, PacBio, 10x™ Genomics, and Hi-C. RESULTS The final assembly is 609.09 Mb with contig N50, scaffold N50 and GC content of 5.46 Mb, 42.56 Mb and 31.50%, respectively, and 95.25% of the contigs anchor into 13 chromosomes. In total 14 890 protein-coding genes and 65.37% repeat sequences are predicted in the assembly genome. The phylogenetic analysis of single-copy gene families shared among 20 insect species indicates that Dastarcus helophoroides is placed as the sister species to clade (Nitidulidae+Curculionoidea+Chrysomeloidea) + Tenebrionoidea, and diverges from the related species ~242.9 Mya. In total 36 expanded gene families are identified in Dastarcus helophoroides genome, and are functionally related to drug metabolism and metabolism of xenobiotics by cytochrome P450. Some members of CYP4 Clade and CYP6 Clade are up-regulated in Dastarcus helophoroides adults upon insecticide exposure, of which expressions of DhCYP4Q, DhCYP6A14X1 and DhCYP4C1 are significantly up-regulated. The silencing of the three genes leads to adults more sensitive to insecticide and increased knocked-down rate, which may indicate their critical roles in stress resistance and detoxication. CONCLUSION Our study systematically integrated the chromosome-level genome, transcriptome and gene expression of Dastarcus helophoroides, which will provide valuable resources for understanding mechanisms of pesticide metabolism, growth and development, and utilization of the natural enemy in integrated control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengqing Zhang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Pei Pei
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Meng Zhang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Feifei Li
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Guanghui Tang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| |
Collapse
|
3
|
Tan S, Li G, Guo H, Wang C, Wang H, Liu Z, Xu B, Wang Y, Guo X. RNAi-mediated silencing of AccCYP6k1 revealed its role in the metabolic detoxification of Apis cerana cerana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105377. [PMID: 36963945 DOI: 10.1016/j.pestbp.2023.105377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Insect cytochrome P450 monooxygenases (P450s or CYPs) perform important functions in the metabolic detoxification of both endogenous and exogenous substrates. However, the mechanism of action of the P450 genes in bees is unclear. In this study, we investigated the effects of AccCYP6k1 on the metabolism and detoxification of Apis cerana cerana. Spatiotemporal expression profiling revealed that the expression of AccCYP6k1 was the highest in foragers (A15) and was mainly expressed in the leg, midgut and head. RT-qPCR results showed that AccCYP6k1 exhibited different expression patterns following exposure to xenobiotics. In addition, silencing AccCYP6k1 increased the pesticides sensitivity and affected the detoxification system and antioxidant process of A. cerana cerana. In brief, the induced expression of AccCYP6k1 is related to the resistance of A. cerana cerana, while knockdown AccCYP6k1 affect the pesticides resistance and metabolic detoxification system of A. cerana cerana. These findings not only support the theoretical basis of metabolic detoxification in bees but also provide a better understanding of P450-mediated resistance to pesticides in insects.
Collapse
Affiliation(s)
- Shuai Tan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Hengjun Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
4
|
Siddiqui JA, Fan R, Naz H, Bamisile BS, Hafeez M, Ghani MI, Wei Y, Xu Y, Chen X. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front Physiol 2023; 13:1112278. [PMID: 36699674 PMCID: PMC9868318 DOI: 10.3389/fphys.2022.1112278] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Threatening the global community is a wide variety of potential threats, most notably invasive pest species. Invasive pest species are non-native organisms that humans have either accidentally or intentionally spread to new regions. One of the most effective and first lines of control strategies for controlling pests is the application of insecticides. These toxic chemicals are employed to get rid of pests, but they pose great risks to people, animals, and plants. Pesticides are heavily used in managing invasive pests in the current era. Due to the overuse of synthetic chemicals, numerous invasive species have already developed resistance. The resistance development is the main reason for the failure to manage the invasive species. Developing pesticide resistance management techniques necessitates a thorough understanding of the mechanisms through which insects acquire insecticide resistance. Insects use a variety of behavioral, biochemical, physiological, genetic, and metabolic methods to deal with toxic chemicals, which can lead to resistance through continuous overexpression of detoxifying enzymes. An overabundance of enzymes causes metabolic resistance, detoxifying pesticides and rendering them ineffective against pests. A key factor in the development of metabolic resistance is the amplification of certain metabolic enzymes, specifically esterases, Glutathione S-transferase, Cytochromes p450 monooxygenase, and hydrolyses. Additionally, insect guts offer unique habitats for microbial colonization, and gut bacteria may serve their hosts a variety of useful services. Most importantly, the detoxification of insecticides leads to resistance development. The complete knowledge of invasive pest species and their mechanisms of resistance development could be very helpful in coping with the challenges and effectively developing effective strategies for the control of invasive species. Integrated Pest Management is particularly effective at lowering the risk of chemical and environmental contaminants and the resulting health issues, and it may also offer the most effective ways to control insect pests.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Ruidong Fan
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Hira Naz
- Research and Development Centre for Fine Chemicals, National Key Laboratory of Green Pesticides, Guizhou University, Guiyang, China
| | - Bamisope Steve Bamisile
- Department of Entomology, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Imran Ghani
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yiming Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
- College of Science, Tibet University, Lhasa, China
| |
Collapse
|
5
|
Lin DJ, Fang Y, Li LY, Zhang LZ, Gao SJ, Wang R, Wang JD. The insecticidal effect of the botanical insecticide chlorogenic acid on Mythimna separata (Walker) is related to changes in MsCYP450 gene expression. FRONTIERS IN PLANT SCIENCE 2022; 13:1015095. [PMID: 36311076 PMCID: PMC9597446 DOI: 10.3389/fpls.2022.1015095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The oriental armyworm Mythimna separata (Walker) (Lepidoptera: Noctuidae) can feed on the leaves of many crops, resulting in vast areas of damage and severe losses. Therefore, this insect has become a significant agricultural pest in north Asia. In this study, we fed 3rd instar larvae with artificial diets containing different concentrations of chlorogenic acid and found a significant lethal effect and the mortality increased with increasing chlorogenic acid concentration. Next, we measured the sublethal effect of chlorogenic acid at LC20 on the growth and development of M. separata larvae. The durations of the 4th and 5th instar were longer than those of the control group (prolonged by 0.8 and 0.6 days, respectively), and the 6th instar was shorter (by 1.1 days). The total survival rate, pupation rate, eclosion rate, sex ratio, and oviposition amount in the LC20 chlorogenic acid-treated group were significantly lower than those in the control group. Furthermore, transcriptome analysis of 3rd instar larvae fed various concentrations of chlorogenic acid revealed that several MsCYP450 genes were significantly up-regulated, and this finding was further validated by qRT-PCR. In addition, various concentrations of chlorogenic acid and different treatment times significantly affected the enzyme activity of CYP450 in 3rd instar larvae. Importantly, dietary ingestion of dsMsCYP450 significantly reduced the mRNA level of MsCYP450 genes and increased mortality in the presence of chlorogenic acid. Our results revealed that MsCYP6B6, MsCYP321A7, and MsCYP6B7-like play an essential role in the detoxification of chlorogenic acid by M. separata. This study provides evidence of control effect by botanical insecticide chlorogenic acid on M. separata, and potential detoxification mechanism mediated by P450 of botanical insecticide in arthropods.
Collapse
Affiliation(s)
- Dong-jiang Lin
- National Engineering Research Center for Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agriculture Science, Changsha, China
| | - Ling-yun Li
- National Engineering Research Center for Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Li-zhao Zhang
- National Engineering Research Center for Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - San-ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-da Wang
- National Engineering Research Center for Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Luo YS, Abdellah YAY, Hafeez M, Yang X, Hou WT, Kong XH, Wang RL. Herbivore-induced tomato plant volatiles lead to the reduction of insecticides susceptibility in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105215. [PMID: 36127062 DOI: 10.1016/j.pestbp.2022.105215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/31/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Herbivore-induced plant volatiles (HIPVs) have been associated with plant-plant-herbivorous-natural enemies communication and an enhanced response to the subsequent attack. Spodoptera litura is a serious cosmopolitan pest that has developed a high level of resistance to many insecticides. However, the underlying molecular and biochemical mechanism by which HIPV priming reduces S. litura larval sensitivity to insecticides remains largely unknown. This study was conducted to explore the potential of volatile from undamaged, or artificially damaged, or S. litura-damaged tomato plants on the susceptibility of S. litura to the insecticides beta-cypermethrin indoxacarb and chlorpyrifos. We found that larvae exposed to volatile from S. litura-damaged or artificially damaged tomato plants were significantly less susceptible to the three insecticides than those exposed to volatile from undamaged tomato plants. Elevated activities of detoxifying enzymes [cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), and esterases (ESTs)], were expressed in S. litura larvae exposed to volatile from S. litura-damaged tomato plants than those exposed to volatile from undamaged tomato plants. Similarly, seven detoxification-related genes [GSTs (SlGSTe1, SlGSTo1, and SlGSTe3) and P450s (CYP6B48, CYP9A40, CYP321A7, and CYP321B1)] in the midgut and fat body of larvae were up-regulated under exposure to volatile from S. litura-damaged tomato plants. Increased volatile organic compounds emissions were detected in the headspace of tomato plants damaged by S. litura compared to the undamaged plants. Collectively, these findings suggest that HIPVs can considerably reduce caterpillar susceptibility to insecticides, possibly through induction-enhanced detoxification mechanisms, and provide valuable information for implementing an effective integrated pest management strategy.
Collapse
Affiliation(s)
- Yu-Sen Luo
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Yousif Abdelrahman Yousif Abdellah
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Hafeez
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Yang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Tao Hou
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Xu-Hui Kong
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Rui-Long Wang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Sun Z, Sun W, An J, Xu H, Liu Y, Yan C. Copper and chlorpyrifos stress affect the gut microbiota of chironomid larvae (Propsilocerus akamusi). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114027. [PMID: 36049336 DOI: 10.1016/j.ecoenv.2022.114027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Chironomids are characterized by their ubiquitous distribution, global diversity and tolerant ability to deal with environmental stressors. To our knowledge, this is the first study presenting the gut microbial structure of chironomid larvae and examining the microbial alteration induced by invading chlorpyrifos and copper with different dosages. Lethal bioassay displayed a significantly decreased percentage survival of Propsilocerus akamusi larvae exposed to 800 mg/L copper and 50 μg/L chlorpyrifos at 96 h. Larvae with deficient gut microbiota exhibited a depressed level of glutathione S-transferase activity after stressful exposure. The high-throughput 16S rRNA gene sequencing was adopted to investigate the community structure and it turned out that both copper and chlorpyrifos were able to generate distinguished variations of gut microbiota in the stressor-specific and concentration-dependent manner. Of note, the relative abundance of Comamonas, Stenotrophomonas, and Yersinia remarkably elevated in the presence of copper while chlorpyrifos exposure upregulated the prevalence of certain genera (e.g. Serratia). Flavobacterium was greatly attenuated in chlorpyrifos group with lethal dosage exhibiting more severe impacts. The predicted gene functions of the gut commensals differed between normal samples and those subjected to distinct toxins. Besides, more positive associations and limited modularity of microbial interactions were observed in stressor-challenged larvae, presenting a network with impaired complexity and stability. The appearance of either copper or chlorpyrifos exhibited strong positive correlations with genera belonging to Proteobacteria and Firmicutes. Collectively, this investigation introduces a general outline of gut microbiota obtained from chironomid individuals with latent adaptive tactics to nocuous factors (heavy metal and pesticide), which could build a fundamental basis for us to further explore the protective roles of chironomid gut bacterial colonizers in defending against aquatic contaminants.
Collapse
Affiliation(s)
- Zeyang Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Wenwen Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Jiating An
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Haixuan Xu
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Yue Liu
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Chuncai Yan
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
8
|
Tan M, Wu H, Yan S, Jiang D. Evaluating the Toxic Effects of Tannic Acid Treatment on Hyphantria cunea Larvae. INSECTS 2022; 13:872. [PMID: 36292820 PMCID: PMC9604457 DOI: 10.3390/insects13100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
To increase the development potential of botanical pesticides, it is necessary to expand the toxicology research on plant secondary metabolites. Herein, the Hyphantria cunea larvae were exposed to tannic acid concentrations consistent with those found in larch needles, and, subsequently, the growth and nutrient utilization, oxidative damage, and detoxification abilities in the larval midgut, as well as the changes in the gut microbiome, were analyzed. Our results revealed that tannic acid treatment significantly increased the mortality of H. cunea larvae and inhibited larval growth and food utilization. The contents of malondialdehyde and hydrogen peroxide in the larval midgut were significantly elevated in the treatment group, along with a significant decrease in the activities of antioxidant enzymes and detoxifying enzymes. However, the non-enzymatic antioxidants showed a significant increase in the tannic acid-treated larvae. From gut microbiome analysis in the treatment group, the abundance of gut microbiota related to toxin degradation and nutrient metabolism was significantly reduced, and the enrichment analysis also suggested that all pathways related to nutritional and detoxification metabolism were substantially inhibited. Taken together, tannic acid exerts toxic effects on H. cunea larvae at multiple levels and is a potential botanical pesticide for the control of H. cunea larvae.
Collapse
Affiliation(s)
- Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Hongfei Wu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
9
|
Sun Z, Liu Y, Xu H, Yan C. Genome-Wide Identification of P450 Genes in Chironomid Propsilocerus akamusi Reveals Candidate Genes Involved in Gut Microbiota-Mediated Detoxification of Chlorpyrifos. INSECTS 2022; 13:insects13090765. [PMID: 36135466 PMCID: PMC9504602 DOI: 10.3390/insects13090765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 06/10/2023]
Abstract
Chironomids commonly dominate macroinvertebrate assemblages in aquatic habitats and these non-biting midges are known for their ability to tolerate contaminants. Studies regarding the interplay between gut microbiota and host detoxification ability is currently a point of interest. Cytochrome P450s (P450s) are critical metabolic enzymes in which a subset is involved in xenobiotic detoxification. In this study, we first conducted an integrated global investigation of P450s based on the whole genomic sequence of Propsilocerus akamusi and retrieved a series of 64 P450 genes which were further classified into 4 clans and 25 families on the basis of phylogenetic relationships. With assistance of RNA-Seq and RT-qPCR validation, the expression profile of screened PaP450s in guts was compared between chlorpyrifos-challenged larvae with deficient gut microbiota (GD) and those with a conventional gut community (CV). An increasing prevalence of chlorpyrifos from sublethal to lethal dosages induced a greater mortality rate of individuals coupled with remarkable downregulation of 14 P450s in GD larval guts when compared to CV ones. Moreover, it turned out that the decreased level of PaCYP3998B1 and PaCYP3987D1 might imply impaired host endogenous detoxification capability potentiated by gut dysbiosis, reflected by a remarkably severe mortality in GD larvae treated with lethal chlorpyrifos. Collectively, our study unveiled candidate P450 genes that might be mediated by gut symbionts in chlorpyrifos-challenged P. akamusi larvae, possibly facilitating further understanding of the detoxified mechanism that chironomids might employ to alleviate poisonousness.
Collapse
|
10
|
Wu A, Lu J, Zhong G, Lu L, Qu Y, Zhang C. Xanthotoxin (8-methoxypsoralen): A review of its chemistry, pharmacology, pharmacokinetics, and toxicity. Phytother Res 2022; 36:3805-3832. [PMID: 35913174 DOI: 10.1002/ptr.7577] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 11/11/2022]
Abstract
Xanthotoxin (XAT) is a natural furanocoumarins, a bioactive psoralen isolated from the fruit of the Rutaceae plant Pepper, which has received increasing attention in recent years due to its wide source and low cost. By collecting and compiling literature on XAT, the results show that XAT exhibits significant activity in the treatment of various diseases, including neuroprotection, skin repair, osteoprotection, organ protection, anticancer, antiinflammatory, antioxidative stress and antibacterial. In this paper, we review the pharmacological activity and potential molecular mechanisms of XAT for the treatment of related diseases. The data suggest that XAT can mechanistically induce ROS production and promote apoptosis through mitochondrial or endoplasmic reticulum pathways, regulate NF-κB, MAPK, JAK/STAT, Nrf2/HO-1, MAPK, AKT/mTOR, and ERK1/2 signaling pathways to exert pharmacological effects. In addition, the pharmacokinetics properties and toxicity of XAT are discussed in this paper, further elucidating the relationship between structure and efficacy. It is worth noting that data from clinical studies of XAT are still scarce, limiting the use of XAT in the clinic, and in the future, more in-depth studies are needed to determine the clinical efficacy of XAT.
Collapse
Affiliation(s)
- Anxin Wu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jing Lu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Guofeng Zhong
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ling Lu
- Chengdu University of Technology, Chengdu, PR China
| | - Yan Qu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Chen Zhang
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
11
|
Hafeez M, Li X, Ullah F, Zhang Z, Zhang J, Huang J, Fernández-Grandon GM, Khan MM, Siddiqui JA, Chen L, Ren XY, Zhou S, Lou Y, Lu Y. Down-Regulation of P450 Genes Enhances Susceptibility to Indoxacarb and Alters Physiology and Development of Fall Armyworm, Spodoptera frugipreda (Lepidoptera: Noctuidae). Front Physiol 2022; 13:884447. [PMID: 35615670 PMCID: PMC9125154 DOI: 10.3389/fphys.2022.884447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is a pest of many important crops globally. Effective control is challenging, with the pest exhibiting resistance to different synthetic pesticides across various groups. However, the mechanisms employed by resistant insects for overexpression of relevant detoxification genes remain unclear. The activity of detoxification enzymes was investigated in this study. Additionally, using RNA interference (RNAi), a functional analysis was completed of two P450s genes in an indoxacarb resistant population of fall armyworms. Elevated resistance levels (resistance ratio = 31.37-fold) in indoxacarb-selected populations of FAW were observed after 14 generations. The qRT-PCR showed higher expression of two cytochrome P450 genes, CYP321A7 and CYP6AE43, in this selected population compared to the control population. RNAi was applied to knock down the P450 dsCYP321A7 and dsCYP6AE43 genes in the FAW larvae. Droplet feeding of the dsRNAs (CYP321A7 and CYP6AE43) via an artificial diet significantly increased mortality rates in the indoxacarb treated population. A shorter larval developmental time of FAW was detected in all dsRNAs-fed larvae. Correspondingly, larval mass was reduced by dsRNAs in indoxacarb resistant populations of fall armyworm. Larval feeding assays demonstrate that dsRNAs targeting, specifically of CYP321A7 and CYP6AE43 enzymes, could be a beneficial technique in the management of indoxacarb resistant populations. Further study on the potential use of dsRNA and its application should be conducted in efforts to counter the development of resistance in FAW against various insecticides in the field.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Junaid Ali Siddiqui
- Red Imported Fire Ant Research Centre, South China Agricultural University, Guangzhou, China
| | - Limin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Integrated Plant Protection Center, Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Xiao Yun Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuxing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Yonggen Lou, ; Yaobin Lu,
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Yonggen Lou, ; Yaobin Lu,
| |
Collapse
|
12
|
Siddiqui JA, Khan MM, Bamisile BS, Hafeez M, Qasim M, Rasheed MT, Rasheed MA, Ahmad S, Shahid MI, Xu Y. Role of Insect Gut Microbiota in Pesticide Degradation: A Review. Front Microbiol 2022; 13:870462. [PMID: 35591988 PMCID: PMC9111541 DOI: 10.3389/fmicb.2022.870462] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
Insect pests cause significant agricultural and economic losses to crops worldwide due to their destructive activities. Pesticides are designed to be poisonous and are intentionally released into the environment to combat the menace caused by these noxious pests. To survive, these insects can resist toxic substances introduced by humans in the form of pesticides. According to recent findings, microbes that live in insect as symbionts have recently been found to protect their hosts against toxins. Symbioses that have been formed are between the pests and various microbes, a defensive mechanism against pathogens and pesticides. Insects' guts provide unique conditions for microbial colonization, and resident bacteria can deliver numerous benefits to their hosts. Insects vary significantly in their reliance on gut microbes for basic functions. Insect digestive tracts are very different in shape and chemical properties, which have a big impact on the structure and composition of the microbial community. Insect gut microbiota has been found to contribute to feeding, parasite and pathogen protection, immune response modulation, and pesticide breakdown. The current review will examine the roles of gut microbiota in pesticide detoxification and the mechanisms behind the development of resistance in insects to various pesticides. To better understand the detoxifying microbiota in agriculturally significant pest insects, we provided comprehensive information regarding the role of gut microbiota in the detoxification of pesticides.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Muhammad Musa Khan
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | | | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Qasim
- Department of Agriculture and Forestry, Kohsar University Murree, Punjab, Pakistan
| | - Muhammad Tariq Rasheed
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Atif Rasheed
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | | | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Sun Y, Tao S, Zhang W, Jiang B, Dai HY, Liu BS, Zhang YJ, Kong XD, Zhao J, Bai LX. Transcriptome profile analysis reveals the emamectin benzoate-induced genes associated with olfaction and metabolic detoxification in Spodoptera exigua Hübner (Lepidoptera: noctuidae). ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2052190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yang Sun
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, People’s Republic of China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Simin Tao
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, People’s Republic of China
| | - Wen Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, People’s Republic of China
| | - Bin Jiang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, People’s Republic of China
| | - Han-Yang Dai
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Bao-Sheng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Yong-Jun Zhang
- Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xiang-dong Kong
- Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Li-Xin Bai
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| |
Collapse
|
14
|
Katsavou E, Riga M, Ioannidis P, King R, Zimmer CT, Vontas J. Functionally characterized arthropod pest and pollinator cytochrome P450s associated with xenobiotic metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105005. [PMID: 35082029 DOI: 10.1016/j.pestbp.2021.105005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The cytochrome P450 family (P450s) of arthropods includes diverse enzymes involved in endogenous essential physiological functions and in the oxidative metabolism of xenobiotics, insecticides and plant allelochemicals. P450s can also establish insecticide selectivity in bees and pollinators. Several arthropod P450s, distributed in different phylogenetic groups, have been associated with xenobiotic metabolism, and some of them have been functionally characterized, using different in vitro and in vivo systems. The purpose of this review is to summarize scientific publications on arthropod P450s from major insect and mite agricultural pests, pollinators and Papilio sp, which have been functionally characterized and shown to metabolize xenobiotics and/or their role (direct or indirect) in pesticide toxicity or resistance has been functionally validated. The phylogenetic relationships among these P450s, the functional systems employed for their characterization and their xenobiotic catalytic properties are presented, in a systematic approach, including critical aspects and limitations. The potential of the primary P450-based metabolic pathway of target and non-target organisms for the development of highly selective insecticides and resistance-breaking formulations may help to improve the efficiency and sustainability of pest control.
Collapse
Affiliation(s)
- Evangelia Katsavou
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Maria Riga
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Christoph T Zimmer
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - John Vontas
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
15
|
Mubeen S, Shahzadi I, Akram W, Saeed W, Yasin NA, Ahmad A, Shah AA, Siddiqui MH, Alamri S. Calcium Nanoparticles Impregnated With Benzenedicarboxylic Acid: A New Approach to Alleviate Combined Stress of DDT and Cadmium in Brassica alboglabra by Modulating Bioacummulation, Antioxidative Machinery and Osmoregulators. FRONTIERS IN PLANT SCIENCE 2022; 13:825829. [PMID: 35356123 PMCID: PMC8959818 DOI: 10.3389/fpls.2022.825829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 05/04/2023]
Abstract
At present, the alleviation of stress caused by climate change and environmental contaminants is a crucial issue. Dichlorodiphenyltrichloroethane (DDT) is a persistent organic pollutant (POP) and an organochlorine, which causes significant health problems in humans. The stress caused by cadmium (Cd) and the toxicity of DDT have direct effects on the growth and yield of crop plants. Ultimately, the greater uptake and accumulation of DDT by edible plants affects human health by contaminating the food chain. The possible solution to this challenging situation is to limit the passive absorption of POPs into the plants. Calcium (Ca) is an essential life component mandatory for plant growth and survival. This study used impregnated Ca (BdCa) of benzenedicarboxylic acid (Bd) to relieve abiotic stress in plants of Brassica alboglabra. BdCa mitigated the deleterious effects of Cd and reduced DDT bioaccumulation. By increasing the removal efficacy (RE) up to 256.14%, BdCa greatly decreased pollutant uptake (Cd 82.37% and DDT 93.64%) and supported photosynthetic machinery (86.22%) and antioxidant enzyme defenses (264.73%), in applied plants. Exogenously applied Bd also successfully improved the antioxidant system and the physiochemical parameters of plants. However, impregnation with Ca further enhanced plant tolerance to stress. This novel study revealed that the combined application of Ca and Bd could effectively relieve individual and combined Cd stress and DDT toxicity in B. alboglabra.
Collapse
Affiliation(s)
- Samavia Mubeen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Iqra Shahzadi
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymersbased Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, China
| | - Waheed Akram
- Department of Plant Pathology, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Wajid Saeed
- Key Laboratory of Crop Cultivation and Farming System, Agriculture College, Guangxi University, Nanning, China
| | - Nasim Ahmad Yasin
- Senior Superintendent Garden, University of the Punjab, Lahore, Pakistan
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Aqeel Ahmad
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Aqeel Ahmad,
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
- Anis Ali Shah,
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Zhao P, Xue H, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Gao X, Luo J, Cui J. Silencing of cytochrome P450 gene CYP321A1 effects tannin detoxification and metabolism in Spodoptera litura. Int J Biol Macromol 2022; 194:895-902. [PMID: 34843814 DOI: 10.1016/j.ijbiomac.2021.11.144] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/19/2022]
Abstract
Cytochrome P450 monooxygenase (P450 or CYP) plays an important role in the metabolism of insecticides and plant allelochemicals by insects. CYP321B1, a novel Spodoptera litura P450 gene, was identified and characterized. CYP321B1 contains a 1488 bp open reading frame (ORF) that encodes a 495 amino acid protein. In fourth instar larvae, the highest CYP321B1 expression levels were found in the midgut and fat body. In the tannin feeding test, tannin can significantly induce the expression of CYP321B1 in the midgut and fat body of 4th instar larvae. To verify the function of CYP321B1, RNA interference and metabolome analysis were performed. The results showed that silencing CYP321B1 significantly reduced the rate of weight gain under tannin induction. Metabolome analysis showed silencing affected 47 different metabolites, mainly involved in secondary metabolite biosynthesis and amino acid metabolism, including amino acids, lipid fatty acids, organic acids and their derivatives. Henoxyacetic acid and cysteamine are the most highly regulated metabolites, respectively. These findings demonstrate that CYP321B1 plays an important role in tannin detoxification and metabolism. Functional knowledge about metabolite detoxification genes in this major herbivorous insect pest can provide new insights into this biological process and provide new targets for agricultural pest control.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui Xue
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Li Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Dongyang Li
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Jichao Ji
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Lin Niu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Xueke Gao
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Junyu Luo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
17
|
Amezian D, Nauen R, Le Goff G. Comparative analysis of the detoxification gene inventory of four major Spodoptera pest species in response to xenobiotics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 138:103646. [PMID: 34469782 DOI: 10.1016/j.ibmb.2021.103646] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 05/21/2023]
Abstract
The genus Spodoptera (Lepidoptera: Noctuidae) comprises some of the most polyphagous and destructive agricultural pests worldwide. The success of many species of this genus is due to their striking abilities to adapt to a broad range of host plants. Superfamilies of detoxification genes play a crucial role in the adaption to overcome plant defense mechanisms mediated by numerous secondary metabolites and toxins. Over the past decade, a substantial amount of expression data in Spodoptera larvae was produced for those genes in response to xenobiotics such as plant secondary metabolites, but also insecticide exposure. However, this information is scattered throughout the literature and in most cases does not allow to clearly identify candidate genes involved in host-plant adaptation and insecticide resistance. In the present review, we analyzed and compiled information on close to 600 pairs of inducers (xenobiotics) and induced genes from four main Spodoptera species: S. exigua, S. frugiperda, S. littoralis and S. litura. The cytochrome P450 monooxygenases (P450s; encoded by CYP genes) were the most upregulated detoxification genes across the literature for all four species. Most of the data was provided from studies on S. litura, followed by S. exigua, S. frugiperda and S. littoralis. We examined whether these detoxification genes were reported for larval survival under xenobiotic challenge in forward and reverse genetic studies. We further analyzed whether biochemical assays were carried out showing the ability of corresponding enzymes and transporters to breakdown and excrete xenobiotics, respectively. This revealed a clear disparity between species and the lack of genetic and biochemical information in S. frugiperda. Finally, we discussed the biological importance of detoxification genes for this genus and propose a workflow to study the involvement of these enzymes in an ecological and agricultural context.
Collapse
Affiliation(s)
- Dries Amezian
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789, Monheim, Germany.
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France.
| |
Collapse
|
18
|
Cedergreen N, Bellisai G, Herrero-Nogareda L, Boesen E, Dalhoff K. Using TKTD Models in Combination with In Vivo Enzyme Inhibition Assays to Investigate the Mechanisms behind Synergistic Interactions across Two Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13990-13999. [PMID: 34590483 DOI: 10.1021/acs.est.1c02222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study is to compare the azole synergy across an insect, Chironomus riparius, and a crustacean species, Daphnia magna. We use a combination of in vivo measurements of cytochrome P450 monooxygenase (CYP) biotransformation potential and toxicokinetic (TK) and toxicodynamic (TD) modeling to understand the mechanism behind the synergy of two azole fungicides: the imidazole prochloraz and the triazole propiconazole on the pyrethroid insecticide α-cypermethrin. For both species, the synergistic effect of prochloraz was well-described by its effect on in vivo CYP activity, which corresponded to the biotransformation rate of the TK model parameterized on the survival data of the mixture experiment. For propiconazole, however, there were 100-fold and 50-fold differences between the 50% effect concentration of in vivo CYP activity and the modeled biotransformation rate for C. riparius and D. magna, respectively. Propiconazole, therefore, seems to induce synergy through a mechanism that cannot be quantified solely by the CYP activity assay used in this study in either of the two species. We discuss the differences between prochloraz and propiconazole as synergists across the two species in the light of the type and time dynamics of affected biotransformation processes.
Collapse
Affiliation(s)
- Nina Cedergreen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Giulia Bellisai
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- School of Biosciences College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Laia Herrero-Nogareda
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Emil Boesen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Kristoffer Dalhoff
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
19
|
Hou WT, Staehelin C, Elzaki MEA, Hafeez M, Luo YS, Wang RL. Functional analysis of CYP6AE68, a cytochrome P450 gene associated with indoxacarb resistance in Spodoptera litura (Lepidoptera: Noctuidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104946. [PMID: 34446184 DOI: 10.1016/j.pestbp.2021.104946] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Spodoptera litura (Fabricius) is a widely distributed, highly polyphagous pest that can cause severe damage to a variety of economically important crops. Various populations have developed resistance to different classes of insecticides. In this study, we report on two indoxacarb-resistant S. litura populations, namely Ind-R (resistance ratio = 18.37-fold) derived from an indoxacarb-susceptible (Ind-S) population and a population caught from a field (resistance ratio = 46.72-fold). A synergist experiment showed that piperonyl butoxide (PBO) combined with indoxacarb produced higher synergistic effects (synergist ratio = 5.29) in the Ind-R population as compared to Ind-S (synergist ratio = 3.08). Elevated enzyme activity of cytochrome P450 monooxygenases (P450s) was observed for Ind-R (2.15-fold) and the Field-caught population (4.03-fold) as compared to Ind-S, while only minor differences were noticed in the activities of esterases and glutathione S-transferases. Furthermore, expression levels of P450 genes of S. litura were determined by quantitative reverse transcription PCR to explore differences among the three populations. The results showed that the mRNA levels of CYP6AE68, a novel P450 gene belonging to the CYP6 family, were constitutively overexpressed in Ind-R (32.79-fold) and in the Field-caught population (68.11-fold). CYP6AE68 expression in S. litura was further analyzed for different developmental stages and in different tissues. Finally, we report that RNA interference-mediated silencing of CYP6AE68 increased the mortality of fourth-instar larvae exposed to indoxacarb at the LC50 dose level (increase by 33.89%, 29.44% and 22.78% for Ind-S, Ind-R and the Field-caught population, respectively). In conclusion, the findings of this study indicate that expression levels of CYP6AE68 in S. litura larvae are associated with indoxacarb resistance and that CYP6AE68 may play a significant role in detoxification of indoxacarb.
Collapse
Affiliation(s)
- Wen-Tao Hou
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, China
| | | | - Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yu-Sen Luo
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Rui-Long Wang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Resistance in the Genus Spodoptera: Key Insect Detoxification Genes. INSECTS 2021; 12:insects12060544. [PMID: 34208014 PMCID: PMC8230579 DOI: 10.3390/insects12060544] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022]
Abstract
The genus Spodoptera (Lepidoptera: Noctuidae) includes species that are among the most important crop pests in the world. These polyphagous species are able to feed on many plants, including corn, rice and cotton. In addition to their ability to adapt to toxic compounds produced by plants, they have developed resistance to the chemical insecticides used for their control. One of the main mechanisms developed by insects to become resistant involves detoxification enzymes. In this review, we illustrate some examples of the role of major families of detoxification enzymes such as cytochromes P450, carboxyl/cholinesterases, glutathione S-transferases (GST) and transporters such as ATP-binding cassette (ABC) transporters in insecticide resistance. We compare available data for four species, Spodoptera exigua, S. frugiperda, S. littoralis and S. litura. Molecular mechanisms underlying the involvement of these genes in resistance will be described, including the duplication of the CYP9A cluster, over-expression of GST epsilon or point mutations in acetylcholinesterase and ABCC2. This review is not intended to be exhaustive but to highlight the key roles of certain genes.
Collapse
|
21
|
Li X, Deng Z, Chen X. Regulation of insect P450s in response to phytochemicals. CURRENT OPINION IN INSECT SCIENCE 2021; 43:108-116. [PMID: 33385580 DOI: 10.1016/j.cois.2020.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Insect herbivores use phytochemicals as signals to induce expression of their phytochemical-detoxifying cytochrome P450 monooxygenases (P450s). The regulatory cascades that transduce phytochemical signals to enhanced expression of P450s are the focus of this review. At least seven signaling pathways, including RTK/MAPK, GPCR/CREB, GPCR/NFκB, ROS/CncC/Keap1, AhR/ARNT, cytosol NR, and nucleus-located NR, may be involved in phytochemical induction of P450s. Constitutive overexpression, overphosphorylation, and/or activation of one or more effectors in the corresponding pathway are common causes of P450 overexpression that lead to phytochemical or insecticide resistance. Future research should pay more attentions to the starting point of each pathway, the number of pathways and their cross talk for a given phytochemical, and the pathways for downregulation of P450s.
Collapse
Affiliation(s)
- Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, United States.
| | - Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xuewei Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
22
|
Cen Y, Zou X, Li L, Chen S, Lin Y, Liu L, Zheng S. Inhibition of the glutathione biosynthetic pathway increases phytochemical toxicity to Spodoptera litura and Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104632. [PMID: 32711766 DOI: 10.1016/j.pestbp.2020.104632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Phytochemicals are toxic to insects, but their insecticidal efficiencies are usually low compared to synthetic insecticides. Understanding the mechanism of insect adaptation to phytochemicals will provide guidance for increasing their efficacy. Reduced glutathione (GSH) is a scavenger of reactive oxygen species (ROS) induced by phytochemicals. However, in insects, the pathway of GSH biosynthesis in response to phytochemicals is unclear. We found that exposure to 0.5% indole-3-methanol (I3C), xanthotoxin, and rotenone (ROT) significantly retarded the growth of Spodoptera litura larvae. The oxidative stress in S. litura larvae exposed to phytochemicals was increased. The up-regulation of glutamate cysteine ligase but not glutathione reductase revealed that the de novo synthesis pathway is responsible for GSH synthesis in phytochemical-treated larvae. Treatment with the inhibitor (BSO) of γ-glutamylcysteine synthetase (gclc), a subunit of glutamate cysteine ligase, resulted in decreases of GSH levels and GST activities, increases of ROS levels in I3C-treated larvae, which finally caused midgut necrosis and larval death. Treatment with BSO or I3C alone did not cause larval death. The addition of GSH could partly reduce the influence of I3C and BSO on S. litura growth. Nilaparvata lugens gclc RNAi confirmed the result of BSO treatment in S. litura. N. lugens gclc RNAi significantly increased the mortality of ROT-sprayed N. lugens, in which ROS levels were significantly increased. All data indicate that gclc is involved in insect response to phytochemical treatment. Treatment with dsgclc will increase the insecticidal efficacy of plant-derived compounds.
Collapse
Affiliation(s)
- Yongjie Cen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaopeng Zou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lanbin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shuna Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yiguang Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|