1
|
Wu J, Yang J, Yuan Z, Zhang J, Zhang Z, Qin T, Li X, Deng H, Gong L. Functional connectome gradient predicts clinical symptoms of chronic insomnia disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111120. [PMID: 39154930 DOI: 10.1016/j.pnpbp.2024.111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Insomnia is the second most prevalent psychiatric disorder worldwide, but the understanding of the pathophysiology of insomnia remains fragmented. In this study, we calculated the connectome gradient in 50 chronic insomnia disorder (CID) patients and 38 healthy controls (HC) to assess changes due to insomnia and utilized these gradients in a connectome-based predictive modeling (CPM) to predict clinical symptoms associated with insomnia. The results suggested that insomnia led to significant alterations in the functional gradients of some brain areas. Specifically, the gradient scores in the middle frontal gyrus, superior anterior cingulate gyrus, and right nucleus accumbens were significantly higher in the CID patients than in the HC group, whereas the scores in the middle occipital gyrus, right fusiform gyrus, and right postcentral gyrus were significantly lower than in the HC group. Further correlation analysis revealed that the right middle frontal gyrus is positively correlated with the self-rating anxiety scale (r=0.3702). Additionally, the prediction model built with functional gradients could well predict the sleep quality (r=0.5858), anxiety (r=0.6150), and depression (r=0.4022) levels of insomnia patients. This offers an objective depiction of the clinical diagnosis of insomnia, yielding a beneficial impact on the identification of effective biomarkers and the comprehension of insomnia.
Collapse
Affiliation(s)
- Jiahui Wu
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China
| | - Jianbo Yang
- Sichuan University of Science and Engineering, Zigong, China
| | - Zhen Yuan
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Macau, SAR China
| | - Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China.
| | - Zhiwei Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Tianwei Qin
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Xiaoxuan Li
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Hanbin Deng
- Sichuan Institute of Computer Sciences, Chengdu, China.
| | - Liang Gong
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, China.
| |
Collapse
|
2
|
Rosenblum Y, Weber FD, Rak M, Zavecz Z, Kunath N, Breitenstein B, Rasch B, Zeising M, Uhr M, Steiger A, Dresler M. Sustained polyphasic sleep restriction abolishes human growth hormone release. Sleep 2024; 47:zsad321. [PMID: 38124288 DOI: 10.1093/sleep/zsad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
STUDY OBJECTIVES Voluntary sleep restriction is a common phenomenon in industrialized societies aiming to increase time spent awake and thus productivity. We explored how restricting sleep to a radically polyphasic schedule affects neural, cognitive, and endocrine characteristics. METHODS Ten young healthy participants were restricted to one 20-minute nap opportunity at the end of every 4 hours (i.e. six sleep episodes per 24 hours) without any extended core sleep window, which resulted in a cumulative sleep amount of just 2 hours per day (i.e. ~20 minutes per bout). RESULTS All but one participant terminated this schedule during the first month. The remaining participant (a 25-year-old male) succeeded in adhering to a polyphasic schedule for five out of the eight planned weeks. Cognitive and psychiatric measures showed modest changes during polyphasic as compared to monophasic sleep, while in-blood cortisol or melatonin release patterns and amounts were apparently unaltered. In contrast, growth hormone release was almost entirely abolished (>95% decrease), with the residual release showing a considerably changed polyphasic secretional pattern. CONCLUSIONS Even though the study was initiated by volunteers with exceptional intrinsic motivation and commitment, none of them could tolerate the intended 8 weeks of the polyphasic schedule. Considering the decreased vigilance, abolished growth hormone release, and neurophysiological sleep changes observed, it is doubtful that radically polyphasic sleep schedules can subserve the different functions of sleep to a sufficient degree.
Collapse
Affiliation(s)
- Yevgenia Rosenblum
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Frederik D Weber
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, Netherlands
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Michael Rak
- Department of Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Zsófia Zavecz
- Center for Human Sleep Science, Department of Psychology, University of California Berkeley, Berkeley, CA, USA
| | - Nicolas Kunath
- Department of Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Björn Rasch
- Department of Psychology, Division of Biopsychology, University of Zurich, Zurich, Switzerland
| | - Marcel Zeising
- Klinikum Ingolstadt, Centre of Mental Health, Ingolstadt, Germany
| | - Manfred Uhr
- Department of Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Axel Steiger
- Department of Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
3
|
Esfahani MJ, Farboud S, Ngo HVV, Schneider J, Weber FD, Talamini LM, Dresler M. Closed-loop auditory stimulation of sleep slow oscillations: Basic principles and best practices. Neurosci Biobehav Rev 2023; 153:105379. [PMID: 37660843 DOI: 10.1016/j.neubiorev.2023.105379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Sleep is essential for our physical and mental well-being. During sleep, despite the paucity of overt behavior, our brain remains active and exhibits a wide range of coupled brain oscillations. In particular slow oscillations are characteristic for sleep, however whether they are directly involved in the functions of sleep, or are mere epiphenomena, is not yet fully understood. To disentangle the causality of these relationships, experiments utilizing techniques to detect and manipulate sleep oscillations in real-time are essential. In this review, we first overview the theoretical principles of closed-loop auditory stimulation (CLAS) as a method to study the role of slow oscillations in the functions of sleep. We then describe technical guidelines and best practices to perform CLAS and analyze results from such experiments. We further provide an overview of how CLAS has been used to investigate the causal role of slow oscillations in various sleep functions. We close by discussing important caveats, open questions, and potential topics for future research.
Collapse
Affiliation(s)
| | - Soha Farboud
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, the Netherlands
| | - Hong-Viet V Ngo
- Department of Psychology, University of Essex, United Kingdom; Department of Psychology, University of Lübeck, Germany; Center for Brain, Behaviour and Metabolism, University of Lübeck, Germany
| | - Jules Schneider
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Frederik D Weber
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Lucia M Talamini
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands.
| |
Collapse
|
4
|
Akyol S, Yildirim M, Alatas B. Multi-feature fusion and improved BO and IGWO metaheuristics based models for automatically diagnosing the sleep disorders from sleep sounds. Comput Biol Med 2023; 157:106768. [PMID: 36907034 DOI: 10.1016/j.compbiomed.2023.106768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
A night of regular and quality sleep is vital in human life. Sleep quality has a great impact on the daily life of people and those around them. Sounds such as snoring reduce not only the sleep quality of the person but also reduce the sleep quality of the partner. Sleep disorders can be eliminated by examining the sounds that people make at night. It is a very difficult process to follow and treat this process by experts. Therefore, this study, it is aimed to diagnose sleep disorders using computer-aided systems. In the study, the used data set contains seven hundred sound data which has seven different sound class such as cough, farting, laugh, scream, sneeze, sniffle, and snore. In the model proposed in the study, firstly, the feature maps of the sound signals in the data set were extracted. Three different methods were used in the feature extraction process. These methods are MFCC, Mel-spectrogram, and Chroma. The features extracted in these three methods are combined. Thanks to this method, the features of the same sound signal extracted in three different methods are used. This increases the performance of the proposed model. Later, the combined feature maps were analyzed using the proposed New Improved Gray Wolf Optimization (NI-GWO), which is the improved version of the Improved Gray Wolf Optimization (I-GWO) algorithm, and the proposed Improved Bonobo Optimizer (IBO) algorithm, which is the improved version of the Bonobo Optimizer (BO). In this way, it is aimed to run the models faster, reduce the number of features, and obtain the most optimum result. Finally, Support Vector Machine (SVM) and k-nearest neighbors (KNN) supervised shallow machine learning methods were used to calculate the metaheuristic algorithms' fitness values. Different types of metrics such as accuracy, sensitivity, F1 etc., were used for the performance comparison. Using the feature maps optimized by the proposed NI-GWO and IBO algorithms, the highest accuracy value was obtained from the SVM classifier with 99.28% for both metaheuristic algorithms.
Collapse
Affiliation(s)
- Sinem Akyol
- Department of Software Engineering, Firat University, 23100, Elazig, Turkey
| | - Muhammed Yildirim
- Department of Computer Engineering, Malatya Turgut Ozal University, 44200, Malatya, Turkey
| | - Bilal Alatas
- Department of Software Engineering, Firat University, 23100, Elazig, Turkey.
| |
Collapse
|
5
|
Raymond JS, Rehn S, Hoyos CM, Bowen MT. The influence of oxytocin-based interventions on sleep-wake and sleep-related behaviour and neurobiology: A systematic review of preclinical and clinical studies. Neurosci Biobehav Rev 2021; 131:1005-1026. [PMID: 34673110 DOI: 10.1016/j.neubiorev.2021.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022]
Abstract
The oxytocin (OXT) system has garnered considerable interest due to its influence on diverse behaviours. However, scant research has considered the influence of oxytocin on sleep-wake and sleep-related behaviour and neurobiology. Consequently, the objective of this systematic review was to assess the extant preclinical and clinical evidence for the influence of oxytocin-based interventions on sleep-wake outcomes. The primary search was conducted on 22/7/2020 using six electronic databases; 30 studies (19 preclinical, 11 clinical) were included based on inclusion criteria. Studies were evaluated for risk of bias using the SYRCLE tool and the Cochrane risk of bias tools for preclinical and clinical studies, respectively. Results indicated manipulation of the OXT system can influence sleep-wake outcomes. Preclinical evidence suggests a wake-promoting influence of OXT system activation whereas the clinical evidence suggests little or no sleep-promoting influence of OXT. OXT dose was identified as a likely modulatory factor of OXT-induced effects on sleep-wake behaviour. Future studies are necessary to validate and strengthen these tentative conclusions about the influence of OXT on sleep-wake behaviour.
Collapse
Affiliation(s)
- Joel S Raymond
- The University of Sydney, Faculty of Science, School of Psychology, Camperdown, NSW, Australia; The University of Sydney, Brain and Mind Centre, Camperdown, NSW, Australia
| | - Simone Rehn
- The University of Sydney, Faculty of Science, School of Psychology, Camperdown, NSW, Australia
| | - Camilla M Hoyos
- The University of Sydney, Faculty of Science, School of Psychology, Camperdown, NSW, Australia; The University of Sydney, Brain and Mind Centre, Camperdown, NSW, Australia; The University of Sydney, Woolcock Institute of Medical Research, Centre for Sleep and Chronobiology, Camperdown, NSW, Australia
| | - Michael T Bowen
- The University of Sydney, Faculty of Science, School of Psychology, Camperdown, NSW, Australia; The University of Sydney, Brain and Mind Centre, Camperdown, NSW, Australia.
| |
Collapse
|
6
|
Hrozanova M, Firing K, Moen F. "When I Sleep Poorly, It Impacts Everything": An Exploratory Qualitative Investigation of Stress and Sleep in Junior Endurance Athletes. Front Psychol 2021; 12:618379. [PMID: 33658963 PMCID: PMC7917256 DOI: 10.3389/fpsyg.2021.618379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
On their journeys toward senior athletic status, junior endurance athletes are faced with a multitude of stressors. How athletes react to stressors plays a vital part in effective adaptation to the demanding, ever-changing athletic environment. Sleep, the most valued recovery strategy available to athletes, has the potential to influence and balance athletic stress, and enable optimal functioning. However, sleep is sensitive to disturbances by stress, which is described by the concept of sleep reactivity. Among athletes, poor sleep quality is frequently reported, but our understanding of the associations between stress and sleep in junior athletes is currently incomplete. The present study therefore investigated the themes of stress and sleep, and the associations between these variables with the use of in-depth semi-structured interviews in six junior endurance athletes (three men and three women, mean age 17.7 ± 0.5 years). Data was analyzed qualitatively based on the Grounded Theory. The qualitative material was supplemented with quantitative data on subjective sleep quality (Pittsburg Sleep Quality Index), sleep reactivity (Ford Insomnia Response to Stress Test), and mental strain (visual analog scale). The main results showed that stress could be differentiated into relevant stressors (encompassing poor performance, uncertainty in relation to training, school, daily hassles, and sleep) and reactions to stress (with sub-categories facilitative and maladaptive). Sleep could be differentiated into sleep benefits (encompassing energy levels and athletic functioning) and sleep quality (with sub-categories satisfactory and inadequate). All athletes identified relevant stressors, and all athletes were aware of the benefits of sleep for athletic functioning. However, athletes formed two distinctive categories based on the interactions between stress and sleep: three exhibited facilitative reactions to stress and good sleep quality, as well as low sleep reactivity, and low mental strain. The remaining participants exhibited maladaptive reactions to stress and poor sleep quality, as well as high sleep reactivity and high mental strain. Conceptualizing sleep quality based on the evaluation of stressors, reactions to stress, degree of mental strain, and the propensity to stress-related sleep disturbance may offer a plausible explanation for why the occurrence of stressors leads to poor sleep quality in some athletes, but not others.
Collapse
Affiliation(s)
- Maria Hrozanova
- Faculty of Medicine and Health Sciences, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian Firing
- Faculty of Social and Educational Sciences, Department of Teacher Education, Norwegian University of Science and Technology, Trondheim, Norway
| | - Frode Moen
- Faculty of Social and Educational Sciences, Department of Education and Lifelong Learning, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Zabrecky G, Shahrampour S, Whitely C, Alizadeh M, Conklin C, Wintering N, Doghramji K, Zhan T, Mohamed F, Newberg A, Monti D. An fMRI Study of the Effects of Vibroacoustic Stimulation on Functional Connectivity in Patients with Insomnia. SLEEP DISORDERS 2020; 2020:7846914. [PMID: 32089894 PMCID: PMC7024098 DOI: 10.1155/2020/7846914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/23/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND It is well known that vibratory and auditory stimuli from vehicles such as cars and trains can help induce sleep. More recent literature suggests that specific types of vibratory and acoustic stimulation might help promote sleep, but this has not been tested with neuroimaging. Thus, the purpose of this study was to observe the effects of vibroacoustic stimulation (providing both vibratory and auditory stimuli) on functional connectivity changes in the brain using resting state functional magnetic resonance imaging (rs-fMRI), and compare these changes to improvements in sleep in patients with insomnia. METHODS For this study, 30 patients with insomnia were randomly assigned to receive one month of a vibroacoustic stimulation or be placed in a waitlist control. Patients were evaluated pre- and postprogram with qualitative sleep questionnaires and measurement of sleep duration with an actigraphy watch. In addition, patients underwent rs-fMRI to assess functional connectivity. RESULTS The results demonstrated that those patients receiving the vibroacoustic stimulation had significant improvements in measured sleep minutes as well as in scores on the Insomnia Severity Index questionnaire. In addition, significant changes were noted in functional connectivity in association with the vermis, cerebellar hemispheres, thalamus, sensorimotor area, nucleus accumbens, and prefrontal cortex. CONCLUSIONS The results of this study show that vibroacoustic stimulation alters the brain's functional connectivity as well as improves sleep in patients with insomnia.
Collapse
Affiliation(s)
- George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shiva Shahrampour
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Cutler Whitely
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mahdi Alizadeh
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chris Conklin
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karl Doghramji
- Sleep Disorders Center, Department of Psychiatry and Human Behavior, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Tingting Zhan
- Department of Biostatistics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Feroze Mohamed
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew Newberg
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniel Monti
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Individual slow-wave morphology is a marker of aging. Neurobiol Aging 2019; 80:71-82. [DOI: 10.1016/j.neurobiolaging.2019.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023]
|
9
|
Besedovsky L, Lange T, Haack M. The Sleep-Immune Crosstalk in Health and Disease. Physiol Rev 2019; 99:1325-1380. [PMID: 30920354 PMCID: PMC6689741 DOI: 10.1152/physrev.00010.2018] [Citation(s) in RCA: 725] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/08/2023] Open
Abstract
Sleep and immunity are bidirectionally linked. Immune system activation alters sleep, and sleep in turn affects the innate and adaptive arm of our body's defense system. Stimulation of the immune system by microbial challenges triggers an inflammatory response, which, depending on its magnitude and time course, can induce an increase in sleep duration and intensity, but also a disruption of sleep. Enhancement of sleep during an infection is assumed to feedback to the immune system to promote host defense. Indeed, sleep affects various immune parameters, is associated with a reduced infection risk, and can improve infection outcome and vaccination responses. The induction of a hormonal constellation that supports immune functions is one likely mechanism underlying the immune-supporting effects of sleep. In the absence of an infectious challenge, sleep appears to promote inflammatory homeostasis through effects on several inflammatory mediators, such as cytokines. This notion is supported by findings that prolonged sleep deficiency (e.g., short sleep duration, sleep disturbance) can lead to chronic, systemic low-grade inflammation and is associated with various diseases that have an inflammatory component, like diabetes, atherosclerosis, and neurodegeneration. Here, we review available data on this regulatory sleep-immune crosstalk, point out methodological challenges, and suggest questions open for future research.
Collapse
Affiliation(s)
- Luciana Besedovsky
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| | - Tanja Lange
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| | - Monika Haack
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
10
|
|
11
|
Landolt HP, Holst SC, Valomon A. Clinical and Experimental Human Sleep-Wake Pharmacogenetics. Handb Exp Pharmacol 2019; 253:207-241. [PMID: 30443785 DOI: 10.1007/164_2018_175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sleep and wakefulness are highly complex processes that are elegantly orchestrated by fine-tuned neurochemical changes among neuronal and non-neuronal ensembles, nuclei, and networks of the brain. Important neurotransmitters and neuromodulators regulating the circadian and homeostatic facets of sleep-wake physiology include melatonin, γ-aminobutyric acid, hypocretin, histamine, norepinephrine, serotonin, dopamine, and adenosine. Dysregulation of these neurochemical systems may cause sleep-wake disorders, which are commonly classified into insomnia disorder, parasomnias, circadian rhythm sleep-wake disorders, central disorders of hypersomnolence, sleep-related movement disorders, and sleep-related breathing disorders. Sleep-wake disorders can have far-reaching consequences on physical, mental, and social well-being and health and, thus, need be treated with effective and rational therapies. Apart from behavioral (e.g., cognitive behavioral therapy for insomnia), physiological (e.g., chronotherapy with bright light), and mechanical (e.g., continuous positive airway pressure treatment of obstructive sleep apnea) interventions, pharmacological treatments often are the first-line clinical option to improve disturbed sleep and wake states. Nevertheless, not all patients respond to pharmacotherapy in uniform and beneficial fashion, partly due to genetic differences. The improved understanding of the neurochemical mechanisms regulating sleep and wakefulness and the mode of action of sleep-wake therapeutics has provided a conceptual framework, to search for functional genetic variants modifying individual drug response phenotypes. This article will summarize the currently known genetic polymorphisms that modulate drug sensitivity and exposure, to partly determine individual responses to sleep-wake pharmacotherapy. In addition, a pharmacogenetic strategy will be outlined how based upon classical and opto-/chemogenetic strategies in animals, as well as human genetic associations, circuit mechanisms regulating sleep-wake functions in humans can be identified. As such, experimental human sleep-wake pharmacogenetics forms a bridge spanning basic research and clinical medicine and constitutes an essential step for the search and development of novel sleep-wake targets and therapeutics.
Collapse
Affiliation(s)
- Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
- Zürich Center for Interdisciplinary Sleep Research (ZiS), University of Zürich, Zürich, Switzerland.
| | - Sebastian C Holst
- Neurobiology Research Unit and Neuropharm, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Amandine Valomon
- Wisconsin Institute for Sleep and Consciousness, University of Wisconsin Madison, Madison, WI, USA
| |
Collapse
|
12
|
Holst SC, Werth E, Landolt HP. [Pharmacotherapy of Sleep-Wake Disorders]. PRAXIS 2019; 108:131-138. [PMID: 30722734 DOI: 10.1024/1661-8157/a003189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pharmacotherapy of Sleep-Wake Disorders Abstract. Sleep is a complex behavior, coordinated by many different brain regions and neurotransmitters. These neurochemical systems can be pharmacologically influenced to modulate wakefulness and sleep. Excessive daytime sleepiness (EDS) is often treated with dopaminergic drugs, which in mild cases range from caffeine via (ar)modafinil to amphetamine derivatives. Tricyclic antidepressants and melatonin-based drugs are also used to promote alertness, but to a lesser extent. The drugs used to promote sleep include GABA-ergic drugs such as benzodiazepines and Z-hypnotics as well as histamine H1 receptor antagonists. Exogenous melatonin or a pharmacological combination of melatonin receptor agonists and 5-HT2C receptor antagonists are also used in mild cases. Selective and dual orexin (hypocretin) receptor antagonists (DORA) as well as drugs binding to specific 5-HT receptors are currently being investigated as future sleep-promoting drugs. However, pharmacological treatment is not always the primary treatment option, insomnia is treated first-line with cognitive behavioral therapy, and continuous positive airway pressure is used to treat sleep apnea.
Collapse
Affiliation(s)
- Sebastian C Holst
- 1 Copenhagen University Hospital, Rigshospitalet, Department of Neurology and Neurobiology Research Unit, Kopenhagen, Dänemark
- 2 Sleep and Health Zürich (SHZ), Universität Zürich
| | - Esther Werth
- 2 Sleep and Health Zürich (SHZ), Universität Zürich
- 3 Klinik für Neurologie, Universitätsspital Zürich
| | - Hans-Peter Landolt
- 2 Sleep and Health Zürich (SHZ), Universität Zürich
- 4 Institut für Pharmakologie und Toxikologie, Universität Zürich
| |
Collapse
|
13
|
Restoring Serotonergic Homeostasis in the Lateral Hypothalamus Rescues Sleep Disturbances Induced by Early-Life Obesity. J Neurosci 2017; 38:441-451. [PMID: 29196316 DOI: 10.1523/jneurosci.1333-17.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/13/2017] [Accepted: 10/12/2017] [Indexed: 01/09/2023] Open
Abstract
Early-life obesity predisposes to obesity in adulthood, a condition with broad medical implications including sleep disorders, which can exacerbate metabolic disturbances and disrupt cognitive and affective behaviors. In this study, we examined the long-term impact of transient peripubertal diet-induced obesity (ppDIO, induced between 4 and 10 weeks of age) on sleep-wake behavior in male mice. EEG and EMG recordings revealed that ppDIO increases sleep during the active phase but reduces resting-phase sleep quality. This impaired sleep phenotype persisted for up to 1 year, although animals were returned to a non-obesiogenic diet from postnatal week 11 onwards. To better understand the mechanisms responsible for the ppDIO-induced alterations in sleep, we focused on the lateral hypothalamus (LH). Mice exposed to ppDIO did not show altered mRNA expression levels of orexin and melanin-concentrating hormone, two peptides that are important for sleep-wake behavior and food intake. Conversely, the LH of ppDIO-exposed mice had reduced contents of serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter involved in both sleep-wake and satiety regulation. Interestingly, an acute peripheral injection of the satiety-signaling peptide YY 3-36 increased 5-HT turnover in the LH and ameliorated the ppDIO-induced sleep disturbances, suggesting the therapeutic potential of this peptide. These findings provide new insights into how sleep-wake behavior is programmed during early life and how peripheral and central signals are integrated to coordinate sleep.SIGNIFICANCE STATEMENT Adult physiology and behavior are strongly influenced by dynamic reorganization of the brain during puberty. The present work shows that obesity during puberty leads to persistently dysregulated patterns of sleep and wakefulness by blunting serotonergic signaling in the lateral hypothalamus. It also shows that pharmacological mimicry of satiety with peptide YY3-36 can reverse this neurochemical imbalance and acutely restore sleep composition. These findings add insight into how innate behaviors such as feeding and sleep are integrated and suggest a novel mechanism through which diet-induced obesity during puberty imposes its long-lasting effects on sleep-wake behavior.
Collapse
|
14
|
Heterozygosity for the Mood Disorder-Associated Variant Gln460Arg Alters P2X7 Receptor Function and Sleep Quality. J Neurosci 2017; 37:11688-11700. [PMID: 29079688 DOI: 10.1523/jneurosci.3487-16.2017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
A single nucleotide polymorphism substitution from glutamine (Gln, Q) to arginine (Arg, R) at codon 460 of the purinergic P2X7 receptor (P2X7R) has repeatedly been associated with mood disorders. The P2X7R-Gln460Arg variant per se is not compromised in its function. However, heterologous expression of P2X7R-Gln460Arg together with wild-type P2X7R has recently been demonstrated to impair receptor function. Here we show that this also applies to humanized mice coexpressing both human P2X7R variants. Primary hippocampal cells derived from heterozygous mice showed an attenuated calcium uptake upon agonist stimulation. While humanized mice were unaffected in their behavioral repertoire under basal housing conditions, mice that harbor both P2X7R variants showed alterations in their sleep quality resembling signs of a prodromal disease stage. Also healthy heterozygous human subjects showed mild changes in sleep parameters. These results indicate that heterozygosity for the wild-type P2X7R and its mood disorder-associated variant P2X7R-Gln460Arg represents a genetic risk factor, which is potentially able to convey susceptibility to mood disorders.SIGNIFICANCE STATEMENT Depression and bipolar disorder are the most common mood disorders. The P2X7 receptor (P2X7R) regulates many cellular functions. Its polymorphic variant Gln460Arg has repeatedly been associated with mood disorders. Genetically engineered mice, with human P2X7R, revealed that heterozygous mice (i.e., they coexpress the disease-associated Gln460Arg variant together with its normal version) have impaired receptor function and showed sleep disturbances. Human participants with the heterozygote genotype also had subtle alterations in their sleep profile. Our findings suggest that altered P2X7R function in heterozygote individuals disturbs sleep and might increase the risk for developing mood disorders.
Collapse
|
15
|
Schüssler P, Kluge M, Gamringer W, Wetter TC, Yassouridis A, Uhr M, Rupprecht R, Steiger A. Corticotropin-releasing hormone induces depression-like changes of sleep electroencephalogram in healthy women. Psychoneuroendocrinology 2016; 74:302-307. [PMID: 27701044 DOI: 10.1016/j.psyneuen.2016.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/29/2016] [Accepted: 09/21/2016] [Indexed: 01/18/2023]
Abstract
We reported previously that repetitive intravenous injections of corticotropin-releasing hormone (CRH) around sleep onset prompt depression-like changes in certain sleep and endocrine activity parameters (e.g. decrease of slow-wave sleep during the second half of the night, blunted growth hormone peak, elevated cortisol concentration during the first half of the night). Furthermore a sexual dimorphism of the sleep-endocrine effects of the hormones growth hormone-releasing hormone and ghrelin was observed. In the present placebo-controlled study we investigated the effect of pulsatile administration of 4×50μg CRH on sleep electroencephalogram (EEG) and nocturnal cortisol and GH concentration in young healthy women. After CRH compared to placebo, intermittent wakefulness increased during the total night and the sleep efficiency index decreased. During the first third of the night, REM sleep and stage 2 sleep increased and sleep stage 3 decreased. Cortisol concentration was elevated throughout the night and during the first and second third of the night. GH secretion remained unchanged. Our data suggest that after CRH some sleep and endocrine activity parameters show also depression-like changes in healthy women. These changes are more distinct in women than in men.
Collapse
Affiliation(s)
- P Schüssler
- Max Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - M Kluge
- Max Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany
| | - W Gamringer
- Max Planck Institute of Psychiatry, Munich, Germany
| | - T C Wetter
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | | | - M Uhr
- Max Planck Institute of Psychiatry, Munich, Germany
| | - R Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - A Steiger
- Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
16
|
Pótári A, Ujma PP, Konrad BN, Genzel L, Simor P, Körmendi J, Gombos F, Steiger A, Dresler M, Bódizs R. Age-related changes in sleep EEG are attenuated in highly intelligent individuals. Neuroimage 2016; 146:554-560. [PMID: 27670234 DOI: 10.1016/j.neuroimage.2016.09.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/10/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022] Open
Abstract
Impaired sleep is a frequent complaint in ageing and a risk factor for many diseases. Non-rapid eye movement (NREM) sleep EEG delta power reflects neural plasticity and, in line with age-related cognitive decline, decreases with age. Individuals with higher general intelligence are less affected by age-related cognitive decline or other disorders and have longer lifespans. We investigated the correlation between age and EEG power in 159 healthy human subjects (age range: 17-69 years), and compared an average (IQ<120; N=87) with a high (IQ≥120; N=72) intelligence subgroup. We found less age-related decrease in all-night relative NREM sleep EEG delta power in the high intelligence subgroup. Our results suggest that highly intelligent individuals are less affected by the sleep-related effects of biological ageing, and therefore potentially less at risk for age-related cognitive deficits and other diseases.
Collapse
Affiliation(s)
- Adrián Pótári
- Department of Cognitive Sciences, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, H-1089 Budapest, Hungary; National Institute of Clinical Neurosciences, H-1145 Budapest, Hungary
| | - Boris N Konrad
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands
| | - Lisa Genzel
- Centre for Cognitive and Neural Systems, University of Edinburgh, EH8 9JZ Edinburgh, United Kingdom
| | - Péter Simor
- Department of Cognitive Sciences, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; Nyírő Gyula Hospital, National Institute of Psychiatry and Addictions, H-1135 Budapest, Hungary
| | - János Körmendi
- Department of Electrical Engineering and Information Systems, Pannon University, H-8200 Veszprém, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, H-1088 Boudapest, Hungary
| | - Axel Steiger
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands; Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, H-1089 Budapest, Hungary
| |
Collapse
|
17
|
Marisch C, Genzel L, Steiger A, Dresler M. Kreativität und Schlaf. SOMNOLOGIE 2016. [DOI: 10.1007/s11818-015-0039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Khalighi S, Sousa T, Santos JM, Nunes U. ISRUC-Sleep: A comprehensive public dataset for sleep researchers. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 124:180-92. [PMID: 26589468 DOI: 10.1016/j.cmpb.2015.10.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/06/2015] [Accepted: 10/05/2015] [Indexed: 05/27/2023]
Abstract
To facilitate the performance comparison of new methods for sleep patterns analysis, datasets with quality content, publicly-available, are very important and useful. We introduce an open-access comprehensive sleep dataset, called ISRUC-Sleep. The data were obtained from human adults, including healthy subjects, subjects with sleep disorders, and subjects under the effect of sleep medication. Each recording was randomly selected between PSG recordings that were acquired by the Sleep Medicine Centre of the Hospital of Coimbra University (CHUC). The dataset comprises three groups of data: (1) data concerning 100 subjects, with one recording session per subject; (2) data gathered from 8 subjects; two recording sessions were performed per subject, and (3) data collected from one recording session related to 10 healthy subjects. The polysomnography (PSG) recordings, associated with each subject, were visually scored by two human experts. Comparing the existing sleep-related public datasets, ISRUC-Sleep provides data of a reasonable number of subjects with different characteristics such as: data useful for studies involving changes in the PSG signals over time; and data of healthy subjects useful for studies involving comparison of healthy subjects with the patients, suffering from sleep disorders. This dataset was created aiming to complement existing datasets by providing easy-to-apply data collection with some characteristics not covered yet. ISRUC-Sleep can be useful for analysis of new contributions: (i) in biomedical signal processing; (ii) in development of ASSC methods; and (iii) on sleep physiology studies. To evaluate and compare new contributions, which use this dataset as a benchmark, results of applying a subject-independent automatic sleep stage classification (ASSC) method on ISRUC-Sleep dataset are presented.
Collapse
Affiliation(s)
- Sirvan Khalighi
- Institute of Systems and Robotics (ISR-UC), Department of Electrical and Computer Engineering, University of Coimbra, Portugal.
| | - Teresa Sousa
- Institute of Systems and Robotics (ISR-UC), Department of Electrical and Computer Engineering, University of Coimbra, Portugal
| | - José Moutinho Santos
- Sleep Medicine Centre, The Central Hospital of University of Coimbra (CHUC), Portugal
| | - Urbano Nunes
- Institute of Systems and Robotics (ISR-UC), Department of Electrical and Computer Engineering, University of Coimbra, Portugal
| |
Collapse
|
19
|
Holst SC, Valomon A, Landolt HP. Sleep Pharmacogenetics: Personalized Sleep-Wake Therapy. Annu Rev Pharmacol Toxicol 2016; 56:577-603. [DOI: 10.1146/annurev-pharmtox-010715-103801] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian C. Holst
- Institute of Pharmacology and Toxicology and Zürich Center for Interdisciplinary Sleep Research, University of Zürich, CH-8057 Zürich, Switzerland;
| | - Amandine Valomon
- Institute of Pharmacology and Toxicology and Zürich Center for Interdisciplinary Sleep Research, University of Zürich, CH-8057 Zürich, Switzerland;
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology and Zürich Center for Interdisciplinary Sleep Research, University of Zürich, CH-8057 Zürich, Switzerland;
| |
Collapse
|
20
|
Leiser SC, Iglesias-Bregna D, Westrich L, Pehrson AL, Sanchez C. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism. J Psychopharmacol 2015; 29:1092-105. [PMID: 26174134 PMCID: PMC4579402 DOI: 10.1177/0269881115592347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80-90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine's acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine's acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences.
Collapse
|
21
|
Rak M, Beitinger P, Steiger A, Schredl M, Dresler M. Increased lucid dreaming frequency in narcolepsy. Sleep 2015; 38:787-92. [PMID: 25325481 DOI: 10.5665/sleep.4676] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/26/2014] [Indexed: 01/26/2023] Open
Abstract
STUDY OBJECTIVE Nightmares are a frequent symptom in narcolepsy. Lucid dreaming, i.e., the phenomenon of becoming aware of the dreaming state during dreaming, has been demonstrated to be of therapeutic value for recurrent nightmares. Data on lucid dreaming in narcolepsy patients, however, is sparse. The aim of this study was to evaluate the frequency of recalled dreams (DF), nightmares (NF), and lucid dreams (LDF) in narcolepsy patients compared to healthy controls. In addition, we explored if dream lucidity provides relief during nightmares in narcolepsy patients. DESIGN We interviewed patients with narcolepsy and healthy controls. SETTING Telephone interview. PATIENTS 60 patients diagnosed with narcolepsy (23-82 years, 35 females) and 919 control subjects (14-93 years, 497 females). INTERVENTIONS N/A. MEASUREMENTS AND RESULTS Logistic regression revealed significant (P < 0.001) differences in DF, NF, and LDF between narcolepsy patients and controls after controlling for age and gender, with effect sizes lying in the large range (Cohen's d > 0.8). The differences in NF and LDF between patients and controls stayed significant after controlling for DF. Comparison of 35 narcolepsy patients currently under medication with their former drug-free period revealed significant differences in DF and NF (z < 0.05, signed-rank test) but not LDF (z = 0.8). Irrespective of medication, 70% of narcolepsy patients with experience in lucid dreaming indicated that dream lucidity provides relief during nightmares. CONCLUSION Narcolepsy patients experience a markedly higher lucid dreaming frequency compared to controls, and many patients report a positive impact of dream lucidity on the distress experienced from nightmares.
Collapse
Affiliation(s)
- Michael Rak
- Max-Plank-Institute of Psychiatry, Munich, Germany
| | | | - Axel Steiger
- Max-Plank-Institute of Psychiatry, Munich, Germany
| | - Michael Schredl
- Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Martin Dresler
- Max-Plank-Institute of Psychiatry, Munich, Germany.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
22
|
Adamczyk M, Gazea M, Wollweber B, Holsboer F, Dresler M, Steiger A, Pawlowski M. Cordance derived from REM sleep EEG as a biomarker for treatment response in depression--a naturalistic study after antidepressant medication. J Psychiatr Res 2015; 63:97-104. [PMID: 25772006 DOI: 10.1016/j.jpsychires.2015.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/07/2015] [Accepted: 02/11/2015] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To evaluate whether prefrontal cordance in theta frequency band derived from REM sleep EEG after the first week of antidepressant medication could characterize the treatment response after 4 weeks of therapy in depressed patients. METHOD 20 in-patients (15 females, 5 males) with a depressive episode and 20 healthy matched controls were recruited into 4-week, open label, case-control study. Patients were treated with various antidepressants. No significant differences in age (responders (mean ± SD): 45 ± 22) years; non-responders: 49 ± 12 years), medication or Hamilton Depression Rating Scale (HAM-D) score (responders: 23.8 ± 4.5; non-responders 24.5 ± 7.6) at inclusion into the study were found between responders and non-responders. Response to treatment was defined as a ≥50% reduction of HAM-D score at the end of four weeks of active medication. Sleep EEG of patients was recorded after the first and the fourth week of medication. Cordance was computed for prefrontal EEG channels in theta frequency band during tonic REM sleep. RESULTS The group of 8 responders had significantly higher prefrontal theta cordance in relation to the group of 12 non-responders after the first week of antidepressant medication. This finding was significant also when controlling for age, gender and number of previous depressive episodes (F1,15 = 6.025, P = .027). Furthermore, prefrontal cordance of all patients showed significant positive correlation (r = 0.52; P = .019) with the improvement of HAM-D score between the inclusion week and fourth week of medication. CONCLUSIONS The results suggest that prefrontal cordance derived from REM sleep EEG could provide a biomarker for the response to antidepressant treatment in depressed patients.
Collapse
Affiliation(s)
| | - Mary Gazea
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | - Axel Steiger
- Max Planck Institute of Psychiatry, Munich, Germany
| | | |
Collapse
|
23
|
Wang ZJ, Zhang XQ, Cui XY, Cui SY, Yu B, Sheng ZF, Li SJ, Cao Q, Huang YL, Xu YP, Zhang YH. Glucocorticoid receptors in the locus coeruleus mediate sleep disorders caused by repeated corticosterone treatment. Sci Rep 2015; 5:9442. [PMID: 25801728 PMCID: PMC4371174 DOI: 10.1038/srep09442] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/05/2015] [Indexed: 12/29/2022] Open
Abstract
Stress induced constant increase of cortisol level may lead to sleep disorder, but the mechanism remains unclear. Here we described a novel model to investigate stress mimicked sleep disorders induced by repetitive administration of corticosterone (CORT). After 7 days treatment of CORT, rats showed significant sleep disturbance, meanwhile, the glucocorticoid receptor (GR) level was notably lowered in locus coeruleus (LC). We further discovered the activation of noradrenergic neuron in LC, the suppression of GABAergic neuron in ventrolateral preoptic area (VLPO), the remarkable elevation of norepinephrine in LC, VLPO and hypothalamus, as well as increase of tyrosine hydroxylase in LC and decrease of glutamic acid decarboxylase in VLPO after CORT treatment. Microinjection of GR antagonist RU486 into LC reversed the CORT-induced sleep changes. These results suggest that GR in LC may play a key role in stress-related sleep disorders and support the hypothesis that repeated CORT treatment may decrease GR levels and induce the activation of noradrenergic neurons in LC, consequently inhibit GABAergic neurons in VLPO and result in sleep disorders. Our findings provide novel insights into the effect of stress-inducing agent CORT on sleep and GRs' role in sleep regulation.
Collapse
Affiliation(s)
- Zi-Jun Wang
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Xue-Qiong Zhang
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Xiang-Yu Cui
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Su-Ying Cui
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Bin Yu
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Zhao-Fu Sheng
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Sheng-Jie Li
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Qing Cao
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Yuan-Li Huang
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Ya-Ping Xu
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Yong-He Zhang
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| |
Collapse
|
24
|
Dresler M, Wehrle R, Spoormaker VI, Steiger A, Holsboer F, Czisch M, Hobson JA. Neural correlates of insight in dreaming and psychosis. Sleep Med Rev 2014; 20:92-9. [PMID: 25092021 DOI: 10.1016/j.smrv.2014.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 06/06/2014] [Accepted: 06/14/2014] [Indexed: 12/17/2022]
Abstract
The idea that dreaming can serve as a model for psychosis has a long and honourable tradition, however it is notoriously speculative. Here we demonstrate that recent research on the phenomenon of lucid dreaming sheds new light on the debate. Lucid dreaming is a rare state of sleep in which the dreamer gains insight into his state of mind during dreaming. Recent electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data for the first time allow very specific hypotheses about the dream-psychosis relationship: if dreaming is a reasonable model for psychosis, then insight into the dreaming state and insight into the psychotic state should share similar neural correlates. This indeed seems to be the case: cortical areas activated during lucid dreaming show striking overlap with brain regions that are impaired in psychotic patients who lack insight into their pathological state. This parallel allows for new therapeutic approaches and ways to test antipsychotic medication.
Collapse
Affiliation(s)
- Martin Dresler
- Max Planck Institute of Psychiatry, Munich, Germany; Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands.
| | | | | | - Axel Steiger
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | |
Collapse
|
25
|
Ferini-Strambi L, Marelli S. Pharmacotherapy for restless legs syndrome. Expert Opin Pharmacother 2014; 15:1127-38. [DOI: 10.1517/14656566.2014.908850] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|