1
|
Xia R, Yuan Q, Wang N, Hou L, Abe J, Song J, Ito Y, Xu HE, He Y. Structural insight into GPR55 ligand recognition and G-protein coupling. Cell Res 2025; 35:76-79. [PMID: 39482404 DOI: 10.1038/s41422-024-01044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/12/2024] [Indexed: 11/03/2024] Open
Affiliation(s)
- Ruixue Xia
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Qingning Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Na Wang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Li Hou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junpei Abe
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Osaka International Cancer Institute, Osaka, Osaka, Japan
| | - Jing Song
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yukishige Ito
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Yuanzheng He
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Liu B, Ruz-Maldonado I, Persaud SJ. Global deletion of G protein-coupled receptor 55 impairs glucose homeostasis during obesity by reducing insulin secretion and β-cell turnover. Diabetes Obes Metab 2024; 26:4591-4601. [PMID: 39113250 DOI: 10.1111/dom.15816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 09/19/2024]
Abstract
AIM To investigate the effect of G protein-coupled receptor 55 (GPR55) deletion on glucose homeostasis and islet function following diet-induced obesity. METHODS GPR55-/- and wild-type (WT) mice were fed ad libitum either standard chow (SC) or a high-fat diet (HFD) for 20 weeks. Glucose and insulin tolerance tests were performed at 9/10 and 19/20 weeks of dietary intervention. Insulin secretion in vivo and dynamic insulin secretion following perifusion of isolated islets were also determined, as were islet caspase-3/7 activities and β-cell 5-bromo-20-deoxyuridine (BrdU) incorporation. RESULTS GPR55-/- mice fed a HFD were more susceptible to diet-induced obesity and were more glucose intolerant and insulin resistant than WT mice maintained on a HFD. Islets isolated from HFD-fed GPR55-/- mice showed impaired glucose- and pcacahorbol 12-myristate 13-acetate-stimulated insulin secretion, and they also displayed increased cytokine-induced apoptosis. While there was a 5.6 ± 1.6-fold increase in β-cell BrdU incorporation in the pancreases of WT mice fed a HFD, this compensatory increase in β-cell proliferation in response to the HFD was attenuated in GPR55-/- mice. CONCLUSIONS Under conditions of diet-induced obesity, GPR55-/- mice show impaired glucose handling, which is associated with reduced insulin secretory capacity, increased islet cell apoptosis and insufficient compensatory increases in β-cell proliferation. These observations support that GPR55 plays an important role in positively regulating islet function.
Collapse
Affiliation(s)
- Bo Liu
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Inmaculada Ruz-Maldonado
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Comparative Medicine & Pathology, Vascular Biology and Therapeutics Program (VBT) Program in Integrative Cell Signaling and Neurobiology of Metabolism (ICSNM), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shanta J Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
3
|
Zamith Cunha R, Grilli E, Piva A, Delprete C, Franciosi C, Caprini M, Chiocchetti R. The Expression of Cannabinoid and Cannabinoid-Related Receptors on the Gustatory Cells of the Piglet Tongue. Molecules 2024; 29:4613. [PMID: 39407543 PMCID: PMC11478043 DOI: 10.3390/molecules29194613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The gustatory system is responsible for detecting and evaluating the palatability of the various chemicals present in food and beverages. Taste bud cells, located primarily on the tongue, communicate with the gustatory sensory neurons by means of neurochemical signals, transmitting taste information to the brain. It has also been found that the endocannabinoid system (ECS) may modulate food intake and palatability, and that taste bud cells express cannabinoid receptors. The purpose of this study was to investigate the expression of cannabinoid and cannabinoid-related receptors in the gustatory cells of the papillae vallatae and foliatae of ten piglets. Specific antibodies against the cannabinoid receptors (CB1R and CB2R), G protein-coupled receptor 55 (GPR55), transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) were applied on cryosections of lingual tissue; the lingual tissue was also processed using Western blot analysis. Cannabinoid and cannabinoid-related receptors were found to be expressed in the taste bud cells and the surrounding epithelial cells. The extra-papillary epithelium also showed strong immunolabeling for these receptors. The results showed that these receptors were present in both the taste bud cells and the extra-gustatory epithelial cells, indicating their potential role in taste perception and chemesthesis. These findings contributed to understanding the complex interactions between cannabinoids and the gustatory system, highlighting the role of the ECS within taste perception and its potential use in animal production in order to enhance food intake.
Collapse
Affiliation(s)
- Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (R.Z.C.); (E.G.); (A.P.)
| | - Ester Grilli
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (R.Z.C.); (E.G.); (A.P.)
- R&D Division, Vetagro S.p.A., Via Porro 2, 42124 Reggio Emilia, Italy
- R&D Division, Vetagro, Inc., 17 East Monroe Street, Suite #179, Chicago, IL 60603, USA
| | - Andrea Piva
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (R.Z.C.); (E.G.); (A.P.)
- R&D Division, Vetagro S.p.A., Via Porro 2, 42124 Reggio Emilia, Italy
- R&D Division, Vetagro, Inc., 17 East Monroe Street, Suite #179, Chicago, IL 60603, USA
| | - Cecilia Delprete
- Laboratory of Cellular Physiology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (C.D.); (C.F.); (M.C.)
| | - Cecilia Franciosi
- Laboratory of Cellular Physiology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (C.D.); (C.F.); (M.C.)
| | - Marco Caprini
- Laboratory of Cellular Physiology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (C.D.); (C.F.); (M.C.)
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (R.Z.C.); (E.G.); (A.P.)
| |
Collapse
|
4
|
Shi Z, Liu X, Wu S, Song N, Tang Q, Li H, Luo S, Chan ASC, Cai X, Liu H, Jiang X. Discovery of Novel Peptide Antagonists Targeting GPR55 for Liver Inflammation and Fibrosis. J Med Chem 2024; 67:12085-12098. [PMID: 38991128 DOI: 10.1021/acs.jmedchem.4c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Liver fibrosis is a condition characterized by aberrant proliferation of connective tissue in the liver resulting from diverse etiological factors. G protein-coupled receptor GPR55 has recently been identified as a regulator of liver diseases. Herein, we report the discovery of a cyclic peptide P1-1 that antagonizes GPR55 and suppresses collagen secretion in hepatic stellate cells. The alanine scanning and docking study was carried out to predict the binding mode and allowed for further structural optimization of peptide antagonists for GPR55. The subsequent in vivo study demonstrated that P1-1 ameliorates CCl4-induce and MCD-diet-induce acute liver inflammation and fibrosis. Further study indicates that P1-1 reduces reactive oxygen species (ROS) production, attenuates ER stress, and inhibits mitochondria-associated hepatocyte apoptosis. In this work, we provided the first successful example of antagonizing GPR55 for liver inflammation and fibrosis, which validates GPR55 as a promising target for the treatment of liver fibrosis and affords a high-potent GPR55 antagonist P1-1 as a potential therapeutic candidate.
Collapse
Affiliation(s)
- Zihan Shi
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xianyan Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuohan Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Nazi Song
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qinglin Tang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Shenzhen Turier Biotech. Co. Ltd, Shenzhen 518000, China
| | - Haonan Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Suijia Luo
- Shenzhen Turier Biotech. Co. Ltd, Shenzhen 518000, China
| | - Albert S C Chan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoqing Cai
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Han Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xianxing Jiang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Kaszyńska AA. Cannabinoids: Potential for Modulation and Enhancement When Combined with Vitamin B12 in Case of Neurodegenerative Disorders. Pharmaceuticals (Basel) 2024; 17:813. [PMID: 38931480 PMCID: PMC11207064 DOI: 10.3390/ph17060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The enduring relationship between humanity and the cannabis plant has witnessed significant transformations, particularly with the widespread legalization of medical cannabis. This has led to the recognition of diverse pharmacological formulations of medical cannabis, containing 545 identified natural compounds, including 144 phytocannabinoids like Δ9-THC and CBD. Cannabinoids exert distinct regulatory effects on physiological processes, prompting their investigation in neurodegenerative diseases. Recent research highlights their potential in modulating protein aggregation and mitochondrial dysfunction, crucial factors in conditions such as Alzheimer's Disease, multiple sclerosis, or Parkinson's disease. The discussion emphasizes the importance of maintaining homeodynamics in neurodegenerative disorders and explores innovative therapeutic approaches such as nanoparticles and RNA aptamers. Moreover, cannabinoids, particularly CBD, demonstrate anti-inflammatory effects through the modulation of microglial activity, offering multifaceted neuroprotection including mitigating aggregation. Additionally, the potential integration of cannabinoids with vitamin B12 presents a holistic framework for addressing neurodegeneration, considering their roles in homeodynamics and nervous system functioning including the hippocampal neurogenesis. The potential synergistic therapeutic benefits of combining CBD with vitamin B12 underscore a promising avenue for advancing treatment strategies in neurodegenerative diseases. However, further research is imperative to fully elucidate their effects and potential applications, emphasizing the dynamic nature of this field and its potential to reshape neurodegenerative disease treatment paradigms.
Collapse
Affiliation(s)
- Anna Aleksandra Kaszyńska
- The Centre of Neurocognitive Research, Institute of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, 03-815 Warszawa, Poland
| |
Collapse
|
6
|
Sun T, Du YY, Zhang YQ, Tian QQ, Li X, Yu JY, Guo YY, Liu QQ, Yang L, Wu YM, Yang Q, Zhao MG. Activation of GPR55 Ameliorates Maternal Separation-Induced Learning and Memory Deficits by Augmenting 5-HT Synthesis in the Dorsal Raphe Nucleus of Juvenile Mice. ACS OMEGA 2024; 9:21838-21850. [PMID: 38799363 PMCID: PMC11112691 DOI: 10.1021/acsomega.3c08934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Maternal separation (MS) represents a profound early life stressor with enduring impacts on neuronal development and adult cognitive function in both humans and rodents. MS is associated with persistent dysregulations in neurotransmitter systems, including the serotonin (5-HT) pathway, which is pivotal for mood stabilization and stress-coping mechanisms. Although the novel cannabinoid receptor, GPR55, is recognized for its influence on learning and memory, its implications on the function and synaptic dynamics of 5-HT neurons within the dorsal raphe nucleus (DRN) remain to be elucidated. In this study, we sought to discern the repercussions of GPR55 activation on 5-HT synthesis within the DRN of adult C57BL/6J mice that experienced MS. Concurrently, we analyzed potential alterations in excitatory synaptic transmission, long-term synaptic plasticity, and relevant learning and memory outcomes. Our behavioral assessments indicated a marked amelioration in MS-induced learning and memory deficits following GPR55 activation. In conjunction with this, we noted a substantial decrease in 5-HT levels in the MS model, while GPR55 activation stimulated tryptophan hydroxylase 2 synthesis and fostered the release of 5-HT. Electrophysiological patch-clamp analyses highlighted the ability of GPR55 activation to alleviate MS-induced cognitive deficits by modulating the frequency and magnitude of miniature excitatory postsynaptic currents within the DRN. Notably, this cognitive enhancement was underpinned by the phosphorylation of both NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. In summary, our findings underscore the capacity of GPR55 to elevate 5-HT synthesis and modify synaptic transmissions within the DRN of juvenile mice, positing GPR55 as a promising therapeutic avenue for ameliorating MS-induced cognitive impairment.
Collapse
Affiliation(s)
- Ting Sun
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical
University, Xi’an 710038, China
| | - Ya-Ya Du
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical
University, Xi’an 710038, China
| | - Yong-Qiang Zhang
- Department
of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an 710032, China
| | - Qin-Qin Tian
- Department
of Chemistry, School of Pharmacy, Air Force
Medical University, Xi’an 710032, China
| | - Xi Li
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical
University, Xi’an 710038, China
| | - Jiao-Yan Yu
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical
University, Xi’an 710038, China
| | - Yan-Yan Guo
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical
University, Xi’an 710038, China
| | - Qing-Qing Liu
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical
University, Xi’an 710038, China
| | - Le Yang
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical
University, Xi’an 710038, China
| | - Yu-Mei Wu
- Department
of Pharmacology, School of Pharmacy, Air
Force Medical University, Xi’an 710032, China
| | - Qi Yang
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical
University, Xi’an 710038, China
| | - Ming-Gao Zhao
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical
University, Xi’an 710038, China
| |
Collapse
|
7
|
Patil M, Casari I, Warne LN, Falasca M. G protein-coupled receptors driven intestinal glucagon-like peptide-1 reprogramming for obesity: Hope or hype? Biomed Pharmacother 2024; 172:116245. [PMID: 38340396 DOI: 10.1016/j.biopha.2024.116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
'Globesity' is a foremost challenge to the healthcare system. The limited efficacy and adverse effects of available oral pharmacotherapies pose a significant obstacle in the fight against obesity. The biology of the leading incretin hormone glucagon-like-peptide-1 (GLP-1) has been highly captivated during the last decade owing to its multisystemic pleiotropic clinical outcomes beyond inherent glucoregulatory action. That fostered a pharmaceutical interest in synthetic GLP-1 analogues to tackle type-2 diabetes (T2D), obesity and related complications. Besides, mechanistic insights on metabolic surgeries allude to an incretin-based hormonal combination strategy for weight loss that emerged as a forerunner for the discovery of injectable 'unimolecular poly-incretin-agonist' therapies. Physiologically, intestinal enteroendocrine L-cells (EECs) are the prominent endogenous source of GLP-1 peptide. Despite comprehending the potential of various G protein-coupled receptors (GPCRs) to stimulate endogenous GLP-1 secretion, decades of translational GPCR research have failed to yield regulatory-approved endogenous GLP-1 secretagogue oral therapy. Lately, a dual/poly-GPCR agonism strategy has emerged as an alternative approach to the traditional mono-GPCR concept. This review aims to gain a comprehensive understanding by revisiting the pharmacology of a few potential GPCR-based complementary avenues that have drawn attention to the design of orally active poly-GPCR agonist therapy. The merits, challenges and recent developments that may aid future poly-GPCR drug discovery are critically discussed. Subsequently, we project the mechanism-based therapeutic potential and limitations of oral poly-GPCR agonism strategy to augment intestinal GLP-1 for weight loss. We further extend our discussion to compare the poly-GPCR agonism approach over invasive surgical and injectable GLP-1-based regimens currently in clinical practice for obesity.
Collapse
Affiliation(s)
- Mohan Patil
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Leon N Warne
- Little Green Pharma, West Perth, Western Australia 6872, Australia
| | - Marco Falasca
- University of Parma, Department of Medicine and Surgery, Via Volturno 39, 43125 Parma, Italy.
| |
Collapse
|
8
|
Li L, Gao P, Tang X, Liu Z, Cao M, Luo R, Li X, Wang J, Lin X, Peng C, Li Z, Zhang J, Zhang X, Cao Z, Zou Y, Jin L. CB1R-stabilized NLRP3 inflammasome drives antipsychotics cardiotoxicity. Signal Transduct Target Ther 2022; 7:190. [PMID: 35739093 PMCID: PMC9225989 DOI: 10.1038/s41392-022-01018-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 12/21/2022] Open
Abstract
Long-term use of antipsychotics is a common cause of myocardial injury and even sudden cardiac deaths that often lead to drug withdrawn or discontinuation. Mechanisms underlying antipsychotics cardiotoxicity remain largely unknown. Herein we performed RNA sequencing and found that NLRP3 inflammasome-mediated pyroptosis contributed predominantly to multiple antipsychotics cardiotoxicity. Pyroptosis-based small-molecule compound screen identified cannabinoid receptor 1 (CB1R) as an upstream regulator of the NLRP3 inflammasome. Mechanistically, antipsychotics competitively bond to the CB1R and led to CB1R translocation to the cytoplasm, where CB1R directly interacted with NLRP3 inflammasome via amino acid residues 177-209, rendering stabilization of the inflammasome. Knockout of Cb1r significantly alleviated antipsychotic-induced cardiomyocyte pyroptosis and cardiotoxicity. Multi-organ-based investigation revealed no additional toxicity of newer CB1R antagonists. In authentic human cases, the expression of CB1R and NLRP3 inflammasome positively correlated with antipsychotics-induced cardiotoxicity. These results suggest that CB1R is a potent regulator of the NLRP3 inflammsome-mediated pyroptosis and small-molecule inhibitors targeting the CB1R/NLRP3 signaling represent attractive approaches to rescue cardiac side effects of antipsychotics.
Collapse
Affiliation(s)
- Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China.
| | - Pan Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinru Tang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zheng Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mengying Cao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ruoyu Luo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Xiaoqing Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jing Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Zhihong Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Jianhua Zhang
- Academy of Forensic Science, Ministry of Justice, and Shanghai Key Laboratory of Forensic Medicine, Shanghai, 200063, China
| | - Xian Zhang
- Department of Cardiology, Kunshan Hospital of Integrated Traditional Chinese and Western Medicine, Kunshan, Jiangsu, 215301, China
| | - Zhonglian Cao
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China. .,Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Shen SY, Yu R, Li W, Liang LF, Han QQ, Huang HJ, Li B, Xu SF, Wu GC, Zhang YQ, Yu J. The neuroprotective effects of GPR55 against hippocampal neuroinflammation and impaired adult neurogenesis in CSDS mice. Neurobiol Dis 2022; 169:105743. [DOI: 10.1016/j.nbd.2022.105743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022] Open
|
10
|
Lian J, Casari I, Falasca M. Modulatory role of the endocannabinoidome in the pathophysiology of the gastrointestinal tract. Pharmacol Res 2021; 175:106025. [PMID: 34883211 DOI: 10.1016/j.phrs.2021.106025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
Originating from Eastern Asia, the plant Cannabis sativa has been used for centuries as a medicinal treatment. The unwanted psychotropic effects of one of its major components, Δ9-tetrahydrocannabinol, discouraged its therapeutic employment until, recently, the discovery of cannabinoids receptors and their endogenous ligands endocannabinoids reignited the interest. The endocannabinoid system has lately been found to play an important role in the maintenance of human health, both centrally and peripherally. However, the initial idea of the endocannabinoid system structure has been quickly understood to be too simplistic and, as new receptors, mediators, and enzymes have been discovered to participate in a complex relationship, the new, more comprehensive term "expanded endocannabinoid system" or "endocannabinoidome", has taken over. The discovery of other endocannabinoid-like receptors, such as the G protein-coupled receptor 119 and G protein-coupled receptor 55, has opened the way to the development of potential therapeutic targets for the treatment of various metabolic disorders. In addition, recent findings have also provided evidence suggesting the potential therapeutic link between the endocannabinoidome and various inflammatory-based gut diseases, such as inflammatory bowel disease and cancer. This review will provide an introduction to the endocannabinoidome, focusing on its modulatory role in the gastrointestinal tract and on the interest generated by the link between gut microbiota, the endocannabinoid system and metabolic diseases such as inflammatory bowel disease, type-2 diabetes and obesity. In addition, we will look at the potential novel aspects and benefits of drugs targeting the endocannabinoid system.
Collapse
Affiliation(s)
- Jerome Lian
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
11
|
Oyagawa CRM, Grimsey NL. Cannabinoid receptor CB 1 and CB 2 interacting proteins: Techniques, progress and perspectives. Methods Cell Biol 2021; 166:83-132. [PMID: 34752341 DOI: 10.1016/bs.mcb.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cannabinoid receptors 1 and 2 (CB1 and CB2) are implicated in a range of physiological processes and have gained attention as promising therapeutic targets for a number of diseases. Protein-protein interactions play an integral role in modulating G protein-coupled receptor (GPCR) expression, subcellular distribution and signaling, and the identification and characterization of these will not only improve our understanding of GPCR function and biology, but may provide a novel avenue for therapeutic intervention. A variety of techniques are currently being used to investigate GPCR protein-protein interactions, including Förster/fluorescence and bioluminescence resonance energy transfer (FRET and BRET), proximity ligation assay (PLA), and bimolecular fluorescence complementation (BiFC). However, the reliable application of these methodologies is dependent on the use of appropriate controls and the consideration of the physiological context. Though not as extensively characterized as some other GPCRs, the investigation of CB1 and CB2 interacting proteins is a growing area of interest, and a range of interacting partners have been identified to date. This review summarizes the current state of the literature regarding the cannabinoid receptor interactome, provides commentary on the methodologies and techniques utilized, and discusses future perspectives.
Collapse
Affiliation(s)
- Caitlin R M Oyagawa
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
12
|
Ruz-Maldonado I, Atanes P, Huang GC, Liu B, Persaud SJ. Direct Stimulatory Effects of the CB 2 Ligand JTE 907 in Human and Mouse Islets. Cells 2021; 10:700. [PMID: 33809893 PMCID: PMC8004177 DOI: 10.3390/cells10030700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 11/20/2022] Open
Abstract
AIMS The endocannabinoid system is a complex cell-signaling network through which endogenous cannabinoid ligands regulate cell function by interaction with CB1 and CB2 cannabinoid receptors, and with the novel cannabinoid receptor GPR55. CB1, CB2, and GPR55 are expressed by islet β-cells where they modulate insulin secretion. We have previously shown that administration of the putative CB2 antagonist/inverse agonist JTE 907 to human islets did not affect the insulinotropic actions of CB2 agonists and it unexpectedly stimulated insulin secretion on its own. In this study, we evaluated whether the lack of antagonism could be related to the ability of JTE 907 to act as a GPR55 agonist. MATERIALS AND METHODS We used islets isolated from human donors and from Gpr55+/+ and Gpr55-/- mice and quantified the effects of incubation with 10 μM JTE 907 on dynamic insulin secretion, apoptosis, and β-cell proliferation by radioimmunoassay, luminescence caspase 3/7 activity, and immunofluorescence, respectively. We also measured islet IP1 and cAMP accumulation using fluorescence assays, and monitored [Ca2+]i elevations by Fura-2 single cell microfluorometry. RESULTS JTE 907 significantly stimulated insulin secretion from islets isolated from human donors and islets from Gpr55+/+ and Gpr55-/- mice. These stimulatory effects were accompanied by significant elevations of IP1 and [Ca2+]i, but there were no changes in cAMP generation. JTE 907 also significantly reduced cytokine-induced apoptosis in human and mouse islets and promoted human β-cell proliferation. CONCLUSION Our observations show for the first time that JTE 907 acts as a Gq-coupled agonist in islets to stimulate insulin secretion and maintain β-cell mass in a GPR55-independent fashion.
Collapse
Affiliation(s)
- Inmaculada Ruz-Maldonado
- Department of Diabetes, School of Life Course Sciences, King’s College London, Guy’s Campus, London SE1 1UL, UK; (P.A.); (G.C.H.); (B.L.)
| | | | | | | | - Shanta J Persaud
- Department of Diabetes, School of Life Course Sciences, King’s College London, Guy’s Campus, London SE1 1UL, UK; (P.A.); (G.C.H.); (B.L.)
| |
Collapse
|
13
|
The effect of intra-striatal administration of GPR55 agonist (LPI) and antagonist (ML193) on sensorimotor and motor functions in a Parkinson's disease rat model. Acta Neuropsychiatr 2021; 33:15-21. [PMID: 32967746 DOI: 10.1017/neu.2020.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE G protein-coupled receptor 55 (GPR55) is an orphan G protein-coupled receptor with various physiological functions. Recent evidence suggests that this receptor may be involved in the control of motor functions. Therefore, in the present study, we evaluated the effects of intra-striatal administration of GPR55 selective ligands in a rat model of Parkinson's disease. METHODS Experimental Parkinson was induced by unilateral intra-striatal administration of 6-hydroxydopamine (6-OHDA, 10 µg/rat). L-α-lysophosphatidylinositol (LPI, 1 and 5 µg/rat), an endogenous GPR55 agonist, and ML193 (1 and 5 µg/rat), a selective GPR55 antagonist, were injected into the striatum of 6-OHDA-lesioned rats. Motor performance and balance skills were evaluated using the accelerating rotating rod and the ledged beam tests. The sensorimotor function of the forelimbs and locomotor activity were assessed by the adhesive removal and open field tests, respectively. RESULTS 6-OHDA-lesioned rats had impaired behaviours in all tests. Intra-striatal administration of LPI in 6-OHDA-lesioned rats increased time on the rotarod, decreased latency to remove the label, with no significant effect on slip steps, and locomotor activity. Intra-striatal administration of ML193 also increased time on the rotarod, decreased latency to remove the label and slip steps in 6-OHDA-lesioned rats mostly at the dose of 1 µg/rat. CONCLUSIONS This study suggests that the striatal GPR55 is involved in the control of motor functions. However, considering the similar effects of GPR55 agonist and antagonist, it may be concluded that this receptor has a modulatory role in the control of motor deficits in an experimental model of Parkinson.
Collapse
|
14
|
García-Baos A, Alegre-Zurano L, Cantacorps L, Martín-Sánchez A, Valverde O. Role of cannabinoids in alcohol-induced neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110054. [PMID: 32758518 DOI: 10.1016/j.pnpbp.2020.110054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Alcohol is a psychoactive substance highly used worldwide, whose harmful use might cause a broad range of mental and behavioural disorders. Underlying brain impact, the neuroinflammatory response induced by alcohol is recognised as a key contributing factor in the progression of other neuropathological processes, such as neurodegeneration. These sequels are determined by multiple factors, including age of exposure. Strikingly, it seems that the endocannabinoid system modulation could regulate the alcohol-induced neuroinflammation. Although direct CB1 activation can worsen alcohol consequences, targeting other components of the expanded endocannabinoid system may counterbalance the pro-inflammatory response. Indeed, specific modulations of the expanded endocannabinoid system have been proved to exert anti-inflammatory effects, primarily through the CB2 and PPARγ signalling. Among them, some endo- and exogeneous cannabinoids can block certain pro-inflammatory mediators, such as NF-κB, thereby neutralizing the neuroinflammatory intracellular cascades. Furthermore, a number of cannabinoids are able to activate complementary anti-inflammatory pathways, which are necessary for the transition from chronically overactivated microglia to a regenerative microglial phenotype. Thus, cannabinoid modulation provides cooperative anti-inflammatory mechanisms that may be advantageous to resolve a pathological neuroinflammation in an alcohol-dependent context.
Collapse
Affiliation(s)
- Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
15
|
Le Bacquer O, Lanchais K, Combe K, Van Den Berghe L, Walrand S. Acute rimonabant treatment promotes protein synthesis in C2C12 myotubes through a CB1-independent mechanism. J Cell Physiol 2020; 236:2669-2683. [PMID: 32885412 DOI: 10.1002/jcp.30034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Sarcopenia is an age-related loss of muscle mass associated with changes in skeletal muscle protein homeostasis due to lipid accumulation and anabolic resistance; changes that are also commonly described in obesity. Activation of the endocannabinoid system is associated with the development of obesity and insulin resistance, and with the perturbed skeletal muscle development. Taken together this suggests that endocannabinoids could be regulators of skeletal muscle protein homeostasis. Here we report that rimonabant, an antagonist for the CB1 receptor, can prevent dexamethasone-induced C2C12 myotube atrophy without affecting the mRNA expression of atrogin-1/MAFbx (a marker of proteolysis), which suggests it is involved in the control of protein synthesis. Rimonabant alone stimulates protein synthesis in a time- and dose-dependent manner through mTOR- and intracellular calcium-dependent mechanisms. CB1 agonists are unable to modulate protein synthesis or prevent the effect of rimonabant. Using C2C12 cells stably expressing an shRNA directed against CB1, or HEK293 cells overexpressing HA-tagged CB1, we demonstrated that the effect of rimonabant is unaffected by CB1 expression level. In summary, rimonabant can stimulate protein synthesis in C2C12 myotubes through a CB1-independent mechanism. These results highlight the need to identify non-CB1 receptor(s) mediating the pro-anabolic effect of rimonabant as potential targets for the treatment of sarcopenia, and to design new side-effect-free molecules that consolidate the effect of rimonabant on skeletal muscle protein synthesis.
Collapse
Affiliation(s)
- Olivier Le Bacquer
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), Clermont-Ferrand, France
| | - Kassandra Lanchais
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), Clermont-Ferrand, France
| | - Kristell Combe
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), Clermont-Ferrand, France
| | | | - Stéphane Walrand
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), Clermont-Ferrand, France.,CHU Clermont-Ferrand, Service de Nutrition Clinique, Hôpital Gabriel Montpied, Clermont-Ferrand, France
| |
Collapse
|
16
|
Zeng Z, Mukherjee A, Varghese AP, Yang XL, Chen S, Zhang H. Roles of G protein-coupled receptors in inflammatory bowel disease. World J Gastroenterol 2020; 26:1242-1261. [PMID: 32256014 PMCID: PMC7109274 DOI: 10.3748/wjg.v26.i12.1242] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/18/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex disease with multiple pathogenic factors. Although the pathogenesis of IBD is still unclear, a current hypothesis suggests that genetic susceptibility, environmental factors, a dysfunctional immune system, the microbiome, and the interactions of these factors substantially contribute to the occurrence and development of IBD. Although existing and emerging drugs have been proven to be effective in treating IBD, none can cure IBD permanently. G protein-coupled receptors (GPCRs) are critical signaling molecules implicated in the immune response, cell proliferation, inflammation regulation and intestinal barrier maintenance. Breakthroughs in the understanding of the structures and functions of GPCRs have provided a driving force for exploring the roles of GPCRs in the pathogenesis of diseases, thereby leading to the development of GPCR-targeted medication. To date, a number of GPCRs have been shown to be associated with IBD, significantly advancing the drug discovery process for IBD. The associations between GPCRs and disease activity, disease severity, and disease phenotypes have also paved new avenues for the precise management of patients with IBD. In this review, we mainly focus on the roles of the most studied proton-sensing GPCRs, cannabinoid receptors, and estrogen-related GPCRs in the pathogenesis of IBD and their potential clinical values in IBD and some other diseases.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Gastroenterology, Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, Sichuan Province, China
| | - Arjudeb Mukherjee
- West China School of Medicine, Sichuan University, Chengdu 410061, Sichuan Province, China
| | | | - Xiao-Li Yang
- Department of Gastroenterology, Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, Sichuan Province, China
| | - Sha Chen
- Department of Gastroenterology, Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, Sichuan Province, China
| | - Hu Zhang
- Department of Gastroenterology, Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, Sichuan Province, China
| |
Collapse
|
17
|
Ruz-Maldonado I, Pingitore A, Liu B, Atanes P, Huang GC, Baker D, Alonso FJ, Bermúdez-Silva FJ, Persaud SJ. LH-21 and abnormal cannabidiol improve β-cell function in isolated human and mouse islets through GPR55-dependent and -independent signalling. Diabetes Obes Metab 2018; 20:930-942. [PMID: 29205751 DOI: 10.1111/dom.13180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/15/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
AIMS To examine the effects of Abn-CBD (GPR55 agonist) and LH-21 (CB1 antagonist) on human and mouse islet function, and to determine signalling via GPR55 using islets from GPR55-/- mice. MATERIALS AND METHODS Islets isolated from human organ donors and mice were incubated in the absence or presence of Abn-CBD or LH-21, and insulin secretion, [Ca2+ ]i, cAMP, apoptosis, β-cell proliferation and CREB and AKT phosphorylation were examined using standard techniques. RESULTS Abn-CBD potentiated glucose-stimulated insulin secretion and elevated [Ca2+ ]i in human islets and islets from both GPR55+/+ and GPR55-/- mice. LH-21 also increased insulin secretion and [Ca2+ ]i in human islets and GPR55+/+ mouse islets, but concentrations of LH-21 up to 0.1 μM were ineffective in islets from GPR55-/- mice. Neither ligand affected basal insulin secretion or islet cAMP levels. Abn-CBD and LH-21 reduced cytokine-induced apoptosis in human islets and GPR55+/+ mouse islets, and these effects were suppressed after GPR55 deletion. They also increased β-cell proliferation: the effects of Abn-CBD were preserved in islets from GPR55-/- mice, while those of LH-21 were abolished. Abn-CBD and LH-21 increased AKT phosphorylation in mouse and human islets. CONCLUSIONS This study showed that Abn-CBD and LH-21 improve human and mouse islet β-cell function and viability. Use of islets from GPR55-/- mice suggests that designation of Abn-CBD and LH-21 as a GPR55 agonist and a CB1 antagonist, should be revised.
Collapse
Affiliation(s)
- Inmaculada Ruz-Maldonado
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Attilio Pingitore
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Bo Liu
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Patricio Atanes
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Guo Cai Huang
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - David Baker
- Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Francisco José Alonso
- Canceromics Laboratory, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Biomedicina de Málaga (IBIMA), Universidad de Málaga, Malaga, Spain
| | - Francisco Javier Bermúdez-Silva
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Malaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Malaga, Spain
| | - Shanta J Persaud
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
18
|
Marichal-Cancino BA, Fajardo-Valdez A, Ruiz-Contreras AE, Mendez-Díaz M, Prospero-García O. Advances in the Physiology of GPR55 in the Central Nervous System. Curr Neuropharmacol 2018; 15:771-778. [PMID: 27488130 PMCID: PMC5771053 DOI: 10.2174/1570159x14666160729155441] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/08/2016] [Accepted: 07/20/2016] [Indexed: 01/18/2023] Open
Abstract
Background: The G protein-coupled receptor 55 (GPR55) is a mammalian orphan receptor that awaits a formal classification. There are an increasing number of reports directed to know the physiology and pathophysiology of this receptor. Lamentably, its functions in the central nervous system (CNS) have been scarcely elucidated. Methods: A bibliographic search in PubMed database about GPR55 actions in the CNS was made. The information was grouped for brain structures to facilitate the interpretation. Finally, we constructed a schematic representation of the current knowledge about the potential participation of GPR55 in some physiological and pathophysiological events. Results: Seventy nine papers were included in the review. Only few of them showed data about GPR55 (mRNA/protein) expression in multiple brain areas. The rest showed findings in different preparations both in vitro and in vivo conditions that allowed us to speculate a potential activity of GPR55 in the different brain areas. Conclusion: GPR55 mRNA is expressed in several brain areas as the hippocampus, hypothalamus, frontal cortex and cerebellum; but due to the lack of information, only some speculative information about its function in these regions has been suggested. Therefore, this review provide relevant information to motivate further research about GPR55 physiology/pathophysiology in the CNS.
Collapse
Affiliation(s)
| | - Alfonso Fajardo-Valdez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico; Mexico City. Mexico
| | - Alejandra E Ruiz-Contreras
- Coordination of Psychobiology, School of Psychology, National Autonomous University of Mexico, Mexico City. Mexico
| | - Monica Mendez-Díaz
- Department of Physiology, Faculty of Medicine, UNAM, P.O. Box: 70-250, Mexico City. Mexico
| | - Oscar Prospero-García
- Department of Physiology, Faculty of Medicine, UNAM, P.O. Box: 70-250, Mexico City. Mexico
| |
Collapse
|
19
|
Palazzoli F, Citti C, Licata M, Vilella A, Manca L, Zoli M, Vandelli MA, Forni F, Cannazza G. Development of a simple and sensitive liquid chromatography triple quadrupole mass spectrometry (LC-MS/MS) method for the determination of cannabidiol (CBD), Δ 9-tetrahydrocannabinol (THC) and its metabolites in rat whole blood after oral administration of a single high dose of CBD. J Pharm Biomed Anal 2017; 150:25-32. [PMID: 29202305 DOI: 10.1016/j.jpba.2017.11.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 01/18/2023]
Abstract
The investigation of the possible conversion of cannabidiol (CBD) into Δ9-tetrahydrocannabinol (THC) in vivo after oral administration of CBD is reported herein since recent publications suggested a rapid conversion in simulated gastric fluid. To this end, single high dose of CBD (50mg/kg) was administered orally to rats and their blood was collected after 3 and 6h. A highly sensitive and selective LC-MS/MS method was developed and fully validated in compliance with the Scientific Working Group of Forensic Toxicology (SWGTOX) standard practices for method validation in forensic toxicology. This method also involved the optimization of cannabinoids and their metabolites extraction in order to remove co-eluting phospholipids and increase the sensitivity of the MS detection. Neither THC nor its metabolites were detected in rat whole blood after 3 or 6h from CBD administration. After oral administration, the amount of CBD dissolved in olive oil was higher than that absorbed from an ethanolic solution. This could be explained by the protection of lipid excipients towards CBD from acidic gastric juice.
Collapse
Affiliation(s)
- Federica Palazzoli
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, Largo del pozzo 71, 41125 Modena, Italy
| | - Cinzia Citti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy; CNR NANOTEC, Campus Ecoteckne dell'Università del Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Manuela Licata
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, Largo del pozzo 71, 41125 Modena, Italy.
| | - Antonietta Vilella
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Letizia Manca
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Michele Zoli
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Maria Angela Vandelli
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Flavio Forni
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giuseppe Cannazza
- CNR NANOTEC, Campus Ecoteckne dell'Università del Salento, Via per Monteroni, 73100 Lecce, Italy; Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| |
Collapse
|
20
|
Karpińska O, Baranowska-Kuczko M, Malinowska B, Kloza M, Kusaczuk M, Gęgotek A, Golec P, Kasacka I, Kozłowska H. Mechanisms of l-alpha-lysophosphatidylinositol-induced relaxation in human pulmonary arteries. Life Sci 2017; 192:38-45. [PMID: 29155298 DOI: 10.1016/j.lfs.2017.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 01/13/2023]
Abstract
AIMS l-Alpha-lysophosphatidylinositol (LPI) is an endogenous agonist of G protein-coupled receptor 55 (GPR55) which relaxes mesenteric arteries on activation. The aim of the present study was to determine the influence and underlying mechanisms of LPI-induced relaxation in human pulmonary arteries (hPAs). MAIN METHODS Functional studies were performed in isolated hPAs using organ bath technique. The expression of GPR55 in hPAs and bronchioles was determined by real-time qPCR, Western blot analysis, and immunohistochemistry. KEY FINDINGS LPI induced a concentration-dependent vasorelaxation in endothelium-intact hPAs. This effect was attenuated by the GPR55 antagonist CID16020046, the peroxisome proliferator-activated receptor-γ (PPARγ) antagonist GW9662, the putative endothelial cannabinoid receptor (CBe) antagonist O-1918 and the inhibitor of nitric oxide (NO) synthase (L-NAME). In addition, vasorelaxation was also attenuated by the presence of a high KCl concentration, selective blockers of small (KCa2.3; UCL1684), intermediate (KCa3.1; TRAM-34) and large conductance (KCa1.1; iberiotoxin) calcium-activated potassium channels and by endothelium denudation. However, vasorelaxation was not attenuated by the cannabinoid CB1 receptor antagonist AM251 or by the cyclooxygenase inhibitor indomethacin. SIGNIFICANCE The study showed that the LPI-induced vasorelaxation was endothelium-dependent and mediated by GPR55, PPARγ and CBe receptors, occurred in a NO- and calcium-activated potassium channel-dependent manner in isolated hPAs. LPI seems to possess positive, hypotensive properties in pulmonary vascular bed.
Collapse
Affiliation(s)
- Olga Karpińska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-089 Białystok, Poland.
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-089 Białystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-089 Białystok, Poland
| | - Monika Kloza
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-089 Białystok, Poland
| | - Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza Str. 2A, 15-089 Białystok, Poland
| | - Agnieszka Gęgotek
- Department of Inorganic and Analytical Chemistry, Medical University of Białystok, Mickiewicza Str. 2D, 15-222 Białystok, Poland
| | - Paweł Golec
- Department of Thoracic Surgery, Medical University of Białystok, M. Skłodowskiej-Curie Str. 24A, 15-276 Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Mickiewicza Str. 2C, 15-222 Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-089 Białystok, Poland
| |
Collapse
|
21
|
Soderstrom K, Soliman E, Van Dross R. Cannabinoids Modulate Neuronal Activity and Cancer by CB1 and CB2 Receptor-Independent Mechanisms. Front Pharmacol 2017; 8:720. [PMID: 29066974 PMCID: PMC5641363 DOI: 10.3389/fphar.2017.00720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022] Open
Abstract
Cannabinoids include the active constituents of Cannabis or are molecules that mimic the structure and/or function of these Cannabis-derived molecules. Cannabinoids produce many of their cellular and organ system effects by interacting with the well-characterized CB1 and CB2 receptors. However, it has become clear that not all effects of cannabinoid drugs are attributable to their interaction with CB1 and CB2 receptors. Evidence now demonstrates that cannabinoid agents produce effects by modulating activity of the entire array of cellular macromolecules targeted by other drug classes, including: other receptor types; ion channels; transporters; enzymes, and protein- and non-protein cellular structures. This review summarizes evidence for these interactions in the CNS and in cancer, and is organized according to the cellular targets involved. The CNS represents a well-studied area and cancer is emerging in terms of understanding mechanisms by which cannabinoids modulate their activity. Considering the CNS and cancer together allow identification of non-cannabinoid receptor targets that are shared and divergent in both systems. This comparative approach allows the identified targets to be compared and contrasted, suggesting potential new areas of investigation. It also provides insight into the diverse sources of efficacy employed by this interesting class of drugs. Obtaining a comprehensive understanding of the diverse mechanisms of cannabinoid action may lead to the design and development of therapeutic agents with greater efficacy and specificity for their cellular targets.
Collapse
Affiliation(s)
- Ken Soderstrom
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Zagazig University, Zagazig, Egypt
| | - Rukiyah Van Dross
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Center for Health Disparities, East Carolina University, Greenville, NC, United States
| |
Collapse
|
22
|
Koch M. Cannabinoid Receptor Signaling in Central Regulation of Feeding Behavior: A Mini-Review. Front Neurosci 2017; 11:293. [PMID: 28596721 PMCID: PMC5442223 DOI: 10.3389/fnins.2017.00293] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/09/2017] [Indexed: 12/16/2022] Open
Abstract
Cannabinoids are lipid messengers that modulate a variety of physiological processes and modify the generation of specific behaviors. In this regard, the cannabinoid receptor type 1 (CB1) represents the most relevant target molecule of cannabinoids so far. One main function of central CB1 signaling is to maintain whole body energy homeostasis. Thus, cannabinoids functionally interact with classical neurotransmitters in neural networks that control energy metabolism and feeding behavior. The promotion of CB1 signaling can increase appetite and stimulate feeding, while blockade of CB1 suppresses hunger and induces hypophagia. However, in order to treat overeating, pharmacological blockade of CB1 by the inverse agonist rimonabant not only suppressed feeding but also resulted in psychiatric side effects. Therefore, research within the last decade focused on deciphering the underlying cellular and molecular mechanisms of central cannabinoid signaling that control feeding and other behaviors, with the overall aim still being the identification of specific targets to develop safe pharmacological interventions for the treatment of obesity. Today, many studies unraveled the subcellular localization of CB1 and the function of cannabinoids in neurons and glial cells within circumscribed brain regions that represent integral parts of neural circuitries controlling feeding behavior. Here, these novel experimental findings will be summarized and recent advances in understanding the mechanisms of CB1-dependent cannabinoid signaling being relevant for central regulation of feeding behavior will be highlighted. Finally, presumed alternative pathways of cannabinoids that are not driven by CB1 activation but also contributing to control of feeding behavior will be introduced.
Collapse
Affiliation(s)
- Marco Koch
- Medical Faculty, Institute of Anatomy, University of LeipzigLeipzig, Germany
| |
Collapse
|
23
|
Bjursell M, Ryberg E, Wu T, Greasley PJ, Bohlooly-Y M, Hjorth S. Deletion of Gpr55 Results in Subtle Effects on Energy Metabolism, Motor Activity and Thermal Pain Sensation. PLoS One 2016; 11:e0167965. [PMID: 27941994 PMCID: PMC5152857 DOI: 10.1371/journal.pone.0167965] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/25/2016] [Indexed: 02/06/2023] Open
Abstract
The G-protein coupled receptor 55 (GPR55) is activated by cannabinoids and non-cannabinoid molecules and has been speculated to play a modulatory role in a large variety of physiological and pathological processes, including in metabolically perturbed states. We therefore generated male mice deficient in the gene coding for the cannabinoid/lysophosphatidylinositol (LPI) receptor Gpr55 and characterized them under normal dietary conditions as well as during high energy dense diet feeding followed by challenge with the CB1 receptor antagonist/GPR55 agonist rimonabant. Gpr55 deficient male mice (Gpr55 KO) were phenotypically indistinguishable from their wild type (WT) siblings for the most part. However, Gpr55 KO animals displayed an intriguing nocturnal pattern of motor activity and energy expenditure (EE). During the initial 6 hours of the night, motor activity was significantly elevated without any significant effect observed in EE. Interestingly, during the last 6 hours of the night motor activity was similar but EE was significantly decreased in the Gpr55 KO mice. No significant difference in motor activity was detected during daytime, but EE was lower in the Gpr55 KO compared to WT mice. The aforementioned patterns were not associated with alterations in energy intake, daytime core body temperature, body weight (BW) or composition, although a non-significant tendency to increased adiposity was seen in Gpr55 KO compared to WT mice. Detailed analyses of daytime activity in the Open Field paradigm unveiled lower horizontal activity and rearing time for the Gpr55 KO mice. Moreover, the Gpr55 KO mice displayed significantly faster reaction time in the tail flick test, indicative of thermal hyperalgesia. The BW-decreasing effect of rimonabant in mice on long-term cafeteria diet did not differ between Gpr55 KO and WT mice. In conclusion, Gpr55 deficiency is associated with subtle effects on diurnal/nocturnal EE and motor activity behaviours but does not appear per se critically required for overall metabolism or behaviours.
Collapse
Affiliation(s)
- Mikael Bjursell
- Discovery Sciences Transgenics, AstraZeneca R&D, Mölndal, Sweden
| | - Erik Ryberg
- Cardiovascular and Metabolic diseases (CVMD) Innovative Medicines and early Development Biotech Unit, AstraZeneca R&D, Mölndal, Sweden
| | - Tingting Wu
- Discovery Sciences Transgenics, AstraZeneca R&D, Mölndal, Sweden
| | - Peter J. Greasley
- CVMD Translational Medicine Unit, Early Clinical Development AstraZeneca R&D, Mölndal, Sweden
| | | | - Stephan Hjorth
- Dept. of Molecular & Clinical Medicine, Inst. of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
24
|
McKillop AM, Moran BM, Abdel-Wahab YHA, Gormley NM, Flatt PR. Metabolic effects of orally administered small-molecule agonists of GPR55 and GPR119 in multiple low-dose streptozotocin-induced diabetic and incretin-receptor-knockout mice. Diabetologia 2016; 59:2674-2685. [PMID: 27677765 PMCID: PMC6518089 DOI: 10.1007/s00125-016-4108-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/19/2016] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Abnormal cannabidiol (Abn-CBD) and AS-1269574 are potent selective agonists for GPR55 and GPR119, respectively. The present study evaluated the actions and ability of these small-molecule agonists to counteract experimental diabetes in mice. METHODS Diabetes was induced in NIH Swiss mice by five consecutive daily intraperitoneal injections of 40 mg/(kg body weight) streptozotocin. Diabetic mice received daily oral administration of Abn-CBD or AS-1269574 (0.1 μmol/kg) or saline vehicle (0.9% wt/vol. NaCl) over 28 days. Body weight, food intake, fluid intake, plasma glucose, insulin, glucose tolerance, insulin release, lipid profile and pancreatic morphology were examined. Mechanism of action of agonists was assessed in acute studies using incretin-receptor-knockout mice. RESULTS Abn-CBD and AS-1269574 decreased plasma glucose (20-26%, p < 0.05) and increased circulating insulin (47-48%, p < 0.05) by 10-28 days, compared with saline-treated diabetic controls. Food intake and polydipsia were reduced by both agonists (21-23%, p < 0.05 and 33-35%, p < 0.01, respectively). After 28 days of treatment, plasma glucagon concentrations were reduced (p < 0.01) and glucose tolerance was enhanced by 19-44% by Abn-CBD (p < 0.05 or p < 0.001) and AS-1269574 (p < 0.05 to p < 0.001). Plasma insulin responses were improved (p < 0.01) and insulin resistance was decreased (p < 0.05 or p < 0.01) in both Abn-CBD- and AS-1269574-treated groups. Triacylglycerols were decreased by 19% with Abn-CBD (p < 0.05) and 32% with AS-1269574 (p < 0.01) while total cholesterol was reduced by 17% (p < 0.01) and 15% (p < 0.05), respectively. Both agonists enhanced beta cell proliferation (p < 0.001) although islet area was unchanged. Acute studies in Gipr- and Glp1r-knockout mice revealed an important role for the glucagon-like peptide 1 (GLP-1) receptor in the actions of both agonists, with the glucose-lowering effects of Abn-CBD also partly mediated through the glucose-dependent insulinotropic peptide (GIP) receptor. CONCLUSIONS/INTERPRETATION These data highlight the potential for fatty acid G-protein-coupled receptor-based therapies as novel insulinotropic and glucose-lowering agents acting partly through the activation of incretin receptors.
Collapse
Affiliation(s)
- Aine M McKillop
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK.
| | - Brian M Moran
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Yasser H A Abdel-Wahab
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Noella M Gormley
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| |
Collapse
|
25
|
Liu B, Song S, Ruz-Maldonado I, Pingitore A, Huang GC, Baker D, Jones PM, Persaud SJ. GPR55-dependent stimulation of insulin secretion from isolated mouse and human islets of Langerhans. Diabetes Obes Metab 2016; 18:1263-1273. [PMID: 27561953 DOI: 10.1111/dom.12780] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 01/15/2023]
Abstract
AIMS The novel cannabinoid receptor GPR55 is expressed by rodent islets and it has been implicated in β-cell function in response to a range of ligands. This study evaluated the effects of GPR55 ligands on intracellular calcium ([Ca2+ ]i ) levels and insulin secretion from islets isolated from GPR55 knockout (GPR55 -/- ) mice, age-matched wildtype (WT) mice and human pancreas. MATERIALS AND METHODS GPR55 expression was determined by Western blotting and fluorescent immunohistochemistry. Changes in [Ca2+ ]i were measured by Fura-2 microfluorimetry. Dynamic insulin secretion was quantified by radioimmunoassay following perifusion of isolated islets. RhoA activity was monitored using a Rho binding domain pull down assay. RESULTS Western blotting indicated that MIN6 β-cells, mouse and human islets express GPR55 and its localization on human β-cells was demonstrated by fluorescent immunohistochemistry. The pharmacological GPR55 agonist O-1602 (10 μM) significantly stimulated [Ca2+ ]i and insulin secretion from WT mouse islets and these stimulatory effects were abolished in islets isolated from GPR55 -/- mice. In contrast, while the putative endogenous GPR55 agonist lysophosphatidylinositol (LPI, 5 µM) and the GPR55 antagonist cannabidiol (CBD, 1 µM) also elevated [Ca2+ ]i and insulin secretion, these effects were sustained in islets from GPR55 -/- mice. Stimulatory effects of O-1602 on [Ca2+ ]i and insulin secretion were also observed in experiments using human islets, but O-1602 did not activate RhoA in MIN6 β-cells. CONCLUSIONS Our results therefore suggest that GPR55 plays an important role in the regulation of mouse and human islet physiology, but LPI and CBD exert stimulatory effects on islet function by a GPR55-independent pathway(s).
Collapse
Affiliation(s)
- Bo Liu
- Division of Diabetes and Nutritional Sciences, Diabetes Research Group, King's College London, London, UK
| | - Shuang Song
- Division of Diabetes and Nutritional Sciences, Diabetes Research Group, King's College London, London, UK
| | - Inmaculada Ruz-Maldonado
- Division of Diabetes and Nutritional Sciences, Diabetes Research Group, King's College London, London, UK
| | - Attilio Pingitore
- Division of Diabetes and Nutritional Sciences, Diabetes Research Group, King's College London, London, UK
| | - Guo C Huang
- Division of Diabetes and Nutritional Sciences, Diabetes Research Group, King's College London, London, UK
| | - David Baker
- Centre for Neuroscience and Trauma, Barts and The London School of Medicine and Dentistry, London, UK
| | - Peter M Jones
- Division of Diabetes and Nutritional Sciences, Diabetes Research Group, King's College London, London, UK
| | - Shanta J Persaud
- Division of Diabetes and Nutritional Sciences, Diabetes Research Group, King's College London, London, UK
| |
Collapse
|
26
|
Abstract
AbstractThe endogenous cannabinoid system plays important roles in the retina of mice and monkeys via their classic CB1 and CB2 receptors. We have previously reported that the G protein-coupled receptor 55 (GPR55), a putative cannabinoid receptor, is exclusively expressed in rod photoreceptors in the monkey retina, suggesting its possible role in scotopic vision. To test this hypothesis, we recorded full-field electroretinograms (ERGs) after the intravitreal injection of the GPR55 agonist lysophosphatidylglucoside (LPG) or the selective GPR55 antagonist CID16020046 (CID), under light- and dark-adapted conditions. Thirteen vervet monkeys (Chlorocebus sabaeus) were used in this study: four controls (injected with the vehicle dimethyl sulfoxide, DMSO), four injected with LPG and five with CID. We analyzed amplitudes and latencies of the a-wave (photoreceptor responses) and the b-wave (rod and cone system responses) of the ERG. Our results showed that after injection of LPG, the amplitude of the scotopic b-wave was significantly higher, whereas after the injection of CID, it was significantly decreased, compared to the vehicle (DMSO). On the other hand, the a-wave amplitude, and the a-wave and b-wave latencies, of the scotopic ERG responses were not significantly affected by the injection of either compound. Furthermore, the photopic ERG waveforms were not affected by either drug. These results support the hypothesis that GPR55 plays an instrumental role in mediating scotopic vision.
Collapse
|
27
|
Lysophosphatidylinositol Signalling and Metabolic Diseases. Metabolites 2016; 6:metabo6010006. [PMID: 26784247 PMCID: PMC4812335 DOI: 10.3390/metabo6010006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 11/28/2022] Open
Abstract
Metabolism is a chemical process used by cells to transform food-derived nutrients, such as proteins, carbohydrates and fats, into chemical and thermal energy. Whenever an alteration of this process occurs, the chemical balance within the cells is impaired and this can affect their growth and response to the environment, leading to the development of a metabolic disease. Metabolic syndrome, a cluster of several metabolic risk factors such as abdominal obesity, insulin resistance, high cholesterol and high blood pressure, and atherogenic dyslipidaemia, is increasingly common in modern society. Metabolic syndrome, as well as other diseases, such as diabetes, obesity, hyperlipidaemia and hypertension, are associated with abnormal lipid metabolism. Cellular lipids are the major component of cell membranes; they represent also a valuable source of energy and therefore play a crucial role for both cellular and physiological energy homeostasis. In this review, we will focus on the physiological and pathophysiological roles of the lysophospholipid mediator lysophosphatidylinositol (LPI) and its receptor G-protein coupled receptor 55 (GPR55) in metabolic diseases. LPI is a bioactive lipid generated by phospholipase A (PLA) family of lipases which is believed to play an important role in several diseases. Indeed LPI can affect various functions such as cell growth, differentiation and motility in a number of cell-types. Recently published data suggest that LPI plays an important role in different physiological and pathological contexts, including a role in metabolism and glucose homeostasis.
Collapse
|
28
|
Alavi MS, Hosseinzadeh H, Shamsizadeh A, Roohbakhsh A. The effect of O-1602, an atypical cannabinoid, on morphine-induced conditioned place preference and physical dependence. Pharmacol Rep 2016; 68:592-7. [PMID: 26971034 DOI: 10.1016/j.pharep.2015.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previous studies show that some non-CB1/non-CB2 effects of cannabinoids are mediated through G protein coupled receptor 55 (GPR55). As this receptor is activated by some of cannabinoid receptor ligands and is involved in the modulation of pain, it was hypothesized that this receptor may also interact with opioids. This study examined the effect of atypical cannabinoid O-1602 as a GPR55 agonist on morphine-induced conditioned place preference (CPP) and physical dependence. METHODS We used a biased CPP model to evaluate the effect of O-1602 (0.2, 1 and 5mg/kg, intraperitoneal; ip) on the acquisition and expression of morphine-induced CPP in male mice. The locomotor activities of mice were also recorded. Moreover, repeated administration of morphine (50, 50 and 75mg/kg/day) for three days, induced physical dependence. The withdrawal signs such as jumps and diarrhea were precipitated by administration of naloxone (5mg/kg, ip). The effect of O-1602 on the development of morphine physical dependence was assessed by injection of O-1602 (0.2, 1 and 5mg/kg) before morphine administrations. RESULTS Morphine (40mg/kg, subcutaneous; sc), but not O-1602 (5mg/kg) elicited significant preference in the post-conditioning phase. O-1602 at the doses of 0.2 and 1mg/kg, but not 5mg/kg reduced acquisition of morphine CPP with an increase in locomotor activity at the dose of 5mg/kg. O-1602 at the doses of 0.2, 1 and 5mg/kg also reduced expression of morphine CPP with an increase in locomotor activity at the dose of 5mg/kg. O-1602 had a significant inhibitory effect on development of morphine-induced physical dependence at the dose of 5mg/kg by decreasing jumps and diarrhea during withdrawal syndrome. CONCLUSIONS The present results indicate that O-1602 decreased acquisition and expression of morphine CPP and inhibited development of morphine-induced physical dependence.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Rajaraman G, Simcocks A, Hryciw DH, Hutchinson DS, McAinch AJ. G protein coupled receptor 18: A potential role for endocannabinoid signaling in metabolic dysfunction. Mol Nutr Food Res 2015; 60:92-102. [PMID: 26337420 DOI: 10.1002/mnfr.201500449] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Accepted: 08/23/2015] [Indexed: 02/06/2023]
Abstract
Endocannabinoids are products of dietary fatty acids that are modulated by an alteration in food intake levels. Overweight and obese individuals have substantially higher circulating levels of the arachidonic acid derived endocannabinoids, anandamide and 2-arachidonoyl glycerol, and show an altered pattern of cannabinoid receptor expression. These cannabinoid receptors are part of a large family of G protein coupled receptors (GPCRs). GPCRs are major therapeutic targets for various diseases within the cardiovascular, neurological, gastrointestinal, and endocrine systems, as well as metabolic disorders such as obesity and type 2 diabetes mellitus. Obesity is considered a state of chronic low-grade inflammation elicited by an immunological response. Interestingly, the newly deorphanized GPCR (GPR18), which is considered to be a putative cannabinoid receptor, is proposed to have an immunological function. In this review, the current scientific knowledge on GPR18 is explored including its localization, signaling pathways, and pharmacology. Importantly, the involvement of nutritional factors and potential dietary regulation of GPR18 and its (patho)physiological roles are described. Further research on this receptor and its regulation will enable a better understanding of the complex mechanisms of GPR18 and its potential as a novel therapeutic target for treating metabolic disorders.
Collapse
Affiliation(s)
- Gayathri Rajaraman
- Centre for Chronic Disease Prevention and Management, College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Anna Simcocks
- Centre for Chronic Disease Prevention and Management, College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Deanne H Hryciw
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Dana S Hutchinson
- Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrew J McAinch
- Centre for Chronic Disease Prevention and Management, College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Fatty acids, endocannabinoids and inflammation. Eur J Pharmacol 2015; 785:96-107. [PMID: 26325095 DOI: 10.1016/j.ejphar.2015.08.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/01/2015] [Accepted: 08/26/2015] [Indexed: 01/08/2023]
Abstract
From their phylogenetic and pharmacological classification it might be inferred that cannabinoid receptors and their endogenous ligands constitute a rather specialised and biologically distinct signalling system. However, the opposite is true and accumulating data underline how much the endocannabinoid system is intertwined with other lipid and non-lipid signalling systems. Endocannabinoids per se have many structural congeners, and these molecules exist in dynamic equilibria with different other lipid-derived mediators, including eicosanoids and prostamides. With multiple crossroads and shared targets, this creates a versatile system involved in fine-tuning different physiological and metabolic processes, including inflammation. A key feature of this 'expanded' endocannabinoid system, or 'endocannabinoidome', is its subtle orchestration based on interactions between a relatively small number of receptors and multiple ligands with different but partly overlapping activities. Following an update on the role of the 'endocannabinoidome' in inflammatory processes, this review continues with possible targets for intervention at the level of receptors or enzymes involved in formation or breakdown of endocannabinoids and their congeners. Although its pleiotropic character poses scientific challenges, the 'expanded' endocannabinoid system offers several opportunities for prevention and therapy of chronic diseases. In this respect, successes are more likely to come from 'multiple-target' than from 'single-target' strategies.
Collapse
|
31
|
Hofmann NA, Yang J, Trauger SA, Nakayama H, Huang L, Strunk D, Moses MA, Klagsbrun M, Bischoff J, Graier WF. The GPR 55 agonist, L-α-lysophosphatidylinositol, mediates ovarian carcinoma cell-induced angiogenesis. Br J Pharmacol 2015; 172:4107-18. [PMID: 25989290 PMCID: PMC4543616 DOI: 10.1111/bph.13196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/10/2015] [Accepted: 05/11/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Highly vascularized ovarian carcinoma secretes the putative endocannabinoid and GPR55 agonist, L-α-lysophosphatidylinositol (LPI), into the circulation. We aimed to assess the involvement of this agonist and its receptor in ovarian cancer angiogenesis. EXPERIMENTAL APPROACH Secretion of LPI by three ovarian cancer cell lines (OVCAR-3, OVCAR-5 and COV-362) was tested by mass spectrometry. Involvement of cancer cell-derived LPI on angiogenesis was tested in the in vivo chicken chorioallantoic membrane (CAM) assay along with the assessment of the effect of LPI on proliferation, network formation, and migration of neonatal and adult human endothelial colony-forming cells (ECFCs). Engagement of GPR55 was verified by using its pharmacological inhibitor CID16020046 and diminution of GPR55 expression by four different target-specific siRNAs. To study underlying signal transduction, Western blot analysis was performed. KEY RESULTS Ovarian carcinoma cell-derived LPI stimulated angiogenesis in the CAM assay. Applied LPI stimulated proliferation, network formation, and migration of neonatal ECFCs in vitro and angiogenesis in the in vivo CAM. The pharmacological GPR55 inhibitor CID16020046 inhibited LPI-stimulated ECFC proliferation, network formation and migration in vitro as well as ovarian carcinoma cell- and LPI-induced angiogenesis in vivo. Four target-specific siRNAs against GPR55 prevented these effects of LPI on angiogenesis. These pro-angiogenic effects of LPI were transduced by GPR55-dependent phosphorylation of ERK1/2 and p38 kinase. CONCLUSIONS AND IMPLICATIONS We conclude that inhibiting the pro-angiogenic LPI/GPR55 pathway appears a promising target against angiogenesis in ovarian carcinoma.
Collapse
Affiliation(s)
- Nicole A Hofmann
- Institute for Molecular Biology and Biochemistry, Medical University GrazGraz, Austria
- Vascular Biology Program, Boston Children's HospitalBoston, MA, USA
- Department of Surgery, Harvard Medical SchoolBoston, MA, USA
| | - Jiang Yang
- Vascular Biology Program, Boston Children's HospitalBoston, MA, USA
- Department of Surgery, Harvard Medical SchoolBoston, MA, USA
| | - Sunia A Trauger
- FAS Small Molecule Mass Spectrometry Facility, Harvard UniversityBoston, MA, USA
| | - Hironao Nakayama
- Vascular Biology Program, Boston Children's HospitalBoston, MA, USA
- Department of Surgery, Harvard Medical SchoolBoston, MA, USA
| | - Lan Huang
- Vascular Biology Program, Boston Children's HospitalBoston, MA, USA
- Department of Surgery, Harvard Medical SchoolBoston, MA, USA
| | - Dirk Strunk
- Experimental and Clinical Cell Therapy Institute, Paracelsus Medical UniversitySalzburg, Austria
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's HospitalBoston, MA, USA
- Department of Surgery, Harvard Medical SchoolBoston, MA, USA
| | - Michael Klagsbrun
- Vascular Biology Program, Boston Children's HospitalBoston, MA, USA
- Department of Surgery, Harvard Medical SchoolBoston, MA, USA
| | - Joyce Bischoff
- Department of Surgery, Harvard Medical SchoolBoston, MA, USA
- Department of Pathology, Harvard Medical SchoolBoston, MA, USA
| | - Wolfgang F Graier
- Institute for Molecular Biology and Biochemistry, Medical University GrazGraz, Austria
| |
Collapse
|
32
|
Liu J, Parsons L, Pope C. Comparative effects of parathion and chlorpyrifos on endocannabinoid and endocannabinoid-like lipid metabolites in rat striatum. Neurotoxicology 2015. [PMID: 26215119 DOI: 10.1016/j.neuro.2015.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Parathion and chlorpyrifos are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). The endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) are endogenous neuromodulators that regulate presynaptic neurotransmitter release in neurons throughout the central and peripheral nervous systems. While substantial information is known about the eCBs, less is known about a number of endocannabinoid-like metabolites (eCBLs, e.g., N-palmitoylethanolamine, PEA; N-oleoylethanolamine, OEA). We report the comparative effects of parathion and chlorpyrifos on AChE and enzymes responsible for inactivation of the eCBs, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and changes in the eCBs AEA and 2AG and eCBLs PEA and OEA, in rat striatum. Adult, male rats were treated with vehicle (peanut oil, 2 ml/kg, sc), parathion (27 mg/kg) or chlorpyrifos (280 mg/kg) 6-7 days after surgical implantation of microdialysis cannulae into the right striatum, followed by microdialysis two or four days later. Additional rats were similarly treated and sacrificed for evaluation of tissue levels of eCBs and eCBLs. Dialysates and tissue extracts were analyzed by LC-MS/MS. AChE and FAAH were extensively inhibited at both time-points (85-96%), while MAGL activity was significantly but lesser affected (37-62% inhibition) by parathion and chlorpyrifos. Signs of toxicity were noted only in parathion-treated rats. In general, chlorpyrifos increased eCB levels while parathion had no or lesser effects. Early changes in extracellular AEA, 2AG and PEA levels were significantly different between parathion and chlorpyrifos exposures. Differential changes in extracellular and/or tissue levels of eCBs and eCBLs could potentially influence a number of signaling pathways and contribute to selective neurological changes following acute OP intoxications.
Collapse
Affiliation(s)
- Jing Liu
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Loren Parsons
- Committee on Neurobiology of Affective Disorders, The Scripps Research Institute, La Jolla, CA, United States
| | - Carey Pope
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
33
|
Shore DM, Reggio PH. The therapeutic potential of orphan GPCRs, GPR35 and GPR55. Front Pharmacol 2015; 6:69. [PMID: 25926795 PMCID: PMC4397721 DOI: 10.3389/fphar.2015.00069] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/15/2015] [Indexed: 12/19/2022] Open
Abstract
The G protein-coupled receptor (GPCR) superfamily of integral proteins is the largest family of signal transducers, comprised of ∼1000 members. Considering their prevalence and functional importance, it’s not surprising that ∼60% of drugs target GPCRs. Regardless, there exists a subset of the GPCR superfamily that is largely uncharacterized and poorly understood; specifically, more than 140 GPCRs have unknown endogenous ligands—the so-called orphan GPCRs. Orphan GPCRs offer tremendous promise, as they may provide novel therapeutic targets that may be more selective than currently known receptors, resulting in the potential reduction in side effects. In addition, they may provide access to signal transduction pathways currently unknown, allowing for new strategies in drug design. Regardless, orphan GPCRs are an important area of inquiry, as they represent a large gap in our understanding of signal transduction at the cellular level. Here, we focus on the therapeutic potential of two recently deorphanized GPCRs: GPR35/CXCR8 and GPR55. First, GPR35/CXCR8 has been observed in numerous tissues/organ systems, including the gastrointestinal tract, liver, immune system, central nervous system, and cardiovascular system. Not surprisingly, GPR35/CXCR8 has been implicated in numerous pathologies involving these tissues/systems. While several endogenous ligands have been identified, GPR35/CXCR8 has recently been observed to bind the chemokine CXCL17. Second, GPR55 has been observed to be expressed in the central nervous system, adrenal glands, gastrointestinal tract, lung, liver, uterus, bladder, kidney, and bone, as well as, other tissues/organ systems. Likewise, it is not surprising that GPR55 has been implicated in pathologies involving these tissues/systems. GPR55 was initially deorphanized as a cannabinoid receptor and this receptor does bind many cannabinoid compounds. However, the GPR55 endogenous ligand has been found to be a non-cannabinoid, lysophophatidylinositol (LPI) and subsequent high throughput assays have identified other GPR55 ligands that are not cannabinoids and do not bind to either the cannabinoid CB1 and CB2 receptors. Here, we review reports that suggest that GPR35/CXCR8 and GPR55 may be promising therapeutic targets, with diverse physiological roles.
Collapse
Affiliation(s)
- Derek M Shore
- Center for Drug Discovery, Department of Chemistry and Biochemistry, University of North Carolina Greensboro Greensboro, NC, USA
| | - Patricia H Reggio
- Center for Drug Discovery, Department of Chemistry and Biochemistry, University of North Carolina Greensboro Greensboro, NC, USA
| |
Collapse
|
34
|
Kremshofer J, Siwetz M, Berghold VM, Lang I, Huppertz B, Gauster M. A role for GPR55 in human placental venous endothelial cells. Histochem Cell Biol 2015; 144:49-58. [PMID: 25869640 DOI: 10.1007/s00418-015-1321-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 01/14/2023]
Abstract
Endocannabinoids and their G protein-coupled receptors have been suggested to play a key role in human pregnancy, by regulating important aspects such as implantation, decidualization, placentation and labor. G protein-coupled receptor 55 (GPR55) was previously postulated to be another cannabinoid receptor, since specific cannabinoids were shown to act independently of the classical cannabinoid receptors CB1 or CB2. Current knowledge about GPR55 expression and function in human placenta is very limited and motivated us to evaluate human placental GPR55 expression in relation to other human peripheral tissues and to analyze spatiotemporal GPR55 expression in human placenta. Gene expression analysis revealed low GPR55 levels in human placenta, when compared to spleen and lung, the organs showing highest GPR55 expression. Moreover, expression analysis showed 5.8 fold increased placental GPR55 expression at term compared to first trimester. Immunohistochemistry located GPR55 solely at the fetal endothelium of first trimester and term placentas. qPCR and immunocytochemistry consistently confirmed GPR55 expression in isolated primary placental arterial and venous endothelial cells. Incubation with L-α-lysophosphatidylinositol (LPI), the specific and functional ligand for GPR55, at a concentration of 1 µM, significantly enhanced migration of venous, but not arterial endothelial cells. LPI-enhanced migration was inhibited by the GPR55 antagonist O-1918, suggesting a role of the LPI-GPR55 axis in placental venous endothelium function.
Collapse
Affiliation(s)
- Julia Kremshofer
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Harrachgasse 21/VII, 8010, Graz, Austria
| | | | | | | | | | | |
Collapse
|
35
|
Bondarenko AI. Endothelial atypical cannabinoid receptor: do we have enough evidence? Br J Pharmacol 2014; 171:5573-88. [PMID: 25073723 PMCID: PMC4290703 DOI: 10.1111/bph.12866] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/14/2014] [Accepted: 07/24/2014] [Indexed: 12/16/2022] Open
Abstract
Cannabinoids and their synthetic analogues affect a broad range of physiological functions, including cardiovascular variables. Although direct evidence is still missing, the relaxation of a vast range of vascular beds induced by cannabinoids is believed to involve a still unidentified non-CB1 , non-CB2 Gi/o protein-coupled receptor located on endothelial cells, the so called endothelial cannabinoid receptor (eCB receptor). Evidence for the presence of an eCB receptor comes mainly from vascular relaxation studies, which commonly employ pertussis toxin as an indicator for GPCR-mediated signalling. In addition, a pharmacological approach is widely used to attribute the relaxation to eCB receptors. Recent findings have indicated a number of GPCR-independent targets for both agonists and antagonists of the presumed eCB receptor, warranting further investigations and cautious interpretation of the vascular relaxation studies. This review will provide a brief historical overview on the proposed novel eCB receptor, drawing attention to the discrepancies between the studies on the pharmacological profile of the eCB receptor and highlighting the Gi/o protein-independent actions of the eCB receptor inhibitors widely used as selective compounds. As the eCB receptor represents an attractive pharmacological target for a number of cardiovascular abnormalities, defining its molecular identity and the extent of its regulation of vascular function will have important implications for drug discovery. This review highlights the need to re-evaluate this subject in a thoughtful and rigorous fashion. More studies are needed to differentiate Gi/o protein-dependent endothelial cannabinoid signalling from that involving the classical CB1 and CB2 receptors as well as its relevance for pathophysiological conditions.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, O.O.Bogomoletz Institute of PhysiologyKiev, Ukraine
- Institute of Molecular Biology and Biochemistry, Medical University of GrazGraz, Austria
| |
Collapse
|
36
|
Cole SPC. Multidrug resistance protein 1 (MRP1, ABCC1), a "multitasking" ATP-binding cassette (ABC) transporter. J Biol Chem 2014; 289:30880-8. [PMID: 25281745 DOI: 10.1074/jbc.r114.609248] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multidrug resistance protein 1 (MRP1) encoded by ABCC1 was originally discovered as a cause of multidrug resistance in tumor cells. However, it is now clear that MRP1 serves a broader role than simply mediating the ATP-dependent efflux of drugs from cells. The antioxidant GSH and the pro-inflammatory cysteinyl leukotriene C4 have been identified as key physiological organic anions effluxed by MRP1, and an ever growing body of evidence indicates that additional lipid-derived mediators are also substrates of this transporter. As such, MRP1 is a multitasking transporter that likely influences the etiology and progression of a host of human diseases.
Collapse
Affiliation(s)
- Susan P C Cole
- From the Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|