1
|
Jia F, Wang Y, Chen Z, Jin J, Zeng L, Zhang L, Tang H, Wang Y, Fan P. 10-Hydroxydec-2-enoic acid reduces vascular smooth muscle cell inflammation via interacting with Toll-like receptor 4. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156534. [PMID: 40054182 DOI: 10.1016/j.phymed.2025.156534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/09/2025] [Accepted: 02/15/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND 10-Hydroxydec-2-enoic acid (10-HDA), a unique and marker compound in royal jelly, has a wide range of bio-activities. However, its role in regulating inflammation of vascular smooth muscle cell (VSMC), which is essential to a set of vascular diseases, is still unknown. PURPOSE Our study aimed to investigate whether 10-HDA exerts effect on VSMC inflammation via interacting with toll-like receptor 4 (TLR4), a pivotal inflammatory initiator. METHODS A package of proteins, which might participate in TLR4-mediated signaling, influenced by 10-HDA were analyzed in mouse VSMCs with Angiotensin Ⅱ(Ang Ⅱ) or lipopolysaccharide (LPS) stimulation. Accordingly, pro- or anti-inflammatory cytokines, reactive oxygen species (ROS), and anti-oxidants that are closely relevant to inflammatory process were determined. The possible mode for 10-HDA interacting with TLR4 was also characterized. Moreover, involvement of a key miRNA in 10-HDA regulating VSMC inflammation was identified. RESULTS In the presence of Ang Ⅱ, 10-HDA inhibited the TLR4 expression in a dose-dependent manner. In such occasion, 10-HDA hindered the up-regulation of specificity protein 1 (SP1) and serine/threonine-protein phosphatase 6 catalytic subunit (PPP6C), the phosphorylation of extracellular signal-regulated kinase 1/2, TGF-β-activated kinase 1, and nuclear factor-κB p56, as well as the enhancement of myeloid differentiation primary response gene 88. Apart from SP1 and PPP6C, the level change of these proteins by 10-HDA was similar with LPS stimulation. The effect might be resulted from 10-HDA blocking TLR4 through multiple atomic interactions. 10-HDA mitigated the increase of pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin-2 (IL-2), and IL-6, as well as increased the anti-inflammatory cytokine IL-10, in the Ang Ⅱ- or LPS-induced VSMCs. Correspondingly, the level of ROS was attenuated and the anti-oxidants such as glutathione and superoxide dismutase were fortified. The data indicated the anti-inflammatory potential of 10-HDA in VSMCs, which was associated with 10-HDA's capability of relieving oxidative stress. Additionally, the expression of miR-17-5p was saved by 10-HDA from Ang Ⅱ- or LPS-treated VSMCs, which might be relevant to SP1 and PPP6C targeting. CONCLUSION The present work of 10-HDA, for the first time, revealed its ability to alleviate VSMC inflammation by targeting TLR4 and therefore modulate the downstream inflammatory participants. Our data will cast light on the utilization of 10-HDA in VSMC inflammation-related vascular disorders.
Collapse
Affiliation(s)
- Feng Jia
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yongqing Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhiqiang Chen
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jingxian Jin
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lei Zeng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Li Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Huaijian Tang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yanyan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Pei Fan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Tang T, Liang H, Han Y, Cong Z, Wang H, Wei P, Zhao G. N-myc downstream-regulated gene 2, co-regulated by transcription factors c-MYC and SP1, reduces cell proliferation by interacting with mTOR in GBM. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167742. [PMID: 39986441 DOI: 10.1016/j.bbadis.2025.167742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/20/2024] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
NDRG2, a recognized suppressor of tumor cell proliferation, displays downregulation in glioma, yet its specific regulatory mechanisms remain elusive. Our study validated the downregulation of NDRG2 in surgical glioma samples from our center and confirmed its antitumor effects both in vitro and in vivo. Utilizing chromatin immunoprecipitation and dual luciferase reporter assays, we identified MYC and SP1 as negative transcription factors that regulate NDRG2 expression. Furthermore, we identified NDRG2 as a novel binding partner of mTOR, a pivotal regulator of cell growth and proliferation, inhibiting the phosphorylation of mTOR. The downstream signaling pathway of mTOR was then inhibited by overexpression of NDRG2. It suggested a potential mechanism by which NDRG2 exerted its antitumor function. Our findings shed light on the intricate regulatory network involving NDRG2 in glioma development and offer insights into novel therapeutic strategies targeting this pathway.
Collapse
Affiliation(s)
- Ting Tang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China; Brain Research Innovation and Transformation Laboratory, Xuanwu Hospital Capital Medical University, Beijing, China; Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hui Liang
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China; Department of Neurosurgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yanling Han
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zixiang Cong
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Handong Wang
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China; Department of Neurosurgery, Benq Medical Center, Nanjing Medical University, Nanjing, China.
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China; Brain Research Innovation and Transformation Laboratory, Xuanwu Hospital Capital Medical University, Beijing, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China; Brain Research Innovation and Transformation Laboratory, Xuanwu Hospital Capital Medical University, Beijing, China; Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China.
| |
Collapse
|
3
|
Fernández-Olivares A, Orellana VP, Llanquinao J, Nuñez G, Pérez-Moreno P, Contreras-Riquelme S, Martin AJ, Mammano F, Alfaro IE, Calderón JF, Stehberg J, Sáez MA, Retamal MA. Connexin46 in the nucleus of cancer cells: a possible role as transcription modulator. Cell Commun Signal 2025; 23:153. [PMID: 40148950 PMCID: PMC11948717 DOI: 10.1186/s12964-025-02151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Oncogenes drive cancer progression, but few are active exclusively in tumor cells. Connexins (Cxs), traditionally recognized as ion channel proteins, can localize to the nucleus and regulate gene expression, playing key roles in both physiological and pathological processes. Cx46, once thought to be restricted to the eye lens, has been implicated in tumor growth, though its underlying mechanisms remain unclear. This study investigates the nuclear presence of Cx46 in cancer cells and its potential role as a transcriptional modulator. METHODS We employed ChIP-Seq, confocal immunofluorescence, and nuclear protein purification to assess Cx46 localization and DNA interactions. Functional assays were conducted to evaluate its effects on invasion, division, spheroid formation, and mesenchymal marker expression. Single-point mutations and molecular dynamics simulations were used to explore potential Cx46-DNA interactions. RESULTS Cx46 mRNA upregulation was found in a variety of tumors compared to adjacent healthy tissue. In HeLa cells, which do not express Cx46, its transfection promoted proliferation, invasion and self-renewal capacity, cancer stem cell traits and mesenchymal features. Consistently, in Sk-Mel-2, which naturally express Cx46, reduced Cx46 expression led to a decrease in the similar parameters. In HeLa cells, nuclear Cx46 was detected in two forms, full length 46 kDa and a 30 kDa fragment (GJA3-30 k), ChIP-Seq experiments revealed that Cx46 binds to the DNA at intergenic and promoter regions, leading to the activation of oncogenic pathways. Molecular dynamics simulations suggest that GJA3-30 k dimerizes in a RAD50-like structure, forming stable DNA complexes. Cx46 and in some cases GJA3-30 k were detected in the nuclei of multiple cancer cell lines, including prostate, breast and skin cancers. CONCLUSIONS Our findings reveal a novel nuclear role for Cx46 in cancer, demonstrating its function as a transcriptional regulator and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Ainoa Fernández-Olivares
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Viviana P Orellana
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Jesús Llanquinao
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Translational Medicine Laboratory, Instituto Oncológico Fundación Arturo López Pérez, Santiago 7500691, Chile
| | - Gonzalo Nuñez
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Pablo Pérez-Moreno
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Sebastián Contreras-Riquelme
- Plant Genome Regulation Lab, Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alberto Jm Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Escuela de Ingeniería, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Fabio Mammano
- Department of Physics and Astronomy "G. Galilei", University of Padova, Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Padova, 35131, Italy
| | - Ivan E Alfaro
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida. Nuñoa, Santiago, Chile
| | - Juan F Calderón
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad Andres Bello, Santiago, 8370146, Chile
| | - Mauricio A Sáez
- Departamento de Procesos Diagnósticos y Evaluación, Laboratorio de Investigación en Salud de Precisión, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile.
| | - Mauricio A Retamal
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
| |
Collapse
|
4
|
Wang R, Wang Q, Liao J, Yu X, Li W. Piperlongumine overcomes osimertinib resistance via governing ubiquitination-modulated Sp1 turnover. JCI Insight 2025; 10:e186165. [PMID: 40125551 PMCID: PMC11949057 DOI: 10.1172/jci.insight.186165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/31/2025] [Indexed: 03/25/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common cause of cancer-related deaths worldwide, and its incidence has been increasing in recent years. While targeted therapies like osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor, have brought about notable improvements in patient outcomes for advanced NSCLC, the challenge of acquired drug resistance persists. Here, we found that cellular mesenchymal-epithelial transition factor (c-Met) was highly expressed in osimertinib-resistant cells, and depletion of c-Met markedly inhibited the growth of osimertinib-resistant cells ex vivo and in vivo, suggesting that c-Met is a potential target to address osimertinib resistance. Through a screening process using a natural product compound library, we identified piperlongumine as a potent inhibitor to overcome osimertinib resistance. Furthermore, the combined treatment of piperlongumine and osimertinib exhibited robust antitumor effects in resistant cells, partially restoring their sensitivity to osimertinib. Additionally, we discovered that piperlongumine could enhance the interaction between E3 ligase RNF4 and Sp1, inhibit the phosphorylation of Sp1 at Thr739, facilitate the ubiquitination and degradation of Sp1, lead to c-Met destabilization, and trigger intrinsic apoptosis in resistant cells. In summary, our study sheds light on the potential of piperlongumine in overcoming osimertinib resistance, offering new strategies and perspectives for the clinical management of drug-resistant NSCLC.
Collapse
Affiliation(s)
| | - Qiang Wang
- NHC Key Laboratory of Translational Research on Transplantation Medicine, Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | | | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Li
- Department of Radiology and
| |
Collapse
|
5
|
Tao G, Wang X, Wang J, Ye Y, Zhang M, Lang Y, Ding S. Identifying Specificity Protein 2 as a key marker for diabetic encephalopathy in the context of predictive, preventive, and personalized medicine. EPMA J 2025; 16:67-93. [PMID: 39991102 PMCID: PMC11842694 DOI: 10.1007/s13167-024-00394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/18/2024] [Indexed: 02/25/2025]
Abstract
Background Transcription factor specificity protein (SP2) regulates various cellular functions, including cell division, proliferation, invasion, metastasis, differentiation, and death; however, its role has not been studied in prominent medical conditions including diabetic encephalopathy (DE). Therefore, this study addressed its physiological function in the context of DE to also better characterize its possible use in the context of predictive, preventive, and personalized medicine (PPPM). Methods The anti-inflammatory and anti-DE actions of SP2 were investigated using three animal models (SP2-/- mice, streptozocin-treated mice, and db/db mice) and two cell lines (primary cultured hippocampal neurons and N2A cells). The db/db mice were a leptin deficiency model often used to study type 2 diabetes. An equal number of males and females (8-12 weeks of age) was selected. Behavioral changes in mice were determined using both morris water maze (MWM) test and Y-maze (YM) test. The alterations in oxidative stress and inflammation were examined via immunofluorescence assay, flow cytometry, co-immunoprecipitation, and immunoblotting. Results Mechanistically, SP2-knockout (SP2-/-) mice showed dysregulation of insulin/glucose homeostasis, neuroinflammation, and cognitive loss. Otherwise, in db/db DE mice and STZ-induced DE mice, neuroinflammation, neuroapoptosis, and cognitive decline were significantly attenuated when SP2 was overexpressed in the brain. On the other hand, SP2 overexpression activates the insulin signaling pathway and improves insulin resistance via targeting X-box binding protein 1 (XBP1) in neurons. Moreover, SP2 overexpression significantly reduces oxidative stress by interacting with XBP1 and nuclear factor erythroid 2-related factor 2 (NRF2) in neurons. Furthermore, SP2 enhances the suppression of inflammatory response triggered by nuclear factor kappa B (NFκB) through the recruitment of XBP1 and NRF2 and by the in vitro inactivation of IκB kinase (IKK) complex. Conclusions These findings highlight SP2 as key biological targets for DE and reveal the infammation-related potential molecular mechanism of DE, which is helpful for early risk prediction and targeted prevention of DE. In conclusion, our study provides a new perspective for developing a PPPM method for managing DE patients. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00394-0.
Collapse
Affiliation(s)
- Guorong Tao
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xuebao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Jian Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
- Huangshi Love & Health Hospital, Hubei Polytechnic University, Huangshi, 435000 China
| | - Yiru Ye
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
- School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035 Zhejiang China
| | - Minxue Zhang
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Yan Lang
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Saidan Ding
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| |
Collapse
|
6
|
Kausar R, Nguyen NTT, Le TPH, Kim JH, Lee SY. Inhibition of HDAC6 elicits anticancer effects on head and neck cancer cells through Sp1/SOD3/MKP1 signaling axis to downregulate ERK phosphorylation. Cell Signal 2025; 127:111587. [PMID: 39755348 DOI: 10.1016/j.cellsig.2024.111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Oxidative stress caused by reactive oxygen species (ROS) and superoxides is linked to various cancer-related biological events. Extracellular superoxide dismutase (SOD3), an antioxidant enzyme that removes superoxides, contributes to redox homeostasis and has the potential to regulate tumorigenesis. Histone deacetylase 6 (HDAC6), a major HDAC isoform responsible for mediating the deacetylation of non-histone protein substrates, also plays a role in cancer progression. In this study, we examined the potential effects of HDAC6 inhibition on SOD3 expression in head and neck cancer (HNC) cells and its impact on cell proliferation, which remains unaddressed. We found that functional inactivation of HDAC6, through the use of chemical inhibitors such as tubastatin A (TubA), gene knockdown, or overexpression of an inactive mutant, strongly upregulated protein and mRNA levels of SOD3 in HNC cell lines FaDu and Detroit562. Mechanistically, TubA induced acetylation of the transcription factor Sp1 at Lys703, which consequently enhanced its binding to the SOD3 proximal promoter region and increased SOD3 expression. An acetylation-defective Sp1 mutant (K703R) was much less effective in inducing SOD3 expression compared to wild-type Sp1. TubA reduced intracellular ROS and superoxide levels, and this antioxidative effect was attenuated in SOD3 knockdown cells. Similar to the changes in ROS levels, HDAC6 inhibition as well as SOD3 overexpression suppressed cell proliferation and the stimulatory phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), whereas SOD3 knockdown produced opposite effects in both resting and TubA-treated conditions. In addition, SOD3 overexpression prevented ROS-induced ERK1/2 phosphorylation and enhanced the protein stability of mitogen-activated protein kinase phosphatase 1 (MKP1), thereby counteracting ERK1/2 phosphorylation. We further showed that SOD3-mediated ERK1/2 dephosphorylation was moderated in MKP1 knockdown cells. Collectively, these results suggest that HDAC6 inhibition elicits anticancer effects on HNC cells by promoting Sp1 acetylation-dependent SOD3 upregulation, leading to MKP1 stabilization and subsequent ERK1/2 inactivation.
Collapse
Affiliation(s)
- Rukhsana Kausar
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Nga Thi Thanh Nguyen
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Truc Phan Hoang Le
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Jae Hyung Kim
- Department of Anesthesiology and Pain Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi 18450, Republic of Korea
| | - Sang Yoon Lee
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.
| |
Collapse
|
7
|
Bellis C, Mlaza MV, Ali A, Abrahams A, Prince S. Exploring the oncogenic roles of T-box transcription factor TBX2 and its potential as a therapeutic target. Biochem Soc Trans 2025; 53:BST20241069. [PMID: 39912718 DOI: 10.1042/bst20241069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/07/2025]
Abstract
During embryonic development, the T-box transcription factor TBX2 regulates key processes such as cell fate decisions, migration and tissue morphogenesis, and mutations that lead to reduced TBX2 levels result in developmental abnormalities including congenital heart and skeletal defects. TBX2, on the other hand, is overexpressed in a plethora of cancers where it functions as a powerful oncogene contributing to processes ranging from the bypass of senescence and cell death pathways to the promotion of cell proliferation, and epithelial-to-mesenchymal transition to drive invasion and metastasis. Additionally, TBX2 has been implicated in conferring resistance to anti-cancer drugs resulting in poor therapeutic outcomes. To exert its oncogenic functions, TBX2 transcriptionally represses key tumour suppressor genes involved in controlling cell proliferation and epithelial-to-mesenchymal transition such as p21Cip1, p14/p19ARF PTEN, NDRG1, CST6 and E-cadherin. This repression has been shown to involve complex mechanisms by which TBX2 co-opts transcription factors and recruits co-repression complexes to the promoters of these tumour suppressor genes. While limited information is available on how TBX2 is regulated in cancers, there is evidence that the levels and oncogenic functions of TBX2 are induced by developmental signalling pathways that are hijacked by cancer cells such as the Wnt/β-catenin and PI3K/AKT pathways. Understanding the complex molecular networks that TBX2 is involved in to exert its oncogenic functions is important because it may reveal potential therapeutic strategies for targeting TBX2 in TBX2-dependent cancers. This minireview discusses TBX2's involvement in cancer signalling, its regulatory partners, and its impact on cancer progression and resistance to therapy.
Collapse
Affiliation(s)
- Claire Bellis
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mihlali V Mlaza
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Abid Ali
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Amaal Abrahams
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| |
Collapse
|
8
|
Liang S, Wu Y, Zhang R, Xu L, Xie F. TNFSF9 Silence Impedes Cerebral Ischemia-Reperfusion Injury via Modulating SLC3A2 Expression in Brain Microvascular Endothelial Cells. J Mol Neurosci 2025; 75:12. [PMID: 39856410 DOI: 10.1007/s12031-025-02310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Cerebral ischemia-reperfusion injury (CIRI), which stays unresolved in the clinic, occurs after recanalization of blood vessels serving brain tissues in acute ischemic stroke patients and can result in massive brain cell death, and cell ferroptosis contributes greatly to this process. Our research firstly found that TNFSF9 expression harbored diagnostic value on CIRI patients and intended to further investigate its regulatory mechanism in CIRI, which might facilitate its diagnostic and therapeutic application in the clinic. The level of TNSF9 mRNA was augmented in the plasma of CIR patients, and its silence impeded ferroptosis, apoptosis, and release of inflammatory mediators of BMECs with OGD/R treatment. Besides, SP1 positively regulated TNFSF9 expression as one of its transcription factors, and TNFSF9 overexpression reversed SP1 silence-mediated inhibition on ferroptosis, apoptosis, and release of inflammatory mediators in OGD/R-treated BMECs. In addition, silencing SLC3A2 could neutralize the benefit effects of TNFSF9 downregulation on BMECs under OGD/R context in vitro, and silencing TNFSF9 neutralized necrotic volumes in rat brain induced by CIRI via modulating SLC3A2 expression in vivo. TNFSF9 regulated by SP1 aggravated CIRI via boosting ferroptosis, apoptosis, and release of inflammatory mediators of BMECs under OGD/R situation by suppressing SLC3A2 expression in vitro and in vivo.
Collapse
Affiliation(s)
- Shunli Liang
- Department of Neurology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310005, Zhejiang, China
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou City, 310053, Zhejiang, China
| | - You Wu
- Department of Neurology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310005, Zhejiang, China
| | - Rongbo Zhang
- Department of Neurology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310005, Zhejiang, China
| | - Linsheng Xu
- Department of Neurology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310005, Zhejiang, China
| | - Fangping Xie
- Department of Special Examination, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, No. 305 Tianmushan Road, Hangzhou City, 310013, Zhejiang, China.
| |
Collapse
|
9
|
Safe S, Farkas E, Hailemariam AE, Oany AR, Sivaram G, Tsui WNT. Activation of Genes by Nuclear Receptor/Specificity Protein (Sp) Interactions in Cancer. Cancers (Basel) 2025; 17:284. [PMID: 39858066 PMCID: PMC11763981 DOI: 10.3390/cancers17020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The human nuclear receptor (NR) superfamily consists of 48 genes that are ligand-activated transcription factors that play a key role in maintaining cellular homeostasis and in pathophysiology. NRs are important drug targets for both cancer and non-cancer endpoints as ligands for these receptors can act as agonists, antagonists or inverse agonists to modulate gene expression. With two exceptions, the classical mechanism of action of NRs involves their interactions as monomers, dimers or heterodimers with their cognate response elements (cis-elements) in target gene promoters. Several studies showed that a number of NR-regulated genes did not directly bind their corresponding cis-elements and promoter analysis identified that NR-responsive gene promoters contained GC-rich sequences that bind specificity protein 1 (Sp1), Sp3 and Sp4 transcription factors (TFs). This review is focused on identifying an important sub-set of Sp-regulated genes that are indirectly coregulated through interactions with NRs. Subsequent studies showed that many NRs directly bind Sp1 (or Sp3 and Sp4), the NR/Sp complexes bind GC-rich sites to regulate gene expression and the NR acts as a ligand-modulated nuclear cofactor. In addition, several reports show that NR-responsive genes contain cis-elements that bind both Sp TFs and NRs, and mutation of either cis-element results in loss of NR-responsive (inducible and/or basal). Regulation of these genes involves interactions between DNA-bound Sp TFs with proximal or distal DNA-bound NRs, and, in some cases, other nuclear cofactors are required for gene expression. Thus, many NR-responsive genes are regulated by NR/Sp complexes, and these genes can be targeted by ligands that target NRs and also by drugs that induce degradation of Sp1, Sp3 and Sp4.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA; (E.F.); (A.E.H.); (A.R.O.); (G.S.); (W.N.T.T.)
| | | | | | | | | | | |
Collapse
|
10
|
Xie J, Lin H, Jin F, Luo Y, Yang P, Song J, Yao W, Lin W, Yuan D, Zuo A, Sun J, Wang M. Jia Wei Qingxin Lotus Seed Drink ameliorates epithelial mesenchymal transition injury in diabetic kidney disease via inhibition of JMJD1C/SP1/ZEB1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156142. [PMID: 39541663 DOI: 10.1016/j.phymed.2024.156142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is one of the most common microvascular complications in patients with diabetes mellitus. In this condition, renal tubular epithelial mesenchymal transition (EMT) is an important factor accelerating the progression of DKD and a major cause of renal fibrosis and end-stage renal disease. However, the therapeutic effect is unsatisfactory because of the lack of effective drugs. Jia Wei Qingxin Lotus Seed Drink (QISD) is a traditional Chinese medicine compound formula that has shown to be effective in the clinical treatment of DKD. However, the potential of QISD in DKD-EMT treatment has yet to be fully explored. PURPOSE This study aimed to investigate the role of QISD in ameliorating DKD-EMT injury and its mechanism. METHODS The active ingredients of QISD were identified via ultra-performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS). A DKD mouse model was constructed by high-fat diet feeding and intraperitoneal injection of STZ (60 mg/kg), and QISD (14.46, 28.92, and 57.84 g/kg/day) was administered by gavage for 12 consecutive weeks. Dapagliflozin (1 mg/kg/d) was used as a positive control. Renal pathological damage was observed by HE, PAS, and Masson staining. The expression levels of EMT-related proteins and pathway proteins were detected via immunohistochemistry, RT-qPCR, and western blot. In in vitro experiments, EMT injury was induced in human kidney tubular epithelial cells (HK-2) by using lipopolysaccharide (LPS). A combination of CCK8 assay, wound healing assay, small-molecule inhibitor intervention, and overexpression lentiviral transfection was used to investigate the effects of QISD on cell migration ability, adhesion ability, fibrotic factor formation, and mesenchymal properties. RESULTS Animal experiments showed that QISD improved blood glucose, body weight, symptoms of excessive drinking and eating, and renal pathological injury in mice, reduced extracellular matrix deposition, delayed renal EMT injury, and inhibited the activation of the histone demethylase JMJD1C. UHPLC-MS/MS and molecular docking indicated that baicalin, wogonoside, oroxylin A-7-O-β-D-glucuronide, and glulisine A found in QISD could bind to JMJD1C. The ameliorating effect of QISD on DKD-EMT injury might be related to JMJD1C. The improvement of DKD-EMT injury by QISD was accompanied by the reduction of SP1 and ZEB1 expression. The SP1 overexpression not only reversed the therapeutic effect of JIB-04, an inhibitor of JMJD1C, on DKD-EMT but also exacerbated the expression of ZEB1 and downstream EMT-related factors. Thus, QISD might affect the expression of the epithelial marker E-cadherin by inhibiting the JMJD1C/SP1/ZEB1 signaling pathway, consequently preventing the transformation of epithelial cells to mesenchymal cells and ameliorating DKD-EMT injury. CONCLUSION This study was the first to demonstrate that QISD might ameliorate DKD-EMT injury by inhibiting the JMJD1C/SP1/ZEB1 signaling pathway. These findings provide strong pharmacologic evidence for the clinical use of QISD in the treatment of DKD.
Collapse
Affiliation(s)
- Jiarun Xie
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Haoyu Lin
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Fuhua Jin
- Qingdao City Central Hospital, Qingdao, Shandong, 266042, China
| | - Yanyu Luo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Peiyuan Yang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jianda Song
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Wang Yao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Wenming Lin
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Daijiao Yuan
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Anna Zuo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jia Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Saddoris SM, Schang LM. The opportunities and challenges of epigenetic approaches to manage herpes simplex infections. Expert Rev Anti Infect Ther 2024; 22:1123-1142. [PMID: 39466139 PMCID: PMC11634640 DOI: 10.1080/14787210.2024.2420329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/24/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Despite the existence of antivirals that potently and efficiently inhibit the replication of herpes simplex virus 1 and 2 (HSV-1, -2), their ability to establish and maintain, and reactivate from, latency has precluded the development of curative therapies. Several groups are exploring the opportunities of targeting epigenetic regulation to permanently silence latent HSV genomes or induce their simultaneous reactivation in the presence of antivirals to flush the latent reservoirs, as has been explored for HIV. AREAS COVERED This review covers the basic principles of epigenetic regulation with an emphasis on those mechanisms relevant to the regulation of herpes simplex viruses, as well as the current knowledge on the regulation of lytic infections and the establishment and maintenance of, and reactivation from, latency, with an emphasis on epigenetic regulation. The differences with the epigenetic regulation of viral and cellular gene expression are highlighted as are the effects of known epigenetic regulators on herpes simplex viruses. The major limitations of current models to the development of novel antiviral strategies targeting latency are highlighted. EXPERT OPINION We provide an update on the epigenetic regulation during lytic and latent HSV-1 infection, highlighting the commonalities and differences with cellular gene expression and the potential of epigenetic drugs as antivirals, including the opportunities, challenges, and potential future directions.
Collapse
Affiliation(s)
- Sarah M Saddoris
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850-USA
| | - Luis M Schang
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850-USA
| |
Collapse
|
12
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
13
|
Yang X, Wang C. SGPP2 is activated by SP1 and promotes lung adenocarcinoma progression. Anticancer Drugs 2024; 35:943-951. [PMID: 39514710 DOI: 10.1097/cad.0000000000001648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The late diagnosis and easy metastasis of lung adenocarcinoma (LADC) remains a challenge. SGPP2 is reported to modulate cell processes in many cancers. However, the roles and molecular mechanisms of SGPP2 in LADC are unclear. Online bioinformatics tools GEPIA, CPTAC, and K-M plotter were used to analyze the expression of SGPP2 and the prognosis in LADC. JASPAR and PROMO were used to predict the transcription factors of SGPP2. Real-time quantitative reverse transcription PCR and western blot were used to detect the levels of SGPP2 in LADC cell lines and tissues. Cell counting kit-8, colony formation, flow cytometry, and transwell assay were used to detect cell proliferation, apoptosis, and invasion. The anti-cancer effect of SGPP2 silence was evaluated in the LADC xenograft model. It was found that SGPP2 was highly expressed and related to the poor prognosis of LADC patients. Elevated SGPP2 expression was detected in LADC cell lines and tissues. The chi-square test indicated that the expression of SGPP2 was positively related to tumor, node, metastasis grades and lymph node metastasis. Knocking down SGPP2 significantly inhibited LADC cell viability, and invasion, but induced apoptosis. The anti-tumor effects of SGPP2 were verified in vivo. The upstream transcription factor of SGPP2 was predicted to be SP1, which was highly expressed in LADC tissues and cell lines. Overexpression of SP1 partly rescued the inhibition of SGPP2-shRNA in cell growth, colony formation, and invasion capabilities, and decreased apoptotic cell number in LADC cells. This study demonstrated that SGPP2, activated by SP1, promotes LADC cell proliferation and invasion, and suppresses apoptosis in LADC.
Collapse
Affiliation(s)
- Xi Yang
- Department of Pulmonary and Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Chen Wang
- Department of Respiratory Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
14
|
Gao J, Liu M, Lu M, Zheng Y, Wang Y, Yang J, Xue X, Liu Y, Tang F, Wang S, Song L, Wen L, Wang J. Integrative analysis of transcriptome, DNA methylome, and chromatin accessibility reveals candidate therapeutic targets in hypertrophic cardiomyopathy. Protein Cell 2024; 15:796-817. [PMID: 38780967 PMCID: PMC11528543 DOI: 10.1093/procel/pwae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and is characterized by primary left ventricular hypertrophy usually caused by mutations in sarcomere genes. The mechanism underlying cardiac remodeling in HCM remains incompletely understood. An investigation of HCM through integrative analysis at multi-omics levels will be helpful for treating HCM. DNA methylation and chromatin accessibility, as well as gene expression, were assessed by nucleosome occupancy and methylome sequencing (NOMe-seq) and RNA-seq, respectively, using the cardiac tissues of HCM patients. Compared with those of the controls, the transcriptome, DNA methylome, and chromatin accessibility of the HCM myocardium showed multifaceted differences. At the transcriptome level, HCM hearts returned to the fetal gene program through decreased sarcomeric and metabolic gene expression and increased extracellular matrix gene expression. In the DNA methylome, hypermethylated and hypomethylated differentially methylated regions were identified in HCM. At the chromatin accessibility level, HCM hearts showed changes in different genome elements. Several transcription factors, including SP1 and EGR1, exhibited a fetal-like pattern of binding motifs in nucleosome-depleted regions in HCM. In particular, the inhibition of SP1 or EGR1 in an HCM mouse model harboring sarcomere mutations markedly alleviated the HCM phenotype of the mutant mice and reversed fetal gene reprogramming. Overall, this study not only provides a high-precision multi-omics map of HCM heart tissue but also sheds light on the therapeutic strategy by intervening in the fetal gene reprogramming in HCM.
Collapse
Affiliation(s)
- Junpeng Gao
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Mengya Liu
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Minjie Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| | - Yuxuan Zheng
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Wang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jingwei Yang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Xiaohui Xue
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yun Liu
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuiyun Wang
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lei Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
- Cardiomyopathy Ward, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lu Wen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jizheng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
15
|
Chen Y, Liu Y, Tu W, Chen Y, Xu C, Huang C. m6A demethylase FTO transcriptionally activated by SP1 improves ischemia reperfusion-triggered acute kidney injury by activating Ambra1/ULK1-mediated autophagy. FASEB J 2024; 38:e70118. [PMID: 39439252 PMCID: PMC11580720 DOI: 10.1096/fj.202400132rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Ischemia reperfusion (I/R) was considered as one of main causes of acute kidney injury (AKI). However, the exact mechanism remains unclear. Here, this study aimed to investigate the role and mechanism of the m6A demethylase fat mass and obesity-associated (FTO) protein in I/R-induced AKI. HK-2 cells and SD rats were utilized to establish hypoxia/reoxygenation (H/R) or I/R induced AKI models. The changes of RNAs and proteins were quantified using RT-qPCR, western blot, and immunofluorescence assays, respectively. Cell proliferation and apoptosis were assessed by CCK-8 and flow cytometry. Interactions between molecules were investigated using RIP, ChIP, Co-IP, RNA pull-down, and dual luciferase reporter assays. Global m6A quantification was evaluated by kits. TUNEL and HE staining were employed for histopathological examinations. Oxidative stress-related indicators and renal function were determined using ELISA assays. The FTO expression was downregulated in H/R-induced HK-2 cells and renal tissues from I/R-induced rats. Overexpression of FTO improved the cell viability but repressed apoptosis and oxidative stress in H/R-treated HK-2 cells, as well as enhanced renal function and alleviated kidney injury in I/R rats. Notably, the FTO overexpression significantly increased autophagy-related LC3 and ULK1 levels. When autophagy was inhibited, the protective effects of FTO in AKI were diminished. Notably, Ambra1, a crucial regulator of autophagy, was repressed in H/R-induced HK-2 cells. However, the FTO overexpression restored the Ambra1 expression by reducing m6A modification of its mRNA. SP1, acting as an upstream transcription factor, directly interacts with the FTO promoter to enhance FTO expression. Knockdown of SP1 or Ambra1 suppressed the beneficial effects of FTO upregulation on autophagy and oxidative stress injury in H/R-stimulated cells. FTO, transcriptionally activated by SP1, promoted autophagy by upregulating Ambra1/ULK1 signaling, thereby inhibiting oxidative stress and kidney injury. These findings may provide some novel insights for AKI treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of NephrologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| | - Yuanfei Liu
- Department of EmergencyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| | - Weiping Tu
- Department of NephrologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| | - Yanxia Chen
- Department of NephrologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| | - Chengyun Xu
- Department of NephrologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| | - Chong Huang
- Department of NephrologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| |
Collapse
|
16
|
Zhou Y, Luo Z, Guo J, Wu L, Zhou X, Huang JJ, Huang D, Xiao L, Duan Q, Chang J, Gong L, Hang J. Pan-cancer analysis of Sp1 with a focus on immunomodulatory roles in gastric cancer. Cancer Cell Int 2024; 24:338. [PMID: 39402565 PMCID: PMC11476248 DOI: 10.1186/s12935-024-03521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Sp1, a transcription factor, regulates essential cellular processes and plays important tumorigenic roles across diverse cancers. However, comprehensive pan-cancer analyses of its expression and potential immunomodulatory roles remain unexplored. METHODS Utilizing bioinformatics tools and public datasets, we examined the expression of Sp1 across normal tissues, tumors, and immune cells, and screened for pre- and post-transcriptional modifications, including genetic alterations, DNA methylation, and protein phosphorylation, affecting its expression or function. The association of Sp1 expression with immune cell infiltration, tumor mutational burden, and immune checkpoint signaling was also investigated. Single-cell transcriptome data was used to assess Sp1 expression in immune cells in gastric cancer (GC), and findings were corroborated using immunohistochemistry and multiplex immunofluorescence in an immunotherapy-treated patient cohort. The prognostic value of Sp1 in GC patients receiving immunotherapy was evaluated with Cox regression models. RESULTS Elevated Sp1 levels were observed in various cancers compared to normal tissues, with notable prominence in GC. High Sp1 expression correlated with advanced stage, poor prognosis, elevated tumor mutational burden (TMB), and microsatellite instability (MSI) status, particularly in GC. Significant correlations between Sp1 levels and CD8+ T cell and the M1 phenotype of tumor-associated macrophages were further detected upon multiplex immunofluorescence in GC samples. Interestingly, we verified that GC patients with higher Sp1 levels exhibited improved response to immunotherapy. Moreover, Sp1 emerged as a prognostic and predictive biomarker for GC patients undergoing immunotherapy. CONCLUSIONS Our pan-cancer analysis sheds light on the multifaceted role of Sp1 in tumorigenesis and underscores its potential as a prognostic and predictive biomarker for patients with GC undergoing immunotherapy.
Collapse
Affiliation(s)
- Yang Zhou
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Zhenzhen Luo
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Jinfeng Guo
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Lixia Wu
- Department of Oncology, Shanghai JingAn District ZhaBei Central Hospital, Shanghai, 200070, China
| | - Xiaoli Zhou
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Jun Jie Huang
- JC School of Public Health and Primary Care, Faculty of Medicine, Centre for Health Education and Health Promotion, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Daijia Huang
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Li Xiao
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Qiuhua Duan
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Jianhua Chang
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China.
| | - Libao Gong
- Department of Oncology, The Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China.
| | - Junjie Hang
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
17
|
Saha P, Talwar P. Identification of PPREs and PPRE associated genes in the human genome: insights into related kinases and disease implications. Front Immunol 2024; 15:1457648. [PMID: 39434882 PMCID: PMC11491715 DOI: 10.3389/fimmu.2024.1457648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/28/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction "Peroxisome Proliferator-Activated Receptors" (PPARs) belong to the class of transcription factors (TF) identified as Nuclear Receptors (NR). Upon activation by peroxisome proliferators (PPs), PPARs modulate a diverse range of genes, consequently regulating intra-cellular lipid metabolism, glucose uptake, apoptosis, and cell proliferation. Subsequent to the heterodimerization of Retinoid X Receptors (RXR) with PPARs induced by the binding of activators to PPARs, facilitates the binding of the resulting complex to Peroxisome Proliferator-Activated Receptors Response Elements (PPRE), with a consensus sequence 5'AGGTCANAGGTCA-3', and regulate the transcription of the targeted genes. Methods A comprehensive screening of PPRE within the whole human genome was performed using the Genome Workbench and UCSC Genome Browser to find the associated genes. Subsequently, the kinase subset was isolated from the extracted list of PPRE-related genes. Functional enrichment of the kinases was performed using FunRich, ToppGene, and ShinyGO. Network analysis and enrichment studies were then further performed using NDEx to elucidate these identified kinases' connections and significance. Additionally, the disease association of the PPRE kinases was analyzed using DisGeNET data in R studio and the COSMIC dataset. Results A comprehensive analysis of 1002 PPRE sequences within the human genome (T2T), yielded the identification of 660 associated genes, including 29 kinases. The engagement of these kinases in various biological pathways, such as apoptosis, platelet activation, and cytokine pathways, revealed from the functional enrichment analysis, illuminates the multifaceted role of PPAR in the regulation of cellular homeostasis and biological processes. Network analysis reveals the kinases interact with approximately 5.56% of the Human Integrated Protein-Protein Interaction rEference (HIPPIE) network. Disease association analysis using DisGeNET and COSMIC datasets revealed the significant roles of these kinases in cellular processes and disease modulation. Discussion This study elucidates the regulatory role of PPAR-associated genes and their association with numerous biological pathways. The involvement of the kinases with disease-related pathways highlights new potential for the development of therapeutic strategies designed for disease management and intervention.
Collapse
|
18
|
Cui Y, Li Y, Xu Y, Liu X, Kang X, Zhu J, Long S, Han Y, Xue C, Sun Z, Du Y, Hu J, Pan L, Zhou F, Xu X, Li X. SLC7A11 protects luminal A breast cancer cells against ferroptosis induced by CDK4/6 inhibitors. Redox Biol 2024; 76:103304. [PMID: 39153252 PMCID: PMC11378944 DOI: 10.1016/j.redox.2024.103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6 inhibitors) can significantly extend tumor response in patients with metastatic luminal A breast cancer, yet intrinsic and acquired resistance remains a prevalent issue. Understanding the molecular features of CDK4/6 inhibitor sensitivity and the potential efficacy of their combination with novel targeted cell death inducers may lead to improved patient outcomes. Herein, we demonstrate that ferroptosis, a form of regulated cell death driven by iron-dependent phospholipid peroxidation, partly underpins the efficacy of CDK4/6 inhibitors. Mechanistically, CDK4/6 inhibitors downregulate the cystine transporter SLC7A11 by inhibiting SP1 binding to the SLC7A11 promoter region. Furthermore, SLC7A11 is identified as critical for the intrinsic sensitivity of luminal A breast cancer to CDK4/6 inhibitors. Both genetic and pharmacological inhibition of SP1 or SLC7A11 enhances cell sensitivity to CDK4/6 inhibitors and synergistically inhibits luminal A breast cancer growth when combined with CDK4/6 inhibitors in vitro and in vivo. Our data highlight the potential of targeting SLC7A11 in combination with CDK4/6 inhibitors, supporting further investigation of combination therapy in luminal A breast cancer.
Collapse
Affiliation(s)
- Yingshu Cui
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, China
| | - Yi Li
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yuanyuan Xu
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, China
| | - Xinxin Liu
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiaofeng Kang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Junwen Zhu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Shan Long
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, China
| | - Yuchen Han
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Chunyuan Xue
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhijia Sun
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yimeng Du
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jia Hu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Lu Pan
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Feifan Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570100, China.
| | - Xiaojie Xu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Xiaosong Li
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, China.
| |
Collapse
|
19
|
Linazi G, Maimaiti A, Abulaiti Z, Shi H, Zhou Z, Aisa MY, Kang Y, Abulimiti A, Dilimulati X, Zhang T, Wusiman P, Wang Z, Abulaiti A. Prognostic value of anoikis-related genes revealed using multi-omics analysis and machine learning based on lower-grade glioma features and tumor immune microenvironment. Heliyon 2024; 10:e36989. [PMID: 39286119 PMCID: PMC11402926 DOI: 10.1016/j.heliyon.2024.e36989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Background The investigation explores the involvement of anoikis-related genes (ARGs) in lower-grade glioma (LGG), seeking to provide fresh insights into the disease's underlying mechanisms and to identify potential targets for therapy. Methods We applied unsupervised clustering techniques to categorize LGG patients into distinct molecular subtypes based on ARGs with prognostic significance. Additionally, various machine learning algorithms were employed to pinpoint genes most strongly correlated with patient outcomes, which were then used to develop and assess risk profiles. Results Our analysis identified two distinct molecular subtypes of LGG, each with significantly different prognoses. Patients in Cluster 2 had a median survival of 2.036 years, markedly shorter than the 7.994 years observed in Cluster 1 (P < 0.001). We also constructed a six-gene ARG signature that efficiently classified patients into two risk categories, showing median survival durations of 4.084 years for the high-risk group and 10.304 years for the low-risk group (P < 0.001). Significantly, the immune profiles, tumor mutation characteristics, and drug sensitivity varied greatly among these risk groups. The high-risk group was characterized by a "cold" tumor microenvironment (TME), a lower IDH1 mutation rate (61.7 % vs. 91.4 %), a higher TP53 mutation rate (53.7 % vs. 38.9 %), and greater sensitivity to targeted therapies such as QS11 and PF-562271. Furthermore, our nomogram, integrating risk scores with clinicopathological features, demonstrated strong predictive accuracy for clinical outcomes in LGG patients, with an AUC of 0.903 for the first year. The robustness of this prognostic model was further validated through internal cross-validation and across three external cohorts. Conclusions The evidence from our research suggests that ARGs could potentially serve as reliable indicators for evaluating immunotherapy effectiveness and forecasting clinical results in patients with LGG.
Collapse
Affiliation(s)
- Gu Linazi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Zulihuma Abulaiti
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Hui Shi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Zexin Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Mizhati Yimiti Aisa
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Yali Kang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Ayguzaili Abulimiti
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Xierzhati Dilimulati
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Tiecheng Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Patiman Wusiman
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Zengliang Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Aimitaji Abulaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| |
Collapse
|
20
|
Zhong X, Wang Y, He X, He X, Hu Z, Huang H, Chen J, Chen K, Wei P, Zhao S, Wang Y, Zhang H, Feng B, Li D. HIF1A-AS2 promotes the metabolic reprogramming and progression of colorectal cancer via miR-141-3p/FOXC1 axis. Cell Death Dis 2024; 15:645. [PMID: 39227375 PMCID: PMC11372083 DOI: 10.1038/s41419-024-06958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
lncRNA can regulate tumorigenesis development and distant metastasis of colorectal cancer (CRC). However, the detailed molecular mechanisms are still largely unknown. Using RNA-sequencing data, RT-qPCR, and FISH assay, we found that HIF1A-AS2 was upregulated in CRC tissues and associated with poor prognosis. Functional experiments were performed to determine the roles of HIF1A-AS2 in tumor progression and we found that HIF1A-AS2 can promote the proliferation, metastasis, and aerobic glycolysis of CRC cells. Mechanistically, HIF1A-AS2 can promote FOXC1 expression by sponging miR-141-3p. SP1 can transcriptionally activate HIF1A-AS2. Further, HIF1A-AS2 can be packaged into exosomes and promote the malignant phenotype of recipient tumor cells. Taken together, we discovered that SP1-induced HIF1A-AS2 can promote the metabolic reprogramming and progression of CRC via miR-141-3p/FOXC1 axis. HIF1A-AS2 is a promising diagnostic marker and treatment target in CRC.
Collapse
Affiliation(s)
- Xinyang Zhong
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Yaxian Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Xuefeng He
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin He
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zijuan Hu
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Huixia Huang
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Jiayu Chen
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Keji Chen
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Ping Wei
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Senlin Zhao
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Yilin Wang
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China.
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Hong Zhang
- Colorectal Tumor Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Bo Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Liu LL, Song CC, Abu-Elala N, Tan XY, Zhao T, Zheng H, Yang H, Luo Z. Transcriptional regulation of Znt family members znt4, znt5 and znt10 and their function in zinc transport in yellow catfish (Pelteobagrus fulvidraco). BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195041. [PMID: 38740364 DOI: 10.1016/j.bbagrm.2024.195041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
The study characterized the transcriptionally regulatory mechanism and functions of three zinc (Zn) transporters (znt4, znt5 and znt10) in Zn2+ metabolism in yellow catfish (Pelteobagrus fulvidraco), commonly freshwater fish in China and other countries. We cloned the sequences of znt4 promoter, spanning from -1217 bp to +80 bp relative to TSS (1297 bp); znt5, spanning from -1783 bp to +49 bp relative to TSS (1832 bp) and znt10, spanning from -1923 bp to +190 bp relative to TSS (2113 bp). In addition, after conducting the experiments of sequential deletion of promoter region and mutation of potential binding site, we found that the Nrf2 binding site (-607/-621 bp) and Klf4 binding site (-5/-14 bp) were required on znt4 promoter, the Mtf-1 binding site (-1674/-1687 bp) and Atf4 binding site (-444/-456 bp) were required on znt5 promoter and the Atf4 binding site (-905/-918 bp) was required on znt10 promoter. Then, according to EMSA and ChIP, we found that Zn2+ incubation increased DNA affinity of Atf4 to znt5 or znt10 promoter, but decreased DNA affinity of Nrf2 to znt4 promoter, Klf4 to znt4 promoter and Mtf-1 to znt5 promoter. Using fluorescent microscopy, it was revealed that Znt4 and Znt10 were located in the lysosome and Golgi, and Znt5 was located in the Golgi. Finally, we found that znt4 knockdown reduced the zinc content of lysosome and Golgi in the control and zinc-treated group; znt5 knockdown reduced the zinc content of Golgi in the control and zinc-treated group and znt10 knockdown reduced the zinc content of Golgi in the zinc-treated group. High dietary zinc supplement up-regulated Znt4 and Znt5 protein expression. Above all, for the first time, we revealed that Klf4 and Nrf2 transcriptionally regulated the activities of znt4 promoter; Mtf-1 and Atf4 transcriptionally regulated the activities of znt5 promoter and Atf4 transcriptionally regulated the activities of znt10 promoter, which provided innovative regulatory mechanism of zinc transporting in yellow catfish. Our study also elucidated their subcellular location, and regulatory role of zinc homeostasis in yellow catfish.
Collapse
Affiliation(s)
- Lu-Lu Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang-Chun Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Nermeen Abu-Elala
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Egypt; Faculty of Veterinary Medicine, King Salman International University, South Saini, Egypt
| | - Xiao-Ying Tan
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Yang
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
22
|
Ren QL, Li XL, Tian T, Li S, Shi RY, Wang Q, Zhu Y, Wang M, Hu H, Liu JG. Application of Natural Medicinal Plants Active Ingredients in Oral Squamous Cell Carcinoma. Chin J Integr Med 2024; 30:852-864. [PMID: 38607612 DOI: 10.1007/s11655-024-3804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 04/13/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant cancer of the head and neck, with high morbidity and mortality, ranking as the sixth most common cancer in the world. The treatment of OSCC is mainly radiotherapy, chemotherapy and surgery, however, the prognosis of patients is still poor and the recurrence rate is high. This paper reviews the range of effects of natural medicinal plant active ingredients (NMPAIs) on OSCC cancer, including the types of NMPAIs, anti-cancer mechanisms, involved signaling pathways, and clinical trials. The NMPAIs include terpenoids, phenols, flavonoids, glycosides, alkaloids, coumarins, and volatile oils. These active ingredients inhibit proliferation, induce apoptosis and autophagy, inhibit migration and invasion of OSCC cells, and regulate cancer immunity to exert anti-cancer effects. The mechanism involves signaling pathways such as mitogen-activated protein kinase, phosphatidylinositol 3 kinase/protein kinase B, nuclear factor kappa B, miR-22/WNT1/β-catenin and Nrf2/Keap1. Clinically, NMPAIs can inhibit the growth of OSCC, and the combined drug is more effective. Natural medicinal plants are promising candidates for the treatment of OSCC.
Collapse
Affiliation(s)
- Qun-Li Ren
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xiao-Lan Li
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Tian Tian
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Shuang Li
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Rong-Yi Shi
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Qian Wang
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Yuan Zhu
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Miao Wang
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Huan Hu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Jian-Guo Liu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China.
| |
Collapse
|
23
|
Ma X, Wang L, Li W, Huang Y, Zhu Y, Li J. SP1 MEDIATES OGD/R-INDUCED CARDIOMYOCYTE INJURY VIA ENHANCING THE TRANSCRIPTION OF USP46. Shock 2024; 62:327-335. [PMID: 38813924 DOI: 10.1097/shk.0000000000002401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT Background: One of the mechanisms responsible for the high mortality rate of acute myocardial infarction is myocardial ischemia-reperfusion injury (MI-RI). The present study focused on the role and regulatory mechanisms of specificity protein 1 (SP1) and ubiquitin-specific protease 46 (USP46) in oxygen-glucose deprivation/reperfusion (OGD/R)-induced cardiomyocyte injury. Methods: OGD/R was used to treat cardiomyocytes AC16 to mimic ischemia-reperfusion in vitro . Cell viability, proliferation, and apoptosis were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine, and flow cytometry assays. Enzyme-linked immunosorbent assays analyzed the concentrations of TNF-α and IL-1β. Several protein levels were analyzed by western blotting. The levels of iron (Fe 2+ ), reactive oxygen species, malondialdehyde, and the activities of superoxide dismutase were analyzed by commercial kits. Chromatin immunoprecipitation and dual-luciferase report assays assessed the relationship between USP46 and SP1. Results: USP46 and SP1 were upregulated in serum from MI patients and they had a positive correlation. OGD/R stimulation suppressed cardiomyocyte viability and proliferation, as well as induced cardiomyocyte inflammation, oxidative stress (OxS) injury, apoptosis, and ferroptosis, but these effects were impaired by USP46 or SP1 knockdown. SP1 could enhance the transcription of USP46, and USP46 overexpression reversed SP1 silencing-mediated effects on OGD/R-induced cardiomyocytes. SP1 mediated the AMPK signaling via USP46 . Conclusion: SP1 mediated OGD/R-induced cardiomyocyte inflammation, OxS injury, apoptosis, and ferroptosis by inactivating the AMPK signaling via enhancing the transcription of USP46.
Collapse
Affiliation(s)
- Xuming Ma
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | | | | | | | | | | |
Collapse
|
24
|
Hajimohammadebrahim-Ketabforoush M, Zali A, Shahmohammadi M, Hamidieh AA. Metformin and its potential influence on cell fate decision between apoptosis and senescence in cancer, with a special emphasis on glioblastoma. Front Oncol 2024; 14:1455492. [PMID: 39267853 PMCID: PMC11390356 DOI: 10.3389/fonc.2024.1455492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Despite reaching enormous achievements in therapeutic approaches worldwide, GBM still remains the most incurable malignancy among various cancers. It emphasizes the necessity of adjuvant therapies from the perspectives of both patients and healthcare providers. Therefore, most emerging studies have focused on various complementary and adjuvant therapies. Among them, metabolic therapy has received special attention, and metformin has been considered as a treatment in various types of cancer, including GBM. It is clearly evident that reaching efficient approaches without a comprehensive evaluation of the key mechanisms is not possible. Among the studied mechanisms, one of the more challenging ones is the effect of metformin on apoptosis and senescence. Moreover, metformin is well known as an insulin sensitizer. However, if insulin signaling is facilitated in the tumor microenvironment, it may result in tumor growth. Therefore, to partially resolve some paradoxical issues, we conducted a narrative review of related studies to address the following questions as comprehensively as possible: 1) Does the improvement of cellular insulin function resulting from metformin have detrimental or beneficial effects on GBM cells? 2) If these effects are detrimental to GBM cells, which is more important: apoptosis or senescence? 3) What determines the cellular decision between apoptosis and senescence?
Collapse
Affiliation(s)
- Melika Hajimohammadebrahim-Ketabforoush
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Li W, Liu J, Yu T, Lu F, Miao Q, Meng X, Xiao W, Yang H, Zhang X. ZDHHC9-mediated Bip/GRP78 S-palmitoylation inhibits unfolded protein response and promotes bladder cancer progression. Cancer Lett 2024; 598:217118. [PMID: 39002690 DOI: 10.1016/j.canlet.2024.217118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Recent studies have highlighted palmitoylation, a novel protein post-translational modification, as a key player in various signaling pathways that contribute to tumorigenesis and drug resistance. Despite this, its role in bladder cancer (BCa) development remains inadequately understood. In this study, ZDHHC9 emerged as a significantly upregulated oncogene in BCa. Functionally, ZDHHC9 knockdown markedly inhibited tumor proliferation, promoted tumor cell apoptosis, and enhanced the efficacy of gemcitabine (GEM) and cisplatin (CDDP). Mechanistically, SP1 was found to transcriptionally activate ZDHHC9 expression. ZDHHC9 subsequently bound to and palmitoylated the Bip protein at cysteine 420 (Cys420), thereby inhibiting the unfolded protein response (UPR). This palmitoylation at Cys420 enhanced Bip's protein stability and preserved its localization within the endoplasmic reticulum (ER). ZDHHC9 might become a novel therapeutic target for BCa and could also contribute to combination therapy with GEM and CDDP.
Collapse
Affiliation(s)
- Weiquan Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Jingchong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Tiexi Yu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Feiyi Lu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Qi Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Xiangui Meng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
26
|
Sun X, Xiao C, Wang X, Wu S, Yang Z, Sui B, Song Y. Role of post-translational modifications of Sp1 in cancer: state of the art. Front Cell Dev Biol 2024; 12:1412461. [PMID: 39228402 PMCID: PMC11368732 DOI: 10.3389/fcell.2024.1412461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Specific protein 1 (Sp1) is central to regulating transcription factor activity and cell signaling pathways. Sp1 is highly associated with the poor prognosis of various cancers; it is considered a non-oncogene addiction gene. The function of Sp1 is complex and contributes to regulating extensive transcriptional activity, apart from maintaining basal transcription. Sp1 activity and stability are affected by post-translational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, glycosylation, and SUMOylation. These modifications help to determine genetic programs that alter the Sp1 structure in different cells and increase or decrease its transcriptional activity and DNA binding stability in response to pathophysiological stimuli. Investigating the PTMs of Sp1 will contribute to a deeper understanding of the mechanism underlying the cell signaling pathway regulating Sp1 stability and the regulatory mechanism by which Sp1 affects cancer progression. Furthermore, it will facilitate the development of new drug targets and biomarkers, thereby elucidating considerable implications in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengpu Xiao
- Department of Chinese Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyang Wang
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Wu
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhendong Yang
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bowen Sui
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
27
|
Zheng B, Geng Y, Li Y, Huang H, Liu A. Specificity protein 1/3 regulate T-cell acute lymphoblastic leukemia cell proliferation and apoptosis through β-catenin by acting as targets of miR-495-3p. Ann Hematol 2024; 103:2945-2960. [PMID: 38829410 DOI: 10.1007/s00277-024-05764-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematologic heterogeneous disease. This study explored the mechanism of specificity protein 1/3 (Sp1/3) in T-ALL cells through β-catenin by acting as targets of miR-495-3p. Expression levels of miR-495-3p, Sp1, Sp3, and β-catenin in the serum from T-ALL children patients, healthy controls, and the T-ALL cell lines were measured. The cell proliferation ability and apoptosis rate were detected. Levels of proliferation-related proteins proliferating cell nuclear antigen (PCNA)/cyclinD1 and apoptosis-related proteins B-cell lymphoma-2 associated X protein (Bax)/B-cell lymphoma-2 (Bcl-2) were determined. The binding of Sp1/3 and β-catenin promoter and the targeted relationship between miR-495-3p with Sp1/3 were analyzed. Sp1/3 were upregulated in CD4+ T-cells in T-ALL and were linked with leukocyte count and risk classification. Sp1/3 interference prevented proliferation and promoted apoptosis in T-ALL cells. Sp1/3 transcription factors activated β-catenin expression. Sp1/3 enhanced T-ALL cell proliferation by facilitating β-catenin expression. miR-495-3p targeted and repressed Sp1/3 expressions. miR-495-3p overexpression inhibited T-ALL cell proliferation and promoted apoptosis. Conjointly, Sp1/3, as targets of miR-495-3p limit apoptosis and promote proliferation in T-ALL cells by promoting β-catenin expression.
Collapse
Affiliation(s)
- Boyang Zheng
- Hematology clinic, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Yueqi Geng
- Hematology clinic, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Yan Li
- Department of Hematology, Hainan Cancer Hospital, Haikou, China
| | - Huixiong Huang
- Hematology clinic, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Aichun Liu
- Hematology clinic, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
28
|
Portugal J. Mithramycin and its analogs: Molecular features and antitumor action. Pharmacol Ther 2024; 260:108672. [PMID: 38838821 DOI: 10.1016/j.pharmthera.2024.108672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
The antitumor antibiotic mithramycin A (MTA) binds to G/C-rich DNA sequences in the presence of dications. MTA inhibits transcription regulated by the Sp1 transcription factor, often enhanced during tumor development. It shows antitumor activity, but its clinical use was discontinued due to toxic side effects. However, recent observations have led to its use being reconsidered. The MTA biosynthetic pathways have been modified to produce mithramycin analogs (mithralogs) that encompass lower toxicity and improved pharmacological activity. Some mithralogs reduce gene expression in human ovarian and prostate tumors, among other types of cancer. They down-regulate gene expression in various cellular processes, including Sp1-responsive genes that control tumor development. Moreover, MTA and several mithralogs, such as EC-8042 (DIG-MSK) and EC-8105, effectively treat Ewing sarcoma by inhibiting transcription controlled by the oncogenic EWS-FLI1 transcription factor.
Collapse
Affiliation(s)
- José Portugal
- Instituto de Diagnóstico Ambiental y Estudios del Agua, CSIC, E-08034 Barcelona, Spain.
| |
Collapse
|
29
|
Ahluwalia MS, Ozair A, Rudek M, Ye X, Holdhoff M, Lieberman FS, Piotrowski AF, Nabors B, Desai A, Lesser G, Huang RC, Glenn S, Khosla AA, Peereboom DM, Wen PY, Grossman SA. A multicenter, phase 1, Adult Brain Tumor Consortium trial of oral terameprocol for patients with recurrent high-grade glioma (GATOR). Cell Rep Med 2024; 5:101630. [PMID: 38955178 PMCID: PMC11293336 DOI: 10.1016/j.xcrm.2024.101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/26/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
Recurrent high-grade gliomas (rHGGs) have a dismal prognosis, where the maximum tolerated dose (MTD) of IV terameprocol (5 days/month), a transcriptional inhibitor of specificity protein 1 (Sp1)-regulated proteins, is 1,700 mg/day with median area under the plasma concentration-time curve (AUC) of 31.3 μg∗h/mL. Given potentially increased efficacy with sustained systemic exposure and challenging logistics of daily IV therapy, here we investigate oral terameprocol for rHGGs in a multicenter, phase 1 trial (GATOR). Using a 3 + 3 dose-escalation design, we enroll 20 patients, with median age 60 years (range 31-80), 70% male, and median one relapse (range 1-3). Fasting patients tolerate 1,200 mg/day (n = 3), 2,400 mg/day (n = 6), 3,600 mg/day (n = 3), and 6,000 mg/day (n = 2) oral doses without major toxicities. However, increased dosage does not lead to increased systemic exposure, including in fed state (6,000 mg/day, n = 4), with maximal AUC <5 μg∗h/mL. These findings warrant trials investigating approaches that provide sustained systemic levels of transcription inhibitors to exploit their therapeutic potential. This study was registered at ClinicalTrials.gov (NCT02575794).
Collapse
Affiliation(s)
- Manmeet S Ahluwalia
- Rose and Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA; Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
| | - Ahmad Ozair
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Michelle Rudek
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaobu Ye
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthias Holdhoff
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frank S Lieberman
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anna F Piotrowski
- Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Burt Nabors
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Arati Desai
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Glenn Lesser
- Department of Hematology and Oncology, Wake Forest Medical Center, Winston, NC, USA
| | - Ru Chih Huang
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Steve Glenn
- Independent Consultant to Erimos Pharmaceuticals, Houston, TX, USA
| | - Atulya A Khosla
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - David M Peereboom
- Rose and Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
| | - Patrick Y Wen
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Stuart A Grossman
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Ding J, Fayyaz AI, Ding Y, Liang D, Luo M. Role of Specificity Protein 1 (SP1) in Cardiovascular Diseases: Pathological Mechanisms and Therapeutic Potentials. Biomolecules 2024; 14:807. [PMID: 39062521 PMCID: PMC11274404 DOI: 10.3390/biom14070807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
In mammals, specificity protein 1 (SP1) was the first Cys2-His2 zinc finger transcription factor to be isolated within the specificity protein and Krüppel-like factor (Sp/KLF) gene family. SP1 regulates gene expression by binding to Guanine-Cytosine (GC)-rich sequences on promoter regions of target genes, affecting various cellular processes. Additionally, the activity of SP1 is markedly influenced by posttranslational modifications, such as phosphorylation, acetylation, glycosylation, and proteolysis. SP1 is implicated in the regulation of apoptosis, cell hypertrophy, inflammation, oxidative stress, lipid metabolism, plaque stabilization, endothelial dysfunction, fibrosis, calcification, and other pathological processes. These processes impact the onset and progression of numerous cardiovascular disorders, including coronary heart disease, ischemia-reperfusion injury, cardiomyopathy, arrhythmia, and vascular disease. SP1 emerges as a potential target for the prevention and therapeutic intervention of cardiac ailments. In this review, we delve into the biological functions, pathophysiological mechanisms, and potential clinical implications of SP1 in cardiac pathology to offer valuable insights into the regulatory functions of SP1 in heart diseases and unveil novel avenues for the prevention and treatment of cardiovascular conditions.
Collapse
Affiliation(s)
- Jie Ding
- School of Medicine, Tongji University, Shanghai 200092, China; (J.D.); (D.L.)
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Aminah I. Fayyaz
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.I.F.); (Y.D.)
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.I.F.); (Y.D.)
| | - Dandan Liang
- School of Medicine, Tongji University, Shanghai 200092, China; (J.D.); (D.L.)
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Ming Luo
- School of Medicine, Tongji University, Shanghai 200092, China; (J.D.); (D.L.)
| |
Collapse
|
31
|
Deng J, Yang JC, Feng Y, Xu ZJ, Kuča K, Liu M, Sun LH. AP-1 and SP1 trans-activate the expression of hepatic CYP1A1 and CYP2A6 in the bioactivation of AFB 1 in chicken. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1468-1478. [PMID: 38703348 DOI: 10.1007/s11427-023-2512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 05/06/2024]
Abstract
Dietary exposure to aflatoxin B1 (AFB1) is harmful to the health and performance of domestic animals. The hepatic cytochrome P450s (CYPs), CYP1A1 and CYP2A6, are the primary enzymes responsible for the bioactivation of AFB1 to the highly toxic exo-AFB1-8,9-epoxide (AFBO) in chicks. However, the transcriptional regulation mechanism of these CYP genes in the liver of chicks in AFB1 metabolism remains unknown. Dual-luciferase reporter assay, bioinformatics and site-directed mutation results indicated that specificity protein 1 (SP1) and activator protein-1 (AP-1) motifs were located in the core region -1,063/-948, -606/-541 of the CYP1A1 promoter as well as -636/-595, -503/-462, -147/-1 of the CYP2A6 promoter. Furthermore, overexpression and decoy oligodeoxynucleotide technologies demonstrated that SP1 and AP-1 were pivotal transcriptional activators regulating the promoter activity of CYP1A1 and CYP2A6. Moreover, bioactivation of AFB1 to AFBO could be increased by upregulation of CYP1A1 and CYP2A6 expression, which was trans-activated owing to the upregulalion of AP-1, rather than SP1, stimulated by AFB1-induced reactive oxygen species. Additionally, nano-selenium could reduce ROS, downregulate AP-1 expression and then decrease the expression of CYP1A1 and CYP2A6, thus alleviating the toxicity of AFB1. In conclusion, AP-1 and SP1 played important roles in the transactivation of CYP1A1 and CYP2A6 expression and further bioactivated AFB1 to AFBO in chicken liver, which could provide novel targets for the remediation of aflatoxicosis in chicks.
Collapse
Affiliation(s)
- Jiang Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Feng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ze-Jing Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
32
|
Xia S, Zhao J, Zhang D, Chen L, Zhang Y, Shen P, Yang C. miR-335-5p inhibits endochondral ossification by directly targeting SP1 in TMJ OA. Oral Dis 2024; 30:3176-3187. [PMID: 37727896 DOI: 10.1111/odi.14736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE During the development of temporomandibular joint osteoarthritis, endochondral ossification is compromised which leads to condylar degeneration; miR-335-5p in endochondral ossification in osteoarthritic condylar cartilage tissue remains unclear. METHODS Up-regulated microRNA and its target gene were searched for endochondral ossification in osteoarthritis articular cartilage. The effect of increased or decreased miR-335-5p on endochondral ossification was evaluated by transfecting miR-335-5p mimics or miR-335-5p inhibitor in vitro in chondrocytes C28/I2. Finally, we injected the temporomandibular joint of rats intra-articularly with agomiR-335 in a unilateral anterior crossbite rat model to determine the in vivo regulation of miR-335. RESULTS After the onset of temporomandibular joint osteoarthritis, miR-335-5p levels were gradually up-regulated, whereas endochondral ossification-related genes were down-regulated in condylar cartilage specimens. Our results showed that miR-335 inhibited endochondral ossification after administration of a miR-335 antagonist into the temporomandibular joint articular cavity of a unilateral anterior crossbite rat model. AgomiR-335, a miR-335 agonist, inhibited matrix mineralization in fibrocartilage stem cells in vitro and then miR-335-5p negatively regulated chondrocyte activity by directly targeting SP1 via promoting transforming growth factor-β/Smad signalling. CONCLUSION miR-335-5p can significantly inhibit endochondral ossification; therefore, its inhibition may be beneficial for the treatment of temporomandibular joint osteoarthritis.
Collapse
Affiliation(s)
- Simo Xia
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Zhao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dahe Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Shen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Law YY, Lee HL, Lin CL, Chen PN, Wang PH, Hsieh YH, Chen CM. Asiatic acid inhibits osteosarcoma cell migration and invasion via the AKT/Sp1/MMP1 axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:3920-3929. [PMID: 38567545 DOI: 10.1002/tox.24246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Osteosarcoma is a malignant bone tumor affecting adolescents and children. No effective treatment is currently available. Asiatic acid (AA), a triterpenoid compound found in Centella asiatica, possesses anti-tumor, anti-inflammatory, and anti-oxidant properties in various types of tumor cells. This study aims to determine whether AA exerts antitumor effects in human osteosarcoma cells. Our results indicate that AA does not influence the viability, proliferative rate, or cell cycle phase of human osteosarcoma cells under non-toxic conditions. AA suppressed osteosarcoma cell migration and invasion by down-regulating matrix metalloproteinase 1 (MMP1) expression. Data in the TNMplot database suggested MMP1 expression was higher in osteosarcoma than in normal tissues, with associated clinical significance observed in osteosarcoma patients. Overexpression of MMP1 in osteosarcoma cells reversed the AA-induced suppression of cell migration and invasion. AA treatment decreased the expression of specificity protein 1 (Sp1), while Sp1 overexpression abolished the effect of AA on MMP1 expression and cell migration and invasion. AA inhibited AKT phosphorylation, and treatment with a PI3K inhibitor (wortmannin) increased the anti-invasive effect of AA on osteosarcoma cells via the p-AKT/Sp1/MMP1 axis. Thus, AA exhibits the potential for use as an anticancer drug against human osteosarcoma.
Collapse
Affiliation(s)
- Yat-Yin Law
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chu-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Han Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Min Chen
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Department of Leisure Industry Management, National Chin-Yi University of Technology, Taichung, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
34
|
Ebrahimnezhad M, Valizadeh A, Majidinia M, Tabnak P, Yousefi B. Unveiling the potential of FOXO3 in lung cancer: From molecular insights to therapeutic prospects. Biomed Pharmacother 2024; 176:116833. [PMID: 38843589 DOI: 10.1016/j.biopha.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Lung cancer poses a significant challenge regarding molecular heterogeneity, as it encompasses a wide range of molecular alterations and cancer-related pathways. Recent discoveries made it feasible to thoroughly investigate the molecular mechanisms underlying lung cancer, giving rise to the possibility of novel therapeutic strategies relying on molecularly targeted drugs. In this context, forkhead box O3 (FOXO3), a member of forkhead transcription factors, has emerged as a crucial protein commonly dysregulated in cancer cells. The regulation of the FOXO3 in reacting to external stimuli plays a key role in maintaining cellular homeostasis as a component of the molecular machinery that determines whether cells will survive or dies. Indeed, various extrinsic cues regulate FOXO3, affecting its subcellular location and transcriptional activity. These regulations are mediated by diverse signaling pathways, non-coding RNAs (ncRNAs), and protein interactions that eventually drive post-transcriptional modification of FOXO3. Nevertheless, while it is no doubt that FOXO3 is implicated in numerous aspects of lung cancer, it is unclear whether they act as tumor suppressors, promotors, or both based on the situation. However, FOXO3 serves as an intriguing possible target in lung cancer therapeutics while widely used anti-cancer chemo drugs can regulate it. In this review, we describe a summary of recent findings on molecular mechanisms of FOXO3 to clarify that targeting its activity might hold promise in lung cancer treatment.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Valizadeh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Peyman Tabnak
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Bano N, Parveen S, Saeed M, Siddiqui S, Abohassan M, Mir SS. Drug Repurposing of Selected Antibiotics: An Emerging Approach in Cancer Drug Discovery. ACS OMEGA 2024; 9:26762-26779. [PMID: 38947816 PMCID: PMC11209889 DOI: 10.1021/acsomega.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024]
Abstract
Drug repurposing is a method of investigating new therapeutic applications for previously approved medications. This repurposing approach to "old" medications is now highly efficient, simple to arrange, and cost-effective and poses little risk of failure in treating a variety of disorders, including cancer. Drug repurposing for cancer therapy is currently a key topic of study. It is a way of exploring recent therapeutic applications for already-existing drugs. Theoretically, the repurposing strategy has various advantages over the recognized challenges of creating new molecular entities, including being faster, safer, easier, and less expensive. In the real world, several medications have been repurposed, including aspirin, metformin, and chloroquine. However, doctors and scientists address numerous challenges when repurposing drugs, such as the fact that most drugs are not cost-effective and are resistant to bacteria. So the goal of this review is to gather information regarding repurposing pharmaceuticals to make them more cost-effective and harder for bacteria to resist. Cancer patients are more susceptible to bacterial infections. Due to their weak immune systems, antibiotics help protect them from a variety of infectious diseases. Although antibiotics are not immune boosters, they do benefit the defense system by killing bacteria and slowing the growth of cancer cells. Their use also increases the therapeutic efficacy and helps avoid recurrence. Of late, antibiotics have been repurposed as potent anticancer agents because of the evolutionary relationship between the prokaryotic genome and mitochondrial DNA of eukaryotes. Anticancer antibiotics that prevent cancer cells from growing by interfering with their DNA and blocking growth of promoters, which include anthracyclines, daunorubicin, epirubicin, mitoxantrone, doxorubicin, and idarubicin, are another type of FDA-approved antibiotics used to treat cancer. According to the endosymbiotic hypothesis, prokaryotes and eukaryotes are thought to have an evolutionary relationship. Hence, in this study, we are trying to explore antibiotics that are necessary for treating diseases, including cancer, helping people reduce deaths associated with various infections, and substantially extending people's life expectancy and quality of life.
Collapse
Affiliation(s)
- Nilofer Bano
- Molecular
Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary
Research (ICEIR-4), Integral University, Kursi Road, Lucknow 226026, India
- Department
of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Sana Parveen
- Molecular
Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary
Research (ICEIR-4), Integral University, Kursi Road, Lucknow 226026, India
- Department
of Biosciences, Faculty of Science, Integral
University, Kursi Road, Lucknow 226026, India
| | - Mohd Saeed
- Department
of Biology, College of Sciences, University
of Hail, P.O. Box 2240, Hail 55476, Saudi Arabia
| | - Samra Siddiqui
- Department
of Health Services Management, College of Public Health and Health
Informatics, University of Hail, Hail 55476, Saudi Arabia
| | - Mohammad Abohassan
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Snober S. Mir
- Molecular
Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary
Research (ICEIR-4), Integral University, Kursi Road, Lucknow 226026, India
- Department
of Biosciences, Faculty of Science, Integral
University, Kursi Road, Lucknow 226026, India
| |
Collapse
|
36
|
Yu S, Li Y, Feng W, Zeng J, Cui X, Zhou S, Zhang P. GBP1 promotes cutaneous squamous cell carcinoma proliferation and invasion through activation of STAT3 by SP1. Exp Dermatol 2024; 33:e15112. [PMID: 38840385 DOI: 10.1111/exd.15112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) ranks as the second most prevalent skin tumour (excluding melanoma). However, the molecular mechanisms driving cSCC progression remain elusive. This study aimed to investigate GBP1 expression in cSCC and elucidate its potential molecular mechanisms underlying cSCC development. GBP1 expression was assessed across public databases, cell lines and tissue samples. Various assays, including clone formation, CCK8 and EdU were employed to evaluate cell proliferation, while wound healing and transwell assays determined cell migration and invasion. Subcutaneous tumour assays were conducted to assess in vivo tumour proliferation, and molecular mechanisms were explored through western blotting, immunofluorescence and immunoprecipitation. Results identified GBP1 as an oncogene in cSCC, with elevated expression in both tumour tissues and cells, strongly correlating with tumour stage and grade. In vitro and in vivo investigations revealed that increased GBP1 expression significantly enhanced cSCC cell proliferation, migration and invasion. Mechanistically, GBP1 interaction with SP1 promoted STAT3 activation, contributing to malignant behaviours. In conclusion, the study highlights the crucial role of the GBP1/SP1/STAT3 signalling axis in regulating tumour progression in cSCC. These findings provide valuable insights into the molecular mechanisms of cSCC development and offer potential therapeutic targets for interventions against cSCC.
Collapse
Affiliation(s)
- Site Yu
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yun Li
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Wenjie Feng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jizhang Zeng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xu Cui
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Situo Zhou
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Pihong Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
37
|
Wang B, Fan X, Wang L, Wei X. The RNA-binding protein sorbin and SH3 domain-containing 2 are transcriptionally regulated by specificity protein 1 and function as tumor suppressors in bladder cancer by stabilizing tissue factor pathway inhibitor. Mol Carcinog 2024; 63:1174-1187. [PMID: 38501385 DOI: 10.1002/mc.23717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Sorbin and SH3 domain-containing 2 (SORBS2) is an RNA-binding protein and has been implicated in the development of some cancers. However, its role in bladder cancer (BC) is yet to be established. The expression of SORBS2 in BC tissues was determined from the Gene Expression Omnibus and Gene Expression Profiling Interactive Analysis databases and collected paired tumor/normal samples. The effects of SORBS2 on BC cells were detected by CCK-8, colony formation, Transwell, dual-luciferase, RNA immunoprecipitation, chromatin immunoprecipitation, and DNA pull-down assays. In vivo, BC cell growth and metastasis were studied by a xenograft subcutaneous model and a tail-vein metastasis model. The results showed that SORBS2 expression was significantly decreased in BC tissues and cells. SORBS2 overexpression inhibited cell proliferation, migration, invasion, and epithelial-mesenchymal transition in vitro and tumor growth and metastasis in vivo, while silencing SORBS2 produced the opposite effect. Mechanistically, we found that SORBS2 enhanced the stability of tissue factor pathway inhibitor (TFPI) mRNA via direct binding to its 3' UTR. Restoration of TFPI expression reversed SORBS2 knockdown-induced malignant phenotypes of BC cells. In addition, SORBS2 expression was negatively regulated by the transcription factor specificity protein 1 (SP1). Conversely, SORBS2 can be transcriptionally regulated by SP1 and inhibit BC cell growth and metastasis via stabilization of TFPI mRNA, indicating SORBS2 may be a promising therapeutic target for BC.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Fan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lingang Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaosong Wei
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
38
|
Wu H, Wang L, Kang P, Zhou X, Li W, Xia Z. The SP1/SIRT1/ACLY signaling axis mediates fatty acid oxidation in renal ischemia-reperfusion-induced renal fibrosis. Int Immunopharmacol 2024; 132:112002. [PMID: 38608473 DOI: 10.1016/j.intimp.2024.112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Renal ischemia-reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia-reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis. METHODS The IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay. RESULTS RNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression. CONCLUSION Our findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI.
Collapse
Affiliation(s)
- Huailiang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Liyan Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Peng Kang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
39
|
Ren D, Li W, Zeng R, Liu X, Liang H, Xiong W, Yang C, Jin X. Retinoblastoma-associated protein is important for TRIM24-mediated activation of the mTOR signaling pathway through DUSP2 action in prostate cancer. Cell Death Differ 2024; 31:592-604. [PMID: 38514847 PMCID: PMC11094112 DOI: 10.1038/s41418-024-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
RB transcriptional corepressor 1 (RB) deletion is the most important genomic factor associated with the prognosis of castration-resistant prostate cancer (CRPC) patients receiving androgen receptor (AR) signaling inhibitor therapy. Loss of RB could support prostate cancer cell growth in a hormone-independent manner, but the underlying mechanism by which RB regulates tumor progression extends far beyond the cell cycle pathway. A previous study indicated that RB inactivates AKT signaling but has no effect on mTOR signaling in cancer cells. Here, we found that the S249/T252 site in RB is key to regulating the transcriptional activity of the tumor-promoting factor TRIM24 in CRPC, as identified through FXXXV mapping. The RB/TRIM24 complex functions through DUSP2, which serves as an intermediate bridge, to activate the mTOR pathway and promote prostate cancer progression. Accordingly, we designed RB-linker-proteolysis-targeting chimera (PROTAC) molecules, which decreased TRIM24 protein levels and inactivated the mTOR signaling pathway, thereby inhibiting prostate cancer. Therefore, this study not only elucidates the novel function of RB but also provides a theoretical basis for the development of new drugs for treating prostate cancer.
Collapse
Affiliation(s)
- Da Ren
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Ruijiang Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Xinlin Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Huaiyuan Liang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Wei Xiong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
40
|
Ye PC, Leu WJ, Yeh TY, Hsu YT, Lin YC, Wei ZY, Chen YC, Chiang YC, Hsu JL, Chan SH, Hsu LC, Chern JW, Yu CW, Guh JH. A novel HDAC6 inhibitor interferes microtubule dynamics and spindle assembly checkpoint and sensitizes cisplatin-induced apoptosis in castration-resistant prostate cancer. Prostate 2024; 84:605-619. [PMID: 38375594 DOI: 10.1002/pros.24678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (CRPC), the most refractory prostate cancer, inevitably progresses and becomes unresponsive to hormone therapy, revealing a pressing unmet need for this disease. Novel agents targeting HDAC6 and microtubule dynamics can be a potential anti-CRPC strategy. METHODS Cell proliferation was examined in CRPC PC-3 and DU-145 cells using sulforhodamine B assay and anchorage-dependent colony formation assay. Flow cytometric analysis of propidium iodide staining was used to determine cell-cycle progression. Cell-based tubulin polymerization assay and confocal immunofluorescence microscopic examination determine microtubule assembly/disassembly status. Protein expressions were determined using Western blot analysis. RESULTS A total of 82 novel derivatives targeting HDAC6 were designed and synthesized, and Compound 25202 stood out, showing the highest efficacy in blocking HDAC6 (IC50, 3.5 nM in enzyme assay; IC50, 1.0 μM in antiproliferative assay in CRPC cells), superior to tubastatin A (IC50, 5.4 μM in antiproliferative assay). The selectivity and superiority of 25202 were validated by examining the acetylation of both α-tubulin and histone H3, detecting cell apoptosis and HDACs enzyme activity assessment. Notably, 25202 but not tubastatin A significantly decreased HDAC6 protein expression. 25202 prolonged mitotic arrest through the detection of cyclin B1 upregulation, Cdk1 activation, mitotic phosphoprotein levels, and Bcl-2 phosphorylation. Compound 25202 did not mimic docetaxel in inducing tubulin polymerization but disrupted microtubule organization. Compound 25202 also increased the phosphorylation of CDC20, BUB1, and BUBR1, indicating the activation of the spindle assembly checkpoint (SAC). Moreover, 25202 profoundly sensitized cisplatin-induced cell death through impairment of cisplatin-evoked DNA damage response and DNA repair in both ATR-Chk1 and ATM-Chk2 pathways. CONCLUSION The data suggest that 25202 is a novel selective and potent HDAC6 inhibitor. Compound 25202 blocks HDAC6 activity and interferes microtubule dynamics, leading to SAC activation and mitotic arrest prolongation that eventually cause apoptosis of CRPC cells. Furthermore, 25202 sensitizes cisplatin-induced cell apoptosis through impeding DNA damage repair pathways.
Collapse
Affiliation(s)
- Pei-Chen Ye
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Wohn-Jenn Leu
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Tsung-Yu Yeh
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Yu-Tung Hsu
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Yi-Chin Lin
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Zi-Yuan Wei
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Yi-Chin Chen
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Yi-Chang Chiang
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
- Department of Nursing, Chang Gung University of Science and Technology, Guishan, Taoyuan, Taiwan
| | - She-Hung Chan
- Department of Cosmetic Science, Providence University, Taiwan Boulevard, Shalu, Taichung, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Ji-Wang Chern
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Chao-Wu Yu
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| |
Collapse
|
41
|
Zheng Y, Li G, Luo Q, Sha H, Zhang H, Wang R, Kong W, Liao J, Zhao M. Research progress on the N protein of porcine reproductive and respiratory syndrome virus. Front Microbiol 2024; 15:1391697. [PMID: 38741730 PMCID: PMC11089252 DOI: 10.3389/fmicb.2024.1391697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV exhibits genetic diversity and complexity in terms of immune responses, posing challenges for eradication. The nucleocapsid (N) protein of PRRSV, an alkaline phosphoprotein, is important for various biological functions. This review summarizes the structural characteristics, genetic evolution, impact on PRRSV replication and virulence, interactions between viral and host proteins, modulation of host immunity, detection techniques targeting the N protein, and progress in vaccine development. The discussion provides a theoretical foundation for understanding the pathogenic mechanisms underlying PRRSV virulence, developing diagnostic techniques, and designing effective vaccines.
Collapse
Affiliation(s)
- Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Gan Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huiyang Sha
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ruining Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Jiedan Liao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
42
|
Ma W, Zhang J, Chen W, Liu N, Wu T. The histone lysine acetyltransferase KAT2B inhibits cholangiocarcinoma growth: evidence for interaction with SP1 to regulate NF2-YAP signaling. J Exp Clin Cancer Res 2024; 43:117. [PMID: 38641672 PMCID: PMC11027350 DOI: 10.1186/s13046-024-03036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a highly malignant cancer of the biliary tract with poor prognosis. Further mechanistic insights into the molecular mechanisms of CCA are needed to develop more effective target therapy. METHODS The expression of the histone lysine acetyltransferase KAT2B in human CCA was analyzed in human CCA tissues. CCA xenograft was developed by inoculation of human CCA cells with or without KAT2B overexpression into SCID mice. Western blotting, ChIP-qPCR, qRT-PCR, protein immunoprecipitation, GST pull-down and RNA-seq were performed to delineate KAT2B mechanisms of action in CCA. RESULTS We identified KAT2B as a frequently downregulated histone acetyltransferase in human CCA. Downregulation of KAT2B was significantly associated with CCA disease progression and poor prognosis of CCA patients. The reduction of KAT2B expression in human CCA was attributed to gene copy number loss. In experimental systems, we demonstrated that overexpression of KAT2B suppressed CCA cell proliferation and colony formation in vitro and inhibits CCA growth in mice. Mechanistically, forced overexpression of KAT2B enhanced the expression of the tumor suppressor gene NF2, which is independent of its histone acetyltransferase activity. We showed that KAT2B was recruited to the promoter region of the NF2 gene via interaction with the transcription factor SP1, which led to enhanced transcription of the NF2 gene. KAT2B-induced NF2 resulted in subsequent inhibition of YAP activity, as reflected by reduced nuclear accumulation of oncogenic YAP and inhibition of YAP downstream genes. Depletion of NF2 was able to reverse KAT2B-induced reduction of nuclear YAP and subvert KAT2B-induced inhibition of CCA cell growth. CONCLUSIONS This study provides the first evidence for an important tumor inhibitory effect of KAT2B in CCA through regulation of NF2-YAP signaling and suggests that this signaling cascade may be therapeutically targeted for CCA treatment.
Collapse
Affiliation(s)
- Wenbo Ma
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Nianli Liu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA.
| |
Collapse
|
43
|
Zou C, Li W, Zhang Y, Feng N, Chen S, Yan L, He Q, Wang K, Li W, Li Y, Wang Y, Xu B, Zhang D. Identification of an anaplastic subtype of prostate cancer amenable to therapies targeting SP1 or translation elongation. SCIENCE ADVANCES 2024; 10:eadm7098. [PMID: 38569039 PMCID: PMC10990282 DOI: 10.1126/sciadv.adm7098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Histopathological heterogeneity is a hallmark of prostate cancer (PCa). Using spatial and parallel single-nucleus transcriptomics, we report an androgen receptor (AR)-positive but neuroendocrine-null primary PCa subtype with morphologic and molecular characteristics of small cell carcinoma. Such small cell-like PCa (SCLPC) is clinically aggressive with low AR, but high stemness and proliferation, activity. Molecular characterization prioritizes protein translation, represented by up-regulation of many ribosomal protein genes, and SP1, a transcriptional factor that drives SCLPC phenotype and overexpresses in castration-resistant PCa (CRPC), as two potential therapeutic targets in AR-indifferent CRPC. An SP1-specific inhibitor, plicamycin, effectively suppresses CRPC growth in vivo. Homoharringtonine, a Food And Drug Administration-approved translation elongation inhibitor, impedes CRPC progression in preclinical models and patients with CRPC. We construct an SCLPC-specific signature capable of stratifying patients for drug selectivity. Our studies reveal the existence of SCLPC in admixed PCa pathology, which may mediate tumor relapse, and establish SP1 and translation elongation as actionable therapeutic targets for CRPC.
Collapse
Affiliation(s)
- Cheng Zou
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Wenchao Li
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yuanzhen Zhang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Ninghan Feng
- Department of Urology and Wuxi School of Medicine, Jiangnan University Medical Center, Wuxi 214002, Jiangsu Province, China
| | - Saisai Chen
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Lianlian Yan
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
| | - Qinju He
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
| | - Kai Wang
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Wenjun Li
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Yingying Li
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Yang Wang
- Department of Urology and Wuxi School of Medicine, Jiangnan University Medical Center, Wuxi 214002, Jiangsu Province, China
| | - Bin Xu
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
- National Medicine-Engineering Interdisciplinary Industry-Education Integration Innovation Platform (Ministry of Education), Basic Medicine Research and Innovation Center, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Dingxiao Zhang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| |
Collapse
|
44
|
Wang Z, Zhou X, Hu X, Zheng C. Quercetin ameliorates Helicobacter pylori-induced gastric epithelial cell injury by regulating specificity protein 1/lipocalin 2 axis in gastritis. J Appl Toxicol 2024; 44:641-650. [PMID: 38056887 DOI: 10.1002/jat.4566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 12/08/2023]
Abstract
Helicobacter pylori (HP) infection is the main cause of most cases of gastritis. Quercetin has been shown to have anti-inflammatory, anti-bacterial, and antiviral activities and has been demonstrated to be involved in HP-induced gastric mucosa injury. Moreover, the secretory protein lipocalin-2 (LCN2) was elevated in HP-infected gastric mucosa. Thus, this work aimed to study the interaction between quercetin and LCN2 in HP-triggered gastric injury during gastritis. Human gastric epithelial cell line GES-1 cells were exposed to HP for functional experiments. Cell viability, apoptosis, and inflammation were evaluated by cell counting kit-8, flow cytometry, and enzyme-linked immunosorbent assay, respectively. Levels of genes and proteins were tested using quantitative reverse transcription polymerase chain reaction and western blotting analyses. The interaction between LCN2 and specificity protein 1 (SP1) was validated using chromatin immunoprecipitation assay and dual-luciferase reporter assay. Thereafter, we found quercetin treatment suppressed HP-induced GES-1 cell apoptotic and inflammatory injury and macrophage M1 polarization. LCN2 was highly expressed in HP-infected gastritis patients and HP-infected GES-1 cells, while quercetin reduced LCN2 expression in HP-infected GES-1 cells; moreover, LCN2 knockdown reversed HP-induced GES-1 cell injury and macrophage M1 polarization, and forced expression of LCN2 abolished the protective effects of quercetin on GES-1 cells under HP infection. Mechanistically, SP1 bound to LCN2 promoter and promoted its transcription. Also, SP1 overexpression counteracted the functions of quercetin on HP-stimulated GES-1 cells. In all, quercetin ameliorated HP-induced gastric epithelial cell apoptotic and inflammatory injuries, and macrophage M1 polarization via the SP1/LCN2 axis.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Hu
- Department of Digestive Endoscopy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Congru Zheng
- Department of Digestive Endoscopy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
45
|
Feng Y, An Q, Zhao Z, Wu M, Yang C, Liang W, Xu X, Jiang T, Zhang G. Beta-elemene: A phytochemical with promise as a drug candidate for tumor therapy and adjuvant tumor therapy. Biomed Pharmacother 2024; 172:116266. [PMID: 38350368 DOI: 10.1016/j.biopha.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND β-Elemene (IUPAC name: (1 S,2 S,4 R)-1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl) cyclohexane), is a natural compound found in turmeric root. Studies have demonstrated its diverse biological functions, including its anti-tumor properties, which have been extensively investigated. However, these have not yet been reviewed. The aim of this review was to provide a comprehensive summary of β-elemene research, with respect to disease treatment. METHODS β-Elemene-related articles were found in PubMed, ScienceDirect, and Google Scholar databases to systematically summarize its structure, pharmacokinetics, metabolism, and pharmacological activity. We also searched the Traditional Chinese Medicine System Pharmacology database for therapeutic targets of β-elemene. We further combined these targets with the relevant literature for KEGG and GO analyses. RESULTS Studies on the molecular mechanisms underlying β-elemene activity indicate that it regulates multiple pathways, including STAT3, MAPKs, Cyclin-dependent kinase 1/cyclin B, Notch, PI3K/AKT, reactive oxygen species, METTL3, PTEN, p53, FAK, MMP, TGF-β/Smad signaling. Through these molecular pathways, β-elemene has been implicated in tumor cell proliferation, apoptosis, migration, and invasion and improving the immune microenvironment. Additionally, β-elemene increases chemotherapeutic drug sensitivity and reverses resistance by inhibiting DNA damage repair and regulating pathways including CTR1, pak1, ERK1/2, ABC transporter protein, Prx-1 and ERCC-1. Nonetheless, owing to its lipophilicity and low bioavailability, additional structural modifications could improve the efficacy of this drug. CONCLUSION β-Elemene exhibits low toxicity with good safety, inhibiting various tumor types via diverse mechanisms in vivo and in vitro. When combined with chemotherapeutic drugs, it enhances efficacy, reduces toxicity, and improves tumor killing. Thus, β-elemene has vast potential for research and development.
Collapse
Affiliation(s)
- Yewen Feng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Qingwen An
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Zhengqi Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Mengting Wu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Chuqi Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - WeiYu Liang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Xuefei Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Tao Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China.
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China.
| |
Collapse
|
46
|
Tian P, Du D, Yang L, Zhou N, Tao L. SP3-induced Timeless transcription contributes to cell growth of lung adenocarcinoma cells. PLoS One 2024; 19:e0298295. [PMID: 38354174 PMCID: PMC10866488 DOI: 10.1371/journal.pone.0298295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Timeless is well-known for its key role in replication checkpoints. Recent studies reveal the involvement of Timeless and specificity protein (SP) 1 in human malignancies. However, no evidence proved the interaction between SP3 and Timeless in lung adenocarcinoma (LUAD). METHODS The expression and clinical significance of Timeless were analyzed using the LUAD dataset downloaded from the Cancer Genome Atlas (TCGA). Lentivirus-mediated Timeless knockdown in A549 cells was used to examine the role of Timeless in cell proliferation and pemetrexed (PEM) resistance. Transcription factors (TFs) bound to the Timeless promoter were identified by DNA pull-down technology with HPLC-MS/MS analysis and analyzed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Dual-luciferase reporter assay was used to determine the activity of SP3 in Timeless transcription. RESULTS Timeless was overexpressed in LUAD samples, and it could serve as a potential diagnostic or prognostic biomarker for LUAD patients. shTimeless-mediated knockdown of Timeless reduced cell viability and proliferation and sensitized PEM-resistant A549 cells to PEM. Four fragments (F1: 1-373 bp), (F2: 374-962 bp), (F4: 1274-1645 bp), and (F5: 1646-2000bp) were confirmed as the TF binding profiles of the Timeless promoter. KEGG analysis showed that the TFs bound to the Timeless promoter had relevance to spliceosome, RNA transport, and mRNA surveillance pathways. SP3 promoted the transcription of Timeless via the F2 fragment (374-962 bp) binding motif. CONCLUSION Upregulation of Timeless mediated by SP3 promotes LUAD cell proliferation, providing evidence to support that targeting the SP3/Timeless axis may be a potential therapeutic strategy against LUAD.
Collapse
Affiliation(s)
- Ping Tian
- Medical School, Xinyang Vocational and Technical College, Xinyang, Henan, China
| | - Dajun Du
- Department of Surgical Oncology, Xinyang Central Hospital, Xinyang, Henan, China
| | - Li Yang
- Inspection School, Xinyang Vocational and Technical College, Xinyang, Henan, China
| | - Nan Zhou
- Department of Medical Oncology, Xinyang Central Hospital, Xinyang, Henan, China
| | - Ling Tao
- Inspection School, Xinyang Vocational and Technical College, Xinyang, Henan, China
| |
Collapse
|
47
|
Zhang F, Zhou H, Xue J, Zhang Y, Zhou L, Leng J, Fang G, Liu Y, Wang Y, Liu H, Wu Y, Qi L, Duan R, He X, Wang Y, Liu Y, Li L, Yang J, Liang D, Chen YH. Deficiency of Transcription Factor Sp1 Contributes to Hypertrophic Cardiomyopathy. Circ Res 2024; 134:290-306. [PMID: 38197258 DOI: 10.1161/circresaha.123.323272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disorder. However, the pathogenesis of HCM, especially its nongenetic mechanisms, remains largely unclear. Transcription factors are known to be involved in various biological processes including cell growth. We hypothesized that SP1 (specificity protein 1), the first purified TF in mammals, plays a role in the cardiomyocyte growth and cardiac hypertrophy of HCM. METHODS Cardiac-specific conditional knockout of Sp1 mice were constructed to investigate the role of SP1 in the heart. The echocardiography, histochemical experiment, and transmission electron microscope were performed to analyze the cardiac phenotypes of cardiac-specific conditional knockout of Sp1 mice. RNA sequencing, chromatin immunoprecipitation sequencing, and adeno-associated virus experiments in vivo were performed to explore the downstream molecules of SP1. To examine the therapeutic effect of SP1 on HCM, an SP1 overexpression vector was constructed and injected into the mutant allele of Myh6 R404Q/+ (Myh6 c. 1211C>T) HCM mice. The human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a patient with HCM were used to detect the potential therapeutic effects of SP1 in human HCM. RESULTS The cardiac-specific conditional knockout of Sp1 mice developed a typical HCM phenotype, displaying overt myocardial hypertrophy, interstitial fibrosis, and disordered myofilament. In addition, Sp1 knockdown dramatically increased the cell area of hiPSC-CMs and caused intracellular myofibrillar disorganization, which was similar to the hypertrophic cardiomyocytes of HCM. Mechanistically, Tuft1 was identified as the key target gene of SP1. The hypertrophic phenotypes induced by Sp1 knockdown in both hiPSC-CMs and mice could be rescued by TUFT1 (tuftelin 1) overexpression. Furthermore, SP1 overexpression suppressed the development of HCM in the mutant allele of Myh6 R404Q/+ mice and also reversed the hypertrophic phenotype of HCM hiPSC-CMs. CONCLUSIONS Our study demonstrates that SP1 deficiency leads to HCM. SP1 overexpression exhibits significant therapeutic effects on both HCM mice and HCM hiPSC-CMs, suggesting that SP1 could be a potential intervention target for HCM.
Collapse
Affiliation(s)
- Fulei Zhang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Huixing Zhou
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Jinfeng Xue
- Department of Regenerative Medicine (J.X., L.Q.), Tongji University School of Medicine, Shanghai, China
| | - Yuemei Zhang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Liping Zhou
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Junwei Leng
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Guojian Fang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yuanyuan Liu
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Jinzhou Medical University, China (Yuanyuan Liu, Y. Wang, Yan Wang)
| | - Yan Wang
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Jinzhou Medical University, China (Yuanyuan Liu, Y. Wang, Yan Wang)
| | - Hongyu Liu
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yahan Wu
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Lingbin Qi
- Department of Regenerative Medicine (J.X., L.Q.), Tongji University School of Medicine, Shanghai, China
| | - Ran Duan
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Xiaoyu He
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yan Wang
- Jinzhou Medical University, China (Yuanyuan Liu, Y. Wang, Yan Wang)
| | - Yi Liu
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Li Li
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Pathology and Pathophysiology (L.L., J.Y., Y.-H.C.), Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| | - Jian Yang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Pathology and Pathophysiology (L.L., J.Y., Y.-H.C.), Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| | - Dandan Liang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| | - Yi-Han Chen
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Pathology and Pathophysiology (L.L., J.Y., Y.-H.C.), Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| |
Collapse
|
48
|
Lambring CB, Fiadjoe H, Behera SK, Basha R. Docking and molecular dynamic simulations of Mithramycin-A and Tolfenamic acid against Sp1 and survivin. Process Biochem 2024; 137:207-216. [PMID: 38912413 PMCID: PMC11192519 DOI: 10.1016/j.procbio.2023.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Therapeutic targeting of Sp1 transcription factor and survivin, are studied in various cancers due to their consistent overexpression. These markers result in poorer cancer prognoses and their downregulation has been investigated as an effective treatment approach. Mithramycin-A and Tolfenamic acid are two drugs with innate anti-cancer properties and are suggested to be able to target Sp1 through GC/GT DNA binding interference, however in-depth binding and mechanistic studies are lacking. Through docking analysis, we investigated Mithramycin-A and Tolfenamic acid in terms of their specific binding interactions with Sp1 and survivin. Through further molecular dynamics simulations including Root Mean Square (RMS) Fluctuation and RMS Deviation, rGYr, and H-bond analysis, we identified critical residues involved in drug interactions with each protein in question. We show Mithramycin-A as the superior binding candidate to each protein and found that it exhibited stronger binding with Sp1, and then survivin. Subsequent molecular dynamics simulations followed the same trend as initial binding energy calculations and showed crucial amino acids involved in each Mithramycin-A-protein complex. Our findings warrant further investigation into Mithramycin-A and its specific interaction with Sp1 and their downstream targets giving a better understanding of Mithramycin-A and its potential as an effective cancer treatment.
Collapse
Affiliation(s)
| | - Hope Fiadjoe
- UNT Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| | | | - Riyaz Basha
- UNT Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| |
Collapse
|
49
|
Reynolds SR, Zhang Z, Salas LA, Christensen BC. Tumor microenvironment deconvolution identifies cell-type-independent aberrant DNA methylation and gene expression in prostate cancer. Clin Epigenetics 2024; 16:5. [PMID: 38173042 PMCID: PMC10765773 DOI: 10.1186/s13148-023-01609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Among men, prostate cancer (PCa) is the second most common cancer and the second leading cause of cancer death. Etiologic factors associated with both prostate carcinogenesis and somatic alterations in tumors are incompletely understood. While genetic variants associated with PCa have been identified, epigenetic alterations in PCa are relatively understudied. To date, DNA methylation (DNAm) and gene expression (GE) in PCa have been investigated; however, these studies did not correct for cell-type proportions of the tumor microenvironment (TME), which could confound results. METHODS The data (GSE183040) consisted of DNAm and GE data from both tumor and adjacent non-tumor prostate tissue of 56 patients who underwent radical prostatectomies prior to any treatment. This study builds upon previous studies that examined methylation patterns and GE in PCa patients by using a novel tumor deconvolution approach to identify and correct for cell-type proportions of the TME in its epigenome-wide association study (EWAS) and differential expression analysis (DEA). RESULTS The inclusion of cell-type proportions in EWASs and DEAs reduced the scope of significant alterations associated with PCa. We identified 2,093 significantly differentially methylated CpGs (DMC), and 51 genes associated with PCa, including PCA3, SPINK1, and AMACR. CONCLUSIONS This work illustrates the importance of correcting for cell types of the TME when performing EWASs and DEAs on PCa samples, and establishes a more confounding-adverse methodology. We identified a more tumor-cell-specific set of altered genes and epigenetic marks that can be further investigated as potential biomarkers of disease or potential therapeutic targets.
Collapse
Affiliation(s)
- Samuel R Reynolds
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| | - Ze Zhang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
50
|
Wei L, Deng C, Zhang B, Wang G, Meng Y, Qin H. SP4 Facilitates Esophageal Squamous Cell Carcinoma Progression by Activating PHF14 Transcription and Wnt/Β-Catenin Signaling. Mol Cancer Res 2024; 22:55-69. [PMID: 37768180 PMCID: PMC10758695 DOI: 10.1158/1541-7786.mcr-22-0835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/13/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Specificity protein 4 transcription factor (SP4), a member of the Sp/Krüppel-like family (KLF), could bind to GT and GC box promoters, and plays an essential role in transcriptional activating. Despite SP4 having been detected to be highly expressed in a variety of human tumors, its biological effect and underlying molecular mechanism in esophageal squamous cell carcinoma (ESCC) remains unclear. Our research discovered that high SP4 expression is detected in primary ESCC specimens and cell lines and is strongly associated with the ESCC tumor grade and poor prognosis. In vitro, knockdown of SP4 suppressed cell proliferation and cell-cycle progression and promoted apoptosis, whereas overexpression of SP4 did the opposite. In vivo, inhibiting SP4 expression in ESCC cells suppresses tumor growth. Subsequently, we demonstrated that SP4 acts as the transcriptional upstream of PHF14, which binds to PHF14 promoter region, thus promoting PHF14 transcription. PHF14 was also significantly expressed in patient tissues and various ESCC cell lines and its expression promoted cell proliferation and inhibited apoptosis. Moreover, knockdown of SP4 inhibited the Wnt/β-catenin signaling pathway, whereas overexpression of PHF14 eliminated the effects of SP4 knockdown in ESCC cells. These results demonstrate that SP4 activates the Wnt/β-catenin signaling pathway by driving PHF14 transcription, thereby promoting ESCC progression, which indicates that SP4 might act as a prospective prognostic indicator or therapeutic target for patients with ESCC. IMPLICATIONS This study identified SP4/PH14 axis as a new mechanism to promote the progression of ESCC, which may serve as a novel therapeutic target for patients with ESCC.
Collapse
Affiliation(s)
- Li Wei
- Department of Surgery and Anesthesia, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Chaowei Deng
- Department of Cell Biology and Genetics/Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Bo Zhang
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Guanghui Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yan Meng
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hao Qin
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|